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Plouzané, France

bInstitut universitaire de France (IUF)
cFriedrich-Schiller-University Jena, Loebdergraben 32, 07743 Jena, Germany

ABSTRACT

Wetlands are one of the most important ecosystems in the world. Today, however, their fate is under serious
threat, and their alarming decline highlights the urgent need to preserve these areas rich in biodiversity. The
aim of this work is to spatially map and mapping the wetlands of the Crozon peninsula in Brittany France. The
methodology is divided into two parts; the first part is to map the wetlands as a whole, while the second part is
to mapping the wetlands using a adapted typology. Several databases were used to spatialise the wetlands: 12
Sentinel-2 images in L3A format, 23 Sentinel-1 VV and VH images and the RGE Alti (DTM at 1 metre resolution).
The images were processed and stacked alone or in synergy. A random forest (RF) machine learning algorithm
was then trained to predict wetlands in our study area using binary training data. The training data were
obtained from a wetland inventory conducted in Brittany, distributed at the scale of a Sentinel-2 tile (30UUU).
Post-processing was then carried out on the best result: binary morphological erosion and thresholding based on
the DTM to remove outliers. We carried out two classifications, which we later merged. The classifications were
carried out using a Pleiades time series (5 dates) to achieve a very fine scale classification. A classification of
13 land cover classes with 6 different wetland types (mudflats, salt marshes, coastal lagoons, wet meadows, wet
forest, swamps/bogs) was performed using three methods: pixel-by-pixel random forest, object-based random
forest and convolutional neural network (CNN). The best results obtained was for the pixel-based classification:
kappa = 0.89, overall accuracy = 0.90, F1-score = 0.90.
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1. INTRODUCTION

Wetlands cover about 6% of the Earth’s surface.1 These ecosystems are sources of numerous ecosystem services
and benefit human society.2 The number of wetlands has drastically decreased due to human pressure3 .These
areas have gradually been converted into farmland or urbanised areas. These changes affect biodiversity and
contribute to the depletion of flora and fauna. Furthermore, wetlands help limit the impact of climate change.4

The first definition of a wetland in France came from the Water Act of 3 January 1992. This text defined
wetlands as ”land, whether used or not, that is usually permanently or temporarily flooded or inundated with
fresh, salt, or brackish water; where vegetation exists, it is dominated by hygrophilous plants for part of the year”
in Article L211-1 of the Environment Code. A number of criteria identify a wetland, e.g. vegetation specific to
wetlands and/or soil that shows signs of waterlogging for at least part of the year. The criteria for delimiting a
wetland can be found in the decree of 24 June 2008∗.

Wetlands can be found on all types of land. These areas are located in the 283 communes of Finistère and
account for 10% of the department’s surface area (Conseil général du Finistère, 2011). Wetlands are found in

Further author information: (Send correspondence to Adrien Le Guillou.)
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∗Articles L. 214-7-4 and R. 211-108 of the Environment Code: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000019151510



all reliefs, on plateaus, slopes, and valley bottoms, as well as in estuaries. These ecosystems can be peat bogs,
meadows, forests, or mudflats.

Wetlands are a source of enormous benefits for human society. They provide a range of free services to society,
commonly referred to as ”ecosystem services”.5–8 Wetlands play a filtering role by improving water quality9 ;
they are a refuge for many plant and animal species10 ; and they also play a ”sponge” role by helping to prevent
flooding and mitigate the effects of droughts.11

Unfortunately, these areas are seriously threatened by human activities. Wetlands are in decline. It is
estimated that 64% of wetlands have been lost since 190012 and are disappearing three times faster than forests.
Urban sprawl and agriculture are the main factors behind this decline.13 Many practices have a destructive
effect on wetland ecosystems, such as embankments, lack of maintenance, drainage, and the straightening of
watercourses, all of which reduce the relationship between wetlands and watercourses.14

Several criteria can be used to identify wetlands. It is possible to determine whether an area is wet based on
the characteristics of a habitat or a botanical criterion. Corine biotope habitats can be used for this.15 It is also
possible to identify a wetland based on the pedology of an ecosystem by determining whether one of the three
main soil types characteristic of wetlands is present in the area: redox soil (temporary waterlogging), reductive
soil (almost permanent waterlogging), or peaty soil (permanent waterlogging). Finally, the presence of wetland
indicator species can also help identify wetlands. A national list of plant species that serve as wetland indicators
was published by the decree of 24 June 2008 (Articles L. 214-7-1 and R. 211-108 of the Environment Code).

In the field of remote sensing, CNNs have become a powerful tool for analyzing satellite imagery data.16–18

Satellite imagery provides a large amount of data, which requires efficient analysis techniques to extract relevant
information .CNNs are suitable for this task as they can learn to recognise specific objects, structures and
patterns in images.19

The advantages of CNNs in remote sensing are many. CNNs are capable of learning hierarchical features,
meaning they can detect complex patterns at different levels of abstraction. In order to achieve this, convolutional
layers use filters to identify local features from the input data, such as edges, textures, or even shapes in
images.20–22 In this way, small objects, such as buildings or vehicles, as well as larger structures, such as rivers
or forests, can be identified2324 .

Remote sensing is a powerful tool for monitoring wetlands.25,26 Thanks to its remote approach, it can
acquire data over vast geographical areas, providing extensive spatial coverage and a global view of wetlands.
With sensors mounted on satellites, aircraft or drones, images can be obtained at different resolutions,27 allowing
vegetation, hydrology and other environmental parameters to be characterised accurately and regularly.

One of the main advantages of remote sensing is its ability to provide data with high spatial and temporal
resolution.28 This makes it possible to observe seasonal and interannual changes in wetlands, detect variations
in water extent, track changes in vegetation and monitor anthropogenic pressures.29 This temporal resolution
makes it possible to obtain up-to-date information on the condition of wetlands and understand their dynamics,30

which is essential to supporting their conservation and sustainable management.31

Remote sensing offers the possibility of characterising wetland vegetation and habitats in detail32.33 By
using different spectral bands and vegetation indices, it is possible to distinguish and map different vegetation
types,34 which allows a better understanding of their spatial distribution and interactions. In this way, changes
in vegetation structure, land use and drainage networks can also be assessed, providing crucial information for
water resource management and biodiversity conservation.35

This research aims to develop a reproducible methodology for the pre-location of wetlands using two methods.
The first method is to locate wetlands using satellite images and elevation data. The second method is to be
able to locate wetlands using an index calculated directly from elevation data (the topographic wetness index).
Subsequently, a typology of wetlands using machine learning and deep learning methods will be produced. The
objective of this research is also to better understand the dynamics of these areas and to study them on a
sub-metric scale using Pleiades imagery (50 cm resolution).

Other research has been conducted on Crozon Peninsula. A study on the evolution of the peninsula’s land use
was carried out by Guanyao Xie and Niculescu36 using machine and deep learning methods. Other paleontological



research on Crozon has also been undertaken, such as that of Vidal37 or Perroud.38 Numerous articles exist on the
automatic mapping of wetland areas. Kulawardhana, proposed a methodology , including a two-part mapping.39

Niculescu et al., 201640 showed that remote sensing contributes to the state of knowledge by understanding the
interactions between optical signal, polarimetric radar signal, LiDAR measurements and wetlands in the Danube
Delta. Niculescu et al., 2020. Niculescu et al., 202041 applied random forest from S2, Pleiades and S1 data and in
situ observations for discrimination and mapping of reed against submerged aquatic vegetation (SAV), emergent
macrophytes, some floating dicotyledonous plant communities and floating vegetation in deltaic lakes. In this
study, a total of 67 classification models, in several combinations, with two sets of validation samples (with reed
and without reed) were run. More recently in France, Rapinel et al., 2023 proposed similar research on a national
scale, presenting a method for mapping wetlands using the topographic wetness index, among other techniques.42

Huang et al., 2014 and Mao et al;, 2020 have conducted research on wetland mapping using Landsat images,43,44

while other researchers like Bhatnagar have pursued similar themes using Sentinel-2 images.45 Kaplan et al.,
2017 and Mahdianpari et al., 2018, among others, have also contributed research on wetland mapping using a
Sentinel-1/Sentinel-2 synergy.46,47

This study explores this subject in greater depth by adopting a methodology tailored to the study area,
proposing a two-part cartographic approach, and exploring high spatial resolution imagery (Sentinel-2, ESA) as
well as very high resolution imagery (Pléiades, Airbus DS). In addition, this study makes a scientific contribution
to understanding land use in the wetlands of Finistère, a region that has been little studied on this subject until
now. No sub-metre-scale study of wetland mapping using satellite images has been carried out in Brittany to
date.

2. STUDY AREAS AND WETLANDS

2.1 Study area

The Crozon Peninsula is located in the far west of France, in the Brittany region. It is an integral part of the
Parc naturel régionale d’Armorique. It is also a very maritime area, surrounded by the sea on all sides: the Brest
Roadstead to the north, the Iroise Sea to the west and the Bay of Douarnenez to the south. Crozon is located
at latitude 48.2477° N and longitude -4.4861° W. This area includes several towns and villages, such as the town
of the same name, Crozon, as well as Roscanvel and Camaret-sur-Mer. The study area covers 104 km² of land.
The topography of the peninsula is characterised by coastal diversity. There are numerous rocky cliffs, pebbled
beaches, rocky foreshores, and fine sandy beaches. Land use is characterised by forests, moorland, meadows,
farmland and urban areas. According to the Corine Land Cover database, there are 18 km² of urbanised areas,
and according to BD Forêt®, there are 53 km² of woodland and shrubland, including 33 km² of moorland and
16 km² of deciduous land. Finally, according to RPG® 2021, there are 14 km² of agricultural land, mainly
meadows. In Crozon, the urban fabric is not as predominant as in the rest of Brittany. Its natural areas are
fairly well preserved thanks to the numerous military installations that have limited urban sprawl in Crozon.48

The altitude varies, with a range of 329 m from the sea to Ménez Hom in the far east of the peninsula. The study
area is not characterised by high altitudes, but the relief can still be marked by large degrees of slope. According
to Météo France, the annual rainfall in 2021 was 1,043 mm (the national average in 2021 was 799 mm), with
1610 h of sunshine (the national average in 2021 was 1994 h). According to the Koppen classification, Crozon is
classified as a “Cfb”, or temperate oceanic climate.49

2.2 Wetland typology

There are many different types of wetlands, and each wetland can be divided into numerous ecological units.
Habitat typologies such as CORINE biotopes, soil typologies such as GEPPA50 which assesses soil hydromorphy),
and environmental typologies such as RAMSAR51 allow for more precise definitions of what constitutes a wetland.
The wetland typology used in this study synthesises the different typologies mentioned above. The typology of
these areas also focuses on the term “ecosystem”, commonly defined as “a biological community interacting with
organisms and their physical environment”:

• Wet forests (or temperate rainforests) are characterised by abundant annual rainfall and moderate temper-
atures.52 They are generally found in coastal regions, where oceanic air masses provide constant humidity,



Figure 1: Location map of the Crozon peninsula

or in mountainous areas.53 These forests consist of evergreen trees, such as conifers and broadleaf trees,
which form a dense canopy.

• The wet meadow (or wet grassland) is an herbaceous ecosystem characterised by periodic or permanent
soil saturation with water (redox or reductive soil). It is often found in topographical depressions where
water accumulates after heavy rainfall or seasonal flooding.54

• Wet grasslands are home to a wide variety of herbaceous plants and grasses, such as rushes, that are
specially adapted to waterlogged soils.

• A peat bog is an ecosystem characterised by an accumulation of partially decomposed organic matter,
known as peat. It forms in regions where drainage conditions are very slow or nonexistent, allowing
organic matter to be conserved. Peat bogs are rich in sphagnum moss and other plants adapted to acidic,
nutrient-poor environments. They are essential habitats for specialised plant and animal species, and peat
bogs are estimated to cover 3%–5% of the Earth’s surface.55

• Salt meadows (or salt marshes) are coastal ecosystems located between land and high tide (intertidal
zone56) .This environment is subject to regular fluctuations in water levels and is characterised by soils
rich in mineral salts. The plants that grow here must be able to tolerate saline conditions. These areas are
home to sea asters (Tripolium pannonicum) and obiones (Obione portulaciodes).

• Mudflats are intertidal coastal areas that are periodically covered and uncovered by tides.57 These areas of
sediment accumulation are rich in organic matter and fine sediment . Mudflats are home to a wide variety
of plants, such as cord grass (Spartina), and animals adapted to shallow water and soft substrate.

• Finally, lakes or reservoirs are freshwater bodies formed naturally or through the construction of dams.



3. DATA IMPLEMENTED

The data used for this study are of several types: satellite images, an altimetry database and a wetland inventory.
The satellite data used are as follows: Pleiades images (Airbus DS), Sentinel-2 images (Copernicus, ESA) and
Sentinel-1 images (Copernicus, ESA).

3.1 Pleiades

The Pleiades constellation is a pair of Earth observation satellites. The constellation provides high-resolution
satellite images captured by the Pleiades-1A and Pleiades-1B satellites. These satellites, initiated by Centre
nationales d’études spatiales (CNES), provide a resolution of up to 0.5 m, making it possible to distinguish small
details on the ground. The satellite images cover four spectral bands, ranging from the blue band in the visible
spectrum to the near-infrared band. The high resolution enables detailed mapping, precise identification of ob-
jects and improved classification. This precision has many applications, including urban planning, environmental
management and precision agriculture.

3.2 Sentinel

Sentinel-2 is a satellite mission for Earth observation within the European Union’s Copernicus programme.
It comprises a pair of satellites, Sentinel-2A and Sentinel-2B, which provide high-resolution, wide-field-of-view
optical imaging data. The Sentinel-2 satellites provide a spatial resolution of up to 10 m in the visible spectral
bands and up to 20 m in the infrared bands. They capture data in 13 different spectral bands, ranging from the
visible to the near and mid-infrared. The mission offers a five-day global revisit to the equator and allows regular
observations of areas of interest. Sentinel-2 data can also be accessed free of charge and without restrictions
(available here: https://scihub.copernicus.eu/). Sentinel-1 is a satellite mission within the European Union’s
Copernicus programme that provides radar imagery data. It consists of two satellites, Sentinel-1A and Sentinel-
1B, and uses synthetic aperture radar (SAR) technology. The Sentinel-1 satellites have active radar imaging
capability, which means that they emit radar signals and record the echoes returned by the Earth’s surface.
This technology enables image acquisition independent of weather conditions and continuous observation day
and night. Sentinel-1 offers two imaging modes: the interferometric (IW) mode, with a spatial resolution of 5
m, and the extra-wide (EW) mode, with a spatial resolution of 20 m. These different modes enable obtaining
high-quality radar images and covering large areas relatively quickly.

3.3 Auxiliary data & altimetry data

In addition, external data was used to generate training and verification data based on a reference system. An in-
ventory of wetlands in Brittany was used. These data are produced by the various SAGE (Schéma d’aménagement
de gestion des eaux - water management development schemes) and are used to spatially classify the different wet-
lands. The Estimation de l’hydromorphie des sols (Estimation of soil hydromorphy) as reference data (database
produced by UMR SAS INRA-Agrocampus Ouest) was also used†. Altimetric data in the form of a digital
terrain model is also available with a 1-m resolution (RGE® Alti). Data processing for this paper was carried
out using Qgis 3.22.12 (GDAL, SAGA and GRASS), OrfeoToolbox and SNAP.

4. METHODOLOGY

4.1 Image processing

In remote sensing, image processing is very important, especially before making a calculation58 (classification,
segmentation, etc...) . The images must be ready for use in different algorithms. Sentinel-1 and Sentinel-2
images (cf. Table1) were processed to map the wetlands.

First, the Sentinel-1 images were processed using SNAP software developed by ESA. The batch processing
tool and the graph builder tool were used to automate the data processing in order to process the 22 Sentinel-1
images as quickly as possible. The chain used to process the Sentinel-1 data is as follows: Apply-Orbit-File,

†You can find the methodological guide for inventorying wetlands at the local level in the Finistère department at the fol-
lowing address:https://www.finistere.fr/var/finistere/storage/original/application/e17e923ab8d8c903be015a08e1c7c52f.pdf



Table 1: Satellite image data

Satellite Number of image Spectral bands Spatial resolution

Sentinel-2 12 (L3A Format) 1,2(Blue),3(Green),4(Red),
5,6,7,8(NIR),8A,9,10,11,12

10 to 20m

Sentinel-1 22 (IW Format) VV/VH 5x20m

Pléiades 5 1 (Blue), 2 (Green), 3 (Red), 4 (NIR) 0.50m

RGE Alti (DEM) 1 1m

ThermalNoiseRemoval, Calibration, SpeckleFilter and Terrain-Correction. Once the data has been processed,
an extraction is performed with a mask corresponding to the study area, resulting in a ready-to-use Sentinel-1
image stack.

No specific processing was done for the Sentinel-2 images, as they were in L3A format. Since the L3A format
is a monthly synthesis of Sentinel-2 L2A images, extensive image processing was performed in advance, resulting
in a ready-to-use image after download. The L3A format provides a composite image made up of all the images
captured on a Sentinel-2 tile over the month so that images with little or no cloud cover can be obtained. This
is all thanks to the Sentinel-2 satellite’s revisit capability.

However, in order to produce the best mapping of wetlands, many spectral indices have been calculated from
Sentinel-2 images. Spectral indices are values calculated from reflectance measurements in different spectral
bands of the Sentinel-2 images. These indices are used to characterise and analyse objects or phenomena in the
images, such as vegetation, water resources and soils. They are calculated using specific mathematical formulas
that exploit the differences in reflectance between the different spectral bands. In this case, we calculate mainly
the spectral indices characterising vegetation and water resources to locate wetlands.

For the purpose of this article, seven spectral indices were calculated for the year 2021 based on the 30UUU
tile:

• The normalised difference vegetation index (NDVI)59 is the most widely used spectral index. It is used
to assess the amount and condition of vegetation based on spectral data obtained from sensors on board
satellites. The NDVI is calculated from reflectance measurements in the red (R) and near-infrared (NIR)
spectral bands. The formula for calculating the NDVI is as follows:

NDV I =
(NIR−R)

(NIR+R)
.

• The green normalised difference vegetation index (GNDVI)60 is used to estimate photosynthesis. This index
determines water and nitrogen uptake in the plant canopy. The index is based on reflectance measurements
in the green (G) and near-infrared (NIR) spectral bands:

GNDV I =
(NIR−G)

(NIR+G)
.

• The normalised difference water index (NDWI)61 is one of the most widely used indices for delineating and
evaluating water surfaces and resources and is particularly useful for detecting rivers and lakes. This index
is based on short-wave infrared (SWIR) and near-infrared (NIR) bands:

NDWI =
(NIR− SWIR)

(NIR+ SWIR)
.

• The bare soil index (BSI)62 is used in remote sensing to identify and assess areas of bare or unvegetated
soil. The combination of these spectral bands makes it possible to quantify the mineral composition of the



soil. This index is based on the red (R), short-wave infrared (SWIR), near-infrared (NIR) and blue (B)
bands:

BSI =
(R+ SWIR)− (NIR+B)

(R+ SWIR) + (NIR+B)
.

• The advanced vegetation index (AVI)62 is used to identify vegetation similar to the NDVI. The AVI aims
to complete vegetation type discrimination by coupling the NDVI and the AVI. The index uses the red and
near-infrared spectral bands:

AV I = [NIR · (1−R) · (NIR−R)]
1
3 .

• The automated water extraction index (AWEI)63 is used to identify water resources in the same way as the
NDWI. This index complements the information provided by the NDWI, particularly for river extraction.
The AWEI calculation is based on reflectance measurements in the green (G), near-infrared (NIR) and
short-wave near-infrared spectral bands:

AWEI = 4 · (G−NIR)− (0.25 ·NIR+ 2.75 · SWIR).

• The transformed soil adjusted vegetation index (TSAVI)63 is a vegetation index that attempts to minimise
the influences of soil brightness by assuming that the soil line has an arbitrary slope and intercept, with X
corresponding to the slope of the ground line, a corresponding to the intercept of the ground line and X
corresponding to the adjustment defined to minimise ground noise. In this case, the value of s = 0.33, the
value of a = 0.5 and the value of X = 1.5. The index uses the red (R) and near-infrared (NIR) bands:

TSAV I =
s · (NIR− s ·R− a)

a ·NIR+R− a · s+X · (1 + s2)
.

After all vegetation and water indices have been calculated, a stack is made between the Sentinel-1 and
Sentinel-2 images in different combinations and the spectral indices (cf. Section 4.2).

4.2 Pre-location approach

In order to pre-locate and then map these areas, the method is divided into two parts. First, the wetlands are
pre-located using altimetric and/or spectral data. This methodology allows the study area to be divided into two
zones: ”wetlands” and ”non-wetlands”. Two approaches were developed in order to achieve this methodology
(cf. Figure 2).

The first method is based on the creation of a time series of Sentinel-1 and Sentinel-2 satellite images.
The processed time series (calculation of spectral indices, Sentinel-1 processing on SNAP) is directly integrated
into a random forest classification using training data from the inventory of wetlands (adapted to the scale
of the Sentinel-2 30UUU tile) created for the Brittany region. The result is then post-processed with binary
morphological erosion and thresholded with the RGE® Alti. Finally, after completing the entire processing
chain, the best combination for pre-locating wetlands is selected. Six different combinations were tested (see
Table 2).

The combination with the best metrics was kept (for validation, we used the wetland inventory described in
Part 2.3). Another approach was developed to pre-locate wetlands in the study area. This approach primarily
requires altimetric data in raster format. As mentioned previously, the RGE® Alti is used for processing (at a
resolution of 1 m) in this case. From the RGE® Alti, we calculate the topographical wetness index64 (cf. Figure
3) to estimate the areas where water will tend to merge and stagnate so that wetlands can be pre-located. When
the results are available, thresholding is performed to extract all values corresponding to areas of stagnant water,
resulting in a mask that pre-locates wetlands.

This index is used to create a raster model of water flow based on topographical data and can be used to
represent potential water accumulation zones in a given area. The wetland inventory and the soil hydromorphy
database were used to calculate the metrics and validate the results. It is important to note that the calculation
of the topographical moisture index has some limitations, as this index does not take into account the nature
of surface deposits, so it is mainly used to pre-locate “potential” wetlands.65,66 To refine the result, we exclude
the areas classified as wetlands that are located in impervious areas (urbanised areas or roads) by using a mask
produced beforehand.



Figure 2: The two methodologies for pre-locating wetlands

Table 2: The different combinations for the first pre-location methodology

Method Kappa F1-Score OA

Detection from : Stack
Sentinel-2 and RGE Alti

0.54 0.77 0.77

Detection from Stack
Sentinel-1

0.60 0.79 0.80

Detection using spectral indices : NDVI, GNDVI, NDWI ,
BSI, AVI, RGE Alti

0.60 0.79 0.80

Detection from : Synergy S1/S2 + RGE Alti 0.57 0.78 0.78

Detection using spectral indices : Previous indices + AWEI, TSAVI 0.64 0.82 0.82

Detection using : Standardised S2 stack 0.54 0.75 0.76

4.3 Mapping of wetlands

The second part of the methodology is based on a classification of land use in the two previously designated
zones. There are now two zones, one corresponding to wetlands and the other to non-wetlands. It is important
to note that only “continental” wetlands are considered in the wetland mask. Thus, we use the non-wetland
mask to classify mudflats, as the topographical wetness index does not consider foreshores. The training data
were generated using photo-interpretation of satellite images from 2021 (the date of classification) and external
data such as BD Topo®, BD Ortho® and BD Forêt® (available free of charge on the Géoservice website‡).
A homogeneous number of polygons (see Table 3) was implemented at the scale of the study area. The surface
area of the training data was implemented as uniformly as possible, according to the type of land use in Crozon,
as there are fewer peat bogs than in urban areas at the scale of the zone, so there is less surface area in training.
This distribution also avoids overlearning and creating bias in the training data. Two land-use classifications are
then produced.

‡https://geoservices.ign.fr/catalogue



Figure 3: Methodology for Topographic Wetness Index calculation

Table 3: Training data surface area

Class Area surface of training sample (m²)

Wet meadow 26 899m²

Mudflat 24 908m²

Salt meadow 7 222m²

Pond 28 484m²

Marsh / Bog 6 074m²

Wet Forest 29 003m²

Rock / Cliff 17 692m²

Urban / Artificial 140 912m²

Arable Land 335 513m²

Dry Heath 62 639m²

Sand 113 223m²

Deep water 920 764m²

Forest and shrubland 57 767m²

One was based on the “wetland” mask and the other on the “non-wetland” mask, and the two results were
then merged to produce a complete map of the study area. Three types of classification were performed: two with
machine learning algorithms and one with a deep learning algorithm. A pixel-by-pixel random forest classification
and an object-based image analysis (OBIA) random forest classification were produced for the machine learning
classifications. The convolutional neural network was chosen for the deep learning classification to create the
land cover classification (cf. Figure 4). The neural network architecture is based on the documentation for the



Orfeotoolbox TensorFlow tool§.67

5. MACHINE LEARNING

5.1 Random forest - Pixel by pixel and OBIA

The random forest is a reference model of machine learning for image processing. Proposed by Leo Breiman in
2001, this algorithm is based on a combination of decision trees. It is the model most often used for classification,
given its performance and speed of execution compared to other machine learning algorithms.68 The random
forest also has the advantage of being easy to use.69 Random forest functions as a set of decision trees used to
predict a quantity or probability. The decision tree alone is a tool in the form of a tree (which can resemble a
flowchart), where each node is a test for an attribute, and the branch is an outcome. A tree is divided into a
“source” set and then into subsets. This process is repeated for each subset in recursive form.

We need three “hyper-parameters”70 (fixed parameters) to be defined before training. These are the size of
the trees (maximum number of nodes), the number of trees and finally, the number of features to be sampled
(number of random variables selected from the explanatory variables in each mixture). The first step involves
implementing the “bagging” principle,71 i.e. creating numerous random subsamples on a subset of the data.
The second step is to develop individual decision trees for each sample. The different trees are trained by a
random portion to make a prediction. It is important to note that each decision tree works individually and
independently. Finally, the third step corresponds to the results of the predictions and is the result of the
majority vote, which is the final prediction. Our random forest has the following parameters: maximum number
of decision trees: 200, minimum number of samples per class: 20, and maximum depth of decision trees: 10. A
time series of five Pleiades images was used for the random forest approach. As part of this research, random
forest was implemented with two different classification methods: the pixel approach and the object approach.

Pixel approach

The pixel approach uses a learning algorithm to automatically extract the characteristics of pixels and as-
sociate them with classes (in this case, land-use classes). The principle of this approach is to use the spectral
information of the pixels in one or more satellite images that have already been labelled and are therefore known.
Once a sufficient number of pixels have been labelled, they are implemented in a machine-learning model to pro-
duce a trained model. Once the model has been trained, it can be applied to an entire satellite image (or time
series), and a class prediction is made for each pixel in the image.

Object approach

In the object approach,72,73 neighbouring pixels with similar characteristics are grouped together (e.g. a house
consisting of pixels with a similar spectral response is grouped to form an “object”). Colour, texture and spatial
context can all influence the creation of the “object”. There are many different segmentation algorithms, e.g.
mean shift74 or nearest neighbour.75 Once the objects have been segmented, specific descriptors are extracted
for each object, considering characteristics such as size, shape, texture, colour, etc. These descriptors are
used as inputs for the object and then as inputs for machine learning algorithms, in our case, random forest.
The meanshift method was used for our object approach. We chose the following parameters to produce our
segmentation: spatial radius: 10, range radius: 30, maximum number of iterations: 50, minimum “region” size:
200, minimum object size: 5, and polygon simplification: 0.5.

5.2 Deep learning principles

Deep learning is a discipline of artificial intelligence that uses deep artificial neural networks to solve complex
problems.76–79 These networks are capable of learning from raw data and extracting abstract representations.
Deep learning is based on iterative supervised or unsupervised learning processes where networks are trained on
labelled data or to discover structures in unlabelled data.80

Deep learning has wide applications in areas such as computer vision81 ,natural language processing,82 speech
recognition,83 machine translation and robotics.84 For example, deep neural networks are used in computer vision

§To use OTBTF: https://otbtf.readthedocs.io/en/latest/



for object detection,85 facial recognition and image segmentation.86 In natural language processing, deep learning
is used for tasks such as text classification,87 text generation and machine translation.88

However, deep learning also presents challenges and limitations. One major challenge is the need for large
amounts of labelled data to efficiently train deep neural networks. The interpretability of learned models is also
challenging, as deep neural networks are often considered “black boxes” due to their complexity.89 In addition,
deep learning can face the problems of overlearning90 and limited generalisation in situations where the training
data differs from the real data

5.3 Architecure of the CNN

The CNN model proposed in this article consists of several layers for processing the input images (see Figure
4). The training data were generated from a Pleiades image, for which 5000 16-by-16 patches were extracted
for each land cover class, and 5000 additional patches were used for validation. The architecture of CNN is
as follows: The image patches have a resolution of 16 x 16 and are subjected to a series of three convolution
layers. The first convolution layer with 16 filters of size 5 x 5 is followed by a ReLU activation function and a
pooling layer of size 2 x 2. A second convolution layer with 16 filters of size 3 x 3 is then applied, followed by
another pooling layer. Finally, a third convolution layer with 32 filters of size 2 x 2 is used. A test with 64 x 64
patches is also performed. The extracted features are then reshaped into a vector and fed into a fully connected
layer. This latter layer consists of six or seven neutrons (depending on the ”wetland” or ”non-wetland” mask,
which is not characterised by the same classes) corresponding to the predicted classes. The predicted class was
determined by selecting the index of the neuron with the highest output value (e.g. a probability). The model
is trained by minimising the loss using the cross-entropy cost function. The optimisation is performed with the
Adam optimiser.

Figure 4: Architecture of the CNN

6. EVALUTATION OF CLASSIFICATIONS

6.1 Pre-location of wetlands

The first step in the wetland classification methodology was to locate all the wetlands, for which two methods
were developed. The first method was based on spectral indices (see Section 4.1), and the second on the
topographical wetness index (TWI). The method using the TWI works best. The wetland inventory (made by



local actors)¶ and soil hydromorphy map (made by Agrocampus Ouest, INRA SAS)‖ were used as validation
datasets to evaluate the best method. The metrics show higher scores for the TWI, with a difference of +0.04
for the F1-score, +0.26 for the kappa, and +.10 (cf. Table 5) for the overall accuracy. Visually, the pre-location
also appears better, with more relevant flow lines. In addition, the TWI method has the advantage of being less
costly in terms of computation time, as it does not require classification with an extensive training dataset but
only calculations based on altimetric data.

Table 4: Score of the two methods for pre-loating wetlands

Methods Spectral index TWI
F1-Score 0.82 0.86
Kappa 0.64 0.90
OA 0.82 0.92

In order to validate the different results, a validation dataset independent of the training dataset was created.
For this purpose, 30% of the polygons initially intended for training were separated to form the validation dataset.
Next, 1,000 points per land-use class were extracted for validation. The same validation dataset was used for
the different approaches to have comparable reference data. Three classifications were tested with three different
approaches. The pixel-by-pixel random forest approach achieved the best results of the different classifications,
followed by the convolutional neural network and, finally, the OBIA random forest approach (cf. metric table).
The only exception is the F-1 score, for which the CNN achieved the best score with a difference of 0.01 compared
to the pixel approach.

Table 5: Score for the three wetlands mapping approaches
OBIA RF Pixel by Pixel RF CNN

OA 0.85 0.89 0.87
Kappa 0.84 0.90 0.86

F1-Score 0.76 0.82 0.83

By looking more closely at the metrics using the confusion matrix (a matrix produced with the ”Compute-
ConfusionMatrix” tool in OrfeoToolbox), it is possible to examine the confusion between classes. Wetlands are
well classified overall, thanks in part to the “wetland” mask, which prevents confusion between the “wet forest”
and “forest” classes or between the “wet meadow” and “agricultural land” classes.

The convolutional neural network showed better metrics for the ”mudflat” class, with less confusion with the
”rock/cliff” class than the random forest classification. Conversely, the “forest” class performed worse for the
neural network than the random forest, with high confusion with the “dry heat” class. This is probably due to
the similar reflection of shrubby areas in moorlands and small trees in forests.

The random forest classification with the pixel approach shows very good metrics overall, as does the OBIA
approach. However, there is some confusion between the ”rock/cliff” and ”artificial land” classes. This confusion
is quite understandable, given the similar reflectance between a rocky coastline and roads. This confusion can
also be observed with CNN, but to a lesser extent. Confusion is also visible between the ”sand” and the ”artificial
land” classes, both at OBIA and in the pixel approaches.

In short, the random forest approach shows better discrimination for land-use classes linked to wetlands, while
the neural network performs better for areas outside wetlands. This is primarily due to better discrimination
between the “sand”, “artificial land” and “rock/cliff” classes.

Visually (cf. Figure 5), the random forest pixel approach shows a more accurate mapping than the OBIA
or CNN classification. CNN tends to have a ”salt and pepper” effect. This effect may be due to the size of the
patches entered, which does not allow for sufficiently precise segmentation at the scale of the resolution of the

¶https://bretagne-environnement.fr/donnees-zones-humides-bretagne
‖Hydromorphy soil : https://sols-de-bretagne.fr/inventaire-et-cartographie-sols/applications-thematiques/192-

hydromorphie-des-sols.html



Figure 5: Confusion matrix for the three wetlands classifications

Pleiades images. Finally, the OBIA classification provides a visually relevant map, but one that exhibits tiling
effects (i.e. a spatial discontinuity between two land cover classes). This effect is particularly noticeable between
the ”lake” class and the ”deep water” class, where it is possible to see pixels classified as ”lake” in the form of
a square in an area that should normally be ”deep water”. The OBIA classification also tends to overrepresent
the “artificial land” class (predominance of red on the map). Many pixels are classified as “artificial land” when,
in fact, they are “sand” or “rock/cliff” that can be seen directly on the coastline or beaches.

Figure 6: The three land use classifications

7. DISCUSSION & PERSPECTIVES

7.1 Discussion

The results therefore show that the methodology described in this article is capable of mapping wetlands. With
scores ranging from 0.76 (OBIA, F1-score) to 0.90 (pixel, kappa), the metrics show fairly satisfactory results,
with an OA of 89% for the pixel random forest approach. The two-stage approach involves pre-locating wetlands
using spectral indices or the topographical moisture index (TWI). By mapping the different wetland typologies
using the pre-location mask, it is then possible to reduce the confusion between the different land-use classes.
The best classification is the pixel-by-pixel random forest classification, although this approach is similar to



that of the neural network (in terms of metrics). These two classifications have a difference of 0.04 for the
kappa, 0.02 for the overall accuracy (in favour of the RF) and 0.01 for the F1-score (in favour of the CNN).
Nevertheless, the pixel-by-pixel random forest classification visually appears better than the OBIA and CNN
approaches. Numerous research studies have shown that deep learning is able to obtain better scores as a general
rule compared with more ”traditional” machine learning algorithms.91–94 However, in the case of this article, the
pixel approach shows slightly higher scores. This may be due to the architecture of the neural network, which
could be improved by integrating more convolution and hidden layers. It is also possible to integrate patches
with larger entries (64x64, 128x128 for example) or to integrate more images in the Pleiades time series. It is also
important to note that the computation time for deep learning is significantly higher than for machine learning
algorithms and requires more hardware resources (graphics card). This energy cost is not to be overlooked, and
may call into question the use of this tool depending on the real need for it.95

Improvements can still be made to the methodology. The use of new spectral indices or new algorithms could
probably refine the results for pre-locating wetlands. For the classification and typology of wetlands, neural
networks could offer significant potential for improvement. To this end, a comparative study of the best deep
learning algorithm architectures can be carried out with a view to implementing them in a land use classification.

This study shows good results for the wetland classes studied. For the random forest pixel method, the
wetland classes achieve an average Overall Accuracy score of 93% (see comparative table of scores). A similar
study by Ouyang et al. was published, investigating the comparison between a pixel-based approach and an
Object-Based Image Analysis (OBIA) approach for saltmarsh vegetation mapping. This study shows scores (in
Overall Accuracy) ranging from 78% to 82% for their approach, using QuickBird images for a similar class study
as ours (Mudflat with Spartina and Saltmarsh with Phragmites).96 Another more recent study by Mahdianpari
et al., on urban wetland mapping, was published. This study shows results similar to ours, achieving an OA
of 91% for similar wetland land cover classes. The study utilizes WorldView-4, GeoEye-1, and LiDAR data to
characterize wetlands into five classes: Bog, Fen, Swamp, Marsh, and Open Water.97

7.2 Perspectives

There are possible avenues for improvement in this work. Initially, the convolutional neural network is the
best candidate for improvement. Many improvements can be made to the neural network’s architecture, such
as implementing more convolution layers or changing the gradient descent. In short, it is possible to conduct
research that focuses entirely on neural networks and try out the architecture that would be most suitable98 so
that architectures such as the U-Net,99 the VGG-Net100 and the LoopNet can be evaluated. Besides the deep
learning aspect, it is also possible to delve deeper into the machine learning aspect by trying other algorithms,
such as support vector machines.101 It is also possible to implement a larger input dataset. The training
dataset was 5,000 t per land-use class; it is possible to use 10,000 t per land-use class to investigate whether an
improvement is visible with a larger input dataset.

In the case of the pre-location of wetlands, it is also possible to try new approaches or new indices. If the
goal is still to use spectral information for pre-location, indices like the modified soil-adjusted vegetation index
(MSAVI)102 or the enhanced vegetation index (EVI)103 can be included in the methodology to determine how
useful their contributions are. The use of other wetness indices can also be tested, as not only the topographic
wetness index can be used to spatially delineate areas that are likely to be wet. The vertical distance to channel
network (VDCN)104 is also an algorithm that can be used to model flow lines to identify areas that are likely to
be wet or under water.

8. CONCLUSION

The proposed methodology made it possible to map wetlands in various ways and with different approaches, with
an accuracy between 76% and 90%. The aim of this research was also to develop a reproducible methodology
for as many different landscapes as possible. In this way, the methodology can be reused in different areas
using altimetric data and satellite images, regardless of the spatial and spectral resolution of the sensor. The
advantage of pre-locating wetlands is that the study can be divided into two parts, reducing the confounding of
land-use classes with similar spectral responses. By dividing the study area into two groups (wetland mask and
non-wetland mask), confusion between forest and wetland forest classes could be avoided, allowing for better



classification. This article highlights a number of significant strengths resulting from in-depth analyses. The
methodologies used have produced convincing results in the analysis and fine mapping of wetlands, making a
contribution to the field of study. With precise data and good results, this article provides additional elements
in the spatial understanding of wetlands, opening up promising new prospects for this theme. Land-use classes
for wetlands based on several typologies (RAMSAR, GEPPA) make it possible to discriminate between wetlands
with precision. This typology also provides a methodology that can be reproduced in several stages to produce
its own wetland maps. Mapping in two stages (pre-location and mapping) has the advantage of being able to
improve discrimination between wetlands and non-wetlands. It also provides geospatial information for the area
under study (Crozon, France).
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