
HAL Id: hal-04257838
https://hal.science/hal-04257838

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

FactSpotter: Evaluating the Factual Faithfulness of
Graph-to-Text Generation

Kun Zhang, Oana Balalau, Ioana Manolescu

To cite this version:
Kun Zhang, Oana Balalau, Ioana Manolescu. FactSpotter: Evaluating the Factual Faithfulness of
Graph-to-Text Generation. Findings of EMNLP 2023 - Conference on Empirical Methods in Natural
Language Processing, Dec 2023, Singapore, Singapore. �hal-04257838�

https://hal.science/hal-04257838
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


FactSpotter: Evaluating the Factual Faithfulness of
Graph-to-Text Generation

Kun Zhang1,2 and Oana Balalau1,2 and Ioana Manolescu1,2

1Inria, 2Institut Polytechnique de Paris

Abstract

Graph-to-text (G2T) generation takes a graph
as input and aims to generate a fluent and faith-
ful textual representation of the information
in the graph. The task has many applications,
such as dialogue generation and question an-
swering. In this work, we investigate to what
extent the G2T generation problem is solved
for previously studied datasets, and how pro-
posed metrics perform when comparing gener-
ated texts. To help address their limitations, we
propose a new metric that correctly identifies
factual faithfulness, i.e., given a triple (sub-
ject, predicate, object), it decides if the triple is
present in a generated text. We show that our
metric FactSpotter achieves the highest corre-
lation with human annotations on data correct-
ness, data coverage, and relevance. In addition,
FactSpotter can be used as a plug-in feature
to improve the factual faithfulness of existing
models. Finally, we investigate if existing G2T
datasets are still challenging for state-of-the-art
models. Our code is available online: https:
//github.com/guihuzhang/FactSpotter.

1 Introduction

Graph-to-text (G2T) generation is an important
task in natural language generation, as it ren-
ders graphs, and in particular knowledge graphs,
accessible to non-technical users in downstream
applications such as question answering (Gu
et al., 2021), (Romero and Razniewski, 2020),
knowledge-grounded dialogue generation (Zhou
et al., 2018), and document summarization (Fan
et al., 2019). In recent years, there have been sev-
eral datasets (Gardent et al., 2017; Nan et al., 2021)
and methods proposed for G2T generation (Ke
et al., 2021; Ribeiro et al., 2021), in addition to G2T
competitions (Shimorina et al., 2018; Castro Fer-
reira et al., 2020). Evaluating text generation is a
challenging task in itself (Celikyilmaz et al., 2020);
moreover, in the context of G2T generation, we are
concerned not only with the fluency of the gener-

ated text, but also with its faithfulness to the input
graph. While recent models such as T5 and GPT
models are very fluent, they have been criticized
for their factual accuracy, a problem commonly re-
ferred to as hallucination (Ji et al., 2023; Liu et al.,
2022). Hallucinations are a serious drawback in
G2T, where the generated text should only contain
facts mentioned in the input graph.

In this work, we focus on measuring and im-
proving the factual accuracy of G2T generative
models. More precisely, our contributions are as
follows: i) We introduce a novel metric FactSpotter

for detecting if G2T generations are faithful to the
facts present in the input graph; ii) We show how
FactSpotter can be used in the inference step of
any G2T model to improve its generations; iii) We
analyze the difficulty of existing G2T datasets and
determine which are (resp., are no longer) challeng-
ing for state-of-the-art models. FactSpotter can be
extended to other data-to-text tasks via methods for
transforming a relational dataset into RDF, such as
the R2RML language1.

2 Related Work

2.1 Graph-to-text (G2T) generation

In (Ribeiro et al., 2021), the authors investigate the
potential of pretrained language models (PLM) on
the G2T task. They consider two Transformer-
based models (Vaswani et al., 2017) with an
encoder-decoder structure: T5 (Raffel et al., 2020),
and Bart (Lewis et al., 2020). The models receive
in input a linearized (serialized) version of the input
graph, in which they add the tags ⟨H⟩, ⟨R⟩, and
⟨T ⟩ before the head entity, the relation, and tail
entity of a triple, respectively.

The potential of large language models is fur-
ther investigated in (Keymanesh et al., 2022) on
the DART dataset (Nan et al., 2021), a data-to-
text dataset constructed from tables, available in

1http://www.w3.org/TR/r2rml/

https://github.com/guihuzhang/FactSpotter
https://github.com/guihuzhang/FactSpotter
http://www.w3.org/TR/r2rml/


a triple-to-sentence format. The dataset is con-
structed from a combination of manual and auto-
matic techniques. The authors empirically evaluate
the GPT2 model (Radford et al., 2019) and the T5
model on the dataset by varying the amount of su-
pervision a model receives. They also investigate
the potential of adding predicate descriptors in the
prompt and re-ranking generations. In a small-scale
human evaluation, they find that their best model,
T5 large, outperforms the reference text regarding
hallucinations and fluency, underlining that exist-
ing datasets suffer from poor human annotations,
which we also observe and discuss in Section 7.

The authors of (Ke et al., 2021) propose modify-
ing the Transformer model by adding extra atten-
tion and pooling layers to improve G2T generation.
In addition, the model’s pretraining has three steps
given the input graph and the expected output text:
1) reconstructing the text sequence given the com-
plete subgraph, 2) predicting the masked entities
and relations in the corrupted subgraph, given the
complete text, and, 3) aligning the embedding vec-
tors of the knowledge graph and the text.

Most state-of-the-art G2T models are based on
Transformers, and they can generally generate flu-
ent texts related to given graphs. Although various
baselines designed neural networks to encode both
global and local information (Ribeiro et al., 2020),
they cannot guarantee that generated texts are fac-
tual faithful to the given graphs. It’s also not clear
whether current G2T datasets are still challenging.

2.2 Evaluation metrics for text generation

Alongside the significant improvements that mod-
els for G2T generation underwent and, in general,
the improvement of language models, new metrics
to assess the generations’ quality have been pro-
posed (Celikyilmaz et al., 2020; Sai et al., 2022).
G2T generation belongs to the broader field of natu-
ral language generation, including tasks such as ma-
chine translation, automatic summarization, ques-
tion answering, and more. Each task has specific re-
quirements, which might entail using some metrics
over others. For example, in machine translation,
the translation should match the ground-truth text
as closely as possible, while in chatting or summa-
rization, adding or removing some information is
acceptable or even desirable.

Evaluation metrics are split into three categories:
human-centric metrics, untrained automatic met-
rics, and machine-learned metrics. Human evalu-

ation is the most important of these metrics. It
consists of asking users to evaluate the quality
of a text in a specific category, such as fluency
or correctness. Unfortunately, human evaluation
sometimes suffers from a low inter-annotator agree-
ment (Celikyilmaz et al., 2020), (Belz and Reiter,
2006) as different people might have different no-
tions of what makes a text fluent or correct, or
the instructions they receive for annotation might
lack sufficient clarity. Also, human annotation
is time and money-consuming; it can represent a
bottleneck in the iterative process of improving a
model. Hence the need for automatic metrics such
as BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
BERTScore (Zhang et al., 2019), BLEURT (Sellam
et al., 2020) BARTScore (Yuan et al., 2021), In-
foLM (Colombo et al., 2022), among others. Over-
lap measures based on n-grams, such as BLEU,
ROUGE, and METEOR, have been widely used
in the literature, while recently proposed metrics
based on word embeddings, such as BERTScore,
BLEURT, BARTScore are gaining traction. The
embedding-based measures have been shown to
correlate better with human evaluation than the n-
grams metrics. In addition, some metrics, such as
BLEURT, have been trained on human annotations.
As these automatic metrics are based on distances
or similarities to ground-truth texts, they rely on
the quality of annotated sentences.

Apart from the works mentioned above, a few
prior studies assessed factual faithfulness in graph-
to-text generation. In (Faille et al., 2021) the au-
thors introduce a metric for verifying whether en-
tities in input graphs are represented in the gener-
ated texts. However, this work does not evaluate
the quality of the predicates in the generated texts,
which is a much more difficult task. In (Rebuffel
et al., 2021), a question generation (QG) and ques-
tion answering (QA) framework is employed to
evaluate the quality of the generated text by deter-
mining if each question posed by the QG module
can be addressed by the QA module. We believe
our contribution can further advance the state-of-
the-art as: i) FactSpotter requires significantly less
computational resources; ii) FactSpotter is self su-
pervised, thus it does not requires additional data
to the G2T model; item FactSpotter can be pluged
into a G2T to improve its generation.



3 Problem Statement

A knowledge graph (KG) consists of facts (or data
triples) of the form ⟨subject, relation, object/literal⟩
and/or an ontology describing the properties that
hold between classes and/or relations.

Graph-to-text. A G2T tool takes in input a graph
and outputs a textual representation of the graph.
G2T inputs are often subgraphs of larger real-world
graphs, such as knowledge graphs. The textual rep-
resentation should be fluent and should contain all
the facts present in the input graph. For example,
given a subgraph consisting of the single DBpe-
dia (Auer et al., 2007) fact ⟨The Myth of Sisyphus,
author, Albert Camus⟩, we would like to gener-
ate the sentence The Myth of Sisyphus was written
by Albert Camus. This work primarily focuses on
creating textual representations of KG subgraphs.

Factual faithfulness. The following human cri-
teria have been proposed to evaluate the factual
quality of a generated text (Castro Ferreira et al.,
2020): data correctness, data coverage, and rele-
vance. Given a graph G and a machine-generated
text T , the generated text is characterized by:

1. Data coverage or recall: are all the descrip-
tions presented in the graph G included in the
text T ? i) Covered predicates: does T contain
all the predicates from G? ii) Covered entities:
does T contain all the entities from G?

2. Relevance or precision: i) Relevant predi-
cates: does T only contain relevant predi-
cates? ii) Relevant entities: does T only con-
tain relevant entities?

3. Correctness: are predicates correctly men-
tioned and adequately introduced in the data?

Research questions. We focus on the following
three research questions:

RQ1 What metric would better correlate with the
factual faithfulness of generated text?

RQ2 Can we improve factual faithfulness of G2T?

RQ3 Is the G2T task solved on existing datasets?

4 FactSpotter: An explainable metric for
factual faithfulness

In this section, we introduce a new metric for fac-
tual faithfulness. A good metric should be inter-
pretable, that is: given in input a fact f of the form

⟨subject, predicate, object⟩ and a text T , it assigns a
score between 0 and 1, where a score close to 0 sig-
nifies that the text that does not correctly represent
the fact, and a score close to 1 rewards a factual
faithful textual representation of f in T . Such a
metric can be used to compare different generation
systems and, in addition, assess a single system on
a given dataset, to determine how close the system
is to representing the input graphs correctly.

The intuition of our score is the following. We
train a model to perform a task simpler than G2T
generation: only detecting whether facts exist in a
sentence and whether they are well expressed. This
simpler model can then be used as a plug-in fea-
ture by any existing G2T model, to aid it perform
the more complex task of language generation.

Our metric, FactSpotter, is trained as a binary
classifier. Given in input a fact ⟨subject, predicate,
object⟩ and a sentence, it should predict 1 if the fact
is well expressed in the sentence, or 0 otherwise.
Thus, FactSpotter is inherently interpretable. We
leverage as classification models recent large lan-
guage models, capable of detecting semantic close-
ness, even if different words, e.g., synonyms, are
used. This approach is similar to the one taken to
compute metrics such as BertScore and BartScore.
Given an input G2T dataset D, with a training
(train) set, a development (dev) set, and a test set,
we create the training set as follows:

Positive samples. Given an instance of the train-
ing set of the form (graph G, ground truth text
T ), for each fact (triple) in G, we create a positive
sample of the form (fact f , ground truth text T ).

Negative samples. Given an instance of the train-
ing set of the form (graph G, ground truth text
T ), for each fact f ∈ G, we create negative sam-
ples as follows: i) Type I: we perturb the fact f : we
change its predicate, or an entity (subject or object),
or both, while the ground truth text T remains un-
changed. ii) Type II: we perturb the ground truth
text T : we drop one or both entities related to f
from the text, or drop the n-grams most similar
to the predicate of f , or we apply simultaneously
several modifications, keeping the fact unchanged.

For example, given the fact ⟨The Myth of Sisy-
phus, author, Albert Camus⟩ and its associated text
“The Myth of Sisyphus was written by Albert Ca-
mus”, a Type I negative sample alters the fact (⟨The
Myth of Sisyphus, author, Simone de Beauvoir⟩,
“The Myth of Sisyphus was written by Albert Ca-



mus”), while for Type II yields the sample ( ⟨The
Myth of Sisyphus, author, Albert Camus⟩, “The
Myth of Sisyphus was written”). We associate
probabilities to each perturbation, and control the
generation such that for each positive sample, we
only generate one negative sample. To allow our
classifier to learn from different negative samples
and avoid over fitting (Chen et al., 2020), for each
training epoch, we use a newly generated set of
negative samples. The development set is built in
the same way. Through evaluation on a fixed test
set (Appendix A.4.1) we find that the model which
best detects factual faithfulness is the one with the
highest probability of perturbing the fact (90%) and
10% the probability of perturbing the ground truth.

Above, we have described FactSpotter as a
(trained) classifier. To use it as a score (metric),
we take the output of the model after the softmax
layer. The final score of a generated text T given
an input graph G is the average over the scores for
each pair (fact f ∈ G, generated text T ).

Parameters and performance of FactSpotter.
As we aim to add our metric, FactSpotter, in the
inference step of graph-to-text generation, we pre-
fer small language models. Hence, we select the
small Electra model (Clark et al., 2020). We have
experimented with other small models, such as
DistilBERT and DistilRoBERTa, but we did not
observe an improvement. We train our classifier
for 16 epochs, with a learning rate of 5 · 10−5,
and the AdamW optimizer. We describe in the
Appendix A.4.1 how we chose the percentages of
negative samples for FactSpotter.

The performance of FactSpotter on the test splits
across multiple datasets is detailed in Table 1, with
accuracy and F1 score. We also report numbers
of true positives/negatives (TP/TN), and false posi-
tives/negatives (FP/FN) in the table.

Dataset Acc. F1 TP/TN FP/FN
GrailQA 96.85 96.85 2272/2643 64/96
SimpleQ. 95.41 95.41 10260/10438 419/575
DART 97.62 97.62 26613/26352 607/684
WebNLG17 99.10 99.09 8594/8575 93/63
WebNLG20 95.21 95.21 9637/9853 317/663

Table 1: Performance of FactSpotter on test splits.

5 Evaluating graph-to-text generation

We investigate our first research question (RQ1):
which metrics would better correlate with the fac-

tual faithfulness of the generated text? For this
question, we compare FactSpotter with: BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), BERTScore (Zhang et al., 2019),
BLEURT (Sellam et al., 2020), BARTScore (Yuan
et al., 2021). The only metric that is not normalized
is BARTScore. This metric has a variant specifi-
cally adapted for factual faithfulness, BARTScore-
faithful. Further details of these metrics are pro-
vided in Appendix A.1.

We calculate the system-level correlation be-
tween automatic metrics and human annotations.
Given S systems under evaluation, for a certain
dimension, e.g., fluency, we compute the correla-
tion between the system-level automatic metric
scores [M(S1), . . .M(SS)] and the correspond-
ing system-level human scores [H(S1), . . . H(SS)],
where M(Si) is the score of the automatic metric
on the texts from system Si, and H(Si) is the score
of the human annotation on the same result. Simi-
larly to (Colombo et al., 2022), we compute three
correlation metrics: Pearson correlation (r), Spear-
man correlation (ρ), and Kendall’s Tau (τ ). To
test if a metric M1 has a higher correlation with
human annotations than M2, we use the bootstrap-
ping technique proposed in (Wilcox, 2016), which
we describe in the Appendix A.2. We also report
the sentence-level correlation in Appendix A.5. In
addition to automatic measures, we report the corre-
lation between one annotator and the average score
of the remaining annotators, which should be a up-
per bound on the correlation we can obtain using
automatic measures.

WebNLG 2017. In the WebNLG 2017 challenge
(Shimorina et al., 2018), the organizers annotated
9 submissions on semantic adequacy (the text cor-
rectly represents the meaning in the data), text struc-
ture (as above, referred in the original paper as
grammar) and fluency (as above). This annotation
has carried over 223 samples.

WebNLG 2020. After the WebNLG 2020 Chal-
lenge (Castro Ferreira et al., 2020), the organizers
annotated the 16 participating systems on data cor-
rectness (the predicates found in the data are cor-
rectly mentioned together with their subject and ob-
ject), data coverage (the text includes descriptions
of all predicates presented in the data), and rele-
vance (the text describes only those predicates with
related subjects and objects which are in the data),
in addition to text structure (the text is grammati-

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient


Correct. D. Cover. Relev. Fluency T. Struct.
Metric r ρ τ r ρ τ r ρ τ r ρ τ r ρ τ
Correct. 1.0 1.0 1.0 0.96 0.81 0.66 0.97 0.81 0.66 0.80 0.77 0.60 0.79 0.76 0.59
D. Cover. 1.0 1.0 1.0 0.93 0.80 0.64 0.71 0.56 0.43 0.69 0.55 0.42
Relev. 1.0 1.0 1.0 0.76 0.63 0.48 0.76 0.62 0.47
Fluency 1.0 1.0 1.0 0.98 0.97 0.91
T. Struct. 1.0 1.0 1.0
Human 0.96 0.80 0.65 0.93 0.83 0.68 0.96 0.74 0.59 0.95 0.93 0.80 0.93 0.91 0.77
BLEU 0.59 0.64 0.48 0.53 0.53 0.40 0.56 0.60 0.45 0.87 0.84 0.68 0.86 0.84 0.68
METEOR 0.72 0.75 0.60 0.65 058 0.44 0.70 0.64 0.50 0.88 0.89 0.74 0.86 0.88 0.72
BERTF1 0.83 0.77 0.60 0.74 0.58 0.43 0.81 0.65 0.50 0.90 0.93 0.80 0.88 0.92 0.78
BLEURT 0.93 0.82 0.67 0.86 0.65 0.50 0.91 0.69 0.55 0.90 0.92 0.78 0.89 0.91 0.76
BARTS 0.90 0.83 0.67 0.86 0.71 0.53 0.88 0.71 0.56 0.77 0.81 0.63 0.75 0.80 0.62
BARTS-F 0.67 0.54 0.41 0.68 0.61 0.46 0.68 0.59 0.45 0.51 - - 0.52 - -
FactS 0.94 0.80 0.64 0.91 0.87 0.71 0.96∗ 0.79 0.64 0.74 0.59 0.45 0.72 0.59 0.45

Table 2: Correlation at the system level with human judgment on correctness, data coverage, relevance, fluency
and text structure for the 2020 WebNLG task. For tables here and below, BERTF1 stands for BERTScore-F1,
BARTS for BARTScore, BARTS-F for BARTScore-faithful, FactS for FactSpotter. We highlight the best result
and we mark it with an asterisk when it is statistically significantly larger than any other metric (excluding Human
to Human correlation). FactSpotter performs the best on correctness, data coverage, and relevance. We put a value
for correlation if the pvalue p < 0.05.

Sem. Adeq. T. Struct. Fluency
Metric r ρ τ r ρ τ r ρ τ
Sem. Adeq. 1.0 1.0 1.0 0.73 0.65 0.52 0.71 0.66 0.52
T. Struct. 1.0 1.0 1.0 0.98 0.95 0.88
Fluency 1.0 1.0 1.0
Human 0.99 0.98 0.94 0.98 0.92 0.84 0.98 0.89 0.79
BLEU 0.76 0.71 0.56 0.86 0.71 0.57 0.83 0.72 0.57
METEOR 0.86 0.83 0.67 0.85 0.70 0.57 0.80 0.70 0.56
BERTF1 0.70 0.78 0.63 0.71 0.70 0.57 0.69 0.70 0.57
BLEURT 0.90 0.88 0.72 0.84 0.69 0.56 0.79 0.68 0.56
BARTS 0.90 0.87 0.78 0.71 - - 0.68 - -
FactS 0.97∗ 0.93 0.85 0.67 - - - - -

Table 3: Correlation at the system level with human
judgment on semantic adequacy, grammar, and fluency,
for the 2017 WebNLG dataset.

cal, well structured, and written in good English)
and fluency (the text progresses naturally, forms
a coherent whole and is easy to understand). 178
generations of each system were annotated.

Results. On WebNLG 2020, Table 2 shows
that FactSpotter has the best performance on fac-
tual faithfulness, significantly improving relevance.
BLEU, METEOR, BERTScore and BLEURT reach
similar fluency and text stucture scores. For the
results on WebNLG 2017 in Table 3, FactSpotter
has the highest performance on semantic adequacy,
which is the only dimension related to factual faith-
fulness. For text structure and fluency, BLEURT
obtains the best results, although the results are
not statistically significant. Overall, previous met-
rics are better on text structure and fluency, which
are generally considered as no longer a bottleneck
for large language models. FactSpotter is the best
suited metric on factual faithfulness.

6 Improving the factual faithfulness of
graph-to-text generation

In this section, we investigate the answer to our
third research question: can we improve graph-to-
text generation on factual faithfulness (RQ2)? For
this, we first explain how to improve the inference
step of any G2T model using FactSpotter, and then
we present the results of this technique on the state-
of-the-art models for G2T generation.

6.1 Improving models’ factual faithfulness

Let M be a neural network G2T (seq2seq) model
that, given an input sequence x = x1, x2, . . . xM ,
produces an output sequence y = y1, y2, . . . , yN ,
where xi ∈ Vx, yi ∈ Vy, and Vx, Vy are the vo-
cabularies from where we select items in the input,
respectively output sequence. In the inference step,
the model generates the sequence y that maximizes:

P (y|x) =
N∏
i=1

P (yi|y<i, x)

In practice, for computational efficiency, the log
of the probabilities are typically utilized in beam
search. We use the following method to improve
factual faithfulness in G2T inference without re-
training the model.

Given:i) a graph-to-text generation model
M, ii) our factual faithfulness classifier, i.e.,
FactSpotter, iii) a subgraph G composed of F facts,
we encourage factual generations by modifying the



prediction step as follows:

log(P f (yi|y<i, x)) =

λ
F∑

j=1

(1− Pfactj (y<i−1)) logPfactj (y<i)

+ log(P (yi|y<i, x)) (1)

where: i) P f (yi|y<i, x) is the probability of
generating token yi given the factual classifier;
ii) Pfactj (y<i−1) is the probability of correctly
representing the fact j in the previously gener-
ated tokens y0, ..., yi−1, computed by FactSpotter.
iii) P (yi|y<i, x) is the probability for generating
the next token based on previous i− 1 tokens.

In our equation, a fact j is encouraged only if we
have not observed in the text generated until step
i, according to Pfactj (y<i−1). Then adding token
yi would increase the probability of the text includ-
ing the fact j, Pfactj (y<i). When Pfactj (y<i−1)
is small, the equation encourages the selection of
words belonging to the fact j. As P is large and
1 − Pfactj (y<i−1) tends to 0, then we can con-
sider that the fact j already appears in the text,
and words that satisfy fact j will no longer be en-
couraged. The weight λ controls the influence of
the FactSpotter on the prediction of the following
words. A high λ might yield a factual text, but not
necessarily a fluent one. We generate tokens till
we have generated text S = y0, ..., yk for which
∀j ∈ F, Pfactj (S) > 0.5, i.e., the probability of
each fact j in G is verbalized in the text S is over
0.5, the standard positive threshold.

6.2 Models
We consider for our evaluation state-of-the-art mod-
els for G2T genetation, PLM (Ribeiro et al., 2021)
and JointGT (Ke et al., 2021). The former investi-
gates how a standard seq2seq model can perform
on G2T, given a carefully constructed representa-
tion of a graph. The latter proposes a more com-
plex neural network, with built-in attention layers
specialized on graph structured inputs. Both are ini-
tialized with the pretrained weights of a language
model. Similar to the authors, we consider in this
work T5 (Raffel et al., 2020) for both G2T models.
For simplicity we refer to the first model as T5,
and to the second model as JointGT. We refer to
the models modified as explained in Section 6.1
as FactT5 and FactJointGT. For T5 and FactT5,
we initialize the weights with T5 small, and T5
base. For JointGT and FactJointGT we initialize

the weights with a pretrained T5 base model of-
fered by the authors of JointGT. For the fine-tuning
step (each model is fine-tuned on the training split
of the datasets), we train the small models with a
learning rate of 10−4 and a batch size of 32, while
the base models are trained with a learning rate of
5 · 10−5 and a batch of 16. We use a beam size of
5 and the AdamW optimizer for both sizes of mod-
els. For Equation 1, we fix the weight λ = 0.15
(parameter tuning in Appendix A.4.2).

6.3 Datasets
To evaluate G2T performance, we need (graph,
text) pairs datasets. The graphs can be directly
extracted from an underlying knowledge graph or
adapted to have richer semantics, such as query
graphs (Yih et al., 2015). The text associated to the
graph should be a sentence or a paragraph verbaliz-
ing all the information contained in the subgraph.

Several datasets are proposed in the literature
for the G2T task, such as WebNLG (Gardent et al.,
2017). Many question-answering (QA, in short)
datasets are also in the form (graph, text). Since
question answering datasets can be very large
and cover many KG predicates (Gu et al., 2021),
we also leverage such datasets. To ensure that
FactSpotter has never encountered the test data,
it is trained exclusively on the training set and eval-
uated it on the validation split.

SimpleQuestions (Bordes et al., 2015) is a QA
dataset built on Freebase (Bollacker et al., 2008).
The dataset contains 108K (triple, question) pairs,
where the question corresponds to the subject and
predicate from the triple, and the answer is the ob-
ject of the triple. For example, given the triple (Gul-
liver’s Travels, book/written_work/author, Dean
Swift), the question is Who wrote Gulliver’s Trav-
els?, with the answer Dean Swift. The dataset
covers 76 domains, 741 classes, 89K entities and
2K relations. A Freebase domain is a general area
of knowledge such as business, politics, economics,
etc. We created our own split for this dataset, where
the test set is zero shot: we have not seen the pred-
icates during training. FactSpotter can be trained
to correctly classify if a question refers to a triple,
even if the object or subject is missing from the
question, as we replace the entity with its type.

GrailQA (Gu et al., 2021) is also a QA dataset
that uses Freebase, created using human annota-
tion. The original dataset contains 64K (triple,
question) pairs, however, the test set is not released



as the authors have created a QA challenge 2, hence
we use the development set as a test set. The re-
maining data (training and development) consists
of 51K pairs. The authors propose three levels of
generalization and split the development and test as
follows. 50% of the pairs from held-out domains
(Freebase assigns to each entity and predicate a do-
main, such as music, sports, etc.) are not covered
in training: this is the zero-shot split. 25% of the
pairs correspond to graphs where the combination
of ontology items (classes and predicates) were
not covered in training: this is the compositional
split. Finally, the remaining 25% are randomly
sampled from the same distribution as the training
dataset: the i.i.d. split. The i.i.d. and compositional
subsets contain only ontology items (classes and
predicates) covered in training. For the zero-shot
subset, five domains are held out for validation.

WebNLG (Gardent et al., 2017; Castro Ferreira
et al., 2020) is a text generation dataset on DBPedia,
created via human annotation. The dataset consists
of (graph, paragraph) pairs, where the graph is a
set of DBPedia facts, and the paragraph consists
of one or several sentences that describe the graph.
We use the 2017 (2.1) and 2020 (3.0) versions of
the dataset 3. The 2017 version of the dataset con-
tains 42K graph-text pairs, and it has two splits, the
standard version and the constrained version. In the
constrained version, the test set does not contain
that a triple occurring in train/dev. In this work
we considered only the constrained split, as it is
more challenging. The WebNLG 2020 dataset has
40K pairs, which comprises 10 categories that were
previously seen and utilized in WebNLG 2017, as
well as 5 categories that were unseen in WebNLG
2017 are now incorporated into the seen data of the
WebNLG 2020 dataset. It also introduces a new
category of data: company.

DART (Nan et al., 2021) is a data-to-text dataset
based on Wikipedia tables. Since the tables are
represented as (subject, predicate, object) triples,
it also suits our evaluation. Besides creating table-
to-text annotations, the authors also use existing
datasets: the QA dataset WikiSQL (Zhong et al.,
2017), the cleaned E2E (Dušek et al., 2019) (entity-
to-entity relations in the restaurant domain), and
the original release of the WebNLG dataset for the
2017 challenge (Shimorina et al., 2018). The au-

2https://dki-lab.github.io/GrailQA/
3https://gitlab.com/shimorina/webnlg-dataset

thors align the predicates such that predicates with
the same meaning have the same representation.
The dataset has 82K instances. We excluded the
WikiSQL split as it has been generated automati-
cally and after we performed a manual verification,
we observed many low quality ground truth texts.

6.4 Evaluation
In this section, we consider (RQ2): Can we im-
prove G2T generation on factual faithfulness?

Table 4 shows the results on the SimpleQues-
tions dataset. We generally have a high FactSpotter

score, indicating that models are already good at
relaying factual information. We can improve the
factual faithfulness with F-T5 and FGT without
significant compromise on other metrics, implying
maintained fluency of texts.

Model BLEU METEOR BERTF1 BLEURT BARTS FactS

T5S 37.97 36.50 93.43 67.85 -2.45 96.80
F-T5S 37.85 36.06 93.42 67.86 -2.45 98.17
T5B 38.73 36.43 93.61 68.48 -2.43 95.09
F-T5B 38.73 36.42 93.56 68.42 -2.43 97.14
JGT-T5 39.35 36.82 93.65 68.50 -2.42 95.40
FGT-T5 39.24 36.78 93.64 68.48 -2.42 97.25

Table 4: Results on G2T on SimpleQuestions. Here and
below, T5S stands for T5 small, T5B for T5 base, F-T5S
for FactT5 small, F-T5B for FactT5 base, JGT-T5 for
JointGT-T5, and FGT-T5 for FactJointGT-T5.

Model BLEU METEOR BERTF1 BLEURT BARTS FactS

T5S 66.24 47.80 96.72 73.16 -1.41 98.67
F-T5S 66.27 47.89 96.73 73.21 -1.41 99.25
T5B 67.04 48.35 96.81 73.22 -1.40 99.44
F-T5B 67.04 48.22 96.80 73.26 -1.40 99.71
JGT-T5 67.08 48.34 96.76 73.44 -1.39 99.09
FGT-T5 66.89 48.19 96.84 73.42 -1.39 99.67

Table 5: Results on G2T on WebNLG 2017 Const.

Model BLEU METEOR BERTF1 BLEURT BARTS FactS

T5S 52.30 40.82 93.43 -1.75 65.80 90.75
F-T5S 52.44 41.02 93.45 -1.74 65.92 93.45
T5B 54.29 41.66 93.65 -1.69 66.43 93.60
F-T5B 54.72 41.70 93.61 -1.69 66.46 95.14
JGT 54.23 41.49 93.47 -1.72 66.23 91.26
FGT-T5 54.45 41.52 93.49 -1.72 66.31 93.16

Table 6: Results on G2T on the WebNLG 2020 dataset.

Model BLEU METEOR BERTF1 BLEURT BARTS FactS

T5S 46.22 39.96 94.69 66.62 -2.03 95.47
F-T5S 46.31 40.07 94.74 66.66 -2.02 97.29
T5B 48.47 40.74 95.04 67.49 -1.97 96.65
F-T5B 48.37 40.72 95.05 67.43 -1.97 97.60
JGT-T5 47.51 40.43 94.92 67.33 -2.01 95.86
FGT-T5 47.39 40.32 94.92 67.26 -2.00 97.25

Table 7: Results on G2T on the DART dataset.

https://dki-lab.github.io/GrailQA/
https://gitlab.com/shimorina/webnlg-dataset


Model/Split BLEU METEOR BERTF1 BLEURT BARTS FactS

IID

T5S 44.51 41.80 93.23 69.53 -2.37 97.98
F-T5S 44.64 41.88 93.25 69.63 -2.36 98.47
T5B 45.95 42.71 93.50 70.66 -2.29 99.43
F-T5B 46.10 42.67 93.52 70.73 -2.29 99.50
JGT-T5 43.68 41.65 93.21 69.41 -2.37 98.62
FGT-T5 43.61 41.65 93.19 69.41 -2.37 99.12

Zero

T5S 30.30 36.91 91.74 62.87 -2.74 93.27
F-T5S 30.30 36.90 91.75 63.01 -2.73 94.60
T5B 32.20 37.35 91.92 63.84 -2.72 94.77
F-T5B 32.39 37.39 91.92 63.94 -2.71 95.61
JGT-T5 32.94 37.69 92.02 64.18 -2.68 94.15
FGT-T5 32.46 37.55 91.93 64.00 -2.68 94.95

Comp.

T5S 30.38 35.32 92.09 63.99 -2.74 94.94
F-T5S 30.14 35.21 92.08 63.72 -2.75 96.58
T5B 31.75 35.64 92.24 63.99 -2.72 94.84
F-T5B 31.66 35.72 92.24 64.10 -2.71 96.53
JGT-T5 31.46 36.08 92.39 64.92 -2.67 95.26
FGT-T5 31.25 36.21 92.43 65.12 -2.65 97.10

Table 8: Results on G2T on the GrailQA dataset.

Table 5 has the highest FactSpotter score from
all datasets, which means that we observe the most
factual generations on WebNLG 2017, with F-T5
and FGT having slightly higher scores.

In Table 6, the FactSpotter scores are lower for
the WebNLG 2020 test split, although we achieve
scores comparable to WebNLG 2017 on its vali-
dation split. This discrepancy may be attributed
to the difference in distribution between the test
and training splits of WebNLG 2020. F-T5B can
achieve higher FactSpotter score than T5B without
compromising fluency. We observe the same trends
for the DART dataset in Table 7.

In Table 8, all the metrics are higher for the IID
split of GrailQA, and in particular FactSpotter can
reach 99.5%, hence the models learn to reproduce
triples seen in training. For Zero-shot and Com-
positional splits, larger models are better, and our
factual inference improves the score of FactSpotter.
We illustrate some improved samples of Zero-shot
and Compositional splits in Appendix A.3, and in
Appendix A.6, we investigate the impact of varying
numbers of triples in the input subgraphs on the
quality of the generated text.

To validate that indeed generations improve us-
ing FactSpotter in inference, we select the best
FGT-T5 model and we analyse the top 20 phrases
where the FactSpotter score improved the most
compared to the JGT-T5 generations.

For the SimpleQuestion datasets, we have 15
generations that are more factual, and 5 generations
less factual. For the Zero-shot split of GrailQA, 14
generations are more factual. For its Composi-

tional split, we have 13 improved generations, but
also 5 that are less factual. For the IID split, 4
generations are improved, others are all rephrased
texts. Only 7 samples of IID improve over 0.01
for FactSpotter, so this split is not challenging. For
the DART dataset, 6 texts are more factual. DART
dataset has samples that ground-truth sentences
do not match with graphs, so FactSpotter trained
on DART has false positives. For WebNLG 2017
dataset, 11 generations are more factual, others
are rephrased texts. WebNLG 2017 is only has
16 generations improve over 0.1 for FactSpotter,
whose baseline is very high. For WebNLG 2020,
12 generations are more factual, and 3 are rephrased
texts. 5 generations in WebNLG 2020 have higher
FactSpotter than baseline generations, but they’re
still not factual enough.

For the cases where a generation becomes less
factual, this is a consequence of the accuracy of
FactSpotter, which we present in Section 4. Given
that our metric does not correlate strongly with
fluency, we perform a second analysis on genera-
tions to observe if there is a decrease in fluency.
To answer this question, we study the top 20 sen-
tences for which the BLEURT decreased the most
in comparison with the original generated question.
We do not observe an obvious decrease in fluency
on any dataset, the decrease in BLEURT score is
due to several other factors: BLEURT has diffi-
culties identifying rephrased sentences, in a few
cases the factual faithfulness decreased, and in the
remaining cases the generations are more faithful
to the input graph than the ground truth sentences,
however BLEURT cannot identify it. Hence, we
can conclude that adding FactSpotter as a plugin in
generation can improve G2T generations on factual
faithfulness and does not affect the fluency.

7 Remaining challenges in G2T task

Finally, we consider (RQ3): is G2T task solved
on existing datasets? We have observed high
FactSpotter scores in Section 6 on the performances
of models. We use FactSpotter to do a more de-
tailed analysis: we investigate what is the percent-
age of generations in each dataset which had at
least a fact considered missing by FactSpotter. A
fact is considered as missing if the score of the pair
(fact, generated sentence) is lower than 0.5. We
obtain the following statistics: 1.94% of texts miss
a fact in SimpleQuestions; 7.27% of texts miss at
least a fact in DART; 5.79% of WebNLG 2017 texts



miss at least one fact, and 12.64% for WebNLG
2020; For GrailQA we have 5.8% for the zero shot
split, 4.36% for the compositional split and 1.13
for the IID split. According to the observations,
WebNLG 2020 is the most challenging dataset, fol-
lowed by DART, the zero shot split of GrailQA,
and the WebNLG 2017 dataset. In Appendix A.7,
taking GrailQA and WebNLG 2017 as examples,
we analysed the difficulty of G2T on datasets from
different knowledge graphs, by looking into how
often predicates and entity names are rephrased or
expressed exactly as in the input graph.

We perform a second evaluation, this time by
manually analyzing the output of the models.
We consider the worst 20 sentences according to
BLEURT and FactSpotter, hence 40 examples per
dataset or split. On SimpleQuestions, the genera-
tions are fluent, however 22/40 have an incorrect
predicate. For GrailQA, in the IID split the predi-
cates are correctly generated, but the models still
have difficulties in generating some entity names
(16/40). For the zero-shot split, generations suffer
from wrong entities and predicates (22/40). The
compositional split has several samples with wrong
ground truth (6/40 of the worst generations) and
19 out of 40 incorrect generations. For DART, 24
generations are not correct. On WebNLG 2017,
from the worst 40 generations, only two might
benefit from improved fluency, while in many ex-
amples, the generated sentence was more fluent
than the ground truth (14/40). Regarding correct-
ness, only 2 out of 40 generations had a missing
triple, while two generations incorrectly used a
predicate. On WebNLG2020, only one instance
exhibits room for improvement in fluency, but 24
instances either omit factual information or con-
tain incorrect facts. Among the 20 outputs with
the lowest BLEURT scores, 9 are rephrased texts
with correctly explained facts. In contrast, among
the 20 outputs with the lowest FactSpotter, only 4
instances fall into this category.

Based on our manual annotations, we observed
that models are able to produce correct genera-
tions. However, when the generation is rephrased
in respect to the ground truth sentence, metrics
like BLEURT, which measure if two sentences are
equivalent, struggle to assign high scores. We recall
that BLEURT, a normalized metric, gives a score of
1 to equivalent sentences. On the dataset WebNLG
2017, our metric assigns a very high score to the
models, while the highest average BLEURT score

is 73.44%. The BLEURT scores of the generations
vary from 0.46 to 0.99; more than 50% of the test
set generations score less than 0.80. We sampled
40 generations with BLEURT score < 0.8 and note
that 35 generations are correct, which are rephras-
ing the ground truth, while 2 out of 35 that are bet-
ter than the ground truth. Hence, we observe that
BLEURT score cannot be used to determine if we
have achieved a good performance on a dataset, it
can only be used to compare different models. This
issue has also been pointed out by the authors4.

FactSpotter answers whether a fact is present in
text; it does not have to address the much harder
task of deciding if two sentences are equivalent.
Besides being more reliable because it is solving a
simpler task, it is also more interpretable as we can
investigate the exact triples that are classified as
negative, instead of doing a complete comparison
between a subgraph and a sentences or between
two sentences. This is especially useful for long
input graphs and long generations.

8 Conclusion

In this work, we have presented a new metric for
measuring factual faithfulness in G2T, FactSpotter.
This metric can be trained in a self supervised fash-
ion, using the same annotations as a G2T model.
We have shown it achieves the highest correlation
with humans on factual faithfulness and it can be
used as a plug-in feature for G2T models. Finally,
we have used our metric to analyze the difficulty
of existing datasets. We have observed that models
perform very well on these datasets, hence new
datasets should be proposed. Such datasets could
cover more difficult input graphs, for example triple
from tables. In addition, through the initiative of
governments to release tabular data related to pub-
lic interest5, tools trained to express in natural lan-
guage the content of tables could be used as user
friendly interfaces for citizens.
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4https://github.com/google-research/bleurt/
issues/1

5For example, Eurostat, https://ec.europa.eu
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9 Limitations

Our work has the following limitations:

• FactSpotter cannot be used to determine the
precise nature of the error in the generated
sentence. It was trained to predict whether a
fact is presented in the text or not, not if we
the sentence has a wrong predicate or a wrong
subject or object. This problem can be solved
by a second classification step for whether
predicates or entities are incorrectly verbal-
ized in the text, to make FactSpotter more in-
terpretable.

• The input of FactSpotter is the concatenation
of a fact f represented in triple and a natural
language text T , i.e., it has limited input for-
mat. With such input, the advantage is that it is
easier to construct both positive and negative
samples for its self-supervised training. How-
ever, it is also difficult to use it to check the
factual faithfulness on other text generation
tasks, since high quality structured knowledge
graphs are hard to generate. However, we will
investigate in the future the use of open in-
formation extraction models (Upadhyay et al.,
2023) for extracting facts from sentences.

• Although the accuracy and F1 score of our
classification model on the test splits of var-
ious datasets in Table 1 are high, there still
exist some false positive and false negative
samples. Hence, our FactSpotter generally re-
flects factual faithfulness, but it might still be
biased on some hard samples, especially when
predicates in knowledge graphs are distant to
their natural language representations in the
vector space of language models.
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A Appendix

A.1 Metrics for the evaluation of G2T

BLEU (Papineni et al., 2002) This is one of
the oldest sentence similarity metrics. BLEU is
computed as a weighted geometric mean of n-gram
precision scores, that is: it rewards inputs that share
many common substrings (or n-grams, usually n
is 4). The score ranges between 0 and 1.

METEOR (Banerjee and Lavie, 2005) This
similarity metric is based on the harmonic mean
of the 1-gram precision and recall. Its recall has
a higher weight than precision. METEOR scores
range between 0 and 1.

BERTScore (Zhang et al., 2019) This leverages
the pre-trained contextual embeddings of BERT,
and matches words in candidate and reference sen-
tences by cosine similarity. The score can be used
to compute precision, recall, and F1. BERTScore
is also a similarity measure, ranging from 0 to 1.

BLEURT (Sellam et al., 2020) This is a fine-
tuned Bert model on synthetically generated texts.
It provides a similarity score learned from evalu-
ation scores such as BLEU or ROUGE, and from
human ratings; 1 represents a perfect match, while
a value close to 0 means no similarity. We consider
the authors’ latest released model, BleuRT-206.

BARTScore (Yuan et al., 2021) This metric is
based on the BART seq2seq language model: the
score represents the weighted log probability of
one text y, given another text x. We compute two
versions of the BARTScore, based on the indica-
tions of the paper: in the first version of the score,
we compare the generated sentence with the gold
standard (we refer to it as BARTScore, the default
version provided by the authors), and a second
version in which we compare the generated text
with the input graph (referred in the paper as the
faithfulness method, BARTScore-faithful in our ex-
periments). The second score should encourage

6https://github.com/google-research/bleurt
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the metric to consider the factual faithfulness of a
generation. BARTScore is not normalized.

A.2 Bootstrapping

Given two metrics M1,M2, we need to assess
which one better correlates with human annota-
tions. We have at our disposal a set of G2T systems
S1, . . . , SS , and a set A of G2T samples. Given
a set D of dimensions, e.g., fluency, factfulness,
etc., we have at our disposal the human annota-
tion Hd(Si(a)), d ∈ D 1 ≤ i ≤ S, a ∈ A: this
is the score that human users assigned to the G2T
generation of system Si, on the sample a, along
dimension d. Similarly, each automated metric M
computes Md(Si(a)), the M score of Si on sam-
ple a along dimension d. We note however that
automated metric give generally just one score for
all dimensions.

Based on the Hd(Si(a)), Md(Si(a)) over all
systems, samples, and dimensions, we assess how
well metric M correlates with human judgment H
in a statistically sound way. Since each dimension
is of independent interest, we study the correlation
of M and H separately for each dimension, and
omit d from the notations below, for simplicity.

We compute the three correlation coefficients
(r, ρ and τ ) between vectors of per-system scores
[M(S1), . . .M(SS)] and [H(S1), . . . H(SS)].
One aspect remains to settle: for a given Si, how
to aggregate information from all the annotated
samples A? It is important to do this in a way that
is robust to the divergence and noise sometimes
found in human annotations.

As is proposed in (Dhingra et al., 2019), we
apply bootstrapping, as follows. We generate a
number (we used 1000, which is same as (Dhingra
et al., 2019)) of "variants" A1, . . . , A1000 of the an-
notated samples A, by sampling with replacement
from A. Each Ai has the same size as A, but it
may contain some A samples several times, and
others not at all. We then compute correlation coef-
ficients between the vectors [M(S1), . . .M(SS)]
and [H(S1), . . . H(SS)] over each Ai, then repre-
sent each of the resulting 1000 correlation values
by their mean, together a confidence interval. The
relatively large number of "variants" acts as insula-
tion against divergence and noise in the annotations.
Then for two metrics M1,M2:

i) If the mean of M1 is higher than M2 and their
confidence intervals do not overlap, it means M1

better correlates with human judgment, than M2.

ii) If the confidence intervals of M1,M2 overlap,
we need to check whether a statistically significant
conclusion can be drawn about the metrics. This is
the case only if the confidence interval of the dif-
ference in correlation between the metrics is above
0 (Wilcox, 2016), in which the metric with higher
mean correlates better with human judgment.

A.3 Improved Samples of G2T Generation
Table 9 shows the improvement of factual faith-
fulness in G2T generation task after integrating
FactSpotter into G2T inference. The samples are
from the hardest zero-shot and compositional splits
of GrailQA dataset. Each sample in the table in-
cludes a description of a subgraph, a ground truth
text, a text generated by the best baseline model
(JointGT), and a text generated by our FactJointGT.

Although the texts generated by the baseline
model, JointGT, are generally fluent, we observe
hallucinations in its generations: i) Some predi-
cates are interpreted with different meanings in
the generated texts; ii) Some entities are generated
wrongly; iii) Some facts in subgraphs are lost in the
generated texts. After integrating FactSpotter into
the inference of G2T generation, without retraining
the G2T model, our FactJointGT can generate texts
that verbalize facts in subgraphs more correctly
and completely. Hence the factual faithfulness of
G2T task is improved by FactSpotter, but the other
metrics do not necessary improve, since rephrased
high quality texts might also be punished.

A.4 Parameter tuning
A.4.1 Percentages in negative samples for

FactSpotter training
FactSpotter receives in the training set two types
of negative samples. In the first type of negative
sample (type I) we modify the fact from the graph,
while the second type of negative sample (type II)
we modify the text. To determine the best balance
between negative samples of type I, respectively,
type II, we compute the correlations between the
score of FactSpotter and a subset of 50 annotations
per system from the 2020 WebNLG challenge. As
shown in Table 10, the best results for detecting
factual accuracy and fluency are using either a ratio
0.9-0.1 or 0.8-0.2. In the remaining of the paper,
we use FactSpotter with the parameters 0.9-0.1.

A.4.2 λ tuning for factual generations
We recall that in Equation 1, we have defined a
weight λ that quantifies the importance that we



Subgraph Ground Truth JointGT Baseline FactJointGT
(spacecraft, manufacturer,
International Telephone
& Telegraph),
(spacecraft, manufacturer,
Boeing Company),
(spacecraft, count, )

What is the total
number of spacecrafts
manufactured by
International
Telephone & Telegraph
and Boeing Company?

International
Telephone
& Telegraph
manufactures
how many
spacecrafts?

How many spacecrafts
did International
Telephone & Telegraph
manufacture with
Boeing Company?

(music recording, artist,
Celine Dion),
(music recording, length,
float), (float, argmin, )

What is the shortest
Celine Dion song?

What is the
musical recording
that was recorded
by Celine Dion?

Which musical
recording was recorded
by Celine Dion with
the shortest length?

(John Elliott, games
published, computer game
expansion), (computer
game expansion, count, )

How many game
expansions has John
Elliott released?

How many video
game expansions
were published
by John Ellison?

How many video
game expansions
were published by
John Elliott?

(conference series,
conferences of this type,
seminar),(conference
series, sponsoring
organization, Australian
Centre for Psychoanalysis),
(conference series, question)

What conference series
that has a sponsoring
organization of
Australian Centre for
Psychoanalysis and is
of type seminar?

Australian Centre
for Psychoanalysis
sponsors which
conference series?

What conference
series is sponsored
by Australian Centre
for Psychoanalysis
and is a seminar?

(railway, terminuses,
Strabane),
(railway, question)

Strabane is the
terminuses of
which railway?

Which railway
has a terminus
of Stratane?

Strabane is the
terminus of
which railway?

Table 9: Texts with improved factual faithfulness after integrating FactSpotter into G2T inference. Red stands for
the contents that are presented in subgraphs, but are missed in the baseline generations. Blue stands for the exact
contents correctly presented in ground-truth texts or FactJointGT generations.

Type I /
Type II

Data Coverage Relevance| Fluency
r ρ τ r ρ τ r ρ τ

0.9 / 0.1 0.85 0.84 0.68 0.93 0.88 0.75 0.91 0.79 0.63
0.8 / 0.2 0.83 0.85 0.63 0.92 0.93 0.79 0.89 0.79 0.61
0.7 / 0.3 0.77 0.84 0.66 0.85 0.89 0.73 0.66 0.63 0.50

Table 10: The influence of the ratio on FactSpotter.

IID Zero-shot Compositional
λ BleuRT FactS BleuRT FactS BleuRT FactS

0.0 69.53 97.98 62.27 93.27 63.99 94.94
0.05 69.76 98.15 62.94 94.15 63.92 95.69
0.1 69.76 98.48 63.00 94.56 63.71 95.83
0.15 69.63 98.47 63.01 94.60 63.72 96.58
0.2 69.47 98.38 62.95 94.79 63.61 96.19

Table 11: BleuRT vs. FactSpotter when varying the λ
parameter (importance of the fact classifier for generat-
ing a sentence, see Equation 1).

assign to the probability that the next word is pre-
dicted such that we increase the probability of hav-
ing a fact in the generated text, versus the default
probability of choosing a word based on previously
generated tokens. In Table 11, we vary the value

of λ on the different splits of GrailQA on the T5
small model. The BleuRT score does not vary sig-
nificantly, meaning that the fluency of the G2T
model should not be affected. We fix λ to 0.15
for the experimental evaluation in Section 6, as it
gives the best performance on the zero shot split,
which is the most challenging, and gives very good
results also for the other splits. More precisely, we
report the results of FactT5 and FactJointGT with
λ = 0.15 on the datasets introduced in Section 6.3.

A.5 Sentence level correlation
We explain two distinct definitions of sentence-
level correlation provided by literature and report
the correlations on the WebNLG human annota-
tions.

The first definition of sentence-level correla-
tion (Colombo et al., 2022) is outlined as follows:

• Construct a pair containing the automated
metric scores [M(sys1), . . . ,M(sysS)] and
the corresponding system-level human scores
[H(sys1), . . . ,H(sysS)] for a given sentence.



• The Pearson correlation amidst these pairs is
computed. If the correlation is significant
(adopting p < 0.05 as the threshold), this
correlation is preserved.

• Then, report the average over all significant
correlations (average over at most the total
number of annotated sentences).

When there is a large number of significant
pairs with high correlation value, it can show if
a metric can be used to compare different verbal-
isations of the same input triples. We report the
human correlation results computed as this def-
inition on the WebNLG 2017 and 2020 annota-
tions in Tables 12 and 13 respectively. We note
that only FactSpotter is significantly larger than
the other metrics on data coverage and relevance
for WebNLG 2020, and semantic adequacy for
WebNLG 2017, which are metrics about factual
faithfulness. Please note that here it is important to
report on how many sentences the correlation was
significant with p < 0.05. Because we compute if a
metric has a higher score than a second metric using
the bootstrapping technique presented in the An-
nexes, different samples might have different num-
ber of sentences with correlation having p < 0.05,
hence we report the average number of sentences
over all the samples. For WebNLG2017, out of 223
human annotated sentences, we have for semantics:
BLEURT 171, FactSpotter 172, BERT 121 and
BART 169. For fluency we have BLEURT 80 sen-
tence pairs, FactSpotter 48, BERT 71 and BART 55.
For textual structure BLEURT had 104 sentences
pairs, FactSpotter 65, BERT 94 and BART 75. We
note that for semantics the majority of pairs are sig-
nificant (172 out of 223), meaning that FactSpotter
can predict with high correlation improved verbal-
isations of the same input graph, hence it can be
used to solve Q2. For WebNL2017, out of 178
human annotated sentences, we have: i) for correct-
ness, BLEURT 121, FactSpotter 83, BERT 95 and
BART 97 significant pairs on average; ii) for data
coverage, BLEURT 102, FactSpotter 100, BERT
65 and BART 106; iii) for fluency, BLEURT 105,
FactSpotter 49, BERT 90 and BART 72; iv) for
relevance, BLEURT 99, FactSpotter 67, BERT 71
and BART 78; v) for text structure, BLEURT 92,
FactSpotter 42, BERT 75 and BART 59; In this
dataset, we obtain far less significant pairs, but we
will show next that the annotators had more dis-
agreement on WebNLG 2020.

Metrics Sem. Adeq. T. Structure Fluency
Human 0.80 0.77 0.77
BertF1 0.80 0.78 0.75
BleuRT 0.82 0.79 0.78
BartS 0.81 0.77 0.78
FactS 0.84 0.78 0.78

Table 12: The result of sentence-level correlation with
the first definition on the WebNLG 2017 annotation.

Metrics Correct. D. Cover. Fluency Relev. T. Struct.
Human 0.67 0.68 0.62 0.65 0.67
BertF1 0.65 0.67 0.64 0.66 0.66
BleuRT 0.72 0.68 0.68 0.71 0.70
BartS 0.71 0.69 0.66 0.70 0.68
FactS 0.69 0.71 0.50 0.71 0.60

Table 13: The result of sentence-level correlation with
the first definition on the WebNLG 2020 annotation.

Metrics Sem. Adeq. T. Structure Fluency
Human 0.56 0.44 0.50
BertF1 0.64 0.54 0.57
BleuRT 0.69 0.55 0.59
BartS 0.59 0.47 0.45
FactS 0.65 0.43 0.43

Table 14: The result of sentence-level correlation with
the second definition on the WebNLG 2017 annotation.

Metrics Correct. D. Cover. Fluency Relev. T. Structure
Human 0.38 0.37 0.29 0.35 0.30
BertF1 0.42 0.38 0.42 0.37 0.40
BleuRT 0.45 0.43 0.47 0.38 0.43
BartS 0.39 0.38 0.32 0.35 0.31
FactS 0.38 0.40 0.29 0.37 0.27

Table 15: The result of sentence-level correlation with
the second definition on the WebNLG 2020 annotation.

The second definition of sentence-level corre-
lation (Banerjee and Lavie, 2005) is computed be-
tween the vector containing all the automatic scores
for each sentence by a system S given by a metric
M , and the vector containing the human metrics
for each sentence. The sentence-level correlation
of a metric M is computed as an average over all
the correlation of each system S1, . . . , SS . This
measure determines if a metric can be used to rank
verbalisations of different input graphs. The human
correlation results computed as the second defini-
tion on the WebNLG 2017 and 2020 annotations
are reported in Tables 14 and 15 respectively.

On WebNLG 2017 dataset, three metrics achieve
similar scores for semantic adequacy, with no re-
sults significantly larger than the others (computed



Metric Krippendorff’s Alpha
Fluency 0.4201
T. Struct. 0.3231
Sem. Adeq. 0.5314

Table 16: Krippendorff’s alpha for ordinal metrics on
WebNLG 2017 human annotations

Metric Krippendorff’s Alpha
Correct. 0.2769
D. Cover. 0.2632
Fluency 0.2580
Relev. 0.1860
T. Struct. 0.2234

Table 17: Krippendorff’s alpha for ordinal metrics on
WebNLG 2020 human annotations

using confidence intervals by bootstrapping tech-
nique in Appendix A.2). Using (Evans, 1996) cor-
relation guidelines, where a value between 0.6 to
0.79 is "strong correlation" and 0.8 to 1.0 is "very
strong", we have "strong" correlation for the type
of sentence correlation to the annotation. However,
on WebNLG 2020 dataset, all metrics demonstrate
a "moderate" level of correlation, given that the
scores hover between 0.3 and 0.49.

We note that the two sentence correlation inter-
pretations presented above are more sensitive to
noise in the human annotation, as we consider each
individual sentence score, not aggregates. This is
evident also from the lower Human-Human cor-
relation we observe on sentences, in comparison
with the high correlation for the system level cor-
relation. In Tables 16 and 17, we present the inter-
annotator agreement for WebNLG 2017 and 2020
using Krippendorff’s alpha (Krippendorff, 2018).
It can be observed that both datasets exhibit gen-
erally low consistency among annotators, with the
2020 dataset showing less agreement than its 2017
version. However, on WebNLG 2017 we observe
a higher agreement on semantic adequancy, for
which we also observed a high correlation with our
metric at sentence level.

We believe that these results show the need for
better human annotation guidelines for this task. In
particular, on WebNLG2020, the annotators were
asked to give a score from 0 to 100 to a sentence
for a given dimension such as correctness. Such a
fine-grained decision is very difficult to take, hence
the low agreement score. We note that mapping
these scores to scores from 1 to 10 or 1 to 5 does

not improve agreement. In the 2017 challenge, the
annotators gave scores from 1 to 3, but we believe
that those scores were not sufficiently described
such that the annotators could choose them accord-
ingly. We recommend that future annotations use a
Likert scale annotation, but with clearer guidelines
and examples for each score.

A.6 Qualitative Analysis for examples with
different number of triples

We conducted a qualitative analysis on examples
with different number of triples, to observe where
the proposed metric shows improvements during
decoding. We present the number of (graph, text)
pairs as categorized by the number of triples within
the input graph for the test set, and results for vari-
ous datasets segmented by the number of triples are
reported below. SimpleQuestion was not consid-
ered because it has only one triple per input graph.

For the WebNLG 2017 dataset, we can observe
that for the small G2T model, T5S, the triples of
size 4, 5 and 7 are more challenging, as is shown in
Table 19. The integration of FactSpotter enhances
the factuality of the results (as evident in F-T5S).
We also observed a distinct improvement across
various numbers of triples in the WebNLG 2020
dataset, especially when handling sentences com-
prising multiple triples.

As for the DART dataset in Table 23, inputs
ranging from 1 to 5 triples witness improved re-
sults with FactSpotter’s addition. Remarkably high
FactSpotter scores are observed for inputs contain-
ing 6 or 7 triples. It’s worth noting that of the inputs
with 6 triples, 569 out of 598 are sourced from the
E2E split, and for those with 7 triples, 320 out of
342 hail from the same E2E split. Hence, the E2E
split of DART seems to be less challenging.

The results of GrailQA dataset are illustrated
in Tables 25, 29, and 27. Regarding the GrailQA
zero-shot split, single-triple verbalization consis-
tently achieves superior scores with FactSpotter.
Beginning with two triples, the incorporation of
FactSpotter offers a discernible boost in model
performance. In the compositional split, mirror-
ing the trend observed in the zero-shot scenario,
FactSpotter scores remain high for single-triple in-
puts. Furthermore, there is a marked improvement
for inputs with two or more triples upon the addi-
tion of FactSpotter. In the IID split, while the base-
line scores are impressively high, enhancements is
noticeable for small model like T5S.



Triple Num 1 2 3 4 5 6 7
Pair Num 1540 821 419 241 185 0 6
Percentage 47.95 25.56 13.04 7.50 5.76 0 0.19

Table 18: The number and the percentage of (graph,
sentence) pairs for the test set of WebNLG 2017 Const

Triple Num 1 2 3 4 5 7
T5S 99.87 99.45 99.13 97.62 98.09 97.53
F-T5S 99.75 99.65 99.22 98.74 99.20 99.93
T5B 99.65 99.69 99.35 99.15 99.52 99.93
F-T5B 99.81 99.70 99.69 99.85 99.53 99.93
JGT-T5 99.69 99.73 98.52 98.63 99.30 99.93
FGT-T5 99.40 99.89 99.50 99.89 99.60 99.93

Table 19: FactSpotter by the number of triples for the
test set of WebNLG 2017 Const

Triple Num 1 2 3 4 5 6 7
Pair Num 369 698 1050 1220 1065 684 553
Percentage 9.09 17.19 25.86 30.04 26.21 16.84 13.62

Table 20: The number and the percentage of (graph,
sentence) pairs for the test set of WebNLG 2020

Triple Num 1 2 3 4 5 6 7
T5S 93.71 93.91 92.24 90.71 89.95 88.68 86.12
F-T5S 95.05 95.13 95.58 94.07 92.21 91.01 90.54
T5B 95.21 96.33 94.51 93.00 92.29 92.30 93.36
F-T5B 96.27 96.74 95.69 94.41 94.72 94.89 94.09
JGT-T5 94.74 94.71 92.71 92.16 88.16 89.10 88.46
FGT-T5 94.26 95.85 93.85 93.93 90.90 91.43 92.48

Table 21: FactSpotter by the triple number for the test
set of WebNLG 2020

Triple Num 1 2 3 4 5 6 7
Pair Num 848 797 821 869 822 598 342
Percentage 16.64 15.64 16.11 17.05 16.13 11.73 6.71

Table 22: The number and the percentage of (graph,
sentence) pairs for DART test set

Triple Num 1 2 3 4 5 6 7
T5S 98.47 93.55 93.35 92.45 94.01 99.57 99.82
F-T5S 99.71 97.21 96.41 94.82 96.68 99.88 99.82
T5B 98.08 95.53 94.54 94.44 96.03 99.88 99.99
F-T5B 99.54 96.81 96.32 96.16 97.19 99.74 99.87
JGT-T5 98.49 94.36 93.61 93.44 94.33 99.82 99.80
FGT-T5 99.51 96.43 95.83 94.78 95.82 99.77 99.89

Table 23: FactSpotter by triple number for DART

A.7 Further analysis on the difficulty of
graph-to-text generation

We consider the intricacy in verbalizing a given
triple is predominantly influenced by:

1. The distance between entity names in the
knowledge graph and those in natural text.

2. The difference between KG predicates and
their equivalent natural language phrases.

Triple Num 1 2 3 4
Pair Num 1231 522 55 20
Percentage 67.34 28.55 3.00 1.09

Table 24: The number and the percentage of (graph,
sentence) pairs for GrailQA zero-shot split

Triple Num 1 2 3 4
T5S 96.41 89.63 92.71 93.62
F-T5S 97.08 91.30 94.52 99.39
T5B 96.49 93.03 92.84 94.98
F-T5B 97.48 93.31 94.28 99.68
JGT-T5 96.96 90.77 93.50 91.28
FGT-T5 98.02 91.63 95.95 93.81

Table 25: FactSpotter by the number of triples for for
GrailQA Zero-shot split

Triple Num 1 2 3 4
Pair Num 388 292 39 38
Percentage 51.25 38.57 5.15 5.01

Table 26: The number and the percentage of (graph,
sentence) pairs for GrailQA Compositional split

Triple Num 1 2 3 4
T5S 98.47 94.89 95.53 88.15
F-T5S 99.14 95.77 98.12 94.69
T5B 98.64 96.23 77.78 93.27
F-T5B 99.25 96.35 93.80 94.36
JGT-T5 98.84 95.59 89.73 91.02
FGT-T5 98.92 96.62 98.79 94.85

Table 27: FactSpotter by the number of triples for
GrailQA Compositional split

Triple Num 1 2 3 4
Pair Num 257 465 63 12
Percentage 32.65 58.34 7.90 1.50

Table 28: The number and the percentage of (graph,
sentence) pairs for GrailQA IID split

Triple Num 1 2 3 4
T5S 97.75 97.98 98.82 96.96
F-T5S 97.96 98.73 98.83 99.20
T5B 99.55 99.31 99.38 99.77
F-T5B 99.55 99.47 99.38 99.77
JGT-T5 98.09 99.12 98.31 99.77
FGT-T5 98.72 99.35 99.31 99.77

Table 29: FactSpotter by the number of triples for
GrailQA IID split



Entity Generation Regarding the difficulty of
generating correct entities, we have the following
statistics on the WebNLG 2017 dataset (v2.1):

• 87% of input graph entities appear identical
in its corresponding ground-truth texts.

• 7% of differences arise from special charac-
ters, e.g., “Motherwell F.C.” in the input graph
becomes “Motherwell FC” in the ground-
truth, both being correct.

• 2% are due to variations in date or number
formats, as observed with “2006-12-31” in
the KG interpreted to be “December 31, 2006”
in the ground-truth text.

• 1% emerge from linguistic differences be-
tween the source language and English,
as with “Atatürk” in KG being written as
“Ataturk” in reference text.

• Other variances often regard alternative en-
tity designations, such as “United States” in
the KG being abbreviated as “US” in specific
ground-truth texts.

For the GrailQA dataset, rooted in Freebase,
99% of input graphs retain consistent entity names
in their ground-truth sentences. Accurate entity
verbalization is relatively straightforward for this
dataset, but we observe hallucinations in the texts
generated by baseline models.

Considering that most differences between KG
and natural language entity names result from for-
matting nuances, we can easily address its con-
sistency challenge using constrained beam search
to ensure all entity names appear in the generated
text. For beam sizes over 10, the text generation
becomes accurate without compromising other met-
rics. However, for beam sizes under 10, such con-
straints tend to impede the fluency.

Predicate Generation In the WebNLG 2017
dataset, 49% of predicates appear the same as in the
KB in their corresponding ground-truth sentences.
Using SBert, we computed an average similarity
of 84% between each predicate and its nearest n-
grams in the ground-truth.

For the GrailQA dataset, only 27% of predicates
align perfectly with their KG representations in the
ground-truth. The average similarity stands at 64%,
highlighting a larger difference between FreeBase
predicates and their natural language phrases.

Summary of Difficulty Datasets like WebNLG
(from DBPedia) and GrailQA (from FreeBase)
present challenges on different fronts. The dif-
ficulty from datasets based on FreeBase is the
distance between knowledge graph and natural
language is much higher. However, WebNLG
and DART datasets have more complex input sub-
graphs, which has more number of triples, while
GrailQA only has input subgraphs with up to 4
triples.

We consider that promoting accurate predicate
generation is more challenging problem than pro-
moting the generation of correct entities, because
predicates are much more often rephrased in sen-
tences, which is harder to evaluate. Inspired by the
efficacy of Constrained Beam Search in ensuring
accurate entity generation, we designed FactSpotter

to enhance the accurate production of rephrased
facts, especially rephrased predicates to be cor-
rectly generated.


