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Abstract

Hypothesis. Electrostatics of soft (ion-permeable) (bio)particles (e.g. microorganisms, core/shell
colloids) in aqueous electrolytes is commonly formulated by the mean-field Poisson-Boltzmann theory
and integration of the charge contributions from electrolyte ions and soft material. However, the
effects connected to the size of the electrolyte ions and that of the structural charges carried by the
particle, to dielectric decrement and ion-ion correlations on soft interface electrostatics have been so
far considered at the margin, despite the limits of the Gouy theory for condensed and/or multivalent
electrolytes. Experiments. Accordingly, we modify herein the Poisson-Boltzmann theory for core/shell
(bio)interfaces to include the aforementioned molecular effects considered separately or
concomitantly. The formalism is applicable for poorly to highly charged particles in the thin electric
double layer regime and to unsymmetrical multivalent electrolytes. Findings. Computational examples
of practical interests are discussed with emphasis on how each considered molecular effect or
combination thereof affects the interfacial potential distribution depending on size and valence of
cations and anions, size of particle charges, length scale of ionic correlations and shell-to-Debye layer
thickness ratio. The origins of here-evidenced pseudo-harmonic potential profile and ion size-
dependent screening of core/shell particle charges are detailed. In addition, the existence and
magnitude of the Donnan potential when reached in the shell layer are shown to depend on the

excluded volumes of the electrolyte ions.

Keywords: Soft interfaces, Electrostatics, Modified Poisson-Boltzmann theory, finite ion size,
dielectric decrement, ion-ion correlations, soft particle heterogeneity.
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1. Introduction.

Electric double layers (EDLs) play a central role in interface science and they are key components of
surface electrohydrodynamics [1], particle electrodynamics [2], or colloid stability against aggregation
in aqueous media [3,4]. Surface electrostatics is of further concern in numerous physicochemical
processes underlying e.g. the reactivity of (nano)particles with respect to metals [5,6] and organic
macromolecules [7,8], the (bioavai)lability of metal complexes at metal-accumulating biointerfaces
[9,10], the ecotoxicology of metal oxide nanoparticles [11,12], the kinetics of electron transfer
reactions at electrodic surfaces [13,14], or the thermodynamics of ionic surfactants [15,16].

Mechanistic assessment of the aforementioned processes is tied to a proper formulation of the
spatial distribution for the electrostatic potential at the charged particle/electrolyte interface. In that
respect, numerical and analytical solutions to the mean field Poisson-Boltzmann (MFPB) theory (cf.
e.g. [17]) have long been elaborated for charged colloids that are impermeable to ions of the
background electrolyte (so-called hard interfaces). Evaluation of MFPB formalism for such interfacial
systems is now well documented over a large spectrum of electrostatic settings tackled or not within
the Debye-Hiickel approximation (cf. e.g. [18]). The scenarios explored so far include the analysis of
effects associated with particle geometry and particle curvature to Debye layer thickness ratio [19],
the influence of surface charge/potential magnitude [20], that of the ion valence and the electrolyte
concentration [21] under conditions where EDLs of neighbouring particles are in interaction or
electrically isolated [22]. The outcome of MFPB theory has been validated at qualitative and
quantitative levels [23] from confrontation to simulations and experiments (e.g. electroosmosis [24],
AC and DC electrophoresis [25], Atomic Force Microscopy (AFM) [26]), especially in dilute symmetrical
electrolytes.

However, classical MFPB theory for hard interfaces suffers from several well-recognized limits [27].
Namely, it considers the electrolyte side of the particle/medium interface as an assembly of point-like
ions, which comes to discard effects associated with finite ion size, ion-solvent and ion-ion interactions.
Accordingly, there have been efforts in the literature to correct MFPB theory for finite ion size,
dielectric decrement or ion-ion correlations [28,29], and evaluate experimentally their implications in
several practical situations [30,31]. For the sake of illustration, ion condensation close to a charged
surface explains why the use of the classical MFPB model may lead to misevaluation of particle surface
charge density [32]. In addition, there is a large body of literature that pinpoints the importance of
ionic correlations for sufficiently dense ionic clouds in the vicinity of charged surfaces (cf. e.g. [33] and
references therein). Notably, ion-ion correlations at a charged interface may lead to the reversal of the
surface charge due to charge overneutralization by the counterions then organized in a closed-packed
layer adjacent to the surface, the thickness of that layer being dependent on ion size [29]. In line with

experimental data, this phenomenon explains possible attractive electrostatics between hard surfaces
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carrying charges of the same sign [34], or the reversal of the polarity of charged surfaces in water upon
addition of multivalent ions [35]. The prediction of double-layer capacitance at electrode/solution
interfaces under high applied voltage, the description of the specific adsorption of ions and the
evaluation of the electrokinetic charge at hydrophobic or hydrophilic surfaces were further shown to
be improved upon integration of spatially dependent dielectric permittivity in MFPB formalism for hard
surfaces [36].

All above mean-field formulations of interfacial electrostatics refer to the case of hard
interfaces/particles defined by a 2D charge distribution [37]. However it now accepted that this
historical representation of interfaces does not apply to so-called soft colloids/interfaces that harbour
3D distributed structural charges [38], e.g. bacterial interfaces [39], viral particles [40], supported-
polyelectrolyte layers and core/shell colloids [41], polymeric particles featuring a hairy surface layer
[42], or particles like dendrimers [43], to quote only a few. Indeed, the defining electrostatic and
electrokinetic properties of soft interfaces significantly differ from those of their hard counterparts, as
evidenced by numerous experimental and theoretical reports invoking MFPB equation (uncorrected
for molecular effects) with account of the contribution of 3D structural charges (cf. e.g. [44] and
references therein). As an illustration, the electrophoretic mobility of soft particles with zwitterionic
functionality (e.g. cationic core and anionic shell) was shown to change sign with varying the
concentration of (dilute) monovalent electrolytes due to the respective contributions of the cationic
and anionic structural charges to the potential at the shell/electrolyte interface depending on
intraparticle Debye layer thickness [45], in line with AFM experiments [43].

Like for hard interfaces, the implementation of finite ion size, ion-ion correlations or dielectric
decrement within MFPB theory applicable to soft particles/interfaces (denoted hereafter as SMFPB)
is a priori required for a complete and comprehensive understanding of their electrostatic properties,
especially for highly charged systems and/or multivalent electrolytes. However, to the best of our
knowledge, reported corrections of SMFPB theory refer mainly to the implementation of finite ion size
in symmetrical electrolytes for particulate systems whose soft layer thickness legitimates or not the
applicability of Donnan electrostatic representation [46]. The presence of a charged rigid surface that
supports this soft layer — a configuration that applies to numerous engineered soft (bio)interfaces and
particles —is further generally ignored (cf. e.g. [47] and references therein).

In view of the above elements, we elaborate here an extension of the classical SMFPB model so as
to describe the electrostatic potential distribution around an isolated core-shell particle in a
multivalent electrolyte with full integration of the effects associated with finite ion size, dielectric
decrement and ion-ion correlations. Numerical solutions of the so-modified SMFPB model are
provided for different electrostatic descriptors pertaining to both the core and shell part of the soft

particle under conditions where Donnan potential is reached or not within the soft particle layer [48].
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Analytical equations defining the Donnan potential are further derived with the explicit account of
finite ion size for both symmetrical and unsymmetrical electrolytes, and with the account of the size
of the shell charges. The respective contributions of the charged (2D) core and (3D) shell particle
components to the intertwined spatial distributions of counter/co-ions and electrostatic potential are
critically analysed depending on the molecular effects (finite ions size, dielectric decrement and ionic
correlations) that we consider separately or in combination. Overall, we address here the way in which
each of these molecular effects contributes to the organisation of ions at a soft interface, from the
very vicinity of the charged core to the shell layer and beyond. Of interest is the identification of the
scenarios where modulations of the mean-field potential distribution caused by a given molecular
effect are predominant, attenuated or dominated by variations of potential that result from another
molecular process. The flexibility of the theory allows the treatment of the extremes of hard and fully
porous particles (devoid of shell and core, respectively), as well as core/shell interfaces with

zwitterionic functionality [45,49].

2. Theory.
2.1. Setting the stage.

In the following developments, we consider a spherical core/shell particle with radius n=T, +0,

where r, and & are the core radius and the shell layer thickness, respectively. In line with common
assumption [38], the particle features here homogeneous distributions of charges along the core
surface, and in the polar and azimuthal directions within the shell compartment (Figure 1).
Accordingly, we adopt the radial coordinate system r with the origin » =0 positioned at the particle
centre, and the introduction of inhomogeneous distribution of shell charges in the radial direction is

possible (cf. discussion below). We define the dimensionless spatial variable X by XZK(V—VC)

where x' is the Debye layer thickness given by x' =1/\/2F21/(RT806‘5) with g, the dielectric
permittivity of the vacuum, ¢, the relative dielectric permittivity of the solvent (water), R the gas

constant, T the absolute temperature, F' the Faraday number, and [ = Z z,.chc /(2N ,) is the ionic

strength of the solution (mol m3) that contains one type of cations and one type of anions with bulk
number concentrations ¢” and ¢” (m?) and valences z, and z_, respectively,and N, is the Avogadro
number. Following Gupta et al. [50], we rewrite ¢, and ¢” in the form ¢ =z ¢, and ¢” =z ¢, (which

ensures bulk electroneutrality), so that 1/« can be recast in the form

1/K=1/\/Z+zf(z++zf)ezc0/(kBTgogs) (1)
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with k; the Boltzmann constant and e the elementary charge. The case of soft particles with radius
r, verifying k7 >>1 (thin electric double layer regime) is addressed in this work. Such soft particles

correspond to e.g. micro-sized biocolloids like bacteria or microalgae [51] or nanosized colloids (e.g.
dendrimers or viruses [39,40,45]) dispersed in aqueous solutions with sufficiently high values of 7. In

turn, the electrostatic potential distribution at the particle/medium interface, denoted as l//(}’), is

governed by the Poisson-Boltzmann equation (modified or not for molecular effects) written in planar

geometry [37,41]. We introduce below y(r)=Fy(r)/RT the dimensionless potential at the radial

position », and the corresponding dimensionless concentrations of cations and anions are denoted as
n,(r)=c. (r)/c¢; and n_(r)=c_(r)/c”, respectively, where ¢, (r) (m?) are the cations/anions

densities at ». Following the representation of soft diffuse interfaces introduced by Duval and co-
workers in the context of soft particle electrophoresis [52] and streaming potential/current of soft

polymeric films [53], the density of structural charges p,, (C m?3) in the shell may depend on the

position » within the shell particle component according to e.g.
P ()] Py =2’1a){l—tamh[0f1 (r—rpﬂ} (2)

where « (m) is a spatial length scale that defines the degree of inhomogeneity (or diffuseness) for the
density distribution of soft material that supports the structural charges of the shell. In Eq. (2), @
(dimensionless) is defined such that the total amount of structural charges within the soft particle shell

is invariant with changing a and/or shell layer thickness § [52]. We introduce accordingly the

dimensionless amount @, of shell structural charges defined by Q, :47zJ.?0(|p0|/e)f(r)r2dr where

f(r) = ps (r)/ p, is defined by Eq. (2). In the limit /5 —> 0 (i.e. @ > 1), we have p (X)—> p, with
0, (C m?) the density of structural charges when homogeneously distributed within the particle shell
volume. Equation (2) represents soft interfaces in a generic way that goes beyond the traditional
assumption according to which shell charges are homogeneously distributed. Indeed, Eq. (2) can
capture possible changes in the shell structure depending on solution composition, which translates
into modifications of the parameter a and/or of the shell thickness & . In addition, the change of the
net charge carried by the shell sites following e.g. adsorption of (multivalent) ions can be effectively
modelled via a tuning of the smeared-out shell charge density p,. Previous reports on electrokinetics

of soft material showed that external stimuli such as electrolyte concentration [54] or pH [55] may
induce swelling of the soft structures when repulsive electrostatics between adjacent shell charges
becomes significant. The dramatic implications of such a swelling process (especially at low medium

salinity) on e.g. the electrokinetic properties of soft particles and polymeric interfaces have been
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successfully explained on a quantitative level with the account of charge and soft material
inhomogeneity modelled on the basis of Eq. (2) [53,54,56]. Obviously, more advanced models have
been developed to describe the interactions between e.g. multivalent electrolyte ions and shell
components (and the possible formation of bridges between shell charges), and the resulting effects
on the net charge and length of polyelectrolyte chains depending on e.g. the nature of the ionizable
groups in the shell and chain elasticity (cf. e.g. [57] and references therein). The design of such models
that include explicitly the interactions between shell charges and electrolyte ions on top of the here-
targeted molecular effects may be doable for well-defined polyelectrolyte systems but remain
extremely challenging for complex interfaces like e.g. bacteria that harbour complex soft surface
structures like pili, proteins and/or fimbriae [1]. Reports have now largely evidenced that the
electrophoretic mobility of soft particles like dendrimers, hairy latex particles, bacteria, microalgae or
even viruses measured as a function of electrolyte concentration can be interpreted quantitatively by
soft surface electrokinetic theory with implementation or not of soft structure heterogeneity via Eq.
(2) depending on medium salinity and associated interface swelling properties [1,45].

Considering these elements, we here mostly report simulations for cases where shell charges are
homogeneously distributed (« / § — 0 ) so as to decipher properly the effects of ionic correlations, ion
size, and dielectric decrement on soft interfacial electrostatics without contribution of a spatial
gradient in shell charges. We further show, with a few illustrative computational examples, how the
features defining potential distributions with account of molecular effects are modified upon
introduction of such a spatial gradient that mark the changes of shell structure due to e.g.
homogeneous swelling (increase of § for a /5 — 0, and constant amount Q, of charges in the shell)
or heterogeneous swelling (increase of both 6 and « /& at constant Q). Finally, in line with the
arguments detailed in [52], we stress that the sigmoid-like profile for soft material and shell charge
density distribution adopted in Eq. (2) can be replaced by any other spatial function, may it be the
result of independent theoretical simulations (cf. e.g. [58]) or experiments [59].

The core surface of the particle is hereafter defined by the surface potential y, with corresponding
dimensionless potential y,. Without loss of generality, the numerical code developed to solve the
mean field Poisson-Boltzmann equation corrected for molecular effects can be straightforwardly
adapted to tackle situations where electrostatics of particle core surface is defined by a surface charge
density. We further assume that the amount of water in the soft layer is sufficiently high so that the
dielectric permittivity in that layer equates that of the electrolyte solution, in line with the
approximation often formulated in soft surface electrokinetic theories (cf. e.g. [60] and references

therein). Finally, we introduce ag, the size of the shell sites that carry a charge, and ¢, (r) = |pﬁx (r)| /e
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(m?) is the number density of these sites in the shell. We denote as c;,, the value of that density when

charges are homogeneously distributed in the shell (case retrieved with a /6 — 0).

Core/shell particle Soft shell lonic correlations
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Figure 1 . Schematics of a soft particle comprising a core and shell component, dispersed in an
electrolyte where size and charge of cations (subscript ‘+’) and anions (subscript ‘-‘) are given by a, _

and z, _, respectively. Electrostatics of the soft particle/electrolyte interface is detailed in this work

with the account of finite ion size, ion-ion correlations, dielectric decrement and finite size of the shell
charges.

The dielectric decrement is described as the effect of ion density at a given position » on the
solution dielectric permittivity that holds at that position. In detail, this decrement results from the
combination of several defining properties of the ions. Namely, their size generates a so-called
dielectric hole in the sense that water molecules are excluded from their body volumes. In addition,
the solvent molecules in the hydration shell surrounding the electrolyte ions are strongly oriented [61]
along the electrostatic field of each ion, which decreases their orientational polarizability and, in turn,
increases effectively the dielectric decrement effect [62,63]. Overall, these modulations of the solution
dielectric permittivity as mediated by electrolyte ion properties impact on the ion storage capacity of
the medium and the interfacial potential distribution [50]. The dielectric decrement effect originating
from the above interplay between dielectric permittivity at » and corresponding ion densities can be

written formally according to the following empirical relationship derived from experiments [64]
e(r)=¢-r.c.(r)-rec(r) (3)

where y, and y_ (m?) are the dielectric decrement coefficients (or hydration coefficients) pertaining
to cations and anions, respectively [65], and their tabulated values depend on the ion considered [64].
Eg. (3) holds for solution ionic strengths less than 2 M, this limit being obtained from the critical value
of I marking significant deviations between linear predictions by Eq. (2) and experimental data [64].

We introduce below the effective radii a, and a_ (m) of the cations and anions, respectively. The

radii a, _, which are the central descriptors of ion-size effects, correspond to the minimal repulsion
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distance between ions that carry charges of the same sign [66] and, accordingly, a,  may exceed

atomic radii. The quantities ai and &’ define the excluded volume associated with each ion [46,66],
which includes contribution from the hydration shell [67]. The mean volume fraction of ions in the bulk
solution, denoted as v, is given by v =(a+ /24+a_ /2)3 (¢ +c”). Within the approximation of

incompressible ionic volumes, the developments below hold for v <1 and the formalism excludes the
condensation (saturation) limit given by v =1.

Last, we introduce the effective length scale /¢  for ion-ion electrostatic interactions in the
electrolyte medium, and its dimensionless form L_ is defined hereafter by L, =x/_. /_ corresponds

to the ion-ion correlation length, which may be viewed as being to the ions what the standard electric
Debye layer thickness 1/ x is for interacting particles [68]. However, this is where the comparison ends

as 1/« decreases with ion concentration and is independent of ion size, whereas ¢, inherently

depends on the physical properties of the ions (including their size) and increases from dilute to

concentrated ionic systems [69].

2.2. Soft Mean-Field Poisson-Boltzmann equation (SMFPB) corrected for molecular effects.

Below, we briefly describe the different steps leading to the correction of the SMFPB equation for
the molecular effects defined in §2.1., i.e. the finite sizes of cations and anions, the dielectric
decrement (Eg. (3)) and the ion-ion correlations. We start with the volumic free energy G=U -TS (J
m3) of the system schemed in Figure 1 where U (J m3)and S (J K m?3) are the internal energy and
entropy per unit volume, respectively. The finite size considered for the ions generates a constrain on
their spatial distribution at the charged particle/solution interface and it impacts the (mixing) entropy
S of the system. At equilibrium, S can be formulated by the Boltzmann law, taking into account the
different configurational microstates in terms of the occupancy of ions in the core, shell and electrolyte

phases of the system displayed in Figure 1. For a, > a_, the result reads as

l-a; -4 3
S(C+,C)=kB|: c:lgxcm ln[ A\ Crix )_Q IH{L} 3

3 3 3
+ l_aﬁxcﬁx _a+c+ 1_aﬁxcﬁx —ac

.
3 3 3 3 3 3 3
e In ac. N -ayc —aie, —alc In l-a;c., —ac,—ac
- 1 3 3 3 1 3 3
aﬁxcﬁx a c+ a aﬁxcﬁx a.c

(4)

+ +7+

where we have specified that S(c,,c_) depends on the ion concentrations ¢, . The case a_>a, is

simply retrieved from Eq. (4) by interchanging ‘+’ with ‘' — ’. The expression for the internal energy U

per unit volume is further written

ERAGIHE : 2w Y
u=-"0 ‘, —l/; tzecy —zecy+p f(rw (5)
2 or or

8
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where e is the elementary charge, f(r) = py, (7)/ p, is the radial function defined by Eq. (2) and &, (r)
is defined by Eq. (3). The three last terms in the right-hand side of Eq. (5) correspond to the electrostatic

energies of the cations, anions and shell structural charges. The term (61// / 8;”)2 stands for the Maxwell

stress contribution while /2 (821/1 / or? )2 is the first-order correction of U for the contribution of local
ion electrostatics [70]. Using Egs. (4) and (5), the expressions for the electrochemical potentials s,
and u_ of the cations and anions can be easily derived according to u, _ =0G / dc, _. At equilibrium,
for any position » the quantities x, and u_ verify the relationships u, =g where u;  are the

electrochemical potentials of cations and anions in bulk solution. In turn, we obtain for the

dimensionless densities of cations and anions n, _(r)=c, (r)/c]_
()
n (r)= (a)
"= (») )
e}u(y)
n_(r)= Jelr)e — () (b)
e (¥)

where y, and y_ depend on the dimensionless potential y (and thus on the position r ) according to

y.(y)=-zy+ 2,2 (z, +2.)¢, 95, (X) [(ﬁ_yj + L ( 623/] ] (a)

2¢, oc, oX ox?
(7)
2
2,2 (z, +z.)c, 0&,(X) (8)/)2 ,( 0%y
= + = — | +L| — b
y-()=2y 2. o lax) " lax? ®)

, which is written in terms of the dimensionless space variable X =«(r—r,). The functions f, and

g.. involved in Eq. (6) further depend on y (and therefore on » or X' ) following

aiCOZ (eyf(J’) _1) (a+/a7)3,1
fe(y)=| 1+ 3 )
1_a+coz,
(8)
- (y) T aiCOZ‘ (ehm —Je (J’)) + afCOZ+fcc (J’)(eh(y) _ 1)
o 1-a;c (b)
fix ™~ fix

Equations (6)-(8) generalize the result derived by Gupta and Stone [50] for hard interfaces to the
situation of soft interfaces with account of the finite size of electrolyte ions and shell charges, dielectric
decrement and ion-ion correlations. The g function quantifies the decrease in ion concentrations at
the position » in the vicinity of the charged interface depending on the size of the ions, their valences

and the electrostatic potential at» . The function f, reflects the asymmetry of the spatial distribution
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of anions and cations caused by their differentiated sizes ( f,_ =1 for a, =a_), and this asymmetry is
enhanced for z, #z .
In order to derive the electrostatic potential distribution, we minimize the free energy G with

respect to the electrostatic potential, y(r), to the electrical field, —dy(r)/or, and to the Laplacian of

the potential, 62y(r)/8r2 , using the Euler-Poisson equation written in terms of X, i.e.

o(e"y/ox*)

2 k

I { iad }0 (9)
k=0 oxX

Combining Eq. (9) with Egs. (4) and (5), we obtain

0 (gr(X)ay(X)j—ﬁ & (gr(X)ﬁzy(X)]:gs[n(X)—n+(X)_n0f(X)] (10

ox ox “ox? ox’ z, 1z

, Where the dimensionless ion concentrations n, _ and the relative dielectric permittivity & both
depend on the spatial position X = K(r - rc) according to Egs. (6)-(8) and Eq. (3), respectively, and #,
is the dimensionless concentration (including sign) of structural charges defined by n, = p, /(2IF) . Eq.

(10) is an important result of this work as it stands for the SMFPB equation corrected for ion size,
dielectric decrement and ion-ion correlations with account of the size of the shell charges. In §2.4,

some limits of practical interest covered by Eq. (10) are analytically retrieved and discussed.

2.3. Boundary conditions of the SMFPB equation corrected for molecular effects.

The evaluation of the electrostatic potential y(r) for any position r at the particle
core/shell/solution interfaces requires solving the fourth-order modified SMFPB equation given by Eq.
(10) upon specifying relevant boundaries. Namely, at the particle core surface (i.e. X =0 ), we consider

either an imposed core surface potential i, (V) or a charge density o, (C m?), leading to the conditions

y(X =0)=y, (selected in the developments below) or (gr(X)xay(X)/aX)‘ ,=—0F /| (RT&x)

X=
(boundary (i)), respectively. As a result of this boundary, the correlations between ions and particle

core surface are necessarily not accounted for. In turn, using Eq. (10) we obtain

Li8(5r(X)azy(X)/ﬁXz)/ﬁX‘X:O =0 (boundary (ii)), which reduces to 83y(X)/8X3| ,=0 in the

X=
limit where dielectric decrement effects are ignored, in agreement with the formulation adopted in

[29,32] for hard surfaces. Sufficiently far from the shell layer of the particle (X — o), the solution is

electroneutral, i.e. y(X—)oo)zO (boundary (iii)) and, by extension, ay(X)/aXLHw =0 (boundary

(iv)).

10



307
308
309

310

311

312
313

314

315

316

317
318
319
320
321
322
323
324

325
326

327
328

329

330

331

332
333

334

2.4. Limiting cases covered by the SMFPB equation modified to include molecular effects.

Case of hard interfaces (1, =0). In the limits where the shell layer is immaterial for the electrostatic
potential distribution (i.e. ny, >0, a,  — 0) and in the absence of either dielectric decrement effect (
. (X)— &) and ion-ion correlations (L, —0), it is verified that Eq. (10) correctly reduces to the

results derived by Gupta and Stone [50] for hard interfaces.

Case of soft interfaces (n, # 0). In the limits L, —0, a;, —0 and a, _ — 0 (i.e. shell charges and ions
are point-like), and gr(X)—>gs, Eg. (10) reduces to the standard formulation of the mean field

Poisson-Boltzmann equation for soft diffuse interfaces unmodified for molecular effects [48], i.e.

y(X) e —e
6)52 ): zZ, +z _nOf(X) (1)

For homogeneous charge distribution in the particle shell (« /& — 0), using the boundary conditions
y(X =0)=y, and y(X — ) =0 (boundaries (i) and (iii) in §2.3), the solution of Eq. (11) in the Debye-
Hiickel approximation (y(X) < 1) is given in Supplementary Material (SM, section A). The analytical
solution of Eq. (11) with specifying core surface charge density instead of the core surface potential is
further provided in SM-A for the sake of completeness. Under conditions where ion size, dielectric
decrement and ionic correlations are ignored, we verified that the numerical solution of Eq. (10)
correctly merges with these analytical solutions of Eq. (11) that are further in agreement with result
from literature, cf. e.g. [48,53,54]. For a symmetrical electrolyte (a, =a_ and z, =z ), homogeneous
particle shell (/& — 0) and with neglect of dielectric decrement effects and ion-ion correlations (
&, (X) — ¢, and L —0), Eq. (10) further simplifies into the expressions given by Chanda and Das [46]
and Barman and Bhattacharyya [71].

Case of soft interfaces (n, # 0) treated with modified SMFPB within Debye-Hiickel approximation
and with account of finite ion size. In the Debye-Hiickel limit ( y <« 1), accounting for the only finite ion

size effects (i.e. ¢, (X)— ¢, and L, —0), Eq. (10) becomes

azy(X) {(l—cﬁcoz_)z+ +(1—aicoz_)z_

x| (lmder)(z+2) }y ~n/ (%) 12

Making the analogy between the form of Eq. (12) and that obtained by linearization of the standard

unmodified SMFPB equation we define

1/«

mod

Y [(l—afcoz_)z+ +(1_aiCOZ-)Z—JZZ+ezc0 13)

3
l-ac,z_ kyTg,e,
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which holds for a, >a . The expression of 1/« , for a >a, is simply obtained by replacing the
subscript ‘+’ by ‘= "in Eq. (13). 1/ x,,, is the equivalent of the classical screening Debye length 1/«

after effective correction for the finite sizes of the cations and anions, with the limiting case

1/xk—>1/k

mod

o We infer from Eq. (13) the equality 1/x=1/x

mod

in the limit a_=a,, and the

inequality 1/, , >1/x which holds regardless of the value of the ratio a_/ a, . Stated differently, the
sizes of the electrolyte ions contribute to decrease the screening of the electric double layer as
compared to the standard situation where the ions are viewed as point-like charges. In addition, the
analytical solution of the SMFPB equation corrected for ion sizes (Eq. (12)) is identical to that derived
for a,_ — 0 (Egs. (S3)-(S4) in SM-A) upon replacing « by x, . defined by Eq. (13).

Case of soft interfaces (n, # 0 ) defined by a Donnan phase. A constant electrostatic potential called
the Donnan potential, denoted as y, (with dimensionless form y, =Fy, /RT), is achieved in the
shell component of soft interfaces for cases where the shell layer thickness is much larger than the
thickness of the operational Debye layer ( x5 > 1) [48]. Replacing in Eq. (10) the terms 8"y /X" with
k >1 by 0 and further considering an homogeneous shell layer with point-like charges (« /6 — 0 and
a;, — 0, respectively), it is found that y, is determined by the transcendental equation (valid for

a, za)

Ozewf“(yD)_e —1, (14)

(27 + Z+)gcc (yD )

where f. and g are defined by Eq. (8). For a symmetrical electrolyte with z, =z and a,_=0,itis

straightforward to verify that the solution of Eq. (14) is given by y, EyD| , =2 'sinh™ (zn,), which

y=

corresponds to the classical expression of the Donnan potential for a symmetrical electrolyte where

charges of ions are point-like (i.e. v=0) [38]. For z,_=z and a,_=a, we demonstrate that the

solution y, of Eq. (14) can be written in the form (see details in SM-B)

1 Y +sinh™ =v)mz

(15)
1—(vnyz)’ 1-(vnyz)’

Yy =2z | sinh™

where v =2za’c, <1 is a natural measure of the nondiluteness of the electrolyte (cf. §2.1) [62]. Eq. (15)
correctly reduces to the standard result y, =z"'sinh™ (zn, ) applicable for v=0. For v <1, Eq. (15)

further simplifies according to the following expression valid up to second order terms in v
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27 ol
[1+noz+(noz) }e o

e—zyp‘(vzo) 1 + (n()Z)2

n.,z
1+ 0

Vo ! Yo v (16)

v=0

Dl(v=0)
which highlights the connection between y, atany v «1 and y, at v=0. It can be shown that Eq.
(15) is defined on the condition that v and n, verify the inequality 1—V|n0|z>0 (we recall that

My = P, /(21F) includes the sign of the volume charge density p,). This condition, together with the

condition x6 > 1, defines the scenarios where a Donnan potential is achieved in the shell phase. From

a physical point of view, the inequality 1—V|n0|z > (0 states that the accumulation of electrolyte ions

in the shell layer, as required to neutralize the structural charges therein and build a Donnan potential,
may be limited by the excluded volume of the electrolyte ions, especially so if the shell carries a high

amount of charges (high value of |p,| or |n|). In turn, it becomes impossible to build up a Donnan
potential in a shell layer carrying a density of charges that exceeds a threshold value of |n0| defined by
1/(vz) . This important property is illustrated in Figure 2a where we draw the domains of existence of

¥ in the 2D representation (n,;v). Figure 2b further evidences an increase of the ratio y, / y,

v=0

with increasing v for selected values of |n0|z , Which reflects a decrease of the screening of the shell
charge with increasing ion size. For a fixed value of v, the larger is |n0|z , the more significant becomes

this decrease of the shell charge screening and the largeris y, / y,

v=0"

(a)

0.8
0.6

v
0.4

1=|nylz

-10 0.5 1

Figure 2. (a) Domains of existence of a Donnan potential (bright areas under the plain and dotted
lines) for a symmetrical electrolyte containing cations and anions of similar size and valence, a and
z, respectively. The frontiers between bright and black areas are given for different values of z,
and they are defined by 1—v|n0|z =0 , with n, = p, /(21F) and v is the parameter reflecting the

nondiluteness of the electrolyte. (b) Dependence of y, /yD| on Vv at different values of |n0|z

v=0
(indicated) for z =1. The vertical short-dotted lines correspond to the limit v :1/(|n0|z) and the

long-dotted lines are predictions from Eq. (16). The results are given for a homogeneous charge
distribution in the shell layer (a / § — 0 ) with neglecting the steric effect associated to the size of

the shell charges (i.e. a; c; , —0).
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The physics that holds beyond the condition marking a critical ion accumulation in the soft layer,

ie. a’ xc (X < K5) =1, is not tackled by Egs. (6)-(8) and (10). We anticipate that a non-zero

—sign(ny) —sign(ny)
electric field remains inside ions-saturated soft layers, which prevents the establishment of a

homogeneous (Donnan) potential in the shell layer under such conditions.

2.5. Numerical solution of the corrected SMFPB equation and validation.
For prescribed values of the parameters defining the geometry and electrostatic descriptors of the

soft interface schemed in Figure 1 (ie. a, ; z,_; 7, ; L; ¢,; x5; y, and n,), Egs. (6)-(8) and (10)

were solved by means of the numerical package COLSYS which approximates the solution y(r)

through spline-collocation at Gaussian nodes and selects the mesh subdivision following an auto-
adaptative strategy [72]. For that purpose, a FORTRAN program was developed and it is available upon
request. The robustness and flexibility of our program as well as the validity of the solution obtained
for the SMFPB equation corrected for molecular effects (ion size, dielectric decrement and/or ion-ion
correlations) were addressed successfully upon comparison with analytical results obtained in the
limiting scenarios described in §2.4. In particular, the results reported by Gupta and Stone [50] for hard
interfaces were all correctly reproduced by our numerical scheme in the limit x§ - 0 and n, > 0.In
addition, the electrostatic potential profiles given by Chanda et al. [46] for soft interfaces in a

symmetrical electrolyte with account of ion size were also correctly retrieved.

3. Results and discussion.

In the developments that follow, we report illustrative computational examples to analyse how size
of electrolyte ions and shell charges, dielectric decrement and ion-ion correlations impact on the
potential distribution y(r) in situations where these molecular effects are considered separately
(83.1, §3.2 and §3.3) or in combination (§3.4). In turn, the analysis allows to appreciate the spatial
scales over which each effect significantly modulates the potential profile depending on electrolyte
concentration, distribution and density of structural charges in the particle shell, dimension of the shell

and potential at the particle core surface. Last, we emphasize that the range of values selected for the

relevant dimensionless parameters describing ion size (or steric) effects (ai),co ), dielectric decrement
(7._c,) and ion-ion correlations (L, = x/ ) are in agreement with those defined elsewhere for cases

of practical interest [64,73,74].
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3.1. lon-size effects.

In this section, the way in which the potential profile y(r) is modulated by ion size in the absence
of dielectric decrement and ion-ion correlations (i.e. y, ¢, —>0 and L, —0, respectively) is

investigated as a function of the key structural and charge features of the shell, i.e. for different values
of the (dimensionless) shell thickness x5 (Figure 3a), structural charge density n, (Figure 3b) and

interface diffuseness (or heterogeneity parameter) « / & (Figure 3c), all other parameters being fixed.
Figure 3d further reports modifications of the potential distribution with varying both «6 and « /6,
a situation that is relevant for systems that undergo heterogeneous swelling under condition of
constant total amount of charges in the shell (cf. §2.1). For that purpose, numerical solutions of the
modified SMFPB equation (§2.5) derived for a symmetrical monovalent electrolyte defined by

a _¢, =0.2 are systematically compared to the corresponding predictions by the unmodified SMFPB

+,

equation (Eqg. (11)). Qualitatively, the characteristics of the potential profile y(r) evaluated under the
conditions of Figure 3 (i.e. sign(yc X no) < 0) conform to those expected for zwitterionic particles, with

the observation of a sign reversal for the potential across the core/shell interface. Under the conditions

of Figure 3 (symmetrical electrolyte), the potential y(r) uncorrected for ion size is systematically

lower in absolute value compared to that derived from modified SMFPB equation. This result is
explained by the steric effect and related excluded volume of the ions, which leads to a significant
reduction in the amount of (counter-)ions accumulated in the particle shell so that, in turn, the electric
double layer screening is highest for point-like charges, i.e. within unmodified SMFPB model (cf. §2.4
and Figure S1 in SM-C). This finding is particularly clear for the scenario where a Donnan phase is

established (x6 > 1) (Figure 3a) and/or for increasing (absolute) values of the charge density |n0| in

the shell (Figure 3b), these two situations being those where particle/solution interface electrostatics

is dominated by n, rather than y_. In situations where structural charge density is not homogeneous

in the shell, i.e. for values of « /& that deviate significantly from 0 (Figures 3c-d), the distribution
profile selected for the charge density in the shell (Eq. (2) and inset Figure 3c) impact on the shape of
the potential distribution along the lines discussed in [52]. The ensuing modification of the potential
profiles are observed regardless of the magnitude of the ion steric effects. Figure 3c unravels that an
increase in the diffuseness « / § of the soft particle component (with a resulting potential profile that
extends further to the solution side of the interface) leads to a significant decrease of the impact of
the ion size on the potential distribution for X < x5 because of the corresponding decrease therein of
the charge density (see inset), which supports the results of Figure 3b. Figure 3d features how the
potential profiles change with increasing x5 and interface diffuseness at fixed total amount of

structural charges (with a resulting decrease of the shell charge density in the bulk of the shell, see
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inset in Figure 3d). The results basically combine the features highlighted in Figures 3a,b,c where the

impacts of x5, a /6 and n, on excluded ion-volume effects and related interface electrostatics were

examined separately. The changes of potential associated to variations in the density of structural
charges (cf. Figure 3b for an homogeneous shell) and in shell thickness (Figure 3a) are most
significantly reflected in the potential profiles displayed in Figure 3d. As an intermediate conclusion,
Figure 3 evidences that the discrepancy between potential predictions by modified and unmodified
SMFPB equations is largest as the shell charge density and/or shell thickness increases, and this trend
is mitigated by the interface diffuseness/heterogeneity of the shell structure and related modulations
of the shell charge density. The soft nature of the particle/solution interface thus enhances and

extends in space the impact of ion size on resulting interfacial electrostatics.

(a) (b)

20

Figure 3. Dimensionless electrostatic potential distribution y(X) at a soft particle/solution interface
(colored solid curves) with core surface potential y, =1, in contact with a symmetrical electrolyte (
z,_=1,a,_=a), as a function of the dimensionless (a) soft layer thickness x5 (indicated) for
n, =—2 and homogeneous distribution of structural charges in the shell (« /5 — 0), (b) density of
shell structural charges (indicated) for /6 —>0 and x§=3, (c) interface diffuseness (or
heterogeneity parameter) « /¢ (indicated) for x5 =20 and Q,=8.70x10", and (d) shell thickness

k0 (k6=3, 10, 15 and 20 corresponding to red, green, blue and purple curves, respectively) and
interface diffuseness /6 (indicated) under the condition of constant total amount of shell charges

0, =2.17x10" . Insets in (c) and (d) show the dimensionless density distributions of structural shell
charges nof(X) that correspond to the reported potential profiles. In (a-d), the position of the
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shell/solution interface is marked by the vertical black dotted lines. Colored dotted curves refer to
predictions from SMFPB equation unmodified for steric effects (Eq. (11)). Other model parameters:

aéxcﬁx,o _)O/ ai,—co :021 7/+’,CO _)01 LC _>O, 1210 lel

Figures 4a and 4b illustrate the impacts of steric effect associated to the size a,, of the shell charges
on the potential distribution and corresponding ion density profiles, respectively. Reported simulations
further account for the finite size of the electrolyte ions under conditions where a Donnan potential is
established. Figure 4b shows that the increase of the excluded volume of shell charges causes a
decrease in the densities of counter- and co-ions, which results in a decrease of the screening of the
particle charge by the electrolyte ions Figure 4a and in an increase (in absolute value) of the potential.
As intuitively expected, within the first order formulation of the mixed entropy of the system with

respect to the term a;_ (Eq. (4)), an increase of the effective size of the shell charges at fixed a,_=a

has qualitatively the same implications for the potential distribution as those caused by an increase of
the electrolyte ion size at fixed a;, . Given this result, we detail below scenarios where the only steric
effects connected to finite ion size are considered in addition to ionic correlations and/or dielectric

decrement.

0 af3ixcfix0 = O'Ql '
y(X )0 i 0.05\ /— ©o 5 10 15 20 25

2 a cro = 0.2
n_(X) fix flx,oo 85;[ . %
_____ 0.0k NN N
. 0
25 0 5 10 15 20 25
X

Figure 4. (a) Dimensionless electrostatic potential distribution y(X) and (b) dimensionless cations
and anions densities, n, (X) and n_(X), respectively, at a soft particle/solution interface (colored
solid curves) for a core surface potential y, =1 and a dimensionless structural charge density
n,=-1, in contact with a symmetrical electrolyte (z,_=1,a,_=a), as a function of the
dimensionless size a;.c;,, of the shell charges (indicated). The vertical dotted lines mark the

positioning of the surface layer, and the dotted curves refer to predictions from unmodified SMFPB
equation (Eq. (11)). Other model parameters: a/6 -0, airc0 =02, 7, ¢,—>0,L,—>0, I=10
mM.

Figure 5 unravels the way in which the differentiated sizes of the electrolyte cations and anions

affect the potential distribution y(r) . In Figure 5a, the size of the anions (which represent the coions
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under the selected conditions y, <0 and n, <0) is fixed. With decreasing the size of the cations (the
counterions in the example) from a_ to a_/2 , the potential y (in absolute value) decreases for any

position r . This finding is the result of their increased accumulation in the shell layer (and of the
associated increase in shell charge screening) due to their decreasing excluded volume. Interestingly,
predictions from unmodified SMFPB equations either underestimate or overestimate the outcomes of

modified SMFPB model depending on the ratio a, /a_ . This non-monotonous evolution of the
deviation between y(r) distributions formulated by modified and unmodified SMFPB equations is

explained by a size-mediated balance between intra-shell accumulation of cations and anions (Figure
$2 in SM-C). In detail, the extent of cation accumulation in the shell basically coincides with that from

standard theory at sufficiently low a, /a_ (Figure S2a). In contrast, the exclusion of the anions from

the (negatively charged) shell layer is reduced with decreasing a, /a_ in response to the increased

accumulation of the cations and accompanied decrease in |y(r) , and the level of anions depletion for

a, /a_<1 remains higher than the one predicted by the unmodified SMFPB due their finite size
(Figure S2a). Figure 5b depicts a situation analogue to that of Figure 5a except for the sign of n, (
n, >0). Figure 5b evidences a decrease of |y(r)| with decreasing cation size for the same reason as

that invoked in Figure 5a. The new feature is that this effect has limited implications on the magnitude
of the potential (see inset Figure 5b) because the cations serve here as coions for the positively charged
shell layer and the size of the counterions (the anions, predominant in the shell, Figure S2b) is kept
constant in the simulations. Overall, it is the size of the counterions within the shell layer that most
significantly determines how steric effects modulate the potential distribution compared to the

standard mean-field situation.

(b) 15
1 //’-\\ (a+/a—)3
,I \;\\ 1
s 1/2
) of E <1_L
1.26 — 1/8
-0.5¢
1.24
‘ 1 18 2§22
0 2 4 6 8 0 2 4 6 8
X X

Figure 5. Dimensionless electrostatic potential distribution y(X) at a soft particle/solution interface
(colored solid curves) with imposed core surface potential y, =—1, in contact with an electrolyte
defined by z, _ =1 and different cation/anion volume ratios (a+ /a_ )3 (indicated) for k6 =3 with (a)

n, =—2 and (b) n, =2 . The vertical dotted lines mark the positioning of the surface layer, and the
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black dotted curve refers to predictions from unmodified SMFPB equation (Eq. (11)). Other model
parameters: /5 —0, a;.c;., >0, a’c,=02, y, ¢,—>0,L —>0, =10 mM.

In Figure 6a, we analyse the dependence of the potential distribution y(r) (at constant solution

ionic strength) for electrolytes defined by similar size of cations and anions and distinct valence z, and

(r)

decreases with increasing z, (which holds for both modified and unmodified SMFPB formulations of

z_under Donnan electrostatic condition in the shell layer (with n, <0). Setting z_ to unity,

electrostatics), and |y(r)| obtained from the modified SMFPB equation is slightly larger than that
derived from its unmodified counterpart. These findings correlate with an increase (decrease) of the
particle charge screening with increasing valence (size, respectively) of the counterions (here the
cations). Figure S3a reports the (dimensionless) ion concentration profiles n, _ (r) (Egs. (6)-(8))
corresponding to the conditions selected for Figure 6a. As expected, the unmodified SMFPB predicts

zy(r

a continuous increase of n_ (r) =¢™") in the shell for increasing values of z, and a resulting decrease

—z,x(r)

in |y(r)| with y(r)<0. Similar conclusion applies to n, (r)=e because the increase of z,

outweighs the resulting decrease in |y(r)| This trend is basically maintained for n, (r) derived from
modified SMFPB, but not for n_ (r) that gradually reaches a saturation plateau value in the shell for

z, >1. Manifestly, the contribution of highly charged cations (the counterions in the example)

outweighs that of the anions to such an extent that accumulation of the latter in the shell becomes
limited as compared to that derived from standard mean field estimation. The features discussed in

Figure 6a for n, <0 slightly differ from those derived for the n, >0 case where anions are the

counterions in the Donnan phase (Figure 6b). Indeed, increasing the valence of cations leads to their
significant exclusion from the here positively charged shell, to an increased accumulation of anions

(Figure S3b) that is combined to an increase in y(r)(>0). This finding is observed for the modified

and unmodified SMFPB equations, in line with Eq. (11) applied to the Donnan phase for increasing

values of z, at fixed z . Most remarkably, the increase in y(r) predicted by unmodified SMFPB is
here less significant than that derived with modified SMFPB despite of quasi-similar n, _(r) profiles in

the shell (Figure S3b). In Figure 6b (as in Figure 6a), the ionic strength is kept constant so that, in turn,

anincrease in z, atfixed z_is associated with a decrease in the bulk concentration of anions (defined
by ¢” =¢,z, =2N,I /[ z_(z, +z_)], cf. §2.1) and, therefore, with a decrease of ¢,. At fixed a;_c,, the
effective radius of the cations and anions thus increases with z, . Consequently, under the conditions

of Figure 6b, the screening of the positive shell charges by the anions decreases (cf. Figure 5) and the

potential in the shell increases with z, . We further observe that n_(r) in the shell reaches a saturation
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value at sufficiently high z, (Figure S3b), which corresponds to a critical nondiluteness of the intra-
shell electrolyte (§2.4) defined by a’c,z, xn_ (X < Ké‘) —1 for n, >0, expression that directly follows
from Eq. (4). For such a condition that approaches the condensation limit, the Donnan potential largely
exceeds the values estimated by the unmodified mean field equation, as illustrated in Figure 2b for
symmetrical electrolytes. Overall, Figure 6 highlights the importance of both the valence and the finite
size of the ions in governing the electrostatics of soft particles, which constitutes an extension of the

results reported for hard interfaces [50].

(b)

y(X)

0 5 10 15 20 25 0 5 10 15 20 25
X X

Figure 6. Dimensionless electrostatic potential distribution y(X) at a soft particle/solution
interface (colored solid curves) with core surface potential y, =—1, in contact with an electrolyte
defined by z_ =1 and different cation valence z, (indicated) for x6 =20 with (a) n, =—2 and (b)
n, =2 . The vertical dotted lines mark the positioning of the surface layer, and the colored dotted
curves refer to predictions from unmodified SMFPB equation (Eq. (11)). Other model parameters:
alé—0,a,.c.,—0,a _¢,=0.02, 7, ¢,—>0,L -0, =10 mM.

3.2. Dielectric decrement.
In the developments that follow, the impacts of the dielectric decrement on the interfacial potential

distribution y(r) is investigated on the basis of Egs. (3), (6)-(8) and (10) for homogeneous shell charge
distribution (& /& —0) in the limits a, _ — 0 and L, — 0 that cancel the effects of ion size and ion-

ion correlations, respectively.

Figure 7a displays the potential profile y(r) for negatively charged particle core and shell
components under Donnan condition for different values of the hydration coefficients y, and y_ (Eq.
(3)) taken identical for the sake of simplicity (7, _ = ). As expected, increasing yc, leads to a decrease
in ¢ (or an increasing dielectric decrement, cf. Eq. (3) and Figure S4a) and therefore to an enhanced
screening of the particle charge, which in turn generates a slight decrease of |y(r)| (Figure 7a and inset

therein). This decrease is most pronounced in the spatial region of the interface corresponding to

highest electric fields and concentrations of counterions (cf. Eg. (3)), i.e. in the close vicinity of the
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particle core surface (cf. inset in Figure 7a). This correlation between dielectric decrement effects and
electric field is evidenced from straightforward inspection of Eq. (10) that involves products between
&, and either the first or second order derivatives of the potential with respect to space variable.
Obviously, the value of the Donnan potential is not affected by the dielectric decrement as the Donnan
phase is defined by a zero-electric field condition therein. It is further verified that predictions from
unmodified and modified SMFPB equations correctly merge in the limit yc, > 0.

Figure 7b shows the impact of dielectric decrement on the interfacial potential distribution for a
potential at the particle core surface (anionic) that is significantly higher (in absolute value) than that
adopted in Figure 7a ( y, = =5 in Figure 7b) and in situation where conditions for the establishment of
a Donnan phase within the soft (cationic) layer are not met. In Figure 7b the increase of the particle

charge screening when increasing yc, (or decreasing &, ) is now reflected by the decrease in |y(r)| for

only specific positions of the shell (cf. inset in Figure 7b for 1.85< X <1.9). This decrease in |y(r)| is

preceded by an opposite effect for positions that are closer to the hard surface (cf. inset in Figure 7b
for X <« 1), which relates to the existence of a plateau value reached by the density of accumulated
counterions (cations in the example) close to the particle core surface at sufficiently large yc, (Figure
S5 in SM-C). Within the close-packed phase of the electrolyte at the very vicinity of the charged surface,
values of ¢, (X - O) are indeed so low (Figure S4b in SM-C) that the (counter-)ions storage capacity
of the interface is reduced. The region close to the hard surface then behaves as a molecular capacitor,
a feature discussed by Gupta and Stone [50] for the case of hard interfaces. Any further decrease in ¢,
(orincrease in yc,) then leads to a more gradual decay of the potential from the core surface to the
shell layer, in line with the results given in Figure 7b (compare e.g. blue and red curves in the inset for
X « 1) and in qualitative agreement with the first order derivation given in [50] for the electric field
at the surface of a hard particle as a function of yc, .

Comparison between results discussed in Figures 3-7 indicates that changes of the potential
distribution y(r) due to dielectric decrement are far less significant as compared to those originating
from ion size. In addition, dielectric decrement effects are most pronounced for highly charged systems
and/or high solution ionic strengths. Unlike ion steric effects that propagate all through the shell
component of soft particles, dielectric decrement is immaterial in the shell layer as long as a Donnan

potential is established therein.
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Figure 7. Dimensionless electrostatic potential distribution y(X) at a soft particle/solution
interface (colored solid curves) with core surface potential (a) y, =—1, (b) y, =-=5, in contact with
an electrolyte defined by z, _ =1 and different hydration coefficient of the ions y =y, _ (indicated)

for (a) x60=21.2 and n,=-0.04, (b) x0=3 and n, =-0.5. The vertical dotted lines mark the
positioning of the surface layer, and the black dotted curve refer to predictions from unmodified
SMFPB equation (Eq. (11)). Other model parameters: a /8 -0, a;.c;, >0, al ¢, >0, L, —>0,
1=500 mM.

3.3. lon-ion correlation effects.
Like dielectric decrement effects, ion-ion correlations are formally associated to high-order
derivatives of the potential with respect to space (cf. Eq. (10)). Accordingly, within the conditions that

legitimate the use of the modified SMFPB equation, ion-ion correlations do not impact on y(r) in the

spatial region of the particle/solution interface where the electrical field is 0, which includes the
Donnan phase when relevant (§2.4). In the case of hard interfaces, it is known that ion-ion correlations
lead to an inversion of the sign of the potential distribution [74]. This well-documented phenomenon
is explained by an overscreening of the particle surface charge by a dense layer of counterions, which
in turn generates locally a potential with sign opposite to that of the particle surface potential [29].
Following the procedure adopted in the previous sections, the contribution of ion-ion correlations to
the potential distribution at a soft interface is captured below by discarding dielectric decrement

effects (. _c, —0), and entropic effects due to sizes of ions and shell charges (a,_ —0, a; —0),

keeping in mind that ionic correlations inherently encompass steric repulsion between ions [32].
Figure 8a shows how ion-ion correlations modulate the interfacial potential distribution in the
situation where a Donnan phase is established in a shell carrying (positive) charges of sign opposite to
that of the charges at the core surface. For values of the correlation length close to or larger than the
Debye length (i.e. L, >1), we observe 3 local extrema in the potential distribution, with these extrema
being positioned at the interface between particle core and shell, and at each side of the shell/solution

interface (the extrema are identified by the symbol * in Figure 8a for clarity). Figure 8a further

22



585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

602

603

604

605
606

607

608
609
610
611
612
613

614
615

evidences a crossover (marked by the symbol 1) of the potential distributions evaluated for different
values of L_ at positions close to the particle core surface (i.e. 1<X <5). Upon increase of L_, the
magnitude and width of the oscillation peak near the core surface clearly increase, its position is shifted
slightly away from the particle core surface, and a shallow local minimum that follows that peak can
even be detected for values of L, above unity (cf. inset Figure 8a for 7 <X <17). Obviously, for
sufficiently high L_ at fixed shell thickness, the Donnan situation is no longer established as the
potential can then significantly fluctuate in the shell compartment, with a resulting electric field that
deviates from non-zero value therein. At the shell/solution interface (i.e. at X =« marked by a
vertical dotted line in Figure 8a), increasing values of L_ leads to a reduction of the electric field. This
effect, here detailed for an homogeneous soft interface (i.e. @ /6 — 0 in Eq. (2)), is qualitatively similar
to that discussed in [52] for soft heterogeneous interfaces characterized by increasing «/ 6 in the
absence of ion-ion correlation ( L, — 0, also cf. Figures 3c-d). The overall pseudo-oscillatory transition
of the electrostatic potential observed from the particle core surface to the electrolyte medium is
further reflected in the spatial distributions of the ionic density n, _ (r), namely by a local overshoot
and depletion of counterions and coions in the shell, respectively (Figure 8b). In Figure 8c, we analyse
how the potential distribution is modified by ion-ion correlations upon increasing the (absolute) value

of the core surface potential , under conditions where pseudo-oscillations in the potential profile

Ye
are most pronounced ( L, =2 in Figure 8a), all other parameters being fixed. Unlike in Figure 8a where
we considered a particle core and a shell layer that carried charges of opposite sign (which generates
a reversal of the potential regardless of L ), a potential reversal is evidenced in Figure 8c for a core
and shell components that both carry anionic charges. This potential reversal originating from ion-ion
generate — at fixed charge

correlations is most significant at largest .Indeed, such high values of

yC yC

density n, of structural charges in the shell — high electric fields at the particle core surface, which in
turn drives an overscreening of the particle core surface charge due to excess of counterions
accumulation at X — 0 as compared to predictions from unmodified SMFPB equation [29] (Figure 8d
and inset therein). This leads to an excess of coions in the next layer, thus resulting in oscillations of
the charge density of counterions and coions until electroneutrality is reached in layers sufficiently far
from the particle (Figure 8d). As the selected ion-ion correlation length is higher than the classical
screening Debye layer thickness (L, =2 in Figure 8c-d), the potential generated by the layer of
accumulated cations at the particle core surface decays over a spatial region that goes beyond the

classical screening Debye layer domain.
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Figure 8. (a) and (c) Dimensionless electrostatic potential distribution y(X), (b) and (d)

corresponding dimensionless cations and anions densities, n, (X) and n_(X), respectively, at a
soft particle/solution interface (colored solid curves) in contact with an electrolyte defined by
z,_=1.1In(a) and (b), y(X) and n,_(X) are given for y,=-1 and different values of the

dimensionless correlation length L (indicated) for x5 =20 and n,=2. The symbols * and L
feature positions where local extrema of y(X) and a cross-over between y(X) curves generated
at different L are observed, respectively. In (a), the insets zoom some characteristic features of
y(X) depending on L. In (c) and (d), y(X) and n,_(X) are reported for different values of y,
(indicated), and L, =2, x5 =10 and n, =-0.5. The inset in (d) zooms the excess of accumulated
counterions (cations) at X — 0 for y, =—4. The vertical dotted lines mark the positioning of the
surface layer, and the dotted curves refer to predictions from unmodified SMFPB equation (Eq. (11)).
Other model parameters: & /5 -0, a; c;, >0, a;_¢, >0, 7, ¢, >0, I=10 mM.

3.4. Combined effects of ion size, dielectric decrement and ion-ion correlations.

In this section, we briefly analyse how ion size, dielectric decrement and ion-ion correlations
considered concomitantly determine the electrostatic potential distribution at the core/shell/solution
interfaces in comparison to predictions from unmodified SMFPB equation. In the first selected example

(Figure 9a), the effective radii a,_ are considered as descriptors of the spatial range of ion-ion
electrostatic interactions and we adopt accordingly a, _ ~ ¢, (= 0.8 nm) in agreement with the choice

made in other studies [73]. Under the conditions selected in Figure 9a (particle core surface and shell
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layer are negatively charged, homogenous shell charges distribution and x5 =10), the effects due to
finite ion size and ion-ion correlations dominate those associated with dielectric decrement whose
variation over space is reported in Figure S6a (SM-C). In agreement with Figure 8, ion-ion correlations
generate a reversal of the electric potential and a layering of ion densities (Figure S6b in SM-C) while
ion steric effects decrease the screening of the particle charge as compared to the screening level
expected from unmodified SMFPB equation. Figure 9a shows that the joint consideration of the three
molecular effects of interest leads to an interfacial potential profile that features the remarkable
properties generated by ion steric effects and ion-ion correlations considered separately, i.e. a
decrease of the particle charge screening and the apparition of a local potential extremum (with a
reversal of the sign of the potential) as compared to standard mean-field predictions.

Finally, Figure 9b simulates a scenario in line with the existence of marked pseudo-oscillations in
the potential profile for a anionic core/shell particle (with account of excluded volume of electrolyte
ions) and focuses on the way these oscillations are modified when changing the structure of the shell
component via increasing shell thickness (x5 ) and interface diffuseness (a /¢ ) at constant total
amount of shell charges (cf. Figure 3d). Figure 9b clearly shows that the increase of k0 and « /S leads
to anincrease in the magnitude of the maximum of the peak potential essentially because the resulting
lowering of the density (in magnitude) of structural charges deep inside the shell leads to higher
electric fields close to the core surface, which magnifies the ion-ion correlations effects (cf. the
analogous trend observed in Figure 8c). The features of the potential profiles beyond the region where
pseudo-oscillations exist, are further similar to those discussed in Figure 3d. The density profiles of
anions and cations corresponding to the potential distributions displayed in Figure 9b are given in
Figure S7 (SM-C). Briefly, with increasing x5 and « /& the layering of the counterions (cations) is
gradually shifted to higher positions X and the associated amplitude of the peaks decreases. This is
connected to the increased accumulation of coions (anions) in the shell that follows a reduction in the
magnitude of the (negative) charge density close to the core surface when increasing x5 and « /5 at

constant O, (cf. inset Figure 9b). The peak position of the coions remains essentially independent of
k6 and a /6 ,and n_ (X) closely follows the variations of y(X) when changing shell thickness and

interface diffuseness parameter. Overall, Figure 9b illustrates the intricate relationships between
magnitude of operational molecular effects and the changes of the shell structure and resulting

descriptors of shell electrostatic properties (cf. inset Figure 9b).
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Figure 9. (a) Dimensionless electrostatic potential distribution y(X) (colored solid curves) for
k6 =10, ny=-02 and y,=-5, z, _
SMFPB equation (Eq. (10)) with ai,—co =02, 7, ¢,=3 and L =2. The contributions of each
molecular effect taken separately (indicated) to the potential profile is displayed. lon steric effects
are given for a} ¢,=02 and (7, ¢.L)—(0,0), dielectric decrement for , c,=3 and

=1. The figure reports the results derived from corrected

(airco,Lc)—>(0,0), ion-ion correlations for L, =2 and (ai,fo’h,fo) —(0,0). The vertical dotted

lines mark the positioning of the surface layer, and the black dotted curve represents predictions
from unmodified SMFPB equation. Other model parameters adopted: « /& — 0 (homogeneous
charge distribution in the shell layer), a;.c;, =0, I=500 mM. (b) Dimensionless electrostatic

potential distribution y(X) (colored solid curves) with y, =-=5, in contact with a multivalent
electrolyte defined by z, =3, z_ =1, al¢, =0.01, a’c, =0.05, y, ¢, =0.1 and L =2, as a function
of the interface diffuseness parameter « /5 and shell thickness x6 for a constant total amount of
shell charges Q, =1.35x10° (dimensionless). The position of the shell/solution interface is marked

by the vertical black dotted lines. Colored dotted curves refer to predictions from unmodified SMFPB
equation (Eq. (11)). Other model parameters: aéxcﬁx,o — 0, =100 mM. The inset in (d) shows the

dimensionless density distributions of shell charges, nof(X), that correspond to the reported

potential profiles.

4. Conclusions and perspectives.

In this study, we report a modification of the mean-field Poisson Boltzmann equation applicable to
soft interfaces and soft particles so as to account for ion size, dielectric decrement and ion-ion
correlations. Paradigms of (bio)systems for which the model is relevant include microalgae, yeast,
bacteria, latex particles to quote a few [1,75,76]. The proposed model allows the evaluation of the
electrostatic potential distribution at a particle core/shell/solution interface in contact with an
asymmetrical and multivalent electrolyte, assuming that the double layer thickness is small compared
to the particle dimension and further ignoring lateral contributions to core surface electrostatics. The
dielectric decrement and the ion-ion correlations are shown to mainly affect the potential distribution
at the core/shell and shell/solution interfaces, respectively, while the explicit account of excluded

volumes of electrolyte ions basically leads to a reduction in the screening of the charges originating
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from the particle core surface and shell layer. We further show that the finite size of the structural
charges in the shell leads to an additional reduction of particle charge screening by electrolyte ions as
compared to the situation where shell charges are treated as point-like objects.

As expected from modified MFPB models addressing the historical case of hard surfaces [27,32,50],
the potential distributions derived with use of a modified SMFPB equation that concomitantly includes
all three molecular effects of interest, deviate significantly from those obtained with unmodified
SMFPB equation, with respect to both magnitude and sign, and also in terms of the positioning of the
potential reversal for soft particles with zwitterionic functionality. We further show how the existence
of a Donnan potential in the shell layer is conditioned by the magnitude of the volume charge density
that is operational therein and by the nondiluteness of the electrolyte which is mediated by ion steric
effects. This condition adds to the conventional constraint that shell dimension must significantly
exceed the Debye layer thickness for a Donnan phase with constant potential to be generated in the
particle shell layer.

Within the framework of this modelling study, possible inhomogeneity of the shell can be taken
into account, and the spatial distribution of the structural charges carried by the shell particle
component is fixed regardless of the electrolyte composition. The work thus avoids the complex
modelling of possible impacts of the electrolyte ions on the very structure of the shell with e.g.
resulting shell swelling/shrinking. The latter processes are instead effectively represented by ad hoc
variations of the shell thickness and the interface heterogeneity parameter, in line with common
practice for the analysis of the electrokinetic response of soft heterogeneous surfaces [52-55,75].
Obviously, a deeper understanding of the electrostatics of well-defined polyelectrolyte interfaces [55]
may benefit from advanced implementation of local ion-shell correlations, but the design of such
models for more complex soft biological particles remains a challenging task [30]. In this work, we
evidence how heterogeneous distributions of structural charges in the shell impact the electrostatic
potential profile. Namely, this heterogeneity, reflected by a gradual expansion of the charged shell
towards the outer electrolyte solution, is accompanied by a decrease of the charge density in the bulk
shell under the condition of constant total amount of shell charges, as relevant for e.g. swollen
particles. In turn, this leads to an increase of the electric field at the particle core surface and to a
decrease of the magnitude of the potential in the shell, with a resulting extension of the interfacial
domain where ion-ion correlations are operational and a decrease of ion steric effects in the shell. This
translates into a shift in space of the peak potential maxima and minima that characterize the pseudo-
oscillatory potential distribution at the interface, these oscillations being a signature of significant ion-
ion correlations.

Application of this work includes the evaluation of the electrokinetic properties of soft interfaces

(e.g. streaming potential/current and DC electrophoresis) with account of ion size and ionic
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correlations. Such an evaluation would require the coupling of our modified SMFPB formulation of soft
interfacial electrostatics with tangential flow hydrodynamics driven by e.g. applied pressure gradient
or electric field. Last, the here-reported electrostatic formalism can help in the formulation of non-
DLVO electrostatic interaction forces exerted between a soft particle and a neighbouring charged
colloid or surface in a complex aqueous environment, which will be the subject of a forthcoming
contribution. The formalism provides experimentalists an extended theoretical arsenal to interpret
experimental data beyond the standard mean-field formulation of soft surface electrostatics (SSE) that
ignores effects on potential caused by the size/valence of electrolyte ions, size and distribution of the
structural charges located in the shell, dielectric decrement and ion-ion correlations. Simulations given
in this work evidence clearly how conventional potential profiles at soft interfaces under conditions
legitimating or not the Donnan electrostatic representation, are specifically modified by the
aforementioned effects taken separately or in combination. The underlying guidelines for identifying
the significance of one effect compared to another is expected to be relevant to address e.g. particle-
particle interactions or electric double layer properties that cannot be understood from standard SSE
concepts, especially in dispersing media of complex ionic composition and/or high salinity. Such
situations are common in environmental and biological settings, e.g. cell-cell aggregation, drug delivery
by soft particles, metal complexation by natural or synthetic particulate ligands, or soft particle
interactions in confined media. Suitable techniques to capture molecular electrostatic processes
include atomic force microscopy for the measurement of particle interfacial properties and
interactions between colloids [77], high energy X-ray reflectivity for addressing electric double layer
composition with Angstrom resolution [78], fluidics and electrokinetics in soft nanochannels [79] or
scattering techniques to monitor aggregation kinetics in complex media [80], to quote a few. To the
best of our knowledge, systematic measurements to address the electric double layer properties of
soft interfaces and/or their interactions under conditions (identified in this work) where the above

molecular electrostatic effects are at stake are still lacking in literature.
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Glossary of symbols.

Latin symbols

a, ,a_ effective radii of cations and anions (m), respectively

c,(r),c_(r) densities of cations and anions (m?) defined by ¢ =¢,z_ and ¢” =¢,z,
¢q, (1) density of shell charges at position r, defined by ¢, (r)=|p,| f(r)/e

Co defined by ¢, =c, (r=r.)

I solution ionic strength (mol m3)

¢, correlation length (m), L, = x/_(dimensionless)
n, dimensionless density of structural charges in the shell
n,(r),n_(r) dimensionless densities of cations and anions at position r, respectively

r radial coordinate (m)

r. hard particle core radius (m)

r, soft particle radius (m), with », =7, +¢6
0, total amount of structural charges in the shell defined by Q, = 4ﬁjw(|p0|/e)f(r)r2dr

X dimensionless space variable defined by X =« (r-r,)
y(r) dimensionless potential at position r

y, dimensionless core surface potential

¥, dimensionless Donnan potential

z_, z_ unsigned valences of cations and anions, respectively

s
Greek symbols

« spatial length scale defining the distribution the structural shell charges (m)

S soft layer thickness (m)

&, dielectric permittivity of vacuum (F m™)

g, (r) relative permittivity of the electrolyte solution at position »

&, relative permittivity of the solvent (water)

7., 7. hydration coefficients of cations and anions (m?)

1/ x Debye length (m)

v measure of the nondiluteness of the electrolyte, v =(a, /2+a_ /2)3 (c?+c”)

p, density of structural charges homogeneously distributed within the shell (C m?3)

P (r) density of structural charges at position 7 (C m?) as defined by Eq. (2)
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770 y(r) electrostatic potential at position 7 (V)

771 o, core surface charge density (Cm?), X, =o.e/(k,T&,,x) (dimensionless)
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