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Abstract. Processes executed on enterprise Information Systems (IS),
such as ERP and CMS, are artifact-centric. The execution of these pro-
cesses is driven by the creation and evolution of business entities called
artifacts. Several artifact-centric modeling languages were proposed to
capture the specificity of these processes. One of the most used artifact-
centric modeling languages is the Guard Stage Milestone (GSM) lan-
guage. It represents an artifact-centric process as an information model
and a lifecycle. The lifecycle groups activities in stages with data condi-
tions as guards. The hierarchy between the stages is based on common
conditions. However, existing works do not discover this hierarchy nor
the data conditions, as they considered them to be already available.
They also do not discover GSM models directly from event logs. They
discover Petri nets and translate them into GSM models. To fill this
gap, we propose in this paper a discovery approach based on hierarchical
clustering. We use invariants detection to discover data conditions and
information gain of common conditions to cluster stages. The approach
does not rely on domain knowledge nor translation mechanisms. It was
implemented and evaluated using a blockchain case study.

Keywords: Guard-Stage-Milestone · Artifact-Centric Processes · Pro-
cess mining · Artifact-Centric Event Logs.

1 Introduction

In recent times, there has been a growing interest in artifact-centric systems,
leading to the development of artifact-centric process mining techniques. These
techniques include artifact-centric process discovery, conformance checking, and
enhancement. Artifact-centric process discovery techniques aim to uncover the
lifecycles of involved artifacts and their interactions [5]. Most current artifact-
centric discovery approaches use event data stored in a relational database con-
taining information about data creation, modification, and deletion [5]. Alterna-
tively, they utilize the Object-Centric Event Log (OCEL) standard format [6].
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Some approaches can also be applied to the traditional activity-centric event log
format called eXtensible Event Log (XES) 4 with additional processing and filter-
ing steps. Additionally, these techniques discover flat procedural models, focusing
on the order of execution, while neglecting the influence of data on execution
and interactions between artifacts. These models are typically represented using
directly-follows graphs [2] or Petri nets [18]. Some approaches propose translat-
ing Petri nets into the Guard-Stage-Milestone (GSM) language [16,18], which is
a well-known declarative approach for modeling artifact-centric processes. This
work also concentrates on discovering GSM models. Data conditions and hier-
archical abstractions are essential to artifact-centric languages like GSM [8]. In
fact, GSM relies on data conditions to model authorized behaviors and paral-
lelism within and between the lifecycles of artifacts. GSM also supports hierarchy
between groups of activities which allows the representation of different levels
of abstraction of the business operations. The discovery of data conditions was
not described in existing approaches where GSM models discovery is based on
translation mechanisms from Petri nets [16,18]. These conditions were considered
as provided by domain experts or extracted using existing tools (e.g. decision
miner). These approaches also omit the discovery of the hierarchical structure
of a lifecycle as supported by GSM and do not consider interactions between
artifacts.

Furthermore, the input of existing approaches cannot be directly used to
discover GSM models. In case of OCEL logs, the data changes depicting the
evolution of objects are not stored which hinders the discovery of GSM data
conditions. As for classic XES logs, a processing is required to generate a log
for each artifact which may cause convergence and divergence problems [1]. The
discovery of the relational model from these logs requires using databases and
or domain knowledge. To solve these issues we previously introduced ACEL
(Artifact-Centric Event Log) [12], an extension of OCEL which is specific for
artifact-centric event data. An ACEL log supports multiple case notions and
contains information about artifacts, their evolution (lifecycle) and their rela-
tions.

To address the aforementioned limitations, we propose a discovery technique
that takes as input an ACEL log and gives as output a GSMmodel. Taking ACEL
as input avoids classic convergence and divergence problems and alleviates the
pain of processing, translating and fetching additional external knowledge. The
novelty of our proposed technique compared to existing ones is i) its ability to
discover stages’ data conditions (i.e. guards) by analyzing the data changes of
objects’ evolution stored in ACEL logs; ii) discovering nested stages based on the
idea of hierarchically clustering stages according to the Information Gain [19]
obtained by grouping their data conditions and iii) discovering interactions be-
tween different artifacts as well as between instances of the same artifact type
using data conditions. The approach has been evaluated in terms of feasibility
using an ACEL log generated from a blockchain application. We used blockchain
logs because they are an immutable trustworthy source of data for process min-

4 https://xes-standard.org/

https://xes-standard.org/
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ing. Process mining shows the business process perspective of smart contracts
and it has been demonstrated for activity-centric processes [7]. However, to the
best of our knowledge, no work used blockchain logs to discover artifact-centric
processes.

The paper is organized as follows. Section 2, provides some background on
GSM and ACEL. The approach is briefly presented in section 3 along with a run-
ning example. The approach is detailed in section 4 and 5. Section 6 presents the
implementation and evaluation through a case study and a discussion. Section
7 reviews the related work. Finally, Section 8 concludes the paper.

2 Preliminaries

In this section we provide an overview of the GSM model and the artifact-centric
event log format (ACEL) we consider in this work.

2.1 The Guard-Stage-Milestone Model

Artifact-centric processes revolve around the progression of business entities
known as artifacts as they undergo various business operations. Each artifact
possesses an information model and a lifecycle. The information model stores
data in the form of attributes that capture information about the artifact through-
out its existence. On the other hand, the lifecycle represents a ”micro process”
model that outlines the sequence of operations or tasks that can be performed on
the artifact to transition it from one state to another. In addition, artifacts have
the ability to interact with one another and establish relations. These relations
are represented by nested foreign key attributes, allowing for the establishment
of connections between artifacts. GSM is a declarative approach to specifying ar-
tifact lifecycles[9]. It represents (i) the lifecycle of an artifact in terms of guards,
stages, and milestones, and (ii) the information model in terms of data and state
attributes. Stages are groups of tasks (activities) which modify an artifact in or-
der to achieve a certain business goal. A stage with only one task is called an
atomic stage. A stage can have multiple guards and milestones. Guards consist
of sentries which are comprised of triggering external or internal events and/or
conditions on data. Internal events and data conditions may refer to the mod-
eled artifact or other artifacts. External events can come from external services
or human actions. Milestones correspond to business-relevant operational objec-
tives and are achieved (or invalidated) based on a sentry. A stage becomes ac-
tive/open when the sentry of one of its guards becomes true and inactive/closed
when the sentry of one of its milestones becomes true. Stages can be nested, i.e.,
a stage can contain several stages [8]. Fig. 1 illustrates a sample GSM model for
a blockchain-based application (Section 3.1 details this running example).

2.2 The Artifact-Centric Event Log Format

Artifact-Centric Event Log (ACEL) [12] is an enhanced version of the Object-
Centric Event Log (OCEL) standard [6] designed for storing event data in
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artifact-centric business processes. ACEL extends OCEL by supporting the stor-
age of object relations and attribute changes of both objects and relations. In
ACEL, each event contains information about the execution of a business process
activity, including the objects and relations modified by that activity. Moreover,
ACEL captures attribute-level changes, meaning that the new value of an at-
tribute reflects the specific alteration made. Objects in ACEL represent relevant
business entities or artifacts, while relations represent the connections between
artifacts, including one-to-one, one-to-many, and many-to-many relationships.
Within an ACEL log, events, objects, and relations are uniquely identified and
can possess multiple attributes. Certain attributes are mandatory, such as the
lifecycle attribute for objects, which indicates their state, and the source and
target attributes for relations, which identify the objects involved in the rela-
tion. Each object or relation in ACEL is associated with a specific object or
relation type, and multiple objects or relations can be associated with a single
event [12]. Table 1 provides an excerpt of a sample ACEL log.

3 Approach overview

3.1 Running Example

Cryptokitties 5 is an Ethereum Dapp 6 where cats are auctioned for sale or
breeding purposes. The sale auction procedure can be considered as a GSM
stage. A cat is auctioned for sale when its owner triggers the opening of the
CreateAuction stage, which creates a new auction in the Created state. Other
users can buy the auctioned cat by making bids. When a satisfying bid is made,
the CompleteAuction stage is opened which triggers the transfer of the cat to
the new owner and the auction becomes in the Successful state. The user who
initiated the auction can also cancel it by triggering the CancelAuction stage
which puts the auction in the Cancelled state. A user can also obtain a new cat
by breeding one of his cats with another cat. After Breeding, the mother and the
father are expecting, i.e., the mother is in the Pregnant state and the father is in
the FutureFather state. After a prefixed amount of time, called cooldown period,
the user can trigger the opening of the Birth stage and the mother gives birth to
a new cat which is in the Born state. After the Birth, the mother and the father
become in the BecameMother and BecameFather states, respectively.

Fig. 1 shows an excerpt of the representation of a cat’s and an auction’s life-
cycles in GSM. Both artifacts, i.e., cat and auction, have data attributes consti-
tuting their information model, e.g., tokenId, cooldownPeriod and startingPrice.
These attributes also indicate relations between artifacts by referring to other
artifacts or other instances of the same artifact, e.g., SiringWithId and KittyId.
Artifacts are also characterized by status attributes indicating a stage’s or a mile-
stone’s status, e.g., Pregnant and Successful, is achieved. Fig.1 also illustrates the

5 https://www.cryptokitties.co/
6 A Dapp is a decentralized application running on a blockchain platform.

https://www.cryptokitties.co/


Discovering Guard Stage Milestone models through hierarchical clustering 5

possible nesting of stages, it shows two nested stages, Procreation and SaleAuc-

tion. The Procreation stage has one guard whose sentry is one data condition
(k.’cooldown’≤currentTime) and one milestone (BecameMother) whose sentry is
an internal event about the cat’s milestone (k.’Pregnant’.achieved()). When its
guard is true, the Procreation stage is opened and its sub-stages, Breeding and Birth,
can be activated when their respective guards are true. For example the sentry
of Birth’s guard is composed of one external event (k.’giveBirth’.onEvent()),
to be sent by a user, and a data condition (k.’Pregnant’). The previous data
condition is an internal event but expressed as a data condition because sentries
can have only one event. In our previous paper [12], we proposed an approach
to generate ACEL logs for blockchain applications. We used it to generate a log
for our running example, as shown in Table1.
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Fig. 1: GSM process model associated with the Cryptokitties example

3.2 Discovering GSM models from ACEL logs

Discovering a GSM model, similar to Fig.1, consists of discovering (i) the infor-
mation model of each involved artifact, (ii) its different stages and their hierar-
chical structure, (iii) the guard(s) and milestone(s) of each stage, and (iv) the
interaction between the different artifacts.

Discovering a GSM information model from an ACEL log is simply an extrac-
tion process because ACEL stores the artifact relational model. The extraction
consists of collecting the attribute names for each artifact. Then, following the
relations, foreign keys are added to the information model. Therefore, the re-
quired steps can be reduced to discovering stages’ guards, their interactions and
hierarchy. An overview of our proposed approach is illustrated in Fig. 2.



6 L. Moctar M’Baba et al.

Table 1: Sample of Cryptokitties ACEL log

EventId Activity Timestamp Attribute Objects Relations

Name Value

e1 Breeding 23/10/2021 Resource 0x22D1A.. 1960326 r1
04:11:51

ObjectChanges RelationChanges

ObjectId Attribute NewValue RelationId Target ChangeStatus

1960326 lifecycle Pregnant r1 1688830 addedTarget
1960326 CooldownPeriod 11115513
1688830 lifecycle FutureFather
1688830 CooldownPeriod 11115513

(a) Events

ObjectId Type genes

1960326 kitty 5321000..
1688830 kitty 62855942..

(b) Objects

RelationId Type Source

r1 siringWith 1960326

(c) Relations

We can discover GSM stages by discovering their guards because two stages
cannot have the same guards. Sub-stages have their own guards, and in addition
they inherit the guards of their parent stage. This creates a hierarchy between
sub-stages and their parent, e.g., in Fig.1 the Procreation stage is the parent of
the Breeding and Birth stages. Furthermore, we can consider that the parent
stage is a cluster of sub-stages and each sub-stage can also be a cluster of its
own sub-stages. Therefore, we can model the discovery of stages and their hier-
archical structure as a hierarchical clustering problem where similarity is based
on common guards. Additionally, the clusters have to be loosely coupled, i.e.,
the guards of one stage should not allow the activation of another stage.

As mentioned above, discovering guards is a prerequisite to the discovery of
stages and their hierarchy. A guard consists of a sentry which contains an event,
internal or external, e.g., (k.’Pregnant’.achieved()) and (k.’giveBirth’.onEvent()) in
Fig.1, and data conditions, e.g., (k.’cooldown’≤ currentTime). Since ACEL logs do
not contain external events, we only consider internal events for the discovery of
guard sentries. Furthermore, the internal events we consider are about achieving
milestones, the latter are stored in ACEL as values of the object attribute life-
cycle. Therefore, we can discover them by discovering data conditions and since
in GSM, internal events can be expressed through data conditions, e.g., in Fig.,1
(k.’Pregnant’), we represent them as such. Thus, the discovery of guard sentries
(internal event and data conditions) becomes a problem of discovering data con-
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Fig. 2: Overview of the GSM models discovery approach

ditions on artifact attributes and their milestones. Milestones of a stage can be
some or all milestones of its sub-stages but they can also be new milestones. In
the case of an atomic stage we consider that its milestones are those of its task
(activity) and the milestones of its parent stage can be independent of the task’s
milestones. Task independent milestones are not supported by ACEL. In ACEL,
an activity (task) is linked to one lifecycle (milestone) change, since it is not
GSM specific. Stage specific milestones can be introduced through an optional
custom object attribute [12]. However, since we rely on classic ACEL logs we
will not introduce stage specific milestones and we will define the milestones of
an atomic stage as the milestones of its task.

In GSM, interactions between artifacts can be represented by internal events
about achieved milestones of other artifacts. We discover these events through
data conditions, as mentioned above.

The following sections detail these different steps: discover guards and
interactions as data conditions (Section 4) and clustering activities to discover
nested stages (Section 5).

4 Discovering guards and interactions

As stated in section 3.2, for an ACEL log, discovering guards and interactions
amounts to discovering data conditions. Data conditions are properties verified
by observed attribute values before the execution of an activity. They are similar
to invariants that hold at a certain point in a program [4]. Techniques used to
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dynamically detect program likely invariants can be applied to data conditions
in a process as demonstrated in [10]. We adapted the latter approach to our
context as detailed in the following subsections. We first generate data traces
to store the values of attributes before an activity. Then we rely on invariant
detection to discover the data conditions that hold in these traces.

4.1 Generating Data Traces

In the context of program likely invariants detection, a data trace contains the
values of variables at points of interest in a program. In the case of a business
process (BP), a data trace contains the values of variables before or after the ex-
ecution of an activity. Systems like Daikon [4] generate data traces for a program
given its source code. For a BP on the other hand, these traces are extracted
from the BP event logs. The method for extracting data traces followed by [10]
consists of replaying the events of a process instance against a reference model to
update the value of each variable and stopping before the execution of the target
activity to get one data trace. We propose a method to extract data traces from
an ACEL log without relying on a reference model. We define in the following
the concepts we used to generate data traces.

Artifact-centric process instances. We consider that a process instance
should be defined for each artifact’s lifecycle as our aim is to discover the stages
of each artifact. Since we aim to discover interactions between artifacts as well,
we consider events associated with related artifacts. Thus, we propose the fol-
lowing simple definition: “A process instance is the sequence of events linked
to one artifact instance and its related instances up until the end of their re-
lations”. Identifying ACEL events of related artifact instances through rela-
tions is possible because ACEL stores the evolution of relations. This is done
through the changeStatus attribute, associated to the relation’s target, whose
value ’deletedTarget’ indicates the end of a relation. The relation’s end marks
the end of an interaction between two artifact instances which reduces the pos-
sibility of irrelevant data conditions. For example, after a breeding event, a re-
lation breedingWith links a pregnant cat pk and the future father fk. After a
birth event this relation is deleted. fk is not allowed to breed again while it is in
a breedingWith relation. Thus it is affected by the events of pk, i.e., it is waiting
for a birth event to occur for pk. After the end of the relation, fk is no longer
affected by the events of pk. For instance, if after the end of the breedingWith

relation a breeding event occurs for pk with a third cat this has no consequence
for fk. We also consider the case where objects do not “die” and the log contains
several iterations of the lifecycle for one artifact instance. Previous approaches
reviewed in [5] consider the cases where artifact instances go through their life-
cycle only once (i.e.,created→updated. . . →terminated). We take into consideration
the cases where artifact instances can revisit parts of their lifecycle several times
or indefinitely, e.g., a cat never dies and can go through breeding endlessly.

Artifact-centric activity specific traces. Given the previous definition
of an artifact-centric process instance and the possibility of revisiting artifacts’
lifecycle states, we define an activity specific trace as: “a sequence of events, from
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a process instance, delimited by two events related to the activity”. The events
of the activity are of course not included in the activity specific trace since we
aim to discover data conditions preceding it.

Data Trace Generation. To generate a data trace from an activity spe-
cific trace, we apply a reverse traversal of the events to get data values instead
of replaying the events. Starting from the last event we get the first value we
encounter for each attribute of each artifact instance. We rename the attributes
to improve readability, to quantify the artifact interactions, and shed light on
eventual new types of interactions, as detailed in the following.

In GSM, related artifacts are referenced in the information model of the
main artifact through a foreign key attribute. However, the name of this at-
tribute might not provide information about the artifact’s type. Thereby, we
prefix it (in the data trace) by the latter’s artifact type. For example in Fig.1,
the k.siringWithId attribute references another cat and to make this explicit we
prefix it with its type (i.e., k.kitty.siringWithId). However, in ACEL an arti-
fact does have such foreign key attribute since the relations are stored and thus
the notion of foreign key is unnecessary. Therefore we extend the previous prefix
with the type of the relation (k.breedingWith.kitty.siring-WithId) to provide
business relevant semantics and enhance the readability of the discovered model.
This also allows us to indicate the cardinality of interactions7 and define a new
type of interaction which were not considered in previous works, to the best
of our knowledge. Indeed, previous works considered only interactions between
different artifacts, while we consider interactions between instances of the same
artifact which we call reflexive interactions.To illustrate interaction cardinali-
ties and reflexive interactions, we refer again to the Cryptokitties example and
specifically to the Birth stage. The birth of a cat relates him to a father and a
mother cat. In this case, the born cat is the main artifact and it interacts twice
(cardinality) with instances of the same type (reflexive interaction).

4.2 Discovering Data Conditions

For the discovery of data conditions from data traces we use the same imple-
mentation of dynamic detection of likely invariants as [10], named Daikon. Along
with data traces, Daikon [4] requires declaration files specifying the correspond-
ing program points and variables in a data trace. In these declaration files, we
also specify the comparability8 property of the variables. This property assists
Daikon in discovering relevant invariants, i.e., invariants involving only compara-
ble variables, and in our case relevant data conditions. We can infer correlations
between variables from the ACEL, e.g, which variables appear frequently to-
gether in the ObjectChanges list 1a. However this statistical analysis is out of
the scope of this paper, we consider that the comparability is provided. Specif-
ically, to discover data conditions using Daikon, we merge the activity specific

7 Cardinality of interaction is the number of artifact instances of the same type inter-
acting with the main artifact.

8 A signed integer that indicates to Daikon comparable variables. Two variables with
the same value for comparability are considered comparable.



10 L. Moctar M’Baba et al.

data traces generated in Section 4.1 for each artifact instance in one Daikon data
trace file. We then generate for it a declaration file. We use these two files as
input to generate invariants for the activity data trace.

The steps, described in section 4.1 and 4.2, to generate data traces and dis-
cover data conditions are illustrated in Algorithm 1.

5 Discovering Nested Stages

To discover nested stages we use common data conditions with the same infor-
mation gain. Information gain (IG) measures how well a feature helps predict
a label. It is based on the entropy which is, in the context of classification in
machine learning, the measure of the diversification of the labels in a data set.
The lowest entropy is equal to zero and correspond to a pure data set, i.e., all el-
ements have the same label. The highest entropy is equal to one and corresponds
to a data set with equal subsets for each label. IG is inversely proportional to
the entropy, i.e., an entropy equal to zero corresponds to an IG equal to one.

We consider that stages having a common parent will be discriminated equally
by this parent’s guard from other stages of the artifact’s lifecycle. This means
that the guard will have the same IG each time it discriminates one activity of
the sub-stages from other stages in the artifact. This is true because we can con-
sider the parent stage as a label and the data condition as a feature. For example
in Fig. 1, if we label all activities as partOfProcreation or notPartOfProcreation,
the data condition (k.’cooldown’ ≤ currentTime) that best splits the population,
i.e., the activities, will be the guard of the Procreation stage.

Furthermore, sub-stages share the guard of their parent stage. Thus, dis-
covering nested stages amounts to grouping stages with the same IG for their
common data conditions. These common conditions represent the guard of the
parent which can be merged with other stages when their guards overlap. The
discovery of nested stages is therefore a hierarchical clustering where similarity
is based on common data conditions with the same IG. In the following, we pro-
pose a similarity function that we consider for clustering activities (Section 5.2)
and an approach for hierarchically clustering the stages (Section 5.3).

5.1 Limitations of branching conditions for discovering GSM stages

The authors of [10] use IG to discover conditions that discriminate between
two tasks in a branching point. This is not our case because GSM supports
parallelism between stages and activities of a same stage. They also use IG
to simplify the conditions, i.e., they only keep the condition or conjunction of
conditions with the highest IG. For example, in the Breeding stage (Fig. 1),
if IG(!k.’Pregnant’) == IG(!k.’Pregnant’ && (k.’cooldown’ ≤ currentTime)),
the condition (!k.’Pregnant’&& k.’cooldown’ ≤ currentTime) will be discarded
according to [10]. Such simplification makes the discovery of the procreation

stage impossible. Therefore, we do not discard any condition since conditions
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Algorithm 1: Data Conditions discovery

Data: acelLog < E,O,R >, E set of events, O set of objects and R set of
relations. OT ← ∅, set of object types and A← ∅, set of activities.

Result: DT, a function which associates to each object and activity a set of
data traces

1 Let TA be a function whose domain is OT ∀ot ∈ OT,
∃(a1, ..., an) ∈ An, TA(ot)← (a1, ..., an).

2 Let OI be a function whose domain is OT ×A ∀ot, a ∈ OT,A,
∃(o1, ..., on) ∈ On, OI(ot, a)← (o1, ..., on).

3 Let T be a function whose domain is OT ×A×O ∀ot, a, o ∈ OT,A,O,
∃n,m ∈ N, T (ot, a, o)← (En)m.

4 ForEach e of E
5 a← activityName(e) ;
6 ForEach o of objectList(E)
7 ot← type(o) ;
8 ForEach act of TA(ot)
9 If a = act

10 Close last set of T(ot, a, o) ;
11 else
12 If last set of T(ot, a, o) closed
13 Open new set in T(ot, a, o);
14 Add e to last set of T(ot, a, o);

15 end

16 ForEach ot of OT
17 ForEach a of TA(ot)
18 ForEach o of OI(ot, a)
19 ForEach set of Reverse(T(ot, a, o))
20 Open new set in DT (ot, a) ;
21 ForEach e of Reverse(set)
22 ForEach ob in objectChangeList(e)
23 ForEach att in objectAttributes(ob)
24 If ob = o
25 If name(att) = ’lifecycle’
26 Add (ot.’milestone’, value(att)) to last set

in DT (ot, a) ;

27 else
28 Add (ot.name(att), value(att)) to last set in

DT (ot, a) ;

29 end

30 else
31 If ob in relation with o and relation not ended
32 If name(att) = ’lifecycle’
33 Add

(ot.relationName(o,ob).type(ob).’milestone’,
value(att)) to last set in DT (ot, a) ;

34 else
35 Add

(ot.relationName(o,ob).type(ob)name(att),
value(att)) to last set in DT (ot, a) ;

36 end

37 end

38 Close last set in DT (ot, a) ;

39 return DT
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with the lowest IG might represent guards for parent stages. Nevertheless, the
use of IG for branching conditions in [10] inspired our approach to detect stages.

5.2 Similarity Between Activities

Similarity is measured through distance, two points of a cluster are similar when
they are the closest. We consider that two activities are close when they share
common data conditions with the same IG. The closest activities will have the
same data conditions with the same IG and their distance is equal to zero. The
furthest apart share no common data conditions or their common data conditions
do not have the same IG and their distance is equal to one. In the following,
we define a similarity function to compute the distance between two activities
based on their data conditions and their IG.

Definition 1 (IG of an Activity Condition). Let A be the set of an artifact’s
activities, C the set of these activities’ data conditions, DT the set of all data
traces, and adt : A −→ DT a mapping associating activities ∈ A to their data
traces ∈ DT . The information gain of an activity’s condition is defined as:

∀a ∈ A,∀c ∈ C, IGa(c) = IG(adt(a), adt(A \ a), c)

Definition 2 (Similarity Function). Let a, b ∈ A, Ca, Cb ⊂ C,CCab = {c|c ∈
Ca∧c ∈ Cb∧IGa(c) = IGb(c)} the set of common data conditions with the same
IG between two artifact’s data conditions a and b. ∀ck ∈ CCab, k ∈ {1 . . . n}, n =
|CCab|, IG(ck) = IGa(ck) = IGb(ck).The distance between a and b is given by:

dist(a, b) =



1 |CCab| = 0

1− 1

1 +

log
|Ca|+ |Cb|
2× |CCab|
n∑

k=1

IG(ck)

|CCab| ̸= 0

5.3 Hierarchical Clustering to Discover Nested Stages

We rely on a hierarchical agglomerative clustering [13] with a distance matrix
computed using the similarity function dist and a different linkage criterion to
determine similarity between clusters. As a linkage criterion in our context, we
consider that all points, i.e., activities, of one cluster must have the same distance
with all the points of the other cluster. We optimize this criterion by measuring
the distance between two random activities, one of each cluster, based on the
data conditions shared by all activities of each cluster. The merging condition we
consider is that the similarity between two clusters is different from one. Indeed,
because activity with no data condition in common, or different IG for their
common data condition, cannot be in the same stage.

The clustering starts with the computation of a distance matrix between
all activities of an artifact. Then (first iteration), the two closest activities are
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merged. After this merge, the distance matrix between the rest of the activities
and this new cluster is computed using the common data conditions shared
by its activities. Next (second iteration), the next two closest activities, or one
activity with the previous cluster if their distance is the shortest, are merged.
The clustering continues with the re-computation of the distance matrix before
each iteration and then merging of clusters until only one cluster or when the
distance between all clusters is equal to one (stopping condition). The result is
a hierarchical structure indicating the nesting of the stages.

6 Evaluation

In the following we present the implementation and the evaluation of the ap-
proach through a case study.

6.1 Implementation

We implemented the approach as several python modules, accessible via https:

//gitlab.com/disco5/Gsm/-/tree/main/discovery. The first module takes
as input an ACEL log and generates a data trace file for each activity of each
artifact. The second module converts this data trace file into the daikon .dtrace
format and generates a declaration file in the daikon .decls format for each data
trace. It then runs Daikon with the previous files to discover data conditions for
each activity. The third module takes as input the data trace and the discovered
data conditions of all activities of an artifact and computes for each activity the
IG of data conditions, including their conjunctions. It outputs a table with as
header all data conditions and a line for each activity with the IG of its data
conditions. The previous table is the input of the fourth module in charge of the
clustering, which first uses the table to run the clustering algorithm and discover
the nested stages, then assigns to each stage its guard.

6.2 Case Study

As a case study we chose the blockchain application Cryptokitties and extracted
its corresponding ACEL from Ethereum using [12]. The model discovered using
our approach is accessible via https://gitlab.com/disco5/Gsm. For the cat
artifact, the discovered lifecycle is briefly presented in Table 2 and illustrated
in Fig. 3. The lifecycle presents two atomic stages S1 and S2 containing the
activities Birth and Breeding, respectively. The data conditions (K.milestone =

Pregnant) and (K.breedingWith.Kitty.milestone = FutureFather) of the Birth stage are
a result of the closing of the Breeding stage which indicates that the latter
always precedes the Birth stage. The condition (’K.breedingWith.Kitty’.milestone)
is an internal event indicating a reflexive interaction with cardinality one, i.e.,
a cat instance has a relation ’breedingWith’ with the main cat instance. For the
auction artifact, a sample of the discovered lifecycle is presented in Table 3
and illustrated by Fig. 4. The lifecycle presents one stage S1 containing the two

https://gitlab.com/disco5/Gsm/-/tree/main/discovery
https://gitlab.com/disco5/Gsm/-/tree/main/discovery
https://gitlab.com/disco5/Gsm
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atomic stages with the activities CompleteAuction and CancelAuction. The data
condition (A.milestone = Created) indicates that an auction needs to be created
to be completed or cancel and guards both from occurring to the same auction.
Indeed, as indicated in Fig. 1, once an auction is created, it can only be completed
or cancelled.

Table 2: Sample of a discovered cat lifecycle.

Stages Guards

S1 (Birth) (K.cooldownPeriod < Timestamp
and K.milestone == Pregnant and

K.breedingWith.Kitty.milestone == FutureFather )

S2 (Breeding) (K.milestone == Transferred or
K.milestone == Sold or

K.milestone == BecameMother)
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Breeding

Birth BecameMother

K.milestone == Transferred or
K.milestone == Sold or

K.milestone == BecameMother)

K.cooldownPeriod < Timestamp
and K.milestone == Pregnant and

K.breedingWith.Kitty.milestone == FutureFather

Pregnant

Fig. 3: Discovered GSM model: cat lifecycle

6.3 Evaluation and Discussion

We evaluate in this section our approach in terms of its ability to discover data
conditions and interactions as well as the performance of the clustering algo-
rithm.
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Table 3: Sample of a discovered Auction lifecycle.

Stages Guards

S1 (CompStagesleteAuction, CancelAuction) ( A.milestone == Created)
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SaleAuction

A.milestone == Created

CompleteAuction Successful

CancelledCancelAuction

Successful

Cancelled

Fig. 4: Discovered GSM model: auction lifecycle

Guards and interactions discovery evaluation. To evaluate our approach,
we refer to the GSM model of Cryptokitties derived from the whitepaper 9 of
the application and illustrated in Fig.1. For the Birth stage, we denote two
data conditions (k.’Pregnant’ and K.cooldownPeriod < Timestamp) and one exter-
nal event (k.’giveBirth’.onEvent()). Using our approach, the data conditions were
discovered in addition to one more condition (K.breedingWith.Kitty.milestone =
FutureFather). This additional condition is the opposite of the condition (not
k.’siringWithId’.’FutureFather’) of the Breeding stage, thus its discovery is accurate since
it differentiates between the two stages. External events were not considered as ex-
plained in Section 3.2. Regarding the interactions, in Fig.1 no interactions are shown
for the Birth stage but our approach detected a reflexive interaction represented by the
attribute K.breedingWith.Kitty.milestone. This shows that the Father’s lifecycle affects
that of the Mother.

However, the Procreation stage was not discovered since the condition (K.cooldownPeriod
< Timestamp) was only discovered for the Birth activity. This is due to the fact that in
the extracted log, the attribute ’cooldown’ only appears in events related to Breeding

9 https://www.cryptokitties.co/technical-details

https://www.cryptokitties.co/technical-details
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and not to Birth. When we examined the source code of Cryptokitties we found that
it checked and updated the value of ’cooldown’ for both Birth and Breeding activi-
ties, but only logged it for Breeding related events. Therefore, a more precise logging
mechanism would have allowed us to discover the Procreation stage.

This deduction is valuable for the redesign phase of the DApp and offers appropriate
data for conformance checking techniques. Indeed, if the logging was accurate DApp
developers would have noticed the need to add more guards before the execution of
certain activities.

Furthermore, our approach accurately discovered the SaleAuction stage, as it ap-
pears in Fig.1, with two atomic stages CompleteAuction and CancelAuction. The
guards of the atomic stages were not discover as they are solely composed of external
events which are out of the scope of this paper.
Nested stages discovery evaluation.We evaluated our hierarchical clustering based
approach using the silhouette coefficient (Definition 3), a metric for evaluating the
performance of clustering algorithms in terms of clusters’ cohesion and separation [15].

Definition 3 (Silhouette Coefficient). The silhouette coefficient of one sample
point in a cluster is given by:

S =
b− a

max(a, b)

Where, a is the average distance between the sample point and all the other points in
the same cluster; and b is the minimum average distance between the sample point and
the points of the other clusters.

The silhouette coefficient has a value in [−1, 1] for each point. Incorrect clustering
will give a score between 0 and -1, while a correct clustering will give a score between 0
and +1 and a score of zero indicates overlapping clusters. The silhouette coefficient of
the discovered stages S1 and S2 gives a score of 1 since each each cluster contains only
one point and the distance between the two points is 1 because they have no condition
in common. Therefore, our algorithm produced dense well separated clusters.
Discussion. The accuracy of the discovered lifecycles is due to our definition of artifact-
centric process instance (Section 4.1) and also to our use of ACEL logs. Normally
convergence and divergence problems arise when events of related artifacts objects are
duplicated in an artifact-centric process instance [5]. This did not happen in our case
since we only collect data from related events without considering their related activities
in the stage discovery. However, in the case of reflexive interactions this problems could
still arise. For example the Birth event is linked to three instances of the cat artifact and
can be duplicated for all of them. However, since ACEL supports transition relations,
i.e., an event can affect an instance without being part of its trace, the event relating
to the Birth activity is linked to the mother only and affects the father and the new
born cat. One of the limitations of our GSM models discovery approach is the fact that
it does not discover stage specific milestones, and hence milestone sentries (post data
conditions). It also allows for discovering only one guard per stage.

7 Related Work

Several approaches in the literature have explored the discovery of artifact-centric
processes. Most of them focus on the discovery of artifact types, their relations and the
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lifecycle of each artifact. They use classic discovery techniques to discover the artifact
lifecycles [5]. The resulting lifecycles are represented as procedural processes not suited
for the declarative nature of GSM. These approaches do not consider data conditions in
their discovery and only few of them consider interactions between lifecycles [11,3,17].
Interactions between artifacts are essential to determine behavioral dependencies in an
artifact-centric process. Furthermore, to the best of our knowledge, no work considers
blockchain logs as a source to discover artifact-centric processes. To the best of our
knowledge, only one work attempted to discover GSM models from event logs [18] and
they also used classic discovery techniques with a translation step. They discover a
petri-net for each lifecycle and then translate it to a GSM model by considering that
each transition is a stage. They do not take into account the interactions between
different artifacts and consider the data conditions of the petri-net as provided. They
also do not discover the hierarchy between stages, i.e., they only consider atomic stages.
The different levels of abstraction of operations are thus not discovered. The approach of
[17] discovers unbounded synchronization conditions between artifacts in GSM models.
These conditions are the number of related artifact instances that need to reach a
certain milestone before the stage of the main artifact can be opened. They represent
these conditions as part of the data conditions of a guard. However, they do not discover
other data conditions nor consider reflexive interactions. In [14], the authors propose
to group activities as stages through graph cuts. However they do not discover stages’
nesting and rely only on directly follows relations, not data conditions, when discovering
stages. This is not applicable with GSM models because two stages can be active at
the same time and all their activities will have strong directly follows relations.

8 Conclusion and Future Work

In this paper we presented a technique to discover GSM models from ACEL logs using
hierarchical clustering where similarity is determined by common data conditions with
the same information gain. We implemented and tested it on Cryptokitties, a blockchain
application. The results show that the technique discovers stages according to the data
recorded in the log. It also discovers interactions between artifacts, including reflexive
interactions. Future work will be focused on addressing limitations discussed in section
??. We will explore the use of post conditions in the discovery of nested stages. We will
also work on discovering several guards per stage using disjunctive data conditions.
Furthermore, we will investigate the refining of the clustering by setting a threshold
to IG when computing the distance. We are also planning a larger study to further
evaluate our approach using more case studies with more complex processes and richer
larger logs. We will also apply our approach to data source other than blockchain.
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