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In this paper, the design of large-scale quasi-periodic Vibration Energy Harvesters (VEH) is optimized to enhance the harvested power of an electromagnetic mode localized structure. This work aims to optimize the output power by employing the energy localization phenomenon in a large-scale periodic configuration by introducing the minimum number of perturbations. The harvested power, number and location of perturbations are among the objectives that need to be optimized. A genetic-based mixed-integer optimization algorithm is used to meet the objective functions within a constraint on the system kinetic energy. Numerical simulations for quasi-periodic systems with 20 and 100 Degrees of Freedom (DOF) are performed. It is shown that the ratio of harvested power increases as the number of perturbations rises and it exceeds 80% of the total output power by perturbing almost one-third of the total DOFs. The proposed methodology is a decision-making aid to provide an optimal design in a generalized quasi-periodic VEH in order to reduce the number of harvesting transducers while providing a significantly high amount of harvested power.

Introduction

Further developments of self-power sensing systems in many applications such as the internet of things, environmental monitoring and healthcare monitoring face a considerable obstacle in the energy supply [START_REF] Zhao | modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration[END_REF][START_REF] Zou | Mechanical modulations for enhancing energy harvesting: Principles, methods and applications[END_REF]. Replacing or recharging batteries is costly and complex. Energy harvesting can address this issue by generating electrical power from different ambient energy sources such as light, mechanical vibrations, thermal gradients, radio-frequency waves, and acoustic energy [START_REF] Fortunato | Community detection in graphs[END_REF]. Among these sources, energy harvesting from vibrations, with the advantages of high abundance in the surrounding environments, sustainability, and stability, is an active area of research.

Vibrations sources are fluid flows, ambient noise, human activities and machine and structure vibrations [START_REF] Khalid | A review of human-powered energy harvesting for smart electronics: Recent progress and challenges[END_REF][START_REF] Wei | A comprehensive review on vibration energy harvesting: Modelling and realization[END_REF].

The vibration energy must be processed in the mechanical domain and then converted into electrical energy using, e.g., electromagnetic [START_REF] Beeby | A micro electromagnetic generator for vibration energy harvesting[END_REF], piezoelectric [START_REF] Sarker | Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system[END_REF] and electrostatic [START_REF] Zhang | Micro electrostatic energy harvester with both broad bandwidth and high normalized power density[END_REF] transduction. Among these transduction mechanisms, Electromagnetic Energy Harvesters (EMEH) offer advantages such as no need for external voltage input and significant output power from weak vibration [START_REF] Mohanty | Vibration energy harvesting: A review[END_REF]. Electromagnetic transducers work based on generating an electromotive force in a conductive coil by magnetic flux variation, as explained by Faraday's law of induction [START_REF] Cassidy | Design of electromagnetic energy harvesters for large-scale structural vibration applications[END_REF].

Vibration energy harvesting devices deal with a narrow harvesting bandwidth which leads to inefficiencies where energy prevails over a larger bandwidth. Several techniques are proposed to broaden the bandwidth and increase the output power density of these devices. One technique is the hybridization of energy harvesters [START_REF] Fan | Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester[END_REF] to simultaneously harvest energy from multi-sources and single-source using two or more transduction mechanisms such as piezoelectric-electromagnetic [START_REF] Yang | Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms[END_REF], triboelectric-electromagnetic [START_REF] Vidal | Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review[END_REF] etc. Therefore, their complementary characteristic of high voltage and high current result in improvement in energy conversion at both high and low frequencies and amplitudes of excitation [START_REF] Vidal | Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review[END_REF]. This also helps to increase the operating frequency bandwidth, the output power density and their applications in different domains [START_REF] Fan | Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester[END_REF]. Another efficient technique is the use of harvesters with self-adaptive architecture where the system continuously adapts its resonance frequency to the excitation frequency to increase the output power and widen the operational frequency bandwidth. [START_REF] Carneiro | Instrumented electromagnetic generator: Optimized performance by automatic self-adaptation of the generator structure[END_REF][START_REF] Lan | Achieve frequency-self-tracking energy harvesting using a passively adaptive cantilever beam[END_REF]. Nonlinearity enhanced mechanism is also used to overcome the issue of a narrow frequency bandwidth in the conventional linear-type energy harvesters [START_REF] Mallick | Surfing the high energy output branch of nonlinear energy harvesters[END_REF][START_REF] Tehrani | Extending the dynamic range of an energy harvester using nonlinear damping[END_REF] to modify the resonance behavior [START_REF] Daqaq | On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion[END_REF] and to have multi-resonances [START_REF] Izadgoshasb | Performance enhancement of a multiresonant piezoelectric energy harvester for low frequency vibrations[END_REF]. Moreover, numerical and experimental studies have shown that a multimodal configuration covers a range of frequencies and thus broadens the effective frequency bandwidth [START_REF] Santos | Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction[END_REF][START_REF] Abed | Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation[END_REF]. Subsequently, some studies have recently investigated the favorable effects of using the energy localization phenomenon in a multimodal configuration on the harvested power density of VEH [START_REF] Zergoune | On the energy localization in weakly-coupled oscillators for electromagnetic vibration energy harvesting[END_REF][START_REF] Aouali | Efficient broadband vibration energy harvesting based on tuned non-linearity and energy localization[END_REF]. The energy localization phenomenon indicates that introducing a very small asymmetry to a periodic structure results in the confinement of energy in the perturbed zones [START_REF] Pierre | Weak and strong vibration localization in disordered structures: a statistical investigation[END_REF]. This phenomenon in disordered weakly-coupled periodic structures, discovered by Anderson [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF], is used to increase the amplitude of vibration and thus the harvested power.

Furthermore, performing optimizations of the mechanical and electrical characteristics of VEHs has recently drawn much attention. These optimizations have been performed on the harvested power [START_REF] Stephen | On energy harvesting from ambient vibration[END_REF], effective bandwidth [START_REF] Saleem | Transmission power management for throughput maximization in harvesting enabled D2D network[END_REF], structures [START_REF] Homayouni-Amlashi | 2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters[END_REF][START_REF] Jiang | Structural optimization of triboelectric nanogenerator for harvesting water wave energy[END_REF], geometries [START_REF] Homayouni-Amlashi | Analytical modelling and optimization of a piezoelectric cantilever energy harvester with in-span attachment[END_REF][START_REF] Flankl | Cogging torque shape optimization of an integrated generator for electromechanical energy harvesting[END_REF], and the electrical circuit [START_REF] Mohajer | Modeling and electrical optimization of a designed Piezoelectric-based vibration Energy Harvesting System[END_REF]. For electromagnetic multi-DOFs VEH, optimization of the exploitation of the geometric nonlinearity and the nonlinear magnetic coupling has been done to increase the harvested power and bandwidth [START_REF] Abed | Optimized nonlinear mdof vibration energy harvester based on electromagnetic coupling[END_REF]. In addition, for a quasi-periodic system of 5-DOFs, an optimization procedure has been conducted to search for the optimal position for introducing perturbations to the system [START_REF] Aouali | On the Optimization of a Multimodal Electromagnetic Vibration Energy Harvester Using Mode Localization and Nonlinear Dynamics[END_REF]. In a generalized large-scale periodic structure consisting of any number of DOFs, an optimal configuration design for perturbing the system increases the harvested output power. This architecture helps to reduce the number of harvesting transducers in terms of coils, and electrical circuits and to avoid the phase problem since they are implemented in the identified perturbed zones rather than all oscillators. Therefore, obtaining an optimal amount of harvested energy with the minimum number of perturbations can be the main idea for utilizing energy localization in the multimodal VEHs. However, to the authors' knowledge, optimization of the required number of perturbed DOFs and the appropriate location for introducing perturbations to a periodic system with any number of DOFs has not been done to improve the power output.

In this paper, the design and performance of a large-scale quasi-periodic electromagnetic VEH of any number of DOFs are optimized in the presence of the energy localization phenomenon. The purpose is to maximize the harvested energy considering the minimum number and appropriate location of perturbed DOFs. A genetic-based mixed-integer optimization algorithm is developed to meet the objectives within a constraint on the kinetic energy criterion. This criterion is introduced to quantify the ratio between the confined kinetic energy in the perturbed zones and the total kinetic energy of the system. The result of the study helps to reduce the cost and size of the device, to overcome technological constraints and to enhance the harvested power density.

Design and System Modeling

Figure 1 illustrates a VEH consists of N cantilever beams coupled by magnets at the free end. Magnets are arranged so that there is a repulsive magnetic force between each two adjacent magnets. The oscillators are coupled to a simple electrical circuit via an electromechanical coupling mechanism. With a harmonic base excitation, the relative motion of the magnet masses and coils causes a magnetic flux variation through the coil turns and a current induces in each coil. The generated electrical energy is transferred and dissipated into load resistances [START_REF] Abed | Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation[END_REF]. Figure 2 shows N-DOFs discrete system of the harvester. This N-DOF system is an equivalent model of the real VEH that is based on coupled cantilever beam-mass system, depicted in figure 1, in which each cantilever beam with proof mass is represented by one DOF. In this model, m is the equivalent mass of the magnet, k is the mechanical stiffness, x is the relative displacement of each mass, and Ẍg = X g cos(ωt)) is the basisimposed acceleration of the total system where X g is the imposed acceleration amplitude. Moreover, c m = 2ξ m mω 0 is the mechanical damping of the system in which ξ m is the mechanical damping coefficient and ω 0 is the eigenfrequency of the decoupled 1-DOF oscillators. 
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Figure 2: Equivalent N-DOF spring-mass system of the whole electromagnetic VEH where k is the spring stiffness, c m is the mechanical damping, k c is the weak coupling stiffness between each two adjacent magnets, R int is the coil internal resistance and R load is the electrical load resistance.

Equations of Motion

The generalized equation of motions governing the linear behavior of the introduced harvester in figure 2 is expressed based on Newton's 2nd law as

α i ẍi + 2α i ξ m ω 0 ẋi + ω 2 0 [(1 + 2β) x i -βx i-1 -βx i+1 ] = -α i Ẍg (1)
where α i is the mistuning parameter and β is the coupling coefficient, defined as follows

α i = m i m , β = k c k (2)
where m i is the mass of ith DOF and K c is the linear magnetic stiffness. It is noteworthy that α i = 1 indicates that there is no perturbation in the relevant DOF and α i ̸ = 1 indicates that the corresponding DOF is perturbed. The electromagnetic transduction is introduced through a mechanical-magnetic coupling equation as follows

α j ẍj + 2α j ξω 0 ẋj + ω 2 0 [(1 + 2β) x j -βx j-1 -βx j+1 ] = -α j Ẍg V j + (R int + R load )i(t) j = 0 V j = δ e ẋj i(t) j = δ (R load + R int ) ẋj (3) 
where V j is the induced voltage in the coil, i(t) j is the induced current in the coil, δ e is the electromagnetic coupling coefficient, R int and R load are coil internal resistance and load resistance, respectively. Coil inductance L coil is very small and therefore is ignored. In Eq.2, ξ = ξ m +ξ e stands for total damping coefficient in which ξ e and ξ m are electrical and mechanical damping coefficients, respectively. Electrical damping comes from coils to the system for electromagnetic transduction. The steady-state response is x j = X j (ω) exp iωt and the instantaneous power absorbed by the electrical damper is P j (t) = 1 2 c e ẋj ẋ * j in which ẋ * j is the conjugate of ẋj and and c e = δ e 2 /(R load + R int ) is the electrical damping. The average harvested power from the j th DOF, in a cycle of vibration, is

P j avr = c e ω 2 |X j | 2 2 = ξ e m j ω 0 ω 2 |X j | 2 (4) 
The total average power, from all perturbed DOFs can be defined as:

P avr = j P j avr = j ξ e m j ω 0 ω 2 |X j | 2 (5) 
Several methods have been proposed to enhance the performance of VEHs. Among these methods, many numerical and experimental studies have shown that in weakly-coupled quasi-periodic VEH, the amplitude of vibration and thus the output harvested power increases in the perturbed zones. This allows to harvest energy only from perturbed DOFs rather than all of them, and leads to the reduction in the number of transduction circuits.

Energy Localization

In weakly-coupled periodic systems, introducing any structural mistuning in terms of geometry, added mass, and coupling stiffness breaks the symmetry and results in the confinement of energy and thus strong vibration localization in the perturbed zones [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF].

The forced response amplitude of mistuned system is related to the mistuning and coupling coefficients [START_REF] Abed | Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation[END_REF]. A 20-DOFs periodic system including an array of weaklycoupled cantilever beams with proof masses on hlthe tip, shown in figure 3a is employed to illustrate the energy localization phenomenon. This system is analyzed by a finite element method. The coupling between two successive cantilever beams is achieved by a 1D mechanical spring. These couplings are weak (≃ 1 to 5% of the beam stiffness).

Figure 3b shows the first bending mode shape where the kinetic energy of the periodic system is uniformly distributed. 

Optimization procedure

The optimization of the quasi-periodic VEH with many DOFs, shown in figure 2, involves investigating the power output by perturbing certain DOFs in terms of their number and location in a predetermined criterion of kinetic energy. Accordingly, the objective functions are maximizing the harvested power and minimizing the number of perturbed DOFs with specific amount of perturbation. It is also necessary to identify the best DOFs for perturbating the system. A constraint on the criterion of kinetic energy with a predefined amount can also be considered to ensure having a minimum amount of the total kinetic energy in the system. The optimization problem is expressed as

min y (f 1 , f 2 ) g (y) = -C KE + E min ≤ 0 (6)
where f 1 and f 2 are conflicting objective functions, y = Y (ω, ξ e , α), ξ e = [ξ e 1 , . . . , ξ e j , . . . , ξ e N ], α = [α 1 , . . . , α j , . . . , α N ], C KE is the the criterion of kinetic energy and E min is the value predefined by decision maker. For consistency, the maximization problem max (-f 1 ) is transformed into an equivalent minimization problem min (f 1 ).

The objective function for maximizing the output harvested power is

f 1 = - j ξ e m j ω 0 ω 2 |X j | 2 (7) 
For the second objective function, a binary variable Z i is assigned to each DOF that reflects perturbation with 1 and lack of perturbation with 0. Therefore, Z = [Z 1 , . . . , Z i , . . . , Z N ] is the vector created using the assigned binary values for the whole system. To minimize the number of perturbations, the objective function is expressed as

f 2 = N i=1 Z i (8) 
This objective function not only can determine the number of perturbed DOFs but also identify the best location for perturbing the system. Design variables are continuous for one objective function and discrete for the other, which turns the optimization problem into a mixed-integer problem [START_REF] Lampinen | Mixed integer-discrete-continuous optimization by differential evolution[END_REF]. Since the optimization problem involves more than one objective function, using multi-objective approach does not seem feasible.Therefore the weighted sum method is used to treat a multi-objective optimization problem as a single-objective one [START_REF] Marler | The weighted sum method for multi-objective optimization: new insights[END_REF]. This single-objective function is a sum of objective functions f l multiplied by weighting coefficients w l , formulated as

min 2 l=1 w l f l (9) 
in which w l ≥ 0 and w l = 1. Weights of each objective function are assigned by the decision-maker based on the intrinsic knowledge of the problem. Since the objective functions have different magnitudes, their normalization is required for having a consistent solution. Thus, the weights are computed as w l = u l θ l in which u l is the weights assigned by the decision-maker and θ l are the normalization factors. Among different normalization methods, the objective functions are normalized by the maximum value of the objective functions [START_REF] Grodzevich | Normalization and other topics in multi-objective optimization[END_REF]. Therefore, the objective function is

min w f 1 max (f 1 ) + (1 -w) f 2 N ( 10 
)
in which the maximum value for the f 1 is obtained through the optimization procedure and the maximum amount for f 2 is the total number of DOFs (N ), as all the DOFs are perturbed. A constraint (C KE ) has been introduced as the criterion of kinetic energy, that is

C KE = j m j x 2 j N i=1 m i x 2 i (11)
in which i refers to all of the DOFs and j stands for DOFs with perturbation. m and x are the mass and the relative displacement, respectively. Quantitatively, this criterion is the ratio between the sum of the maximum kinetic energy in the perturbed DOFs and the total maximum kinetic energy of the system. Genetic algorithms (GAs) are general-purpose population-based stochastic search techniques that mimic the principles of natural selection and genetics laid down by Sivanandam and Deepa [START_REF] Sivanandam | Introduction To Genetic Algorithms[END_REF]. Since continuous and binary values are part of the optimization problem, a genetic-based mixed-integer optimization is used in which the algorithm automatically ensures a gradual shift towards the feasibility of newly generated points. It is also necessary to define a stopping criterion to analyze where the final solutions are obtained and further computation is not required. This criterion ensures the solution is the best acceptable answer, and the results do not change in further iterations. The procedure involved in the GA-based optimization is summarized in figure 5.

Results and Discussion

Numerical simulations

Optimizing the configuration design for quasi-periodic VEH systems with 20 and 100-DOFs is discussed in this section. This study uses the design parameters listed in Table 1, and the objective functions and constraint listed in Table 2. The criterion of kinetic energy is considered more than 0.5 determining the kinetic energy of all of the perturbed DOFs must be at least half of the total kinetic energy of the system. The results that are presented using the Pareto front figures help to find a compromising space between two objective functions (f 1 , f 2 ). 

+ (1-w)f2 N ) 0.5 ≤ C KE 1 ≤ α i ≤ 1.1 0 ≤ w ≤ 1
Figure 6 shows the ratio of harvested power versus the number of perturbed DOFs for a structure with 20-DOFs. Each point in the figure corresponds to a certain amount of weight (w). w = 1 indicates that the optimization procedure is performed only on the harvested power ratio and for the case w = 0, only the number of perturbed DOFs is under the optimization procedure. Sweeping w from 1 to 0 considerably changes the optimized value for both harvested power and the number of perturbations. A compromise zone between the two objectives can be selected for extracting the design variables in order to improve the system design and performance. Table 3 lists the output power ratio subjected for the different numbers of perturbations in the structure. For w = 0, the value for output power ratio is 0.12 with 5 perturbed DOF for a system of 20-DOFs. As the weight on the (f 1 ) increases, the number of perturbed DOFs (f 2 ) increases, and thus both the number of required perturbations and the harvested output power increase. It is shown that perturbing 8 DOFs provides 81% of the total energy of the periodic system. The amounts of harvested power increases as the number of perturbations rises and by perturbing only half of the DOFs, the total output power ratio reaches to more that 90%. Optimized output power in % Optimized output power in % Optimized output power in % compared to the total power compared to the total power compared to the total power 100 98 92 91 81 70 52

The Pareto front of the 100-DOFs system is depicted in figure 7 which shows harvested power ratio versus the number of perturbations. As discussed for the 20-DOFs system, different values of weight (w) result in different points in the figure. Similarly, w = 0 indicates the situation where the total emphasis is on minimizing the number of perturbed DOFs irrespective of the value for harvested power. As w increases from 0 to 1, the optimal value for each function began to change. This helps to find an optimal zone for extracting the optimal design values. For w = 1, the value for output power is 1 which indicates the maximum output power is harvested with expenses of harvesting from all of the DOFs. These numbers for the case w = 0 fall into 0.14 for output power and 25 for the number of perturbations. As illustrated, perturbing one-third of DOFs contributes to harvesting more that 80% of the total power. Perturbing any arbitrary combination of DOFs does not necessarily provide the maximum available kinetic energy and thus output power. Table 4 illustrates the criterion of kinetic energy for the case with 5 perturbed DOFs among 20. These DOFs are chosen both randomly and through the optimization procedure and then the criterion of kinetic energy is calculated. It is shown that where the location of perturbation is chosen randomly, the value for the kinetic energy criterion is lower than the constraint defined earlier (0.5 ≤ C KE ). However, locations based on the optimization procedure ensure meeting the defined constraint. It is worth mentioning that there is not one specific optimal set of locations for perturbations and different combinations for perturbations can meet the desired conditions. Potential distribution functions can be adapted to approximate the harvested power ratio regarding the number of perturbed DOFs. This helps to evaluate the goodness of design variables without undergoing an optimization procedure. The harvested power ratio for the case of 8 perturbed DOFs in the 20-DOFs structure is fitted to the distribution function including Normal, Uniform and Exponential. The goodness of fit of the data is listed in Table 5. Results indicate that Normal distribution fits the data best, as the amount of Kolmogorov-Smirnov and Cramer-von Mises are lower (with mean = 0.8 and standarddeviation = 0.005). Regarding the test values, the exponential distribution function is not a suitable distribution for this data set at all, and the assumption of following this distribution is rejected. Using the optimization procedure, 8 appropriate DOFs among 20 can provide almost 80% of the total power output. To illustrate how the distribution function ensures the goodness of selected variables, 8 random DOF (DOFs number 1,2,4,6,7,8, 16 and 19) are selected to be perturbed and the harvested power ratio is calculated to be 49%. However, the harvested power ratio with perturbing 8 DOFs chosen through the optimization procedure is almost 80%. Both the amount of output power and the number of perturbations and thus transduction circuits are of great importance in improving the design and performance of the VEH system. It, therefore, is necessary to search for a compromise point where both objectives are recognized to an optimal extent. The optimization procedure is done for a quasi-periodic system of 1000-DOF and the results have shown that perturbing 561 DOFs leads to harvesting almost 94% of the total power.

Discussion

The Figure of Merit (FoM) is illustrated in figure 9 to study the efficiency of the proposed VEH in comparison with the state of the art of vibration energy harvester. Among different performance metrics, the FoM is calculated by (F oM = P/V ol.g 2 ) where P is the harvested power, V ol is the harvester volume and g is the imposed acceleration amplitude [START_REF] Drezet | Design of a nonlinear energy harvester based on high static low dynamic stiffness for low frequency random vibrations[END_REF]. The results are calculated theoretically and shown in figure 9. The proposed design provides competitive performance in term of power density and low useful frequency compared to the harvesters based on electromagnetic transduction. The proposed method is applicable where the building block of VEH is the weaklycoupled identical subsystems such as cantilever beams, clamped-clamped beams, and spiral-shaped springs. This is also feasible in architectures such as levitation-based [START_REF] Abed | Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation[END_REF], and free moving ball-based harvesters but their main drawback is the dry friction between moving magnets and the contact area of the guide.

The mistuning can be achieved in periodic systems by perturbing the geometry, mass, and (or) coupling stiffness. For example, magnetic coupling stiffness can be adjusted by tuning the gap between two successive moving magnets [START_REF] Zergoune | On the energy localization in weakly-coupled oscillators for electromagnetic vibration energy harvesting[END_REF][START_REF] Aouali | Efficient broadband vibration energy harvesting based on tuned non-linearity and energy localization[END_REF]. In the proposed study, the mistuning is achieved by the perturbations of some moving magnets.

In terms of energy efficiency, a compromise between the harvested energy and the perturbation level of the localized DOFs is found. As shown in figure 6, 80% of the total energy of the periodic system is harvested while only one-third of the DOFs are perturbed. Currently, the proposed methodology is implemented in the linear VEH where the geometric and magnetic nonlinearities are negligible (low response amplitude and weak coupling). The reason behind this choice is to validate the proof-of-concept in future work. It is recently shown that there is no conflict between the localization phenomenon and nonlinear behavior [START_REF] Aouali | Efficient broadband vibration energy harvesting based on tuned non-linearity and energy localization[END_REF]. Consequently, this methodology can be generalized to the nonlinear VEH in order to both improve the harvested power and the bandwidth.

Experimental investigations will be performed to achieve the proof-of-concept of the proposed methodology. To do so, a periodic 10-DOFs system composed of moving magnets guided by cantilever beams will be fabricated. The device composed of mechanical structure and electromagnetic transduction will be mounted on a shaker that provides harmonic base acceleration X g = 0.1ms -2 . The first eigenfrequency of the periodic structure will be measured by frequency sweep tests. Then, based on the optimization results, three selected DOFs will be perturbed by added masses (less than 10%) on the moving magnets. Vibration energy will be harvested from the three perturbed DOFs with optimal load resistances (R load ). Once the model validation step is achieved, it is expected to scavenge almost 80% of the total power for several optimal configurations. To illustrate the performance of the proposed methodology, the experimental results will be compared to random configurations without optimization in terms of positions of perturbed DOFs and mistuning amplitudes.

Conclusion

This paper proposed design optimization for quasi-periodic electromagnetic VEH with many DOFs. The energy localization phenomenon is employed to improve the output power level considering the number of perturbations in DOFs. The energy localization phenomenon is introduced through a finite element method for a 20-DOF quasi-periodic mass-beam system to show how introducing perturbations leads to the confinement of energy and therefore increases the magnitude of vibration in those zones. The optimization procedure is developed to provide the optimal number and location of perturbations for improving the harvested power. It is shown that optimal perturbations in almost one-third of DOFs provide 80% of the total harvested power for VEH of both 20-DOFs and 100-DOFs. Also, perturbing approximately half of DOFs contributes to harvesting more that 90% of the total power. Furthermore, for several arbitrary locations of perturbations, the kinetic energy criterion has been calculated to be less than the defined value, highlighting the importance of location for perturbing the system. Numerical results show how optimizing the number and locations of perturbations in a multi-DOFs system can improve the efficiency of the system in term of output harvested power and technological constraints. Reducing the number of transduction circuits allows for considerable development in the size and manufacturing cost of these devices. eq. 11, has been calculated for the second and third DOFs. The kinetic energy in case of perturbing the second DOF with an optimal amount of perturbation is almost 60% of total kinetic energy while this amount for the third DOF is below 40%. Therefore, it can be inferred that second DOF is the best location to perturbed. To ensure the consistency of the results, the optimization procedure has also been performed and the second DOF was obtained as the best location, as well. in which x is the relative displacement of each DOF and Ẍg is the basis-imposed acceleration. ξ = ξ m +ξ e is the total damping coefficient of the system in which ξ e and ξ m are electrical and mechanical damping coefficients, respectively. Moreover, β = K c /K is the coupling coefficient, K is the mechanical stiffness of each DOF and K c is the coupling linear magnetic stiffness. As discussed, the second mass has been perturbed to confine the energy in it and the electromagnetic transduction is introduced to it through a mechanical-magnetic coupling as follows

k k k k c k c k c R int R int R load x 2 x 3 x 1 m m m k c
i(t) = δ (R load + R int ) ẋ2 (A.2)
where δ, R load and R int are the electromagnetic coupling coefficient, load resistance, and coil internal resistance, respectively. Considering x = X(ω)e iωt and u = ω/ω 0 , the equations in frequency domain are expressed as Figures A2 and A3 show the variation in power magnitude with regards to frequency ratio and electrical damping coefficient in α = 1 and α = 1.05, respectively. It is observed that introducing perturbation increase the power. It has also been shown that harvested power is increasing with the increase in the electrical damping to a specific value. This value of electrical damping is considered as optimal electrical damping. 
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Figure 1 :

 1 Figure1: Schematic diagram of the real periodic electromagnetic VEH under harmonic basis excitation consisting of weak-coupled cantilever-beams with moving magnets on the tip where the electromagnetic transduction components are localized on the perturbed DOFs. Equivalent corresponding circuit of the perturbed DOF: the mechanical component is composed of a spring stiffness k, a proof mass m, and a mechanical damping c m . The electrical component is composed of coil inductance L coil , coil resistance R coil , the load resistance R load , and the induced current in the coils corresponded to the perturbed magnetic mass i(t).

Figure 3 :

 3 Figure 3: (a) A periodic system including an array of 20 weakly-coupled cantilever beams with proof masses. The coupling between two successive cantilever beams is achieved by 1D mechanical spring. (b) First bending mode shape of this system

Figure 4

 4 Figure4depicts the first bending mode shape of the coupled beam-mass system subjected to the variations in mass density. The perturbation is introduced to the system through variations in mass density by 3% in the 4th, 11th and 17th masses (counting from the bottom). The beams with a perturbed mass on the tip noticeably have larger displacements. It has been discussed that having perturbation in a periodic VEH with many weaklycoupled DOFs causes energy localization in those zones. This phenomenon can be employed in the design of VEHs to decrease the complexity of the device. Therefore,
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 4 Figure 4: First bending mode shape of a coupled beam-mass system subjected to variations in mass density by 3% in the 4th, 11th, and 17th mass (counting from the bottom)

Figure 5 :

 5 Figure 5: The Flowchart of GA-based algorithm

Figure 6 :

 6 Figure 6: Pareto front of the 20-DOFs system: harvested power versus the number of perturbations

Figure 7 :

 7 Figure 7: Pareto front of the 100-DOFs system: harvested power versus the number of perturbations

Figure 8 :

 8 Figure 8: Histogram and distribution functions

Figure 9 :

 9 Figure 9: Performance comparison of the proposed optimized VEH FoM with the state-of-the-art

Figure A1 :

 A1 Figure A1: The designed electromagnetic vibration energy harvester

4 )

 4 The average power, calculated over a cycle of vibration, from the perturbed DOF has been obtained asP avr = ξ e αmω 0 3 u 2 |X 2 | 2 (A.5)

Figure A2 :

 A2 Figure A2: Power magnitude for variations in frequency ratio u = ω/ω 0 and electrical damping coefficient ξ e with α = 1, β = 0.014 and ξ m = 0.006

Figure A3 :

 A3 Figure A3: Power magnitude for variations in frequency ratio u = ω/ω 0 and electrical damping coefficient ξ e with α = 1.016, β = 0.014 and ξ m = 0.006

Table 1 :

 1 Design parameters and functions to be optimized for the corresponding quasi-periodic structure

	Constant design parameters Constant design parameters Constant design parameters	Design variables Design variables Design variables	Functions to be optimized Functions to be optimized Functions to be optimized
	m = 0.05 kg	α = [α N i=1 Z i )
	β = 0.014		The location of perturbed DOFs
	ξ m = 0.006		

1 , . . . , α j , . . . , α N ] Harvested power k = 100 N.m ξ e = [ξ e1 , . . . , ξ ej , . . . , ξ eN ] The total number of perturbed DOF (

Table 2 :

 2 Objective function and constraints applied in the optimization procedure

	Objective function and constraints Objective function and constraints Objective function and constraints
	min( wf1 max(f1)

Table 3 :

 3 Optimized output power ratio for different number of perturbed DOFs

	Optimal number and positions Optimal number and positions Optimal number and positions of perturbed DOFs among 20 of perturbed DOFs among 20 of perturbed DOFs among 20	20 13 12 10 8 7 6

Table 4 :

 4 The criterion of kinetic energy considering different locations of perturbations

	Selected method	Perturbation in DOFs number The criterion of kinetic energy
		3 6 8 11 15	0.24
	Randomly chosen	1 3 8 11 18 4 5 12 15 19	0.43 0.32
		2 6 8 12 16	0.29
	Optimization procedure	2 8 12 17 20 2 8 12 16 19	0.52 0.51
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Appendix A.

The appendix studies the harvested power in a quasi-periodic system of 3-DOFs. Figure A1 shows an equivalent discrete model of a 3-DOF quasi-periodic electromagnetic VEH, subjected to base excitation from ambient vibrations. In order to select the best DOF to perturbed and then harvest energy from it, the criterion of kinetic energy, introduced in