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Abstract
Objectives To quantify and model normal foetal lung and liver elasticities between 24 and 39 weeks of gestation (WG) using
two-dimensional shear wave elastography (2D-SWE). To assess the impact of the distance between the probe and the target organ
on the estimation of elasticity values.
Methods Measurements of normal foetal lungs and liver elasticity were prospectively repeated monthly between 24 and 39WG
in 72 foetuses using 2D-SWE. Elasticity was quantified in the proximal lung and in the region inside the hepatic portal sinus. The
distance between the probe and the target organ was recorded. Trajectories representing foetal lung and liver maturation from at
least 3 measurements over time were modelled.
Results The average elasticity for the lung and liver was significantly different from 24WG to 36WG (p < 0.01). Liver elasticity
increased during gestation (3.86 kPa at 24 WG versus 4.45 kPa at 39 WG). From 24 WG to 32 WG, lung elasticity gradually
increased (4.12kPa at 24 WG, 4.91kPa at 28 WG, 5.03kPa at 32 WG, p < 0.002). After 32 WG, lung elasticity decreased to
4.54kPa at 36 WG and 3.94kPa at 39 WG. The dispersion of the average elasticity values was greater for the lung than for the
liver (p < 0.0001). Variation in the elasticity values was less important for the liver than for the lung. The values were considered
valid and repeatable except for a probe-lung distance above 8cm.
Conclusion Foetal lung and liver elasticities evolve differently through gestation. This could reflect the tissue maturation of both
organs during gestation.
Trial registration clinicaltrials.gov identifier: NCT03834805
Key Points
• Prenatal quantification of foetal lung elasticity using 2D shear wave elastography could be a new prenatal parameter for exploring
foetal lung maturity.

• Liver elasticity increased progressively from 24 weeks of gestation (WG) to 39 WG, while lung elasticity increased first between 24
and 32 WG and then decreased after 32 WG.

• The values of elasticity are considered valid and repeatable except for a probe-lung distance above 8cm.
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Abbreviations
2D-SWE Two-dimensional shear wave elastography
AEP Auditory evoked potentials
BMI Body mass index
IUGR Intra-uterine growth restriction
kPa Kilopascals
MHz Megahertz
RDS Respiratory distress syndrome
RMI Reliable measurement index
ROI Region of interest
SWE Shear wave elastography
SWS Shear wave speed
WG Weeks of gestation
YM Young’s modulus

Introduction

Foetal lung development is accompanied by cell proliferation,
intense renewal of the extracellular matrix and increased de-
posits of elastin responsible for changes in tissue biomechan-
ical characteristics during gestation [1]. According to ex vivo
experimental studies, normal lung stiffness ranges from 0.5 to
15 kPa, and the process of normal foetal lung development is
dependent on mild tissue distension [2, 3]. The natural
stretching of the foetal lung during gestation is important for
regulating matrix cellular differentiation and controlling sur-
factant synthesis [3]. All these interactions and histological
changes supported by the collagen and elastic fibre system
influence biomechanical properties and hence the functioning
of the lung. Prenatal assessment of foetal lung elasticity could
be a relevant approach to studying foetal lung maturity during
pregnancy.

All living tissues display viscoelastic behaviour, which is
characterized by time- and frequency-dependent behaviour of
the material responses [4]. In shear wave elastography (SWE),
the tissue is perturbed by an acoustic radiation force to gener-
ate shear waves whose propagation speed can be linked to the
elastic properties of the tissue using mathematical models [5].
Quantitative evaluation of the stiffness is expressed either in
terms of shear wave speed (SWS) (m.s-1) or Young’s modulus
(YM) (kPa) [5–7]. The study of deep organs is possible with
2D-SWE because this method does not require any
compression-relaxation sequence on the target organ.
Nevertheless, the distance between the probe and deep organs
can limit the accurate measurement of SWS. This technique
has been used in several organs (liver, breast, placenta, cervix)
[7–11], and some studies have reported interesting results re-
garding the exploration of non-human foetal organs with 2D-
SWE [12, 13].

In a preliminary pilot study (the ELASTOMAP study), we
concluded that quantitative foetal lung and liver stiffness mea-
surements during gestation were feasible using 2D-SWE with

acceptable reproducibility [14]. We explored both the foetal
lung and liver because the latter has been used as a reference
organ to assess foetal lung maturity in several studies using
ultrasound or MRI [15–17]. Considering that gestational age
is one of the most important factors determining foetal lung
maturation, the increased lung stiffness observed during the
studied period could reflect lung development and maturity.
However, in this previous prospective case-control study, foe-
tuses were stratified according to gestational age between 24
and 34 weeks of gestation (WG), and individual evolution of
foetal lung elasticity was not studied. The protocol was not
designed to study the normal value of foetal lung or liver
elasticity during gestation. Moreover, data concerning foetal
lung elasticity after 34 WG were not available, while 39 WG
is an important threshold in terms of lung maturity in current
clinical practice [18, 19].

The primary objective of the current study was to quantify
the elasticity evolution of normal foetal lungs and liver in
foetuses between 24 and 39WG using 2D-SWE. The second-
ary objective was to assess the impact of the distance between
the probe and the target organ on the estimation of elasticity
values for both organs.

Methods

Study design

A prospective observational study was performed at the
University Hospital of Besançon, (France), and at IMAGE
Institute (Marseille, France) from April 2019 to January
2020 in strict accordance with the ethical guidelines of the
Declaration of Helsinki. The study was approved by the hu-
man ethical research committee (Comité de Protection des
Personnes SUD EST VI, process number AU1437) and the
French National Agency for Medicines and Health Products
Safety (process number 2018-A01607-48). The study was reg-
istered at clinicaltrials.gov with the number NCT03834805.
All the participants provided written informed consent.

Study population

Measurements of normal foetal lungs and liver elasticities
were repeated monthly for the same foetus using 2D-SWE
between 24 and 39 WG. Pregnant women were included at
24 WG+/-1 week, and ultrasounds with 2D-SWE were per-
formed at 28, 32, 36 and 39 WG+/-1 week. It was determined
that 72 patients should be included in the current study (see
section “Statistical analysis”). The inclusion criteria were as
follows: pregnant women aged 18 years or older, singleton
pregnancy, eutrophic foetus and signature of consent.
Maternal exclusion criteria were BMI > 30 kg/m2, premature
rupture of membranes, arterial hypertension, pre-eclampsia,
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gestational diabetes, prescription of maternal corticosteroids
for foetal lung maturation and women under a legal incapac-
ity. Foetal and neonatal exclusion criteria were as follows:
foetal lung or liver pathologies, intra-uterine growth restric-
tion (IUGR) < 10th percentile, birth weight < 10th percentile,
respiratory distress syndrome (RDS) or transient tachypnoea
with a Silverman score > 4 and postnatal diagnosis of struc-
tural or chromosomal abnormalities. All these conditions
could influence normal lung maturity. Moreover, we decided
to exclude foetal weight estimation or birthweight < 10th per-
centile because Alison et al found that postnatal liver stiffness
was significantly higher for foetuses with IUGR [8].

Prenatal variables and measuring technique

The primary judgement criterion was the value of YM (elas-
ticity modulus) expressed in kilopascals (kPa). A Samsung
RS 85 system® with CE certification CE LNE/G-MED
(2007/47/EC) equipped with an abdominal convex probe
of 1–7 MHz was used for this study. The shear wave acqui-
sition measurement protocol was the same for each patient.
Three operators participated in this study. The elasticity of
the foetal lung was quantified on the most proximal lung in
the region behind the plane passing through the atria after
obtaining a B-mode image of a four-chamber view of the
foetal heart (Fig. 1). The proximal lung is the one located
closest to the ultrasound probe. The elasticity of the foetal

liver was quantified in the region inside the hepatic portal
sinus (segment V) after obtaining a B-mode image of the
abdominal circumference (Fig. 2). In real time, the elasticity
appeared colour coded (colour scaled, ranging from 0 to 40
kPa), and the YM value (minimum, maximum, average and
standard deviation) at any location was sampled using a
round region of interest (ROI) of 10 mm. The distance be-
tween the probe and the target organ was recorded for each
measurement. Samsung’s S-Shearwave Imaging™ pro-
vides an additional reliable measurement index (RMI) de-
termining whether the elasticity value has been correctly
measured. This index is calculated by analysing how much
the measured shear wave deviates from the theoretical be-
haviour. An RMI of 0.0 indicates a significant error, where-
as an RMI of 1.0 indicates no error [20]. In this study, mea-
surements of YMwere considered reliable for an RMI > 0.4.
Currently, there is no consensus concerning the number of
measurements required to measure elasticity in a tissue ex-
plored by 2D-SWE. Studies reporting the use of elastogra-
phy in newborns, children or adults report a number of mea-
surements varying between 3, 5 and 10 measurements [21].
For the first ten patients included in the study, we calculated
the coefficient of variation with the Kruskal-Wallis test for
3, 5 and 10measurements of YM of the foetal lung and liver.
After analysis, there was no significant variation in the av-
erage elasticity according to 3, 5 and 10 measurements. In
this study, we carried out three successive acquisitions.

Fig. 1 Elasticity measurement of the proximal foetal lung with 2D-SWE
in the region behind the plane passing through the atria after obtaining a
B-mode image of a four-chamber view of the foetal heart. The colour box
represents the elastogram (blue), and the yellow circle represents the

region of interest (1 cm) where the elasticity measurement is acquired.
The RMI (Reliability Measurement Index) value (0.5) is expressed below
the obtained mean elasticity measurement of 2.7 kPa
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Postnatal variables

The following data were collected: term of birth, weight, neo-
natal transfer, Apgar score and evaluation of respiratory dis-
tress by the Silverman score. In the 2 days after birth, auto-
mated evaluation of auditory-evoked potentials (AEPs) was
recorded in cases of premature delivery before 37WG despite
cochlear damage in the exposed foetus. After 37 WG, AEPs
were performed if otoacoustic emissions were absent.

Statistical analysis

Trajectories representing the evolution of the foetal lung and
liver maturation from at least 3 measurements over time were
modelled (24, 28, 32, 36 and 39 WG). The calculation of the
effect was carried out from preliminary data obtained in the
ELASTOMAP study in a cohort of patients not at risk of
preterm delivery [14]. The assumptions underlying the calcu-
lation were that a relatively precise estimate (± 5% around the
observed values) of the average trajectory with its 95% con-
fidence interval is desired to identify atypical trajectories. For
this, we formulated the following assumptions at each time
point: an extent of the confidence interval of the mean of 10%
of the value of the mean, a dispersion equal to the standard
deviation of the mean and an alpha risk of 5%. It was deter-
mined that 72 patients should be included in the current study.

The reliability of the measurements was tested according to
depth (distance between the probe and the ROI). If the

variability of the measurements (coefficient of variation cal-
culated on repeated measurements) did not increase with the
depth of the measurements, we deduced that these two param-
eters were independent in our data. The results were expressed
as the mean difference with a 95% confidence interval, stan-
dard deviation of the differences and p value. A mixed analy-
sis of variance was performed to test lung and liver elasticity
values and dispersions at each time point. Pearson’s correla-
tions were used to test the linear link between the depth and
the reliability of the measurement.

Statistical analysis was performed with SAS/STAT version
9.4 for Windows.

Results

During the study period, 77 women with an uncomplicated
pregnancy were enrolled prospectively. At least 3 ultrasounds
with 2D-SWE were available for 72 women giving birth at
term to healthy children without RDS (Silverman score < 4).
Five patients were excluded from the analysis: 4 women re-
ceived corticosteroids for threatened preterm labour, and 1
woman developed gestational diabetes. Maternal characteris-
tics are summarized in Table 1.

The average, maximum and minimum elasticity values for
foetal lung and liver according to gestational age are presented
in Fig. 3. The evolution of the dispersion of these values
according to gestational age is presented in Fig. 4. A mixed

Fig. 2 Elasticity measurement of the foetal liver in the region inside the hepatic portal sinus (segment V) with 2D-SWE after obtaining a B-mode image
of abdominal circumference
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analysis of variance showed that the average elasticity for the
lung and liver was significantly different from 24 WG to 36
WG (p < 0.01). While foetal liver elasticity increased
(3.86 kPa at 24WG versus 4.45 kPa at 39WG), lung elasticity
evolved at different levels. From 24WG to 32WG, there was
a tendency for lung elasticity to gradually increase (4.12 kPa
at 24 WG, 4.91 kPa at 28 WG, 5.03 kPa at 32 WG). This
difference was significant (p < 0.002). After 32 WG, the lung
elasticity decreased to 4.54 kPa at 36WG and then 3.94 kPa at
39 WG.

The dispersion of the average elasticity values was also
different between the organs with a mixed analysis of vari-
ance: dispersion was greater for the lung than for the liver
between 24 and 36 WG (p < 0.0001). For the lung, this dis-
persion seemed to decrease after 32 WG, while it remained
stable for the liver. However, the evolution between 24 and 36

WG was not significant regardless of the explored organ (p =
0.40).

The mean distances between the ultrasound probe and ROI
placement on the lung or liver remained stable between 24 and
39 WG: 4.6 cm (2.5–8) and 5.8 cm (3–10), respectively.
Depending on the depth quartile, there was a moderate varia-
tion in the elasticity values. This variation was less important
for the liver than for the lung (Tables 2 and 3). For the lung,
the Pearson correlation coefficient between the depth of the
measurements and the coefficient of variation was 0.19, which
was a significant difference (p = 0.0008, n = 314 measure-
ments). The greater the depth increased, the greater the vari-
ability of the measurements increased. However, the increase
remained small. In addition, the values were considered valid
and therefore repeatable except for the 4th quartile of a depth
corresponding to a distance between the probe and the ROI of

Table 1 Maternal and infant
characteristics Maternal characteristics n = 72

Maternal age (years) 26 ± 5.26 [19–39]

BMIa (kg/m2) 23.7 ± 6.14 [19.43–27]

Infant characteristics in the 2 days following birth (lost to follow-up: 2) n = 70

Gestational age at birth 39.6 ± 1.74 [35–40]

Birth weight 3314.86 ± 520.45 [1890–4850]

Median Apgar 1 min 10 ± 1.17 [4–10]

Median Apgar 5 min 10 ± 0.66 [5–10]

Spontaneous ventilation 66 (66/70; 94.2%)

Mechanical ventilation 4 (4/70; 5.8%)

Mechanical ventilation with intubation 0

Normal otoacoustic emissions 64 (64/70; 91.4%)

Normal auditory evoked potentials 2 (2/2; 100%)

a BMI, body mass index

Results are presented as follows: mean ± standard deviation [minimum;maximum]; frequency (X/Y; percentage);
p < 0.05 is significant (Student’s t test or Mann-Whitney’s U test for quantitative variable; chi-squared test or
Fisher’s exact test for qualitative variables, as appropriate)

Fig. 3 Average, maximum and
minimum elasticity values for
foetal lung and liver according to
gestational age
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8 cm. For the liver, this same Pearson correlation coefficient
was 0.08, which was a nonsignificant difference (p = 0.15, n =
311 measurements). The variability in the measurements can-
not be explained by depth. Unlike the lung, the measurements
had a coefficient of variation < 0.3 and were considered re-
peatable regardless of the depth.

Paediatricians examined a total of 70 children exposed to
2D-SWE in the 2 days following birth (lost to follow-up
n = 2). All the infants exposed to 2D-SWE were born alive
and in good health. Infant characteristics are summarized in
Table 1. All the infants were born at 39.6 (+/- 1.7) WG, and
otoacoustic emissions were present for 64 infants. AEPs were
controlled in 2 infants and were normal. Otoacoustic emis-
sions were not registered in the medical files for 4 infants.

Discussion

The mean elasticity value and its dispersion evolved different-
ly during gestation between foetal lungs and the liver and
could be new prenatal parameters for exploring foetal lung
maturity. The simultaneous interpretation of the measurement
dispersion and elasticity value is interesting because it could
reflect histological modifications of both tissues during gesta-
tion. For foetal lungs, the development of stiff structures such
as blood vessels and bronchi during the canalicular (16–26

WG) and saccular stages (24 WG-term) precedes that of the
soft pulmonary parenchyma, especially before 32 WG.
During the exploration of the foetal lung with 2D-SWE, the
distribution of vasculo-bronchial elements and parenchyma in
the same ROI could influence the elasticity measurement.
Before 32 WG, the probability of measuring the stiffness of
both vasculo-bronchial elements and foetal pulmonary paren-
chyma in an ROI is important, leading to a greater dispersion
of the elasticity values with a tendency to obtain higher values
(4.12 kPa at 24 WG, 4.91 kPa at 28 WG, 5.03 kPa at 32 WG,
p = 0.002). After 32WG, the probability of exploring only the
lung parenchymawithin an ROI appears to be greater, and two
phenomena could explain the decrease in foetal lung elasticity
and dispersion attenuation (4.54 kPa at 36WG and 3.94 kPa at
39 WG): development of the pulmonary parenchyma and the
production of surfactant. Phosphatidylcholine is one of the
most important components of surfactants, and synthesis of
this viscoelastic substance can lead to dispersion of SWS and
attenuation. As dispersion increases, shear waves will be at-
tenuated [22–24]. For the liver, elasticity seems to increase
during gestation (3.86 kPa at 24 WG versus 4.45 kPa at 39
WG), and measurements of dispersion seem constant and may
reflect a certain homogeneity of the tissue during gestation.

These results are consistent with the findings of Da Silva
et al in ovine foetuses, where SWS in the liver gradually
increased during gestation [25]. The use of 2D-SWE in foetal

Fig. 4 Dispersion of the average
elasticity values for foetal lung
and liver according to gestational
age

Table 2 Lung elasticity values
according to the depth quartile Depth Average coefficient of variation

(± standard deviation)

1st quartile 3.90 0.26 (± 0.15)

2nd quartile 4.50 0.25 (± 0.12)

3rd quartile 5.30 0.29 (± 0.14)

4th quartile 8.10 0.33 (± 0.15)
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medicine is actually not recommended in current practice, and
no health agency has published recommendations about the
widespread use of 2D-SWE in obstetrics due to a lack of data
concerning the impact of acoustic radiation force on particular
displacement in foetal tissues [26]. Although no apparent his-
tologic changes after ultrasound elastography have been re-
ported, the absence of all bioeffects cannot be excluded [27].
Issaoui et al measured heating variations during B-mode,
pulse Doppler and 2D-SWE ultrasound imaging with a spe-
cific instrumental phantom [28]. The temperature rise caused
by SWEwas the highest, approximately 2.5 times greater than
that caused by pulse Doppler and more than four times greater
than that caused by B-mode. The continuous movement of the
transducer, freezing of the output and reviewing acquired data
during the examination, blood perfusion and the presence of
amniotic fluid could reduce the temperature changes deeper in
the tissue [28]. Currently, the uncertainty of the bioeffects of
acoustic radiation force elastography leads to the recommen-
dation to avoid foetal exposure before 12 WG to ensure that
organogenesis is sufficiently completed [29]. The foetal co-
chlea may be a particularly sensitive structure, as 2D-SWE
provides mechanical pulsatile vibration [30]. In our prelimi-
nary study, neonatal hypoacusis screening tests were normal
for 100 infants exposed to 2D-SWE during the prenatal peri-
od. In one case, otoacoustic emissions were not registered in
the medical file, and one infant presented abnormal AEP for
one ear in one case of premature delivery at 31WG [14]. With
this complementary study, we confirmed that no adverse neo-
natal outcomes were observed in 70 new infants exposed pre-
natally to 2D-SWE, and 94.2% (66/70) of them had a negative
result in the audiologic tests.

The main limitations of this study include the impact of
depth on measurement accuracy and the postulate that the ex-
plored tissue is homogeneous. It is accepted that the SWS is
underestimated with the depth of the explored organ, but this
effect would be limited when exploring soft tissues compared
to stiff tissues. It can be explained by a greater damping of the
sound pressure in stiff tissues and by a more limited compress-
ibility of the soft tissues [31]. Moreover, estimation of YM
values assumes homogeneity of the sample. However, most
biological materials, including lung parenchyma, are increas-
ingly heterogeneous during gestation. This heterogeneity can
result in artefacts such as variation in YM depending on depth.
In our study, there was a moderate variation in the elasticity

value depending on the depth. This variation was greater for the
lung, and the threshold for the depth that could influence elas-
ticity measurements was a distance between the probe and the
ROI of 8 cm. These data are consistent with those in the liter-
ature [32–34]. Below this threshold, the intensity of the ultra-
sonic beam becomes too weak to generate a force of ultrasonic
radiation [35]. Another limitation is the non-differentiation be-
tween the left and right lungs. Measurements were performed
on the proximal lung, which can be the right or the left one
depending on the position of the fetus. In this preliminary study,
we chose to limit the impact of depth by favouring exploration
of the lung closest to the probe, whatever the side. Lung density
is lower for the left one, which could have an impact on the
measurement of elasticity.

In conclusion, this is the first study to provide normal foetal
lung and liver elasticity values from 24 to 39 WG using 2D-
SWE in a cohort of healthy newborns without RDS. The si-
multaneous interpretation of elasticity values and their disper-
sion is relevant for interpreting stiffness variations in both
organs. In the current obstetrical practice, the impact of depth
on elasticity measurements with 2D-SWE seems to be limited
to a distance between the probe and the target organ under 8
cm. These preliminary results support further research to as-
sess the performance of 2D-SWE to predict foetal lung matu-
rity in clinical practice and to compare elasticity values of
foetal lungs in healthy new-borns and those with RDS.
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