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Abstract
In wild vertebrates, the increase of breeding success with advancing age has been extensively studied through laying 
date, clutch size, hatching success, and fledging success. However, to better evaluate the influence of age on reproductive 
performance in species with high reproductive success, assessing not only reproductive success but also other proxies of 
reproductive performance appear crucial. For example, the quality of developmental conditions and offspring phenotype 
can provide robust and complementary information on reproductive performance. In long-lived vertebrate species, several 
proxies of developmental conditions can be used to estimate the quality of the produced offspring (i.e., body size, body con-
dition, corticosterone levels, and telomere length), and therefore, their probability to survive. By sampling chicks reared by 
known-aged mothers, we investigated the influence of maternal age on reproductive performance and offspring quality in a 
long-lived bird species, the snow petrel (Pagodroma nivea). Older females bred and left their chick alone earlier. Moreover, 
older females had larger chicks that grew faster, and ultimately, those chicks had a higher survival probability at the nest. In 
addition, older mothers produced chicks with a higher sensitivity to stress, as shown by moderately higher stress-induced 
corticosterone levels. Overall, our study demonstrated that maternal age is correlated to reproductive performance (hatching 
date, duration of the guarding period and survival) and offspring quality (body size, growth rate and sensitivity to stress), 
suggesting that older individuals provide better parental cares to their offspring. These results also demonstrate that maternal 
age can affect the offspring phenotype with potential long-term consequences.
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Introduction

In vertebrates, age has a strong influence on individual 
reproductive performance (Clutton-Brock 1988; Forslund 
and Pärt 1995). Breeding success usually increases with 
advancing age up to a point before senescence occurs (Nus-
sey et al. 2013). Multiple hypotheses have been proposed 
to explain the age-related improvement of reproductive 
performance (such as the selection, restraint and constraint 
hypotheses, Williams 1966; Curio 1983; Forslund and Pärt 
1995). In birds, an extensive body of literature has focused 
on laying date, clutch size, hatching success, and fledg-
ing success to investigate this age-related improvement of 
reproductive performance (Pugesek 1983; Cameron et al. 
2000; Mauck et al. 2004; Beamonte-Barrientos et al. 2010; 
Fay et al. 2018; Ivimey-Cook and Moorad 2020; Saraux 
and Chiaradia 2021). However, most of these studies have 
failed to measure the condition of the offspring before fledg-
ing, mostly due to the constraints associated with the study 
systems. However, offspring quality could be a robust and 
relevant additional proxy of parental reproductive perfor-
mance (Barks and Laird 2020; Barreaux et al. 2022 but see, 
for instance, Bouwhuis et al. 2015; Schroeder et al. 2015), 
especially because it correlates with the probably of post-
fledging survival. Indeed, there is now increasing evidence 
that only a small percentage of fledglings will subsequently 
survive and significantly contribute to future generations 
through the production of offspring (McCleery et al. 2008; 
Wilson and Nussey 2010; Cam et al. 2013; Fay et al. 2016, 
2018; Vedder and Bouwhuis 2018).

Juveniles are inexperienced, less able to acquire food 
(Desrochers 1992) and to sustain detrimental conditions 
(e.g., low food availability, Wiens et  al. 2006). Conse-
quently, many often disappear from the population before 
any breeding attempt (e.g., Alderman et al. 2010; Fay et al. 
2015; Naef-Daenzer and Grüebler 2016). In addition, among 
juveniles that survive until adulthood, their phenotype may 
constrain them and reduce their probability to successfully 
breed later in life (e.g., van de Pol et al. 2006). This high 
individual heterogeneity in performance among individuals 
is often related to organismal systems (e.g., morphology, 
behaviour, and physiology), which are at least partly deter-
mined during their development (Lindström 1999; Mona-
ghan 2008; Cam and Aubry 2011; Maness and Anderson 
2013; Hamel et al. 2018). In that context, assessing not only 
reproductive success but also the quality of the offspring 
appears crucial to better evaluate the influence of age on 
reproductive performance.

When investigating the influence of age on reproductive 
performance in birds, several components need therefore to 
be evaluated. Firstly, phenology, parental effort and fledging 
success are needed to obtain robust estimates of the ability of 
parents to successfully breed and rear their chick (Clutton-
Brock 1988; Newton 1989; Forslund and Pärt 1995; Zhang 
et al. 2015). Specifically, high parental skills and investment 
are often related to early breeding, and consequently, high 
fledging success, especially in seabird species (Bogdanova 
et al. 2007; Angelier et al. 2007b; Rebke et al. 2010; Sau-
ser et al. 2021). Secondly, several proxies of developmental 
conditions can be used to assess the quality of the offspring, 
and therefore, their probability to survive and to recruit into 
the population (Cam and Aubry 2011; Mumme et al. 2015). 
Notably, several “key” morphological, physiological, and 
behavioural systems are important during the developmental 
period to assess offspring quality (Schoech et al. 2011) and 
to study the relationship between parental age, developmen-
tal constraints and offspring quality.

Slower growth, smaller body size, and lower body condi-
tion are usually associated with higher developmental con-
straints, and with lower subsequent performance (e.g., post-
fledging survival probability; Morrison et al. 2009; Jones 
et al. 2017; Vernasco et al. 2018; Sauser et al. 2018; Evans 
et al. 2020). Additionally, organismal-related stress systems 
are set up during the developmental period, and they are 
known to determine, at least partly, the ability of individu-
als to breed and survive when environmental stressors occur 
(Angelier and Wingfield 2013).

Physiological proxies of stress levels are considered as 
robust tools to assess not only the constraint that may occur 
during the developmental period, but also the probability 
of fledglings to subsequently survive and recruit into the 
population. When facing a threatening event, corticosterone 
secretion increases to mobilize energy (e.g., protein catabo-
lism, Sapolsky et al. 2000; Romero 2004) and to promote 
an emergency response that aims to restore homeostasis 
and helps the chick surviving the acute stressor (Angelier 
and Wingfield 2013; Wingfield 2013). In chicks, develop-
mental conditions are associated with short- and long-term 
modifications of physiological stress sensitivity (Rensel 
and Schoech 2011; Zimmer et al. 2013; Grace et al. 2017, 
2020; Kraft et al. 2019). This stress sensitivity can in turn 
be related to post-hatching survival and even post-fledging 
performances (e.g., Harvey et al. 2006; Blas et al. 2007; 
Breuner et al. 2008; Love et al. 2013).

Finally, short telomere length has been proposed as a 
relevant proxy of constraining early-life environmental 
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conditions and of poor fledgling quality. Telomeres are ter-
minal chromosomal complexes composed of highly repeated 
DNA sequences and proteins. Their length is reduced dur-
ing each cell division due to the incomplete end-replication 
(Blackburn 2005). Interestingly, the occurrence of environ-
mental or nutritional constraints at the early stage seems to 
accelerate this telomere attrition (Monaghan 2014; Angelier 
et al. 2018; Noguera and Velando 2019; Stier et al. 2020), 
and parental age could translate into short telomeres if asso-
ciated with low quality parental cares (e.g., Dupont et al. 
2018). This developmental telomere attrition has been 
already convincingly associated with reduced longevity and 
fitness in captive and wild animals (Heidinger et al. 2012; 
Asghar et al. 2015; Wilbourn et al. 2018; Eastwood et al. 
2019; Heidinger et al. 2021) and seems to have potential 
long-lasting fitness consequences (Marasco et al. 2022).

In this study, we investigated the influence of maternal 
age on reproductive performance and offspring quality in 
the snow petrel (Pagodroma nivea), a long-lived seabird spe-
cies (average lifespan: ~ 50 years old, Chastel et al. 1993). 
In this species, increasing parental age is associated with 
better breeding performance and reproductive senescence 
does not occur before very old ages (Angelier et al. 2007a; 
Berman et al. 2009).We specifically focused on maternal 
age because known-aged females were more abundant in our 
study site and because females may have a greater impact 
on offspring quality than males in this seabird species (Bar-
braud and Chastel 1999; Barbraud et al. 1999). Breeding 
pairs produce at most a single chick per breeding season, 
making this species a perfect model to study the influence 
of age on breeding success and offspring phenotype inde-
pendently of sibling competition. We followed 56 known-
aged females (from 8 to 34 years old, which correspond to 
young and middle-age classes for this species, Angelier et al. 
2007a; Berman et al. 2009) and their chicks and we spe-
cifically monitored their reproductive phenology (hatching 
date), the duration of the guarding period (a component of 
parental care), and offspring survival at the nest. We also 
assessed the influence of maternal age on the quality of 
developmental conditions through morphological (growth, 
body size and body condition), physiological (corticoster-
one), and molecular (telomere length) variables. Because 
no senescent females were monitored, we expected a linear 
rather than a quadratic relationship between maternal age 
and measured reproductive outputs. Specifically, we predict 
that reproductive performance will improve with advancing 
maternal age. More precisely, we predict that younger snow 
petrels should lay later as later breeding is usually related to 
poor reproductive performance (prediction 1). Because the 
guarding period is supposed to be longer when the chicks 
grow slowly, we also predict that younger petrels will guard 
their chick longer if they are less able to feed their chick 
and sustain its growth (prediction 2). We also predict that 

the chicks from younger snow petrels should have a lower 
probability to survive at the nest (prediction 3). In addition, 
offspring developmental conditions should also improve 
with advancing maternal age and younger snow petrels 
should produce chicks presenting a smaller body size (wing 
size and tarsus length), with a slower growth and/or a lower 
body condition (prediction 4). We also predict that offspring 
physiology will be affected by maternal age. Specifically, 
developmental energetic constraints are expected to increase 
the offspring sensitivity to stress. Because younger mothers 
are expected to be less able to fulfil the energetic needs of 
their offspring, we then predict that their chicks will present 
higher basal and stress-induced corticosterone levels (pre-
diction 5). Finally, because telomere attrition is accelerated 
by increasing developmental constraints, we also predict that 
younger females should produce chicks with shorter telom-
eres (prediction 6).

Material and methods

Study species

Our study focused on the snow petrel, a long-lived seabird 
species with a high survival probability and a low fecun-
dity (only one egg is laid per couple and per year with no 
replacement clutch in case of breeding failure, Warham 
1990; Chastel et al. 1993). This species provides bi-parental 
care both during the incubation and the chick-rearing peri-
ods (Warham 1990). At 10 days old on average, the chick 
becomes thermally independent and is left unattended at the 
nest (Goutte et al. 2011). Both parents forage at sea to feed 
their chick and to restore their own body reserves (Chastel 
et al. 1993). The chick fledges approximatively at 47 days 
old (Brown 1966; Barbraud et al. 1999).

A 56-years-old ongoing mark-recapture program (see 
Barbraud and Chastel 1999 for details on the monitoring pro-
tocol) has been conducted at Ile des Pétrels, Pointe Géologie, 
Terre Adélie, Antarctica (66° 40′ S, 140° 01′ E). At this site, 
all chicks are banded every year since the beginning of the 
monitoring program. After fledging, juveniles stay at sea for 
almost a decade until sexual maturity (Chastel et al. 1993; 
Jenouvrier et al. 2005). During that period, the juvenile 
survival probability varies between 10–25% (Chastel et al. 
1993; Sauser et al. 2018). Then, they return to their hatching 
colony to breed with a high site fidelity (89.8%, Jouven-
tin and Bried 2001).Thanks to this high philopatry and this 
long-term banding effort, around a hundred of known-aged 
reproductive birds could be found at Iles des Pétrels during 
our study. The sex of individuals was determined through 
relative size of both pair members (females are 20% smaller 
than males) and acoustic signals (Barbraud et al. 2000) or 
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thanks to previous studies, during which molecular sexing 
was conducted.

Determination of maternal age and reproductive 
monitoring

During the incubation period of austral summer 2017/2018, 
we checked the bands of all breeding pairs and this allowed 
us to know the age of the parents that were banded at the 
colony as chicks. Because we found more breeding known-
aged females than known-aged males, we decided to focus 
our study on known-aged female snow petrels. This decision 
also resulted from ecological reasons: female adult snow 
petrels are smaller than males and they seem to be more 
energetically constrained during reproduction, and therefore, 
to have a higher impact on reproductive performance (Bar-
braud and Chastel 1999; Barbraud et al. 1999; but see Fay 
et al. 2016; Bouwhuis et al. 2018 in other seabird species). 
During the incubation period, 56 nests occupied by a known-
aged female were identified (range 8–34 years old, which 
correspond to young and middle-age classes for this species, 
maximum lifespan: ~ 50 years old) for this study. All these 
nests were located in crevices and provided good visibility of 
the content of the nest from a distance. They were left undis-
turbed until the hatching period. At that time (early January), 
these nests were daily checked in order to determine the 
exact hatching date which is an accurate proxy of the lay-
ing date in this species (Goutte et al. 2010). Among the 56 
monitored pairs, 45 produced a hatchling (Table 1). After 
hatching, each of these 45 nests with a chick was observed 
daily from a distance in order to monitor the age when the 
chick was left alone by its parents (i.e., age of emancipa-
tion), and therefore, to determine the duration of the parental 
guarding stage (i.e., number of days from hatching until the 
chick is left unattended at the nest by both parents, N = 42 
because 3 chicks died before emancipation, Table 1). Each 

nest was then visited when the chick was 13 days old (i.e., 
after the end of the guarding period, N = 41 because 4 of 
the 45 chicks died before reaching 13 days old, Table 1) and 
23 days old (i.e., N = 35 because 6 chicks died between 13 
and 23 days old, Table 1), respectively. When visiting the 
nest, the presence of a parent in the nest was also monitored 
(i.e., parents regularly come at the nest to provide food to 
the chick during the chick-rearing period; 1: present vs 0: 
absent) because parental presence can affect corticosterone 
levels and body condition (Dupont et al. 2021). Although 
one parent was sometimes seen at the nest when the chicks 
were 13 days old, all the chicks were alone at 23 days old 
and this variable was therefore not considered when analys-
ing the phenotype of 23-days-old chicks.

Morphometric measurements, body condition 
and growth

At 13 and 23 days old, each surviving chick was captured by 
hand at its nest (see Table 1 for sample sizes). Tarsus length 
and wing length were measured with a calliper (± 0.1 mm) 
and a ruler (± 1 mm), respectively. All birds were weighed 
with a spring balance (± 5 g). Body condition was calculated 
using the scaled mass index (SMI) following Peig and Green 
(2009). Tarsus length was highly correlated with body mass 
(tarsus: r = 0.869; P < 0.001) and was therefore used to cal-
culate the SMI of growing snow petrels by following this 
formula: SMI

i
= M

i
× (

L
0

Li

)
b

 . The terms Mi and Li respec-
tively correspond to the body mass and the tarsus length of 
the individual i. The term L0 is the arithmetic mean value of 
tarsus length for the whole study population (L0 = 32.8 mm). 
The exponent b corresponds to the slope estimate of a stand-
ardized major axis regression of log-transformed body mass 
on log-transformed tarsus length (b = 2.15).

Table 1  Biological assumptions of the study and associated model selections

Sample sizes differ because of chick mortality through the study period and because a sub-sample of 13-days-old chicks were monitored for 
physiological parameters

Biological assumption Dependent variables Independent variables n

Effect of maternal age on hatching date Hatching date Age 45
Effect of maternal age on the guarding period Guarding period Age 42
Effect of maternal age on survival Survival Age, hatching date, guarding period 41
Effect of the phenotype of the chick on survival Survival Body size, body condition 41
Effect of the physiology of the chick on survival Survival Telomere, corticosterone 23
Effect of maternal age on the phenotype of the chick (13) Body size, body condition Age, parental presence 41
Effect of maternal age on the phenotype of the chick (23) Body size, body condition Age 35
Effect of maternal age on the growth of the chick Growth, change in body condition Age 35
Effect of maternal age on the physiology of the chick (13) Telomere, corticosterone Age, parental presence, body condi-

tion, body size
23
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We then determined the change in body size (wing and 
tarsus growth) and body condition (SMI) from 13 to 23 days 
after hatching for the chicks that survived until this age 
(N = 35, Table 1). This has been calculated as the differ-
ence between body size variables (i.e., wing size and tarsus 
length) or condition (SMI) measured at day 23 to the data 
recorded at day 13. To note, if we expressed the change in 
body size or body condition in terms of percentage, results 
remain similar. Body mass and body condition were strongly 
correlated at both ages  (F1,39 = 149.6, P < 0.001;  F1,33 = 52.4, 
P < 0.001, respectively for 13- and 23-days-old chicks) and 
analyses of body mass and body condition gave similar 
results (see Supplementary File, Annex 1). Similarly, results 
using tarsus length and wing length gave very similar results. 
Therefore, we only present the results focusing on body con-
dition and tarsus length (as a proxy of body size) in the rest 
of the manuscript.

Physiological measurements

When chicks were 13 days old, their corticosterone (hereaf-
ter CORT) stress response was measured from blood sam-
ples by using a well-established protocol (Wingfield et al. 
1994). This procedure was conducted on a sub-sample of 
chicks only, for practical reasons (i.e., bad weather and 
distance to the station; N = 23, Table 1). Immediately after 
capture (i.e., within 3 min, Romero and Reed 2005), an ini-
tial blood sample (~ 150 µL) was collected from the alar 
vein with a 25-gauge needle and heparinized microcapil-
lary tubes. This sample was used to measure baseline CORT 
levels. A second blood sample (~ 150 µL) was collected 
30 min after capture and was used to measure the CORT 
stress response, i.e., the amount of CORT that is released 
in the bloodstream following a standardized stress protocol 
(hereafter “stress-induced CORT levels”). Birds were hold in 
a cloth bag during this 30 min restraint. These blood samples 
were also used to measure the telomere length of all sampled 
chicks (N = 23, Table 1). The corticosterone stress response 
was not measured when the chicks were 23 days old.

Corticosterone assay, molecular sexing, 
and telomere length

At the end of each nest visit, blood samples were immedi-
ately centrifuged in order to separate plasma and blood red 
cells. Then, all samples were stored at − 20 °C until subse-
quent analyses at the Centre d’Etudes Biologiques de Chizé. 
Plasma CORT concentrations were determined by radioim-
munoassay as described previously in Lormée et al. (2003).

The corticosterone was extracted with diethyl-ether in 
50 µL of plasma and was then assayed in duplicate with 
RIA method using H3-corticosterone (Perkin Elmer, US) 
and rabbit antiserum against corticosterone (Sigma Aldrich, 

US). RIA corticosterone assay was validated on snow pet-
rel plasma. One extract was serially diluted in the appro-
priate assay buffer, its displacement curve was parallel to 
the standard curve. Inter-assay and intra-assay precisions 
were respectively 13.78% and 6.91%. Corticosterone lowest 
detectable concentration was 0.28 ng/mL.

DNA was extracted from blood red cells of the first blood 
sample collected as part of the stress response by using the 
DNeasy blood and tissue kit (Qiagen). The sex of each blood 
sampled chick (N = 23) was determined by molecular sex-
ing, based on polymerase chain reaction (PCR) amplification 
of the CHD gene, as detailed by Fridolfsson and Ellegren 
(1999). This sub-sample of chicks allowed us to check for 
potential sex-dependent effects of maternal age on our vari-
ables of interest.

Telomere length was determined, from the first blood 
sample collected as part of the stress response, at the Centre 
d’Etudes Biologiques de Chizé. To do so, the TeloTAGGG 
Telomere Length Assay (Roche, Mannheim, Germany) 
has been used as previously described (Dupont et al. 2018; 
Angelier et  al. 2019), with minor modifications. DNA 
quality was checked by optical density spectrophotometry. 
Briefly, 4 μg of DNA was digested with restriction enzymes 
for 16 h at 37 °C. Digested DNA samples were then sepa-
rated with a pulse-field gel electrophoresis (Bio-Rad). Then, 
all samples were run in a single gel at 3.0 V/cm with an 
initial switch time of 0.5 s to a final switch time of 7 s for 
14 h. After this step, the gel was hybridized with a digoxi-
genin-labelled probe specific for telomeric sequences, and 
was visualized with a Chemidoc (Bio Rad). Telomere length 
was determined using ImageJ by analysing telomere smear 
densities.

Statistical analyses

All statistical analyses were performed with SAS Stu-
dio. Model selections were performed using a second-
order Akaike’s Information Criterion (AICc) to select the 
most parsimonious model (Burnham et al. 2011). AICc 
were used to compare all possible models and ΔAICC 
and AICc weight were used to select the most parsimoni-
ous model (Burnham et al. 2011). Values for difference 
in AICc values (ΔAICc) were computed by subtracting 
the minimum AICc from all candidate model AICc. Dif-
ferences between AICc values for different models can 
be used to determine which provides the most adequate 
description of the data based on the fewest model param-
eters. ΔAICc values > 2 are a good indicator that the 
model with the lowest AICc is preferable, whereas ΔAICc 
values < 2 indicate that models are fairly similar in their 
ability to describe the data. In that latter case, the model 
with the fewest number of parameters can be selected and 
AICc weights provide the likelihood of each competitive 
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models (Burnham et al. 2011). We used Generalized Lin-
ear Models (GLM) with a normal (identity link function) 
or a binomial distribution (logit link function) depend-
ing on the dependent variables of interest. The parameter 
estimates (Mean ± SE, and 95% Confidence Intervals) and 
effect sizes (β) of the best selected models were reported.

Several model selections were conducted to test our 
biological hypotheses and different sets of models had 
to be run because of different sample sizes (Table 1) and 
different data distribution (see Annex 2 for histograms of 
all response variables). Firstly, we tested whether mater-
nal age was related to hatching date and the length of the 
guarding period. Secondly, we tested the effect of mater-
nal age, hatching date, and the length of the guarding 
period on the probability to survive from 13 to 23 days 
old. We also tested the influence of offspring body size 
(tarsus length) and body condition on this survival prob-
ability. We then tested the relationships between CORT 
levels (baseline and stress-induced), telomere length and 
this survival probability. Finally, we tested the influence 
of maternal age on body size (tarsus length), body con-
dition and the growth of the chicks. We also tested the 
influence of maternal age, body condition, and body size 
on corticosterone levels and telomere length. Parental 
presence was included when relevant (13-days-old chicks) 
as a previous study found that this variable can affect 
body condition and corticosterone levels of young chicks 
(Dupont et al. 2021). Note that the sex of the chicks was 
not included as an explanatory factor in these analyses 
because it was available for a limited number of chicks 
only (N = 23). We ran additional models including the sex 
factor with this limited sample size and they gave similar 
results to our main analyses, suggesting that the sex of the 
offspring does not affect our results.

Results

Influence of maternal age on hatching date 
and duration of the guarding period

Hatching date was negatively associated with mater-
nal age (GLM, ΔAICc = 4.33; estimate (mean 95% CI): 
− 0.153 [− 0.269; − 0.037], β = − 0.368; Fig. 1a). More 
precisely, the chicks from older females hatched earlier 
than those from younger females. In addition, the dura-
tion of the guarding period was also negatively associ-
ated with maternal age (GLM, ΔAICc = 1.78; estimate 
(mean 95% CI): − 0.115 [− 0.228; − 0.003], β = − 0.305; 
Fig. 1b): the chicks from older females were left alone 
earlier than those from younger females.

Influence of maternal age and offspring phenotype 
on survival rate

Survival rate from 13 to 23 days after hatching was signifi-
cantly associated with maternal age but not with the hatch-
ing date or the duration of the guarding period (Table 2a, 
Fig. 2). Specifically, the chicks from older females had a 
higher survival rate at the nest (estimate (mean, 95% CI): 
− 0.233 [− 0.440; − 0.026], β = 0.242). In addition, this 
survival probability was not related to offspring body size 
(tarsus length) and body condition (Table 2b). Regarding 
physiology, the survival rate was significantly and posi-
tively related to offspring telomere length measured at 
13 days old (Table 2). More precisely, chicks with longer 
telomeres had a higher survival probability (estimate 
(mean, 95% CI): − 7.607 [− 15.054; − 0.159], β = 0.001). 
However, survival rate was not linked with CORT levels 
(baseline or stress-induced, Table 2c).

Fig. 1  Influence of maternal age on a hatching date and b the dura-
tion of the guarding period in snow petrels. The solid lines represent 
the predicted relationships between maternal age and these two varia-
bles. The dotted lines represent the 95% confidence intervals for these 
relationships
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Influence of maternal age on growth 
and morphometric measurements in chicks

In 13-days-old chicks, body size was not affected by mater-
nal age or parental presence at the nest (Table 3a, Fig. 3). 
Although body condition was not affected by maternal age, 
chicks with a parent in the nests were in better condition 
than those that were alone in the nest at the time of capture 
(Table 3b). Tarsus growth was significantly and positively 
correlated with maternal age (GLM, ΔAICc = 3.57; estimate 
(mean 95% CI): 0.125 [0.025; − 0.225], β = 0.763; Fig. 4). 
However, the change in body condition from 13 to 23 days 

old was not related with maternal age as the most parsi-
monious model was the null model (ΔAICc = − 2.20). In 
23-days-old chicks, tarsus length was significantly and posi-
tively correlated with maternal age (GLM, ΔAICc = 5.11; 
estimate (mean 95% CI): 0.139 [0.042; − 0.237], β = 0.849; 
Fig. 3B) but body condition was not significantly associated 
with maternal age as the most parsimonious model was the 
null model (ΔAICc = − 2.26).

Influence of maternal age on physiological 
measurements in 13‑days‑old chicks

In 13-days-old chicks, baseline CORT levels were not 
affected by maternal age or by the presence of a parent in 
the nests (Table 4a). However, baseline CORT levels were 
significantly and negatively correlated with body condi-
tion (estimate (mean 95% CI): − 0.022 [− 0.034; − 0.010], 
β = − 0.677; Table 4) and slightly but not significantly with 
body size (tarsus length, estimate (mean 95% CI): − 0.567 
[− 1.206; 0.072], β = − 0.318; Table 4a). The selected model 
for stress-induced CORT levels only included body condi-
tion, but a more complex model including parental pres-
ence and maternal age had a lower AICc (ΔAICc = 1.174) 
and a higher AICc weight (AICc weight = 0.274 vs. 0153, 
Table 4b). These two competitive models were therefore 
considered. In the simplest model, stress-induced CORT 
levels were negatively correlated with body condition (esti-
mate (mean 95% CI): − 0.108 [− 0.171; − 0.045). In the 
more complex model, stress-induced CORT levels were 
positively associated with maternal age (estimate (mean 
95% CI): 0.535 [0.017; 1.052], β = 0.295; Table 4b, Fig. 5), 
and negatively with body condition (estimate (mean 95% 
CI): − 0.074 [− 0.139; − 0.009], β = − 0.400; Table 4). 
Stress-induced CORT levels were also lower when a parent 

Table 2  Influence of (a) 
maternal age, hatching date, 
and the duration of the guarding 
period; (b) body condition and 
body size of 13-days-old chicks; 
(c) physiological variables 
(corticosterone (CORT) levels 
and telomere length; on the 
survival of the chick (from 13 to 
23 days old)

The three best models and the null model are represented. Values for difference in AICc values (ΔAICc) 
were computed by subtracting the minimum AICc from all candidate model AICc. K and weight refer to 
the number of parameters and to AICc weight, respectively

Dependent variable Independent variables K AICc ΔAICc Weight

a Survival of the chick Age 2 31.58 0.000 0.529
Age, hatching date 3 33.70 2.12 0.184
Age, guarding duration 3 33.91 2.32 0.166
Null 1 36.24 4.66 0.052

b Survival of the chick Null 1 36.24 0.000 0.300
Body condition 2 36.53 0.290 0.260
Body size, body condition 2 36.76 0.522 0.231
Body size 3 36.96 0.721 0.209

c Survival of the chick Telomere 2 15.31 0.000 0.396
Telomere, baseline CORT 3 15.80 0.491 0.310
Telomere, stress-induced CORT 3 17.86 2.55 0.110
Null 1 36.24 20.93 < 0.001

Fig. 2  Influence of maternal age on offspring survival probability 
from 13 to 23  days after hatching in snow petrel chicks. Box-and-
whisker plots represent the data: the top and bottom of the boxes 
represent the first and last quartiles, respectively; the line across the 
box represents the median. The whiskers represent the 5th and 95th 
percentiles, and the circles represent outliers. Significant difference is 
indicated by an asterisk (*P < 0.05)
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was present in the nest (estimate (mean 95% CI): − 9.874 
[− 18.888; − 0.859], β = 0.894; Table 4b, Fig. 5). However, 
stress-induced CORT levels were not linked with body size 
(Table 4b). Telomere length was not significantly associated 
with maternal age or body condition (Table 4c). However, 
telomere length was negatively correlated with tarsus length 
(estimate (mean 95% CI): − 0.357 [− 0.693; − 0.020], 
β = − 0.404; Table 4c).

Discussion

In this study, we showed that maternal age had an impor-
tant and significant influence on reproductive behaviour and 
offspring performance. Specifically, older females bred and 
left their chick alone earlier. Importantly, we also showed 
that maternal age had an impact on offspring morphology 

and physiology, and ultimately, on chick survival. Impor-
tantly, these morphological effects were not found in young 
chicks (13 days old), and the influence of maternal age on 
growth seems to become apparent after that age only as 
the chicks grow and require an increasing amount of food/
energy. After 13 days, chicks from older females were larger, 
heavier, grew faster, and had a higher survival probability at 
the nest. Moreover, 13-days-old chicks had a higher sensitiv-
ity to stress, as shown by moderately higher stress-induced 
corticosterone levels. Altogether, these results demonstrate 
not only that younger mothers have lower reproductive per-
formances, but also that maternal age affects the offspring 
phenotype with potential long-term consequences.

Importantly, our parental sample size was only com-
posed of young and middle-aged females (< 35 years old). 
Therefore, it was not possible to detect sign of senescence 
on reproductive output in this study (Berman et al. 2009). 

Table 3  Influence of maternal 
age and parental presence in the 
nest on (a) body size and (b) 
body condition in 13-days-old 
snow petrel chicks

The three best models and the null model are represented. Values for difference in AICc values (ΔAICc) 
were computed by subtracting the minimum AICc from all candidate model AICc. K and weight refer to 
the number of parameters and to AICc weight, respectively

Dependent variable Independent variables K AICc ΔAICc Weight

a Body size (13 days old) Null 1 117.46 0.000 0.552
(tarsus length) Parental presence 3 119.43 1.98 0.205

Age 2 119.70 2.25 0.179
Age, parental presence 4 121.78 4.33 0.063

b Body condition (13 days old) Parental presence 2 111.19 0.000 0.725
Age, parental presence 3 113.47 2.28 0.232
Null 1 117.46 6.27 0.032
Age 2 119.41 8.22 0.012

Fig. 3  Influence of maternal age effect on offspring body size in 
13-days-old (fill circles) and 23-days-old (fill triangles) snow petrel 
chicks. The solid line represents the positive/significant relationship 
between maternal age and offspring tarsus length in 23-days-old 
chicks

Fig. 4  Influence of maternal age on tarsus growth from 13 to 23 days 
old in snow petrel chicks. The solid line represents the relationship 
between maternal age and tarsus growth. The dotted lines represent 
the 95% confidence intervals for this relationship
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In addition, we specifically focused on adult females in 
this study and we did not consider the potential impor-
tance of paternal age. This decision resulted from practi-
cal reasons because we found more known-aged females 
than known-aged males in our study colony, but also from 
ecological reasons because female snow petrels are smaller 
than males. As such, they seem to be more constrained in 
their ability to deliver food to the offspring and they have 
a higher impact on reproductive performance than male 
snow petrels (Barbraud and Chastel 1999; Barbraud et al. 
1999).

Reproductive phenology, duration of the guarding 
period and offspring survival

Consistent with our prediction 1, we found that younger 
female snow petrels reproduced later. Accordingly, numer-
ous studies have also reported that laying date or hatching 
date are negatively affected by parental age (Perrins 1970; 
Curio 1983; de Forest and Gaston 1996; Cam and Monnat 
2000; Verhulst and Nilsson 2008; Blas et al. 2009; Bauer 
et al. 2018; Reséndiz-Infante and Gauthier 2020). In birds, 
and more specifically snow petrels, laying date and repro-
ductive phenology are influenced by environmental condi-
tions (Barbraud and Chastel 1999; Barbraud and Weimer-
skirch 2006; Dickey et  al. 2008; Verhulst and Nilsson 
2008; Moe et al. 2009; Descamps et al. 2011; Sauser et al. 
2021) and internal state (body condition: Bêty et al. 2003; 
Descamps et al. 2011; stress physiology: Goutte et al. 2010). 
In the snow petrel, Barbraud et al. (2000) found that laying 
date was tightly connected to the duration of the pre-laying 
exodus, during which females forage at sea to improve their 
body condition. This suggests that younger females may be 
less able to acquire food and to build as quickly as older 
females the body reserves, which are required for egg laying.

In addition, we also reported that younger females 
guarded their chick for a longer period (prediction 2). To our 
knowledge, our study is the first to demonstrate that maternal 
age affects the duration of the guarding period in an altri-
cial species. In petrels, the duration of the guarding phase is 
related to the environmental condition and to the quality of 
the parents (Amundsen 1995; Tveraa and Christensen 2002; 
Varpe et al. 2004), but also to the chick’s needs in terms 
of food provisioning and protection (Varpe et al. 2004; but 
see Goutte et al. 2011). Leaving a chick unattended can be 
beneficial because both parents can forage simultaneously 

Table 4  Influence of maternal 
age, body size, body condition, 
and parental presence in the 
nest (for corticosterone levels 
only) on (a) baseline and (b) 
stress-induced corticosterone 
levels and (c) telomere length in 
13-days-old snow petrel chicks

The three best models and the null model are represented. Values for difference in AICc values (ΔAICc) 
were computed by subtracting the minimum AICc from all candidate model AICc. K and weight refer to 
the number of parameters and to AICc weight, respectively

Dependent variable Independent variables K AICc ΔAICc Weight

a Baseline corticosterone Body condition, body size 3 90.92 0.000 0.334
Body condition 2 91.38 0.453 0.267
Parental presence, body condition 3 93.58 2.66 0.089
Null 1 97.61 6.68 0.012

b Stress-induced corticosterone Age, parental presence, body condition 4 168.38 0.000 0.274
Body condition 2 169.55 1.17 0.153
Parental presence, body condition 3 169.73 1.35 0.139
Null 1 176.94 8.56 0.004

c Telomere Body size 2 63.42 0.000 0.357
Body condition, body size 3 65.02 1.60 0.160
Age, body size 3 65.21 1.80 0.145
Null 1 65.23 1.81 0.144

Fig. 5  Influence of maternal age effect on offspring stress-induced 
CORT levels in 13-days-old snow petrel chicks. Filled and open 
symbols represent alone chicks and attended chicks, respectively. 
The solid and the broken lines represent the relationships between 
maternal age and offspring stress-induced CORT levels for alone and 
attended chicks, respectively
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at sea, increasing therefore chick provisioning (quantity and 
frequency, Catry et al. 2006). However, this may also entail 
some costs because the chick is left unguarded and is there-
fore more susceptible to inclement weather and/or predation 
(Weathers et al. 2000; Catry et al. 2006). Older females may 
be better at provisioning their chick during the first days 
after hatching and their chicks may therefore reach earlier 
a body condition/size that allow them to thermoregulate. 
This could explain why older females guarded their chick 
for shorter periods. Unfortunately, our data did not allow us 
to test this hypothesis as the first morphometric measure-
ments were recorded at day 13 (i.e., maximum length of the 
guarding period) for all the chicks and not at the end of the 
guarding period. This hypothesis is however not supported 
by the available data because we did not find any difference 
in body size and body condition at day 13. Instead, older 
females may be more experienced and better at estimating 
when the chick can be left alone without any major risk for 
its survival. Alternatively, older females may be in poorer 
condition, and as a consequence, they may have to leave 
the nest unguarded at an earlier age to replenish their body 
reserves (Tveraa et al. 1998). However, this explanation is 
quite unlikely because previous studies have not found a 
relationship between age and body condition in this species 
(Angelier et al. 2007a, 2020; Goutte et al. 2010).

In line with our prediction 3, we found a strong posi-
tive correlation between offspring survival at the nest and 
maternal age, as previously reported in multiple bird species 
including the snow petrel (Angelier et al. 2007a; Sergio et al. 
2007). Although our sample size was too small to detect a 
link between phenology and offspring survival, our study 
confirms that offspring survival is linked to parental age, 
probably through the timing of reproduction, as previously 
found in numerous altricial species (Blas et al. 2009; Culina 
et al. 2020) including the snow petrel (Sauser et al. 2021).

Offspring growth, body size, and body condition

According to our fourth prediction, we found that younger 
mothers had smaller chicks (i.e., at 23 days old) compared 
to older ones, highlighting therefore that maternal age has 
an important impact on their offspring developmental condi-
tions. Specifically, we found that the chicks from younger 
females grew slower and reached a lower body size 23 days 
after hatching (wing and tarsus length). Importantly, this 
impact of maternal age on body size was not apparent 
13 days after hatching. This suggests that young females can 
sustain their offspring needs at the beginning of the devel-
opmental period, when the chick is small and cannot ingest 
large meals. However, the provisioning effort of young 
females may not be sufficient later as the chick becomes 
larger and requires increasing amounts of food, explaining 
the influence of maternal age on growth and body size when 

offspring reaches 23 days old. In other words, small differ-
ences in provisioning effort that are not apparent on day 
13 may accumulate through the chick-rearing period, and 
become significant at a later stage only (i.e., day 23).

In our study, the condition of snow petrel chicks was not 
related to maternal age, suggesting that chicks from young 
females did not suffer from nutritional stress. Interestingly, 
we however found that the chicks from younger females 
grew slower and were smaller at 23 days old. This suggests 
that snow petrel chicks may maintain their body condition 
(a major determinant of post-fledging survival, Sauser et al. 
2018) at the expense of their body size, which is at least 
partly developmentally determined (Barbraud et al. 1999). 
This contrasts with other studies, which have suggested that 
developing seabirds may prioritize growth at the expense 
of their condition and their survival (e.g., Harris 1966). 
Interestingly, body size is closely associated with adult 
performance in this species: smaller snow petrels feed their 
chick less often and seem to be less efficient foragers (Bar-
braud et al. 1999, 2019). Therefore, chicks from younger 
females may have lower post-fledging survival probabilities 
and reproductive performance later in life, although these 
hypotheses need to be explicitly tested in the future.

Offspring sensitivity to stress

As previously reported in this species (Dupont et al. 2021), 
we reported that the presence of a parent in the nest may 
mitigate the stress sensitivity of its chick. Specifically, snow 
petrel chicks had lower stress-induced CORT when a parent 
was present in the nest at the time of capture, 13 days after 
hatching (see Dupont et al. 2021 for further details).

In addition, we found that stress-induced CORT levels 
seem to be affected by maternal age in our study although 
the effect size could be considered as moderate (β = 0.295). 
Specifically, chicks from older females have higher stress-
induced CORT levels, suggesting that they have a higher 
adrenocortical stress sensitivity (prediction 5). Elevated 
stress-induced CORT levels are classically associated with 
a poor body condition and with nutritional stress in chicks 
(Kitaysky et al. 2001; Pravosudov and Kitaysky 2006; Love 
and Williams 2008; Angelier et al. 2022). Our result on 
stress-induced CORT levels is therefore surprising because 
we did not find any relationship between maternal age and 
offspring body condition. Interestingly, this pattern is not 
equivocal since other studies report no or opposite effects of 
nutritional stress or poor body condition on stress-induced 
CORT levels (Wada et al. 2009). For example, in the tufted 
puffin (Fratercula cirrhata), chicks are known to suppress 
Hypothalamic–Pituitary–Adrenal (HPA) axis activity and 
to have therefore lower stress-induced CORT levels when 
facing nutritional stress (Kitaysky et al. 2005). Then, the 
observed reduced CORT stress sensitivity in 13-days-old 
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snow petrels produced by young females may be interpreted 
as a way to protect the chick against the detrimental effect 
of elevated circulating CORT levels (reviewed in Sapolsky 
et al. 2000). However, it remains unclear why older females 
produce chicks with higher stress-induced CORT levels. In 
laboratory bird species, the corticosterone stress response 
increases with age as the chicks develop (Wada et al. 2007, 
2009) and higher stress-induced corticosterone levels could 
therefore reflect a more developed HPA axis, and therefore 
a more advanced developmental state, in the chicks from 
older mothers. Finally, and importantly, CORT levels were 
unrelated to offspring survival, questioning therefore the 
relevance of this physiological marker of fitness in snow 
petrel chicks. Further studies are definitely needed to better 
understand how stress-induced CORT levels relate to devel-
opmental constraints and offspring survival.

Importantly, there is increasing evidence that the adren-
ocortical stress response is repeatable among life-history 
stages (Wada et  al. 2008; Grace and Anderson 2014; 
Vitousek et  al. 2014; Small and Schoech 2015; Jimeno 
et al. 2017), meaning that snow petrel chicks from older 
females may also have higher stress-induced CORT levels 
later in life. Although the potential benefits of mounting 
a strong stress response remains debated (Breuner et al. 
2008; Angelier and Wingfield 2013; Vitousek et al. 2018), 
having elevated stress-induced CORT levels may promote 
survival under some situations (Angelier et al. 2009). Our 
study shows for the first time that maternal age can affect 
offspring CORT stress sensitivity and future studies are now 
needed to fully understand the fitness consequences of such 
phenotypic plasticity.

Offspring telomere length

Contrary to our sixth prediction and to other studies (e.g., 
Asghar et al. 2015; Dupont et al. 2018; Eisenberg 2019), 
we did not find any relationship between maternal age and 
offspring telomere length. Other studies also failed to find 
such an effect of parental age on offspring telomere in ver-
tebrates (e.g., Noguera et al. 2018; Belmaker et al. 2019; 
van Lieshout et al. 2021), suggesting that the influence of 
parental age on the telomere length of the progeny varies 
between species and depends if we consider maternal age 
or paternal age. Indeed, previous studies in humans have 
suggested that paternal age could have a stronger impact on 
telomere length than maternal age (Eisenberg et al. 2017). 
Therefore, maternal age might only be related to offspring 
telomere length if paternal and maternal age are strongly 
correlated although this hypothesis has never been explicitly 
tested in wild vertebrates to our knowledge. In our study, we 
also did not find any strong relationship between body condi-
tion and telomere length in 13-days-old chicks. We however 
found a negative association between telomere length and 

tarsus length at this age, suggesting that growth may affect 
telomere attrition and telomere length in snow petrel chicks. 
Indeed, developmental constraints experienced by the chicks 
have been shown to affect the allocation of resources to both 
growth and telomere maintenance (Boonekamp et al. 2014; 
Vedder et al. 2017; Monaghan and Ozanne 2018). However, 
in our study, most of the effects of maternal age on body size 
were not apparent when the chicks were 13 days old and 
they appeared at an older age (e.g., 23 days old). This could 
explain why we did not find any strong relationship between 
telomere length and maternal age in our study. In future stud-
ies, it would be relevant to measure telomere length several 
times during the development to test whether the influence 
of maternal and paternal age on telomere length exacerbates 
as the chick grows. Actually, we aimed to sample the chicks 
32 days after hatching in our study, but the colony was no 
longer accessible later in the season because of successive 
heavy snowstorms.

Finally, we found that telomere length was a reliable 
predictor of survival in snow petrel chicks: 13-days-old 
chicks with shorter telomere had a lower survival prob-
ability until 23 days old. This link between telomere length 
and survival at early stage has already been found in an 
increasing number of studies (Quque et al. 2021), and our 
result supports the idea that telomere length is a relevant 
proxy of individual quality both at juvenile and adult 
stages (Angelier et al. 2019; Bichet et al. 2020).

Conclusion

Our study shows that maternal age had an important influ-
ence on reproductive performance and offspring morphol-
ogy and physiology in an Antarctic long-lived bird species. 
Further studies should now aim to examine the influence 
of both maternal and paternal ages on offspring physiology 
to better understand how they contribute to offspring qual-
ity. Such studies should also investigate the consequence 
of such physiological modifications on the lifelong per-
formance of the offspring (recruitment and reproduction).
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