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RePoSt: Distributed Self-Reconfiguration Algorithm for Modular Robots
Based on Porous Structure

Jad Bassil†, Benoît Piranda†, Abdallah Makhoul†, and Julien Bourgeois†

Abstract— In this paper, we propose a new self-
reconfiguration scheme for modular robots based on a meta-
module design that allows to form a 3D porous structure. The
porous structure enables a parallel flow of modules inside it
without blocking. The meta-module can also be used to fill its
internal volume with an additional number of modules allowing
the structure to be compressible and expandable. Hence, it is
a potential for improving the self-reconfiguration process. We
first present the meta-module model and the porous structure
built using it. Then, we describe an algorithm to self-reconfigure
the structure from an initial shape to a given goal shape.

We evaluated the algorithm in simulation on structures com-
posed of up to 2,700 modules. We studied the performance in
term of parallelism, showed that the number of communications
is proportional to the number of motions and the execution time
varies linearly with the diameter of the configuration.

I. INTRODUCTION

A programmable matter can change its physical properties
such as its color or even its shape by self-reconfiguring.
To achieve such matter, we propose to build it using an
ensemble of autonomous and communicating tiny robots
which brings the capability of distributed computation to the
physical object itself. Furthermore, unlike the atoms of the
real matter which are strongly linked to each other, the mod-
ules that form the programmable matter have displacement
capabilities which allow, by local movements, the matter to
be reshaped. For instance, Roombots [1] is a modular robotic
system that is formed by modules that can autonomously
connect to each other to build furniture-like structures ca-
pable of autonomously moving, self-reconfiguring and self-
repairing. However, having mobile connected robots is not
enough to obtain a self-reconfigurable programmable matter.
If we consider that the robots initially build a shape A and
must at the end self-reorganize to build a shape B, a subset
of these robots has to move while avoiding collisions and
maintaining the connectivity of the assembly.

Self-reconfiguration algorithms [2] aims to transform
the initial shape of a modular robot into a given goal
shape using motions coordinated by communications. Self-
reconfiguration is an intricate task since the size of config-
uration space increases exponentially with the size of the
ensemble. It is an operation which can take a lot of time
because it involves a lot of movement of modules, as for
example, in the situation of Kilobots [3], it could take from
6 to 12 hours to reconfigure 1,000 Kilobots.
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Fig. 1: A box made of 3D Catoms, we remove top right
border modules to better present the internal structure. The
porous structure is made of meta-modules that construct a
scaffold in orange, some reserves of modules are drawn in
green and border meta-modules are drawn in blue.

Two main optimizations are to reduce the distance traveled
by the modules to reach their goal position and to allow
simultaneous motions of as many modules as possible.
Lengiewicz et al. [4] proposed an algorithm that adapts the
maximum flow search algorithm to define independent paths
along which robots can move in parallel in porous structures.
Another solution has been proposed by Thalamy et al. [5]
with a scaffolding structure that predefines independent paths
allowing the parallelization of moves.

An application of such a self-reconfigurable programmable
matter is an electronic clay that makes a digital twin syn-
chronized with real matter. Electronic clay can be deformed
manually or by command to create a tangible digital 3D
model of an object. The solution proposed in this paper may
allow a quick update of the object by providing a reserve of
matter close to the borders and increasing the simultaneous
movements of modules.

In this work we present a self-reconfiguration scheme
based on a porous structure formed using meta-modules
grouping several quasi-spherical robots able to move by
rolling on their neighbors: the 3D Catoms [6]. This original
meta-module shape was briefly introduced in our work in
[7]. Internal meta-modules construct a scaffolding structure
drawn in orange in Figure 1 that helps with the displacement
of modules inside the structure and at the same time allows
to store modules in the structure. The structure will be coated
by solid meta-modules (drawn in blue) in order to close the
volume.

Using these meta-modules we obtain a cubic lattice at



the meta-module scale composed of three-state cells that
can be "EMPTY", "SPARSE" or "FULL". "SPARSE" meta-
modules allow modules to flow in parallel through their
internal volume without blocking. A "FULL" meta-module
provides a new functionality: it is a storage place or a
reserve of material. Filling a meta-module allows to reduce
the distances covered during self-reconfiguration, either by
proposing outgoing modules closer to their delivery places
or by providing a place to store incoming modules. Our
self-reconfiguration solution exploits the properties of this
structure to both reduce the distances covered by the robots
and to parallelize their movements.

In the following sections, we will first detail our meta-
module model by presenting the basic operations to perform
to change its state including the dismantling, transfer and
reassembly of the meta-module (Section IV). And in the
second part, we will propose RePoSt: a self-reconfiguration
algorithm based on the "maximum flow search" algorithm
to determine a set of paths allowing simultaneous movement
of our meta-modules. It is based on a system of agents that
can have 4 different states during the reconfiguration process
(Section V).

II. RELATED WORKS

Many tunneling-based reconfiguration algorithms that use
meta-modules have been proposed in the literature [8, 9,
10, 11]. Tunneling allows in-place reconfiguration where
modules flow in parallel through the internal volume of
the ensemble. They are specific to deformable modules that
can contract and expand, which requires a specific hardware
design. In most of them, modules are grouped into meta-
modules seen as a unit to facilitate both planning and motion
operations. Parada et. al [12] described a meta-module
design that simulates the contract/expand capability. It can be
applied to a wide range of non deformable modular robots to
enable tunneling. Nonetheless, its only suitable for modules
placed in square cubic lattice.

Dewey et. al [13] described a generalized model for meta-
modules independent from module’s design which inspired
this work. It aims to achieve a holonomic system where
modules are arranged in meta-module units that can be in
two states: filled or empty. Modules flow from a filled meta-
module to an empty one to reach their goal position guided
by a planner.

Self-reconfiguration algorithms have been proposed in
which modules are arranged in a regular porous structure
leaving enough internal space for modules to flow through
it to facilitate motion and coordination have been proposed
in [14, 15, 16, 17]. However, they use structures applicable
only in a square cubic lattice.

Lengiewicz et. al [17] solved reconfiguration planning
through max-flow search to find the optimal number of
disjoint streamlines between boundaries for modules to flow
in concurrently. In this work, we use their same planning
approach, but we are not restricted to boundaries. Our meta-
module design allows modules to start flowing from any
position in the configuration.

Fig. 2: A 3D Catom with two rotation methods [6]. The
first on the octagonal surface area Ro and the second on the
hexagonal surface area Rh.

The most relevant self-reconfiguration work to ours is
described in [5], in this paper the authors propose a
self-reconfiguration scheme for modular robots based pro-
grammable matter. Modules flow from a reserve of modules
called Sandbox to build the internal scaffold of an object.
The object is then coated with a thin layer of modules to
present high fidelity to the goal shape. To the best of our
knowledge, it is the only work on self-reconfiguration that
uses the same modular robotic system as ours: 3D Catoms
[6] placed in a face-centered cubic lattice. However, it only
describes how we can initially build an object from a reserve
of modules. Our interest in this paper is in reconfiguring the
structure from its initial shape to a given goal shape.

In our work, we are focusing on proposing a distributed
self-reconfiguration scheme based on a 3D porous structure
constructed of 3D Catoms placed in a face-centered cubic
lattice based on a new meta-module design. It allows tun-
neling and offers the ability to store an additional number
of modules in its empty volume which can be exploited in
multiple ways to enhance the self-reconfiguration process in
the endeavour to achieve a programmable matter.

III. MODULAR ROBOTIC MODEL

In this work, we consider the self-reconfiguration of
modular robots made of 3D Catoms. 3D Catoms are quasi-
spherical micro-robots introduced by Piranda et. al [6].
They can be arranged in a 3D regular grid described as
a face-centered cubic lattice (FCC). Each 3D Catom has
12 connectors used to latch to and communicate with up
to 12 neighbors. A 3D Catom can move from a position
to an adjacent one by rotating on a fixed neighbor module
acting as a pivot using the electrostatic actuators situated at
the orthogonal and hexagonal surfaces as shown in Figure
2. Prototypes of 3D Catom are currently not available in
number but they may be simulated by the VisibleSim simu-
lator [18].

A 3D Catom motion is subject to the following local
constraints which need a motion coordination mechanism to
overcome:



(a) "SPARSE" (b) "FULL"

Fig. 3: Meta-module’s anatomy.

• Collision constraint: A moving 3D Catom should not
collide with another moving 3D Catom.

• Blocking constraint: The motion of a 3D Catom entering
a free grid cell should not be blocked by any other
module belonging to its neighborhood or not.

• Bridging constraint: A module cannot enter a free target
cell in the grid if there are two modules in opposite
directions adjacent to the target cell.

The connected ensemble of 3D Catoms forms a distributed
system where:
• All 3D Catoms execute the same distributed program

and perform the computations locally to each module.
• All communications are done in a local fashion where a

module can only communicate with its direct connected
neighbors when it is docked by exchanging messages.

• The interconnections graph must be connected all the
time. This adds an additional constraint to be considered
by a self-reconfiguration algorithm.

• All modules share the same coordinate system. Each
module stores its coordinates locally and updates them
after each movement.

• A 3D Catom can react to the reception of a message,
the connection and disconnection of a neighbor and any
internal event such as a timer event or a rotation end
event.

IV. META-MODULES ANATOMY

The meta-modules are composed of 10 attached 3D
Catoms forming a 3D hexagon shape. The meta-module
can be in two states "SPARSE" or "FULL" as in Figure 3.
A "FULL" meta-module groups 20 3D Catoms by storing
in its empty internal volume 10 additional modules. We
have experimentally verified that the size 10 is the smallest
size that allows the free flow of modules in the internal
volume of a "SPARSE" meta-module without being blocked
by the modules of the "SPARSE" meta-module that they
are traversing through. The meta-modules can be attached
to form a 3D structure in a 3D cubic lattice as shown in
Figure 4.

Filling a meta-module allows the structure to be compress-
ible or expandable by a factor of 2 since each "SPARSE"
meta-module can store in its empty volume the size of
another meta-module and the "FULL" meta-module can

expand by discarding its filling modules so they can be
reassembled at a free position.

This structure enables modules to flow freely inside of it.
In addition, all meta-modules, "SPARSE" or "FULL", have at
least one module who is not blocked, free to move, therefore
it can be dismantled and transported in any direction regard-
less of its position. Furthermore, the compressibility and the
expandability property of the structure does not constrain the
goal shape to have exactly the same number of meta-modules
as the initial shape.

Let N be the total number of modules in the initial
shape and SG the size of the goal shape in terms of meta-
module ("FULL" or "SPARSE"). Due to the expandability
and compressibility properties of the proposed structure:
⌈ N

20⌉ ≤ SG ≤ N
10 .

To change the shape of the meta-modules structure, we
use three basic operations that can be executed in the six
directions (up, down, front, back, left and right) in the meta-
modules scale cubic lattice by a meta-module to change the
state of its cell:

1) Dismantle operation changes the state of a cell from
"SPARSE" to "EMPTY" or "FULL" to "SPARSE" by
breaking or emptying the meta-module and transport-
ing its modules to an adjacent cell.

2) Transfer operation does not change the state of a cell.
It is only used to transport the modules through a
"SPARSE" cell.

3) Assemble operation changes the state of a cell from
"EMPTY" to "SPARSE" or "SPARSE" to "FULL".

Each movement is coded by a triplet in the form of <cur-
rent_position, next_position, state> where the three possible
values of state are:

1) MOVING: to indicate that the module must keep mov-
ing when next_position is reached.

2) WAITING: to indicate that the module must stop and
wait when next_position is reached to serve as a bridge
for next flowing modules, or to wait when filling a
meta-module before entering its final position to avoid
blocking.

3) IN_POSITION: to indicate that the module will reach
the final position for current operation.

All the moving operations can be applied by a 3D Catom
in playing a sequence of basic movements. All the sequences
must be pre-stored in the robot memory for the six possible
directions of motion. However, some operations can be
deduced from others. For example, a module needs only
to store the movements of the Transfer operations in 3
directions e.g. up, left and back. The movements for the
other directions can be deduced from the stored ones by
executing them in reverse order. In addition, the Assemble
and Dismantle operations are homologous, the movements
required to dismantle a meta-module are the same as the ones
required to build it but in reversed order. Hence, reducing the
number of operations to be stored in each module. Finally,
each module must store 2.24 kB of predefined movement
data. The details of the coding of the triplet in memory is



Fig. 4: Meta-modules structure in a 3D cubic lattice. a) "SPARSE" meta-modules in the XZ plane. b) "FULL" meta-modules
in the XZ plane. c) "SPARSE" meta-modules in the Y Z. d) "FULL" meta-modules in the Y Z plane.

proposed in Section V-D.1.
These operations can be exploited by a self-reconfiguration

planner who’s purpose will be to specify what operation to
execute on which meta-module.

The video1 presents in its first part the several possible
operations. First, it shows the Dismantle operation on a
"SPARSE" meta-module whose modules are reassembled at
a "SPARSE" cell that becomes "FULL". Second, the "FULL"
meta-module discard its filling modules to be transferred then
reassembled at an "EMPTY" cell that becomes "SPARSE".

V. SELF-RECONFIGURATION SCHEME

In this section, we describe RePoSt: a self-reconfiguration
algorithm for transforming a structure composed of the meta-
modules described in Section IV from its current shape to a
given goal shape.

The RePoSt algorithm is ran in all modules of the system.
This algorithm is mainly divided into three steps repeated
sequentially until the convergence to the goal shape:

1) Determining sources and destinations meta-modules.
2) Finding the maximum number of possible streamlines

connecting sources and destinations.
3) Dismantling sources meta-modules and transporting

their composing modules to destinations.
The steps are detailed in the next subsections.

During the reconfiguration process an agent can take four
different roles. For each of these roles it runs a corresponding
code:

1 YouTube video: https://youtu.be/6U3Wsroy-f8

START

Initiate the
search for

sources and
destinations

Destinations
exists

No

Yes

END

Yes

Initiate the search for
streamlines between

sources and
destinations

Notify sources
to start the

transportation 

Transportation
End 

No

Fig. 5: Global Coordinator agent’s flow chart

1) Global Coordinator (GC) module coordinates the sub-
stepping scheme. It is a fixed module that belongs to
a meta-module initially in the goal shape so it will not
change its position during the reconfiguration process.
At each iteration the Global Coordinator initiates each
step, detects its termination then initiates the next one
until the goal shape is achieved as shown in Figure
5. The termination of the reconfiguration process is
determined if no destinations are found after the first
step.

2) Meta-Module Leader (MML) is a module chosen in
each meta-module which handles computations and
communications between meta-modules. Messages be-
tween meta-modules are routed from a MML to an-
other. The MML can be any module in the meta-
module and in our scenario we choose the bottom left
one as presented in Figure 3.

3) Operation Coordinator (OPC) is the module that co-
ordinates the sequence of movements executed on
its meta-module along the streamline as described in
Section V-C.

4) Flowing Module (FM) is any module in motion flowing
along a streamline to reach its destination.

We assume that each module knows in addition to its
coordinates in the face-centered cubic lattice, the coordinates
of its meta-module in the square cubic lattice. This can be
efficiently disseminated by the GC whose coordinates are the
origin. On reception a MML set the coordinates of its meta-
module according to the direction of the sender. Moreover,
all meta-modules know the goal shape and can determine
if they are in it or not. This can be efficiently done using
the method described in [19] applied at the meta-module
scale where a module is replaced by a meta-module and the
computations are done by the MMLs.

A. Determination of sources and destinations

To reconfigure the system from its current shape to a given
goal one, we must first determine sources and destinations.
Sources are any meta-modules that are "FULL" or do not
belong to the goal shape. A "SPARSE" source can be disman-
tled and a "FULL" source can discard its filling modules. The
modules of a source are transported to a destination meta-
module. Destinations are "SPARSE" meta-modules adjacent
to an empty cell belonging to the goal shape that needs to

https://youtu.be/6U3Wsroy-f8


be occupied or a "SPARSE" meta-module to be filled. When
a source’s module arrives to a destination, the destination
handles its transportation to its meta-module goal position.
We assume that each meta-module must know the goal shape
and can determine locally if it belongs to it or not.

1) Sources Determination: A source is defined as a
"SPARSE" meta-module in the initial shape that does not
belong to the goal shape or a "FULL" meta-module at any
position. Initially, all "SPARSE" meta-modules that do not
belong to the goal shape are potential sources. Then, a
potential source is confirmed to be a source if it does not
disconnect the structure after being dismantled. We use the
connectivity preservation method described in [17] to choose
the meta-modules that when dismantled do not disconnect
the structure. Briefly, the connectivity preservation method
consists of building a tree rooted at the GC in a way that the
leaves meta-modules, when removed, do not disconnect the
structure. So, the tree leaves, if they are potential sources,
are confirmed to be sources.

2) Destinations determination: Potential destinations are
meta-modules adjacent to empty positions in the goal shape
or "SPARSE" meta-modules to be filled if the initial shape
is larger than the goal shape. A source meta-module will be
dismantled and transported to a destination meta-module that
coordinates the reassembling process of the source.

A problem that can occur is having an empty goal position
adjacent to multiple potential meta-modules destinations as
seen in Figure 6. When a potential destination is determined,
to avoid collision it must be a destination for only one empty
goal position. One solution is to report back to the GC which
empty goal positions a destination corresponds. In its turn,
the GC chooses one empty goal position for each potential
destination and notifies each destination about its associated
empty goal position.

B. Finding streamlines

After the sources and destinations are determined, the
maximum number of streamlines connecting sources and
destinations is found. A streamline is defined as a path of
adjacent meta-modules that starts from a source and ends at a
destination. Streamlines must be disjoint to avoid collisions
at intersections. This can be achieved by solving the clas-

Fig. 6: Two potential destinations for one empty goal posi-
tion.

Fig. 7: Simulation snapshot during modules transportation
(best viewed in color). The source at the right is dismantled
to be built back at the top of the destination on the left.

sical problem of maximum-flow in graphs between many
sources to many destinations with a unit edge capacity. A
distributed asynchronous version of the Edmond-karp max-
flow algorithm [20] proposed in [17] is used and adapted
for this purpose. Each source initiates a breadth-first search
for destinations. When a destination is reached a unique
path is backtracked and the unused branches of the tree are
cut off leaving a place for other trees to grow. Then, the
source confirms the path by sending a message along it to
confirm the streamline. The algorithm terminates when no
additional streamlines can be found. The GC needs to detect
the termination of this step before proceeding to modules
transportation. We use the distributed termination detection
method described in [21].

C. Modules transportation

After the establishment of disjoint streamlines connecting
sources and destinations, sources must be dismantled and
transported along the streamlines to the destinations. This is
done using the meta-modules operations described in Section
IV.

Each MML in a streamline knows the position of the
previous and next meta-module in the same streamline.
This information is used to determine the direction of
the operation to be executed on each meta-module. The
Dismantle operation is executed on source meta-modules,
Transfer operation is executed on intermediate meta-modules
to transfer modules to the next meta-module in streamline
and Assemble operation is executed at destinations. Figure 7
shows modules transportation from a source on the right to a
destination on the left. In this figure, the modules in orange
are in a waiting state serving as a bridge for purple moving
modules to flow without blocking.

To avoid blocking and collisions during the flow of mul-
tiple modules, modules flow in one line following the same
path. A message-passing traffic-light style motion coordina-
tion protocol described in [22] is used to keep a space gap
between every two moving modules. Moreover, the structure
described in Section IV keeps enough space between meta-
modules to allow the modules to flow in parallel in multiple



adjacent streamlines without collisions.
Each moving module performing an operation keeps an

iterator on the sequence of movements of the operation being
executed. A MML in the streamline assigns a module in its
meta-module as an OPC according to the operation to be
executed. For the Dismantle operation, it is the last module
connected to the meta-module in the operation’s direction.
For all the other operations, it is the first module that a
moving module from previous operation get connected to.
The algorithm executed by the FMs is described in Algo-
rithm 1. When a FM module is attached to the OPC, it means
that it ended the previous operation and is ready to start
executing the sequence of movements of the next operation.
So, the OPC sends the COORDINATE_MSG containing
the operation to be executed by the FM and the value of
the iterator so the FM knows from which movement it must
begin. On reception, the FM will start moving until reaching
the state IN_POSITION meaning that it ended the movements
to be executed for the current operation or WAITING meaning
that the module must stop and serve as a bridge for next
modules to pass it (Algorithm 1 line 6-14). If the operation is
a Dismantle operation, when a FM becomes IN_POSITION, it
notifies its operation coordinator so it can proceed to the next
module. Note that the function rotateTo executed by a FM
encompasses the motion coordination algorithm that requires
additional exchanged messages between the moving module,
its pivot and its future latching points. The reader can refer
to [22] for detailed description of the motion coordination
algorithm.

D. Complexity

In this section, we detail the memory needed and the
number of basic treatments used by the algorithm in order to
express the complexity of our method in terms of memory
and time.

1) Memory complexity: Meta-modules execute basic op-
erations to transform the shape of the structure. Therefore,
each module must store in its memory a database containing
the sequence of movements to be executed for each op-
eration. Table I shows the number of movements for the
Assemble operations into a "SPARSE" or "FULL" meta-
module and Transfer operations that must be stored in a
module. Other operations can be deduced from the stored
one as mentioned in Section IV.

Each movement is stored in the database using 4 bytes
in order to embed the 6× 4bits used for coordinates plus
2bits for the state. As presented in the Table I, there are 559
records in total stored in the movements database requiring
2.24 kB.

It is important to note that despite the fact that this memory
is quite large in the context of modular robots, it is a
constant size. The other variables used locally for the self-
reconfiguration algorithm are also constant. This allows us to
obtain a constant complexity in memory for this algorithm.

2) Time complexity: As presented in section V, the algo-
rithm repeats M rounds, which consists in transporting mod-
ules along the streamlines. The value of M varies enormously

Algorithm 1: Distributed control algorithm for a
Flowing Module

Data: Operation: The operation in execution.
Data: mvt_it = 0: Iterator on Operation’s movements.

1 Msg Handler COORDINATE_MSG(Op, it):
2 Operation← Op ;
3 mvt_it← it ;
4 rotateTo(Operation[mvt_it].nextPosition) ;

5 Event ROTATION_END:
6 if mvt_it = Operation.size∧Operation.isAssemble

then
7 meta-module reached goal position;
8 else
9 if Operation.state = MOV ING then

10 mvt_it← mvt_it + 1 ;
11 rotateTo(Operation[mvt_it].nextPosition) ;
12 else
13 if Operation.isDismantle∧Operation.state =

IN_POSIT ION then
14 Notify the Operation Coordinator;

15 Event REMOVE_NEIGHBOR:
16 if Operation.state = WAITING then

// Bridge
17 if all modules have passed then
18 mvt_it← mvt_it + 1 ;
19 rotateTo(Operation[mvt_it].nextPosition);

in function of the initial, intermediate and final shapes of the
self-reconfiguration. It is mainly affected by the number of
streamlines that can be established at each iteration.

We consider that the duration of a basic motion can be
majored by the time tm and that the duration of the whole
self-reconfiguration is mainly due to the number of motions
which are much longer than the communications times.

The longest stage is the motions of modules along the
longest streamline of a round. The length of such a streamline
can be majored by the diameter of the configuration divided
by the diameter of a meta-module, we call d this dimension.
Considering that the number of movements applied for
Dismantle and Assemble operations can be majored by N0
and that the number of movements applied for a Transfer
operation can be majored by N1, we can express the number

TABLE I: Number of movements per operation

Operation Direction Nb of Movements
Assemble ("SPARSE") Up/Down 41
Assemble ("SPARSE") Right/Left 59
Assemble ("SPARSE") Back/Front 64
Assemble ("FULL") Up/Down 72
Assemble ("FULL") Right/Left 78
Assemble ("FULL") Back/Front 91

Transfer Up/Down 50
Transfer Right/Left 60
Transfer Back/Front 44

Total: 559
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Fig. 8: Simulation snapshots for the 7 iterations during the
reconfiguration of 48 meta-modules in an L shape to a C
shape.

of basic motions realized to cross a streamline of length x
by: Nmotions = 2×N0 + (x−1)×N1.

The longest streamline being d long, we can ma-
jorize x by d, then we have: Nmotions < 2×N0+(d−1)×
N1. Therefore, the time complexity can be expressed as
O(M×Nmotions× tm).

VI. EXPERIMENTS

In this section, we aim to show the functioning of our
method and show the different operations realized in parallel
by the meta-modules along the streamlines. Moreover, we
show that our algorithm is capable of using the predefined
operations to reconfigure a structure from an initial shape to
a goal one in a 3D space.

All simulations are done in VisibleSim [18]: a discrete-
event simulator for modular robots. Figure 8 shows snapshots
of simulation during the reconfiguration of an L shape made
of 48 meta-modules placed in the XZ plane to a C shape in
the YZ plane.

The video1 shows in its second part a simulation of the
reconfiguration of 270 "SPARSE" meta-modules placed in
a 3 layer square shape into a humanoid shape of size 267
meta-modules. The additional 3 meta-modules in the initial
shape are filled inside the structure during the last iterations.
In its last part, the video shows the expansion of a 6×6×3
configuration with "FULL" meta-modules at the bottom layer
into a 6×6×4 configuration. All "FULL" meta-modules are
emptied and their filling modules are transported in parallel
to form an additional layer of "SPARSE" meta-modules at
the top of the configuration in one iteration.
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Fig. 9: Motion parallelism and number of streamlines during
the reconfiguration of 48 meta-modules from a L shape to a
C shape.

Figure 9 shows the number of streamlines and the num-
ber of modules moving concurrently along the streamlines
against time steps during the reconfiguration example of
Figure 8. One time step corresponds to the time taken by
a module to move from one position in the grid to an
adjacent one. Each bell curve in the graph corresponds to an
iteration. The number of streamlines and motions becomes
null between two peaks which corresponds to the time
required for the first two steps of the algorithm: finding
sources and destinations and determining the streamlines.
It can be seen that it is negligible compared to the time
required to transport the modules. The maximum number
of concurrent motions corresponds to the size of the meta-
module times the number of streamlines meaning that all
the modules of the dismantled source are moving at the
same time. It reaches the maximum from iteration 2 to 7.
At iteration 1 it is less than the maximum because some
modules have reached their goal position while others have
not yet started their movements.

Figure 10 evaluates the number of communications and
the time for the reconfiguration of an L shape to a C shape
while varying the size of the configuration. Figure 10a shows
that the number of exchanged messages is proportional to the
number of motions which increases when the configuration
size increases. Figure 10b shows that the execution time
increases linearly in the diameter of the system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed RePoSt: a new self-
reconfiguration scheme for 3D Catoms based on a 3D
porous structure composed of 3 states meta-modules. We
first presented the meta-modules anatomy and showed how
it can be exploited to expand or compress the structure
by filling it with a reserve of modules and improve the
self-reconfiguration process in terms of parallelism of mo-
tions. We then described a distributed multi-agent self-
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Fig. 10: Number of exchanged messages vs number of
motions and simulation time versus the diameter of the
system for the reconfiguration of an L shape to a C shape
while varying the configuration sizes in {20,28,36,44,52}
meta-modules

reconfiguration algorithm to change the shape of the structure
into a goal one by dismantling meta-modules, transferring
their composing modules along disjoint streamlines and re-
building them in empty positions in the goal shape. We
showed examples of reconfiguration in simulation and stud-
ied the motion parallelism. We also provided a communica-
tion and time analysis and showed that the number of ex-
changed communications is linear in the number of motions
and the time is linear in the diameter of the ensemble.

In future works, we aim to study the expandability and
compressibility properties of our structure and how they can
be exploited to enhance the self-reconfiguration process. For
instance, during an iteration, empty meta-modules near the
goal shape can be filled, then its filling modules are trans-
ported during the next iteration so the distance from source
meta-modules to the goal shape is reduced. In addition, we
aim to provide a solution to better represent the goal object.
Perhaps, we can change the shape of boundary meta-modules
to better mimic the boundary of the goal shape and use filling
modules for coating it.
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