

Friction and wear of self-lubricating composites used in transfer lubrication of ball bearing in space applications

Guillaume COLAS^a

A. Saulot^b, Y. Michel^c, T. Filleter^d, A. Merstallinger^e

^a FEMTO-ST institute – DMA Department, UBFC, CNRS UMR 6174, Besançon, France
^b LaMCoS, Univ. Lyon, INSA Lyon, CNRS UMR 5259, Villeurbanne, France

^c CNES, Toulouse, France

^d University of Toronto, MIE Department, Toronto, Canada ^e AAC Gmbh, Wiener Neustadt, Austria

WTC / Leeds-Lyon, July 10th - 15th, 2022, Lyon, France

Context

Long life space mechanisms

Dry lubricated ball bearing

Can perform > 800.10°6 rotations @ 60RPM

Source: Thalès Alenia Space

Double transfer lubrication Retainer => ball & ball => races

Composites are materials of predilection

<u>Duroïd 5813</u>

PTFE Matrix 18% MoS2 size ~ 10μm 19% Glass fiber Ø 3μm

Reference Material Production ceased (90s)

Lubrication must be sustained all along the mechanism working life

Keep working specifications of mechanisms

Context

PTFE Matrix 10% MoS2 size ~ 100µm 24% Glass fiber Ø 20 µm

In the quest of a new material => Similar composite composition = similar behavior ?

PGM-HT lubricated bearing

РЕМ-НТ 10 ра

Resistive torque from PGM-HT lubricated bearing

Sicre, ESMATS, 2009

Objective of the study

- Study and understand the mechanisms governing the double transfer lubrication

- Help defining criterion to select and design next generation of self lubricating material

Test plan - 3 phases _ in UHV and air 50% HR

Experimental Investigation

Composite	Supplier	Composition	Manufacturing Process
Duroïd 5813	Rogers Corp. (USA)	PTFE matrix 18% MoS ₂ Ø10 μm * 19% glass fiber Ø3 μm *	Unknown
PGM-HT	JPM Mississippi (USA)	PTFE matrix 10% MoS ₂ Ø100 μm * 24% glass fiber Ø20 μm *	Hot compression molding preconditioned in vacuum
AAC-C1	Formulation by AAC, produced by ENSINGER SINTIMID GmbH	PTFE matrix 10% MoS ₂ particles 25% glass fiber Ø13 μm	Hot compression molding
AAC-C9	Formulation by AAC, produced by ENSINGER SINTIMID GmbH	PTFE 10% MoS ₂ particles 15% mineral fiber Ø3 μm	Hot compression molding

6

Experimental set-up

Test plan - 3 phases _ in UHV and air 50% HR

* information from real mechanisms

A – Contact ball/pad 5000 cycles

- Pure sliding, oscillating (\pm 37,5 mm)
- Sliding speed : 100 mm/s *
- Normal force ball/pad : 1,5 N (~10 Mpa)

B – Contact ball/pad and ball/plate 5000 cycles

- Contact ball/pad
 - Idem phase A
- Contact ball/plate
 - Rolling without sliding, oscillating
 - Contact pressure ball/plate: 0,5 GPa

C – Contact ball/pad and ball/plate 5000 cycles

- Contact ball/pad
 - Idem phase A
- Contact ball/plate
 - Rolling with 0,5% sliding, oscillating
 - Contact pressure ball/plate: 0,5 GPa

3 tests per composites in UHV

- 1 with phase A
- 1 with phase AB
- 1 with phase ABC
- 1 test per composite in air 50%RH
 - 1 with phase ABC

ω

PGM-HT : highest variations ► big particles + instabilities + both

Duroïd : moderate variations ► instabilities + both

C1: the lowest variations except in one test (phase A) ► big particles

C9: low variations but variations are the highest with rolling motion ► both

-H2

C,H

.co,

HF

-C.F.

5000

4500

Cycle

4000 4500 5000

Cycle

TECHNOLOGIES

500 1000 1500 2000 2500 3000 3500 4000

+ OM and SEM

Duroïd transfer little during phases A and B but a lot in phase C

▶ idem for PGM-HT

AAC-C1 continously transfer during all phases A, B, and C

▶ idem for AAC-C9

5000L5th, 2022, Lyon, France

Tribological Tests – Post test Analysis

Pad ellipse morphology

PGM-HT ⇔ AAC-C9 Duroïd ⇔ AAC-C1

<u>Counter</u> intuitive

14

High magnification SEM

PGM-HT ⇔ AAC-C9 ► fiber aligned in the contact plane

Duroïd ⇔ AAC-C1

Duroïd: small chunk of fibers dispersed in the contact but aligned in the contact plane

C1: fibers orthogonal to contact + 3rd body buffer layer around them

Tribological Tests – Post test Analysis

Pad ellipse morphology

PGM-HT ⇔ AAC-C9 Duroïd ⇔ AAC-C1

Counter intuitive

15

High magnification SEM

PGM-HT ⇔ AAC-C9 fiber aligned in the contact plane

Duroïd ⇔ AAC-C1

Duroïd: small chunk of fibers dispersed in the contact but aligned in the contact plane

C1: fibers orthogonal to contact + 3rd body buffer layer around them

Nak-Ho.1979 => Detrimental + enhanced by decohesion Champagne, 2014 => corner edge leading to breakage and big chunk formation

C1: Fiber strongly bonded to PTFE

Tribological Tests – Post test Analysis

20 um

50 µm

PGM-HT exhibits the worst capability of transfer

Duroïd exhibits smooth, homogeneous, but moderate (thin) transfer

AAC-C1 exhibits smooth, homogeneous, but good transfer

AAC-C9 exhibits smooth, homogeneous, and thick transfer

AAC-C9 ⇔ Duroïd Transfer film less adhesive to steel than transfer from AAC-C1

AAC-C1 ► best option ?

Tribological Tests - Air

Duroïd : moderate variations only in phase C ► instabilities + both

C1 : moderate variations ► big particles + both

C9 : lowest variations but variations

No significant differences on pad ellipse

Duroïd and PGM-HT: thick, patchy, transfer film

C1 and C9: Smooth and thin transfer film, particularly for C9

Water adsorption mitigates all detrimental effect of fibers, etc. by promoting PTFE and transfer film anchorage

AAC-C1 ► best option ?

Experimental Investigation_partial conclusion

Why ???

Significant differences in behaviour although similar compositions

2 EU prototypes perform the best

smooth erosion/stress of PTFE and good transfer

water adsorption which is good for anchorage of transfer film and friction stability

 strong Fiber/PTFE bound but buffer 3rd body that sporadically lead to big chunk detachment and circulation

AAC-C1 ► best option ?

Test plan - 3 phases _ in UHV and air 50% HR

For optimized transfer lubrication of ball bearing

- Low but continuous transfer of material all along the test, without damaging nor wearing too much the composite
 - Random orientation of fiber with high proportion of fiber orthogonal to the contact <u>AND</u> Moderate matrix stiffness <u>AND</u> fiber/matrix strongly bounded
 - Small fragments from hard filler to modulated mechanical properties of transfer film and insure long life
 - ➢ High adhesion of MoS2 towards steel <u>AND</u> high adhesion of fiber towards PTFE
 - > Favors lubricant & limits abrasion from fiber sliding over steel and transferred film
 - Equilibrium between internal cohesion of transferred material, and adhesion to counterparts must be satisfied
 - Adsorption of residual water inside the vacuum
 - Gentle running to lead to better transfer and anchorage of the transferred material

High water desorption during 1st year(s) of operation

Significant inside/outside pressure differential

Thanks for your attention

Article

Experimental Analysis of Friction and Wear of Self-Lubricating Composites Used for Dry Lubrication of Ball Bearing for Space Applications

Guillaume Colas ^{1,*}, Aurélien Saulot ², Yann Michel ³, Tobin Filleter ⁴ and Andreas Merstallinger ⁵

Experimental Investigation

Pre- and Post-tests adhesion investigations

TECHNOLOGIES

NB: Here we choose to work in pure elastic regime

- no energy dissipation due to permanent material deformation
- ► focus on adhesion force

Pre- and Post-tests adhesion investigations

- 1- Identification of a Region of interest
- 2- Scan with the colloidal probes
- 3- Identification of individual material
- 4- Measures in « random » order
- 5- Control of probe contamination:
 - adhesion @ location #1 measured twice at least (1st and last)

Composite	PTFE	Glass Fiber	MoS2	3 rd body
PTFE	-	$\overline{\checkmark}$	-	-
Glass Fiber	V	V	V	V
MoS2	-	\checkmark	-	-
3 rd body	-	\checkmark	-	-
AISI440C	\checkmark		V	$\mathbf{\overline{\mathbf{A}}}$

Loading pattern: $1 \mu N \triangleright 2\mu N \triangleright 3\mu N \triangleright 2\mu N \triangleright 1\mu N$ 6 repetition per load

Study only on PGM-HT and AAC-C1

TECHNOLOGIES

WTC / Leeds-Lyon, July 10th – 15th, 2022, Lyon, France 2

behaves as expected: High adhesion of glass bead on glass fiber

 PGM-HT: High adhesion of fiber towards steel

behaves as expected: High adhesion of glass bead on glass fiber

- PTFE adheres more to glass than to steel
- MoS2 adheres more to steel in the most stressed region, otherwise adheres more to PTFE
 - High adhesion of fiber towards steel
 - PTFE adheres to glass as much as to steel

MoS2 adheres more to steel, no accessible data in the most stressed region

TECHNOLOGIES

TECHNOLOGIES

behaves as expected: High adhesion of glass bead on glass fiber

- PTFE adheres more to glass than to steel
- MoS2 and 3rd body adhere more to steel in the most stressed region, otherwise adheres more to PTFE
 - High adhesion of fiber towards steel
- PTFE adheres to glass as much as to steel

MoS2 and 3rd body adhere more to steel, no accessible data in the most stressed region

TECHNOLOGIES

WTC / Leeds-Lyon, July 10th – 15th, 2022, Lyon, France 3

PTFE+MoS2

TECHNOLOGIES

The whole material is sheared

PTFE Stiff « + »

PTFE Stiff « ++ »

TECHNOLOGIES