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SPANNING TREES IN Z-COVERS OF A FINITE GRAPH AND MAHLER
MEASURES

RICCARDO PENGO AND DANIEL VALLIÈRES

Abstract. Using the special value at u = 1 of Artin-Ihara L-functions, we associate to every
Z-cover of a finite graph a polynomial which we call the Ihara polynomial. We show that the
number of spanning trees for the finite intermediate graphs of such a cover can be expressed in
terms of the Pierce-Lehmer sequence associated to a factor of the Ihara polynomial. This allows
us to express the asymptotic growth of the number of spanning trees in terms of the Mahler
measure of this polynomial. Specializing to the situation where the base graph is a bouquet or
the dumbbell graph gives us back previous results in the literature for circulant and I-graphs
(including the generalized Petersen graphs). We also express the p-adic valuation of the number
of spanning trees of the finite intermediate graphs in terms of the p-adic Mahler measure of
the Ihara polynomial. When applied to a particular Z-cover, our result gives us back Lengyel’s
calculation of the p-adic valuations of Fibonacci numbers.
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2 R. PENGO AND D. VALLIÈRES

1. Introduction

The aim of the present paper is to explain how the number of spanning trees in a Z-cover of
finite graphs evolves, by providing an explicit recipe to compute the invariants which describe
this evolution in terms of a polynomial that can be associated to the cover in question.

1.1. Historical remarks. Before describing in detail the main results of this paper, let us pro-
vide some overview of the main questions which motivated the present paper.

Iwasawa theory is concerned with the study of the evolution of certain invariants within a
tower of objects. The first example of this is provided by the evolution, as n→ +∞, of the group
of Fpn-rational points of the Jacobian of a curve defined over Fp, which was studied by Weil and
led him to formulate his celebrated conjectures concerning the properties of the zeta functions
associated to varieties defined over a finite field. Iwasawa was inspired by these results to pursue
the study of the evolution of class groups of number fields in a tower of cyclotomic extensions,
which are analogous to the extensions of a function field that are obtained by increasing the field
of constants, as explained in [Ros02, Page 188]. This initiated a large series of works, which
study the evolution of different invariants along a tower of number fields whose Galois group
is a p-adic Lie group (see [Kak11] for a survey). Moreover, Iwasawa theory has been extended
to the study of the evolution of invariants of many different arithmetic objects, such as elliptic
curves or even general motives (see [FK06] for one of the most general frameworks available at
present).

In a somehow different direction, ideas from Iwasawa theory have found applications also
outside number theory and algebraic geometry. More precisely, it has been shown that the
torsion subgroups of the first homology groups of a tower of hyperbolic 3-manifolds whose
base is the complement of a knot or a link evolve according to a pattern which is very similar to
the one appearing in Iwasawa theory (see [HMM06; KM08; Uek17]). Considering hyperbolic
manifolds allows one to study towers whose groups of deck transformations are not necessarily
profinite, which is not possible when one studies towers of number fields. For instance, one can
consider a Z-cover of hyperbolic manifolds. In this case, when the base of the tower consists
of the complement of a knot in the three dimensional sphere, the Alexander polynomial of the
knot in question can be used to describe explicitly the growth of the torsion inside the first
homology groups of the manifolds in question, as proven by Ueki [Uek20] in the p-adic case,
and by González-Acuña and Short [GS91] and Riley [Ril90] in the Archimedean case. These
results are particularly interesting in view of the widely explored analogy between number fields
and knots (see [Mor12] for a survey).

Finally, an analogue of Iwasawa theory has also been developed to study the evolution of
the so-called Picard group of degree zero of a finite connected graph X , as one moves along a
tower. This finite group, defined for instance in [CP18, Section 1.3], is analogous to the class
group of a number field, or to the Picard group of degree zero of a curve defined over a finite
field. Its cardinality, usually denoted by κ(X), is given by the number of spanning trees of the
graph in question. The evolution of this number when the finite graph in question varies along
a tower has been the subject of a series of papers written by several authors in collaboration
with the second named author of the present paper [Val21; MV22; MV23; LV23; DV22]. More
precisely, if ℓ ∈ N is a rational prime and

(1.1) · · · → Xℓn → · · · → Xℓ → X1 = X

is a tower of finite graphs, such that each Xℓn/X is a Galois cover with Galois group Z/ℓnZ, it
was shown in [Val21; MV23; MV22] that there exist non-negative integers µℓ, λℓ and an integer
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νℓ such that

(1.2) ordℓ(κ(Xℓn)) = µℓ · ℓn + λℓ · n+ νℓ,

for n large enough, where ordℓ denotes the usual ℓ-adic valuation on Q. Furthermore, it was
shown in [LV23] that if p is another rational prime different than ℓ, then there exist a non-negative
integer µp and an integer νp such that

(1.3) ordp(κ(Xℓn)) = µp · ℓn + νp,

for n large enough. On the other hand, given an integer d ≥ 1, and a tower of finite graphs

· · · → X
(d)
ℓn → · · · → X

(d)
ℓ → X1 = X,

such that each X(d)
ℓn /X is a Galois cover with Galois group (Z/ℓnZ)d, it was shown in [DV22]

that there exists a polynomial P ∈ Q[X, Y ] of total degree at most d, and linear in Y , such that

(1.4) ordℓ(κ(X
(d)
ℓn )) = P (ℓn, n),

for every n which is large enough. These advances in the Iwasawa theory of finite graphs can
be seen as being analogous to more classical theorems and conjectures in the Iwasawa theory
of number fields. More precisely, (1.2) is analogous to a classical theorem of Iwasawa [Iwa59]
for Zℓ-extensions of number fields, whereas (1.3) is analogous to a result of Washington for the
cyclotomic Zℓ-extension of an abelian number field, proved in [Was78], and (1.4) is akin to a
conjecture of Greenberg, which is discussed by Cuoco and Monsky in [CM81, Section 7].

The results (1.2) and (1.4) were originally proven by working on the “analytic side” of Iwa-
sawa theory, i.e. by constructing appropriate elements of the Iwasawa algebra

ZℓJZdℓK ∼= ZℓJT1, . . . , TdK.

On the other hand, Gonet [Gon21; Gon22] reproved (1.2) using a module theoretical approach,
which was recently shown to be closely related to the analytic approach in the work of Kleine and
Müller [KM22]. More precisely, this work proves an analogue of the Iwasawa main conjecture
in the setting of graphs, which allows Kleine and Müller to prove (1.4) in an algebraic way.
Moreover, Kataoka’s recent work [Kat23] studies the Fitting ideals that appear in this setting,
and Kleine and Müller’s more recent work [KM23] shows how to adapt some of these ideas to
the non abelian setting.

To conclude this overview, let us mention that the recent work of Lei and Müller [LM23a;
LM23b] shows that one can obtain Galois towers of finite graphs by looking at isogeny graphs of
elliptic curves defined over a finite field, endowed with a level structure. In the case of ordinary
elliptic curves, these graphs generalize the celebrated isogeny volcanoes, which are vastly used
in cryptography, and have been classified in recent work of Bambury, Campagna and Pazuki
[BCP22].

1.2. Main results. Inspired by the results mentioned in the previous section, we show in the
present paper how the invariants appearing in (1.2) and (1.3) can be explicitly computed when
(1.1) comes from a Z-cover of finite graphs. More precisely, every Galois cover of graphs
Y/X with Galois group G can be constructed from a voltage assignment, which is a function
α : EX → G such that α(e) = α(e)−1 for every e ∈ EX , where EX denotes the set of directed
edges of X , and e denotes the inverse of an edge (see Section 3.1 for further details). Indeed,
if G is an arbitrary group and α : EX → G is a voltage assignment, one can construct a graph
X(G,α), introduced by Gross in [Gro74], which generalizes the usual notion of a Cayley graph.
Moreover, if Y/X is a Galois cover of finite graphs, with Galois group G, there exists a voltage
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assignment α : EX → G and an isomorphism of covers Y/X ∼= X(G,α)/X , as outlined in
[DV22, Section 3].

Now, let G be an arbitrary group, and α : EX → G be a voltage assignment. Then, for every
normal subgroup H ⊴ G which has finite index, one has a finite graph XH := X(G/H,αH),
where αH : EX → G/H denotes the voltage assignment obtained by composing α with the
natural projection map π : G↠ G/H . If each of the finite graphs XH is connected, then it is a
Galois cover of X , whose Galois group is canonically isomorphic to G/H . In this setting, one
of the main goals, which is related to the results mentioned above, is to describe how the number
of spanning trees κ(XH) depends on H . When G = Zdℓ for some d ≥ 1, this is the content of
the results which we recalled in the previous section, that lead to (1.2), (1.3) and (1.4).

As we mentioned above, in this paper we focus on the case G = Z, and we provide a global
analogue of the results obtained in (1.2) and (1.3). More precisely, for every finite graph X
and every voltage assignment α : EX → Z such that each finite graph Xn := X(Z/nZ, αn) is
connected, where αn := αnZ, we show in Theorem 3.6 that the number of spanning trees κ(Xn)
of the graph Xn is intimately related to the Pierce-Lehmer sequence {∆n(Jα)}+∞

n=1 associated
to a factor Jα ∈ Z[t] of the Ihara polynomial Iα ∈ Z[t±1], which is a Laurent polynomial
that can be explicitly constructed from the voltage assignment α, as we explain in Section 3.3.
The Archimedean and p-adic absolute values of the aforementioned Pierce-Lehmer sequence,
introduced by Pierce [Pie16] and Lehmer [Leh33], turn out to be related to the Archimedean and
p-adic Mahler measures of the polynomial Iα, as we explain in Section 2.3. In particular, these
Mahler measures provide the main term which explains the order of growth of the different
absolute values of the Pierce-Lehmer sequence {∆n(Jα)}+∞

n=1. This suffices to describe the
asymptotic behaviour of the Archimedean (respectively p-adic) absolute value of the number of
spanning trees κ(Xn) whenever no root of Iα lies on the unit circle of C (respectively Cp), as we
explain in Corollaries 3.10 and 3.15. In particular, we show in Examples 3.13 and 3.14 that our
Archimedean result generalizes previous work of A.D. Mednykh and I.A. Mednykh [Med18;
MM19].

One may of course wonder about the behaviour of the Archimedean or p-adic absolute value
of κ(Xn) when Iα has some of its roots on the Archimedean (or p-adic) unit circle. In fact,
this question is central to understand the behaviour of the sequence κ(Xn), as for almost every
prime p all the roots of Iα will lie on the p-adic unit circle. In the case of the Archimedean
absolute value, one can only get some upper and lower bounds for κ(Xn), but not an exact
asymptotic, as follows from Weyl’s equidistribution theorem (see Remark 3.12). In the p-adic
case, to understand the absolute value of κ(Xn) one needs to take into account a correcting
factor which is described in Theorem 2.3. Doing so, we arrive at the following theorem, which
gives a global analogue of (1.2) and (1.3) at the same time.
Theorem 1.1. Let X be a finite connected graph whose Euler characteristic χ(X) does not
vanish, and α : EX → Z be a voltage assignment such that for every n ≥ 1 the finite graph
Xn := X(Z/nZ, αn) is connected. Moreover, for every prime p ∈ Z we write

µp(X,α) := −mp(Iα)/ log(p),
wheremp(Iα) denotes the logarithmic p-adic Mahler measure of the Ihara polynomial Iα. Then,
for every rational prime p there exist a finite set Np(X,α) ⊆ N of integers coprime to p, and
an integer Rp(X,α) ≥ 0 such that for every n ⊆ Np(X,α) and every r ∈ {0, . . . , Rp(X,α)}
there exist two integers λp(X,α, n) ≥ 0 and νp(X,α, n, r) such that
(1.5) ordp(κ(Xn)) = µp(X,α) · n+ λp(X,α, n) · ordp(n) + νp(X,α, n, r)

for every n ∈ Sp(X,α, n, r), where Sp(X,α, n, r) consists of those n ∈ N such that:
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• N | n for each N ∈ n;
• N ′ ∤ n for each N ′ ∈ Np(X,α) \ n;
• ordp(n) = r, if r < Rp(X,α), or ordp(n) ≥ Rp(X,α) if r = Rp(X,α).

Moreover, the finite set Np(X,α), the integer Rp(X,α) and the invariants λp(X,α, n) and
νp(X,α, n, r) can be explicitly computed in terms of the polynomial Iα.

In other words, the previous theorem, which is proven in Section 3.6, shows that once we
fixed the base graph X , the voltage assignment α : EX → Z and the prime number p, we can
subdivide N in a finite number of sequences

{Sp(X,α, n, r) : n ⊆ Np(X,α), 0 ≤ r ≤ Rp(X,α)},

given by imposing certain divisibility conditions. Along each of these sequences, the invariant
ordp(κ(Xn)) can be computed as a linear form in n and ordp(n). In particular, if ℓ is a prime
number, one can apply this formula to the Zℓ-tower given by

· · · → X(Z/ℓkZ, αℓk) → · · · → X(Z/ℓZ, αℓ) → X,

and one gets back the formulas (1.2) and (1.3), as we explain in Corollaries 2.8 and 2.9. To
conclude, we show in Section 3.7 that our Theorem 1.1 allows one to recover a well known
formula which computes the p-adic valuations of Fibonacci numbers, which is due to Lengyel
[Len95].

1.3. Notations and conventions. Let p be a rational prime. We let Cp denote a fixed comple-
tion of an algebraic closure of the p-adic rational numbers Qp. As usual, | · |p and ordp denote
the p-adic absolute value and the p-adic valuation on Cp, respectively. They are related via

ordp(x) = − log |x|p
log p

,

for all x ∈ Cp, and they are normalized so that ordp(p) = 1.
If G is an abelian group, not necessarily finite, we let

G∨ = HomZ(G,W∞),

whereW∞ denotes the group of roots of unity in an algebraic closure Q ⊆ C of Q. An element
of G∨ will be called a character of finite order. Here, we depart from the usual notation, since
G∨ is not necessarily the Pontryagin dual ofG. For each rational prime p, we fix once and for all
an embedding Q ↪→ Cp. Via these embeddings, we view the characters in G∨ as taking values
in Cp once a rational prime p has been fixed. If n is a positive integer, then we letWn denote the
group of nth roots of unity. The symbol N = {1, 2, . . . } refers to the collection of all positive
integers.

2. Mahler measures and Pierce-Lehmer sequences

In this section, we remind the reader about the resultant of two polynomials, which appears
in Section 2.1, and about the p-adic and Archimedean Mahler measures of polynomials, which
we treat in Section 2.2. Moreover, we devote Section 2.3 to collect some results about Pierce-
Lehmer sequences. In particular, Theorems 2.2 and 2.3 provide explicit formulas to compute
the p-adic valuations of Pierce-Lehmer sequences.
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2.1. Resultant. Let F be a field and let

p(t) = amt
m + . . .+ a0 = am

m∏
i=1

(t− αi)

and

q(t) = bnt
n + . . .+ b0 = bn

n∏
j=1

(t− βi)

be two polynomials in F [t] of degree m and n, respectively. Here, the roots αi and βi are
assumed to be in a fixed algebraic closure of F . The resultant Res(p, q) of p and q is defined to
be

(2.1) Res(p, q) = anmb
m
n

m∏
i=1

n∏
j=1

(αi − βj)

and is easily seen to be an element of F . Let r(t) be another polynomial with coefficients in F .
From the definition (2.1), the two properties

Res(p, q) = (−1)mnRes(q, p) and Res(p · r, q) = Res(p, q) · Res(r, q)
follow immediately. Furthermore, one has

anm

m∏
i=1

q(αi) = Res(p, q) = (−1)mnbmn

n∏
j=1

p(βj)

which can be seen as an instance of Weil’s reciprocity law for the projective line over F . Finally,
the resultant can also be defined as the determinant of the Sylvester matrix of p and q, as shown
for instance in [Coh93, Lemma 3.3.4]. This allows one to define the resultant Res(f, g) ∈ R
of any pair of polynomials f, g ∈ R[t] which have coefficients in an arbitrary commutative ring
with unity R.

2.2. Mahler measure. Recall that if
f(t) = adt

d + . . .+ a0 ∈ C[t]
is a nonzero polynomial of degree d, which can be factorised as

f(t) = ad

d∏
i=1

(t− αi)

for some α1, . . . , αd ∈ C, then one defines its Archimedean Mahler measure to be

(2.2) M∞(f) := |ad|∞
d∏
i=1

max{1, |αi|∞} ∈ R>0.

This invariant, originally studied by Lehmer [Leh33], was generalized by Mahler [Mah62] to
polynomials with any number of variables.

Now, let p be a rational prime and let

g(t) = bdt
d + . . .+ b0 ∈ Cp[t]

be a nonzero polynomial of degree d, which factors as

f(t) = bd

d∏
i=1

(t− βi)
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for some β1, . . . , βd ∈ Cp. Following [Uek20], we define similarly the p-adic Mahler measure
of g(t) to be

Mp(g) := |bd|p
d∏
i=1

max{1, |βi|p} ∈ R>0.

This invariant, and its Archimedean analogue, are clearly multiplicative. Furthermore, the non-
Archimedean Mahler measure of a polynomial g(t) =

∑d
i=0 bit

i ∈ Cp[t] can be easily computed
from its coefficients, thanks to the formula

(2.3) Mp(g) = max{|bi|p | i = 0, . . . , d},

which was proved by Ueki in [Uek20, Proposition 2.7]. Finally, we introduce the logarithmic
Archimedean Mahler measure

m∞(f) := log(M∞(f))

of a polynomial f(t) ∈ C[t], and analogously the logarithmic p-adic Mahler measure

(2.4) mp(g) := log(Mp(g))

of a polynomial g(t) ∈ Cp[t].

Remark 2.1. We note in passing that mp(f) ∈ R differs from the p-adic logarithmic Mahler
measure introduced by Besser and Deninger in [BD99], which is a p-adic number.

2.3. Pierce-Lehmer sequences. Let

f(t) = adt
d + ad−1t

d−1 + . . .+ a0 ∈ Z[t],

with ad ̸= 0 and write

f(t) = ad

d∏
i=1

(t− αi)

for some α1, . . . , αd ∈ Q. The associated Pierce-Lehmer sequence is defined to be

(2.5) ∆n(f) = and

d∏
i=1

(αni − 1) = Res(f(t), tn − 1) ∈ Z.

Fix now a rational prime p and an embedding Q ↪→ Cp, as we did in Section 1.3, and view all
the algebraic numbers α1, . . . , αd as lying in Cp via this embedding.

Theorem 2.2. With the notation as above, one has

|∆n(f)|p =Mp(f)
n

d∏
i=1

|αi|p=1

|αni − 1|p.

Proof. Noting that for α ∈ Cp and n ∈ N, one has

|αn − 1|p =

{
|α|np , if |α|p > 1;

1, if |α|p < 1,



8 R. PENGO AND D. VALLIÈRES

one calculates

|∆n(f)|p = |ad|np
d∏
i=1

|αi|p>1

|αi|np
d∏
i=1

|αi|p=1

|αni − 1|p

=Mp(f)
n

d∏
i=1

|αi|p=1

|αni − 1|p.

□

It follows that in order to determine the p-adic valuation of the numbers ∆n(f), one needs to
understand the p-adic valuation of numbers of the form αn− 1, where n ∈ N and α ∈ Qp ⊆ Cp

is a p-adic number satisfying ordp(α) = 0. The following theorem, which is inspired by [Uek20,
Lemma 2.11], provides a first step in this direction.

Theorem 2.3. Let α ∈ Qp be such that |α|p = 1, and assume that α is not a root of unity. Let
m be the maximal ideal of the valuation ring O of Qp and let N(α) be the multiplicative order
of α modulo m. Then, there exists a function c : N → Q such that c(m) is constant for m large
and for which

(2.6) ordp(α
n − 1) =

{
0, if N(α) ∤ n;
ordp(n) + c(ordp(n)), if N(α) | n.

Proof. First of all, let us write

(2.7) |αn − 1|p =
∏
ζ∈Wn

|α− ζ|p

where Wn ⊆ O× denotes the group of roots of unity of order dividing n. Now, the natural
embedding of the ring of Witt vectors of Fp inside O gives rise to the Teichmüller lift

τ : F×
p ↪→ O×,

which is a morphism of groups that sends any β ∈ F×
p to a root of unity whose order coincides

with the multiplicative order of β in F×
p . Therefore, if π : O ↠ O/m = Fp is the natural

projection map, the root of unity ξ = τ(π(α)) ∈ O× has order N = N(α), and we have that
|α− ξ|p < 1 because τ is a section of π.

We can then use this root of unity ξ to write the following formula

(2.8) |αn − 1|p =
∏
ζ∈Wn

|α− ξ + ξ − ζ|p,

which follows from (2.7). Using this formula, we can prove immediately the first part of (2.6).
Indeed, if N ∤ n then for every ζ ∈ Wn the order of the root of unity ζ/ξ is not a power of
p, because otherwise there would exist some r ∈ N such that ζpr = ξp

r , from which it would
follow that ξnpr = 1, and thus that N |npr. Since we know that (N, p) = 1, this would imply
that N |n, contradicting our assumption. Therefore, [Uek20, Lemma 2.9] implies that

|ξ − ζ|p = |1− ζ/ξ|p = 1

for all ζ ∈ Wn, which entails that |α− ξ + ξ− ζ|p = 1 for every ζ ∈ Wn, because |α− ξ|p < 1
by construction. Finally, we see thanks to (2.8) that |αn − 1|p = 1, which proves the first part
of the statement (2.6).
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Suppose now that N |n. As before, we have that |ξ− ζ|p = 1 unless the order of µ := ζ/ξ is
a power of p. Therefore

(2.9) |αn − 1|p =
∏

µ∈Wpm

|α− ξµ|p =
∏

µ∈Wpm

|α− ξ + ξ(1− µ)|p,

where m := ordp(n). Moreover, if µ has order pk, for some k ∈ N ∪ {0} such that

pk−1(p− 1)ordp(α− ξ) ≥ 1

we have that |ξ(1− µ)|p = |1− µ|p > |α− ξ|p, as follows from the classical fact that

ordp(1− µ) =
1

pk−1(p− 1)

for every root of unity µ ∈ Wpm \ {1} of order pk, whose proof can be found for example in
[Uek20, Lemma 2.9].

Hence, if we define s ∈ N ∪ {0} to be the minimal non-negative integer such that

(2.10) ps(p− 1)ordp(α− ξ) > 1,

and we set r := min(s,m), we see from (2.9) that

|αn − 1|p =

 ∏
µ∈Wpr

|α− ξµ|p

 ·

 ∏
µ∈Wpm\Wpr

|α− ξ + ξ(1− µ)|p


= |α− ξ|p ·

 ∏
µ∈Wpr\{1}

|α− ξµ|p
|1− µ|p

|1− µ|p

 ·

 ∏
µ∈Wpm\Wpr

|1− µ|p


= |α− ξ|p ·

 ∏
µ∈Wpr\{1}

|α− ξµ|p
|1− µ|p

 ·

 ∏
µ∈Wpm\{1}

|1− µ|p


=

|α− ξ|p ·
∏

µ∈Wpr\{1}

|α− ξµ|p
|1− µ|p

 · |n|p,

where the last equality follows from the fact that∏
µ∈Wpm\{1}

|1− µ|p =
∏

µ∈Wn\{1}

|1− µ|p =

∣∣∣∣∣Res
(
tn − 1

t− 1
, t− 1

)∣∣∣∣∣
p

= |n|p.

Therefore, we see that ordp(αn − 1) = ordp(n) + c(ordp(n)), where the expression

c(m) := ordp(α− ξ) +
∑

µ∈Wpr\{1}

(ordp(α− ξµ)− ordp(1− µ)) = ordp(α
pr − ξp

r

)− r

depends only on m and α, and is evidently constant when m becomes sufficiently large. This
proves the second part of (2.6), and allows us to conclude. □

Remark 2.4. Let α ∈ Q. Then, there exists a finite subset S ⊆ N such that for every rational
prime p ∈ N \ S and every embedding ι : Q(α) ↪→ Qp we have that |ι(α)|p = 1 and

ordp(ι(α)− τ(π(ι(α)))) ∈ N,
which implies that r = 0 is the maximal integer such that (2.10) holds true.
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From Theorems 2.2 and 2.3, we obtain several corollaries. First of all, one can obtain an ex-
plicit formula for the p-adic valuation of the elements of the Pierce-Lehmer sequence associated
to a polynomial f ∈ Z[t].

Corollary 2.5. Let f ∈ Z[t] \ {0}. Then, for every prime p and every n ∈ N we define
µp(f) := −mp(f)/ log(p)

Bp,n(f) := {β ∈ Qp : f(β) = 0, |β|p = 1, |βn − 1|p < 1},
and for every β ∈ Bp,n(f) we set

sp(β) := min{s ∈ N : ps(p− 1)ordp(β − τp(πp(β))) > 1}
and we write rp,n(β) := min(ordp(n), sp(β)). Using this notation, we have that

ordp(∆n(f)) = µp(f) · n+#Bp,n(f) · ordp(n) + νp,n(f),

where νp,n(f) :=
∑

β∈Bp,n(f)

(
ordp(β

prp,n(β) − τp(πp(β))
prp,n(β)

)− rp,n(β)
)

.

Proof. We see from Theorem 2.2 that

ordp(∆n(f)) = µp(f) · n+
∑

β∈Bp,n(f)

ordp(β
n − 1),

and Theorem 2.3 implies that

ordp(β
n − 1) = ordp(n) + ordp(β

prp,n(β) − τp(πp(β))
prp,n(β)

)− rp,n(β)

for every β ∈ Bp,n(f), which allows us to conclude. □

Moreover, we can use Theorems 2.2 and 2.3 to pin down the asymptotic behaviour of the p-
adic valuation of the Pierce-Lehmer sequence associated to an integral polynomial which does
not vanish on the p-adic unit circle, or on roots of unity.

Corollary 2.6. Let f(t) ∈ Z[t] \ {0}, and assume that f(α) ̸= 0 for every α ∈ Cp such that
|α|p = 1. Then, we have
(2.11) |∆n(f)|p =Mp(f)

n

for all n ∈ N. If one only assumes that f(ζ) ̸= 0 for every ζ ∈ W∞, one has
|∆n(f)|1/np →Mp(f)

as n→ ∞.

Proof. This follows directly from Theorems 2.2 and 2.3. We leave the details to the reader. □

Remark 2.7. A similar result holds true for the Archimedean Mahler measure. More precisely,
we see directly from the definition given in (2.2) that for every polynomial f ∈ Z[t] \ {0} that
does not vanish on the unit circle of C, the asymptotic
(2.12) |∆n(f)|∞ ∼M∞(f)n

holds true as n → +∞. If one only assumes that the roots of f are not roots of unity, then one
sees that
(2.13) |∆n(f)|1/n∞ →M∞(f),

as n → ∞. This follows from an inequality originally proved by Gelfand, as explained for
instance in [EW99, Lemma 1.10]. On the other hand, if f has some root on the unit circle of C,
the behaviour of the absolute values |∆n(f)|∞ is quite chaotic, as exemplified for instance by
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[EW99, Theorem 2.16], which shows that the sequence of ratios |∆n(f)/∆n−1(f)|∞ converges
if and only if f has no roots on the unit circle of C.

The p-adic valuation of various subsequences of a Pierce-Lehmer sequence can be understood
from Theorems 2.2 and 2.3. For instance, the following corollary shows that such a p-adic
valuation exhibits a behavior similar to the p-adic valuation of the class number inZp-extensions
of number fields.

Corollary 2.8. Let f(t) ∈ Z[t] \ {0} be a polynomial which does not vanish at roots of unity.
Then, for each rational prime p there exist two constants k0 ∈ N and c ∈ Z, depending on p
and f , such that the following equality

ordp(∆pk(f)) = µp · pk + λp · k + c

holds true for every k ≥ k0(p), where µp := −mp(f)/ log(p) and

λp := #{αi | ordp(αi) = 0 and ordp(αi − 1) > 0}.

Proof. From Theorem 2.2, we have

ordp(∆n(f)) = −mp(f)

log p
· n+

d∑
i=1

|αi|p=1

ordp(α
n
i − 1).

Let αi ∈ Qp be a root satisfying |αi|p = 1. Since (N(αi), p) = 1, one has

ordp(α
pk

i − 1) = 0

unless N(αi) = 1 by Theorem 2.3. But N(αi) = 1 precisely when ordp(αi − 1) > 0. □

The following corollary is proved similarly, and we omit the proof.

Corollary 2.9. Let f(t) ∈ Z[t] \ {0} be a polynomial which does not vanish at roots of unity.
Let p and ℓ be two distinct rational primes. Then, there exist two constants k0 ∈ N and c ∈ Z,
depending on p, ℓ and f , such that the equality

ordp(∆ℓk(f)) = µp · ℓk + c,

holds true for every k ≥ k0, where again µp = −mp(f)/ log(p).

Remark 2.10. In the situation where the polynomial f(t) is monic, the p-adic valuation of a
Pierce-Lehmer sequence was also studied in [JQ15]. In this situation, there is no p-adic Mahler
measure appearing in the formulas.

Remark 2.11. Note that the Pierce-Lehmer sequence {∆n(f)}n∈N associated to any polynomial
f ∈ Z[t] satisfies a linear recurrence, as explained in [Leh33, Section 8]. Therefore, studying the
p-adic valuation of Pierce-Lehmer sequences can be seen as a special case of the more general
problem of studying the p-adic valuation of linearly recurrent sequences, which has been the
subject of great attention (see for instance [Bil+22]). We also refer the interested reader to the
works [EEW00; Fla09], which treat problems related to the p-adic valuation of Pierce-Lehmer
sequences.
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3. Graph theory

The aim of this section is to prove Theorem 3.17, which provides an explicit expression for the
p-adic valuation of the number of spanning trees in aZ-towers of graphs in terms of a polynomial
naturally associated to this tower, which we call the Ihara polynomial and which we define in
Section 3.3. In particular, Theorem 1.1 can be seen as a simplified version of Theorem 3.17,
as we explain in Section 3.6. To do so, we first recall some fundamentals about graphs and
their covers in Sections 3.1 and 3.2. Then, we devote Section 3.3 to the proof of Theorem 3.6,
which provides an explicit formula relating the number of spanning trees of the members of
a Z-cover of graphs to the Pierce-Lehmer sequence associated to the Ihara polynomial of this
tower. We provide an explicit example which verifies this relation in Section 3.4. Moreover,
Section 3.5 shows how to combine Theorem 3.6 with the results proven in Section 2.3, to provide
some asymptotic expressions for the growth of the number of spanning trees in a Z-tower. In
particular, this generalizes two previous results of A.D. Mednykh and I.A. Mednykh [Med18;
MM19].

3.1. Galois covers of locally finite graphs. The aim of this sub-section is to formally introduce
the kind of graphs which are considered in this article, and their Galois theory.

Locally finite graphs. LetX = (VX ,EX) be a graph in the sense of Serre (see [Ser77] and also
[Sun13]), where VX and EX are two sets, to be interpreted as the sets of vertices and edges of
X . In particular, each edge e ∈ EX has an origin o(e) ∈ EX and a terminus t(e) ∈ EX , giving
rise to the incidence map inc : EX → VX × VX defined as e 7→ inc(e) = (o(e), t(e)). We have
also an inversion map EX → EX , denoted by e 7→ ē, such that (o(e), t(e)) = (t(e), o(e)) and
e = e ̸= e for every e ∈ EX . A graph is called finite if both VX and EX are finite sets. For each
vertex v ∈ VX , we let

EX,v = {e ∈ EX | o(e) = v}
denote the set of edges with origin at v. A graph X for which EX,v is finite for all v ∈ VX is
called locally finite. In this case, one defines the valency (or degree) of a vertex v ∈ VX to be

valX(v) = |EX,v|.

Any finite graph is in particular locally finite.

Assumption 3.1. In this paper, all graphs will be locally finite.

Let us recall that a path c = e1 · . . . · em in a graph X consists of a sequence of directed
edges ei ∈ EX satisfying t(ei) = o(ei+1) for each i ∈ {1, . . . ,m − 1}. The origin and the
terminus of the path are defined as o(c) = o(e1) and t(c) = t(em) respectively. A graph X
is called connected if given any two vertices v1, v2 ∈ VX , there exist a path c in X such that
o(c) = v1 and t(c) = v2. Finally, a loop based at a vertex v0 ∈ X is a path c in X such that
o(c) = t(c) = v0. This allows one to define the fundamental group of X based at a vertex
v0 ∈ VX , which is denoted by π1(X, v0), as the set of loops based at v0, considered modulo
homotopy (see [Sun13, Section 3.5] for the precise definition of this equivalence relation in the
context of graphs), endowed with the group operation given by the concatenation of paths (see
[Sun13, Section 5.3] for details).

Galois covers of graphs. Let Y and X be two graphs. A morphism of graphs f : Y → X is
called a cover (or a covering map) if the following two conditions are satisfied:

(1) f : VY → VX is surjective,
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(2) for all w ∈ VY , the restriction f |EY,w
induces a bijection

f |EY,w
: EY,w

≈→ EX,f(w).

We will often refer to Y/X as a cover if the covering map is understood from the context. Given
a cover f : Y → X , one defines as usual Autf (Y/X) to be the subgroup of Aut(Y ) consisting
of the automorphisms ι ∈ Aut(Y ) satisfying f ◦ ι = f . Again, we will often write Aut(Y/X)
instead of Autf (Y/X) if f is understood.

Let us also recall that a cover f : Y → X is called Galois if the following two conditions are
satisfied:

(1) the graph Y is connected (and hence also X),
(2) the group Aut(Y/X) acts transitively on the fiber f−1(v) for all v ∈ VX .

If Y/X is a Galois cover, we write Gal(Y/X) instead of Aut(Y/X). In this case, one has
the usual Galois correspondence between subgroups of Aut(Y/X) and equivalence classes of
intermediate covers of Y/X .

Voltage assignments. Let X be a graph and let G be a group. A voltage assignment on X with
values in G is defined to be a function α : EX → G satisfying

(3.1) α(ē) = α(e)−1

for every e ∈ EX . Each such voltage assignment can be defined starting from an orientation of
X , which is a subset S ⊆ EX such that for each edge e ∈ EX , either e or e belong to S, but
not both. Then, to get a voltage assignment as above, it suffices to define it on any orientation
S and set α(s) := α(s)−1 for every s ∈ S.

Covers from voltage assignments. Given a graph X , a group G and a voltage assignment

α : EX → G,

one can construct a new graph X(G,α) as follows:
• the vertices of X(G,α) are given by VX ×G;
• the edges of X(G,α) are given by EX ×G;
• the origin, terminus and inverse maps are defined as:

o(e, σ) = (o(e), σ)

t(e, σ) = (t(e), σ · α(e))

(e, σ) = (ē, σ · α(e))

for each edge (e, σ) ∈ EX ×G.
It is easy to see that if X is locally finite than so is X(G,α), and that the map of graphs

p : X(G,α) → X

defined as p(v, σ) := v on each vertex (v, σ) ∈ VX × G, and as p(e, σ) := e on each edge
(e, σ) ∈ EX ×G, is actually a covering map. Moreover, this covering map is Galois whenever
X(G,α) is connected, and in this case Gal(X(G,α)/X) ∼= G canonically.

To conclude, let us observe that the construction of X(G,α) is functorial with respect to α.
More precisely, for each morphism of groups f : G → H one gets a new voltage assignment
β := f ◦ α with values in H , and a natural map of graphs

(3.2) f∗ : X(G,α) → X(H, β)
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defined as f∗(v, σ) := (v, f(σ)) on each vertex (v, σ) ∈ VX × G, and as f∗(e, σ) := (e, f(σ))
on each edge (e, σ) ∈ EX ×G. Finally, it is easy to see that this morphism f∗ is a covering map
whenever f is surjective.

Monodromy representations. Let X be a graph and α : EX → G be a voltage assignment with
values in a group G. Then, the monodromy representation attached to α at a vertex v0 ∈ VX is
given by the following map

(3.3)
ρα,v0 : π1(X, v0) → G

[e1 · . . . · en] 7→ α(e1) · . . . · α(en)

which is easily seen to be a well-defined morphism of groups. Moreover, this map can be
used to detect when the graph X(G,α) is connected, and thus when the natural covering map
p : X(G,α) → X is Galois, as we recall in the following theorem, which is proven in [RV22,
Section 2.3.1].

Theorem 3.2. Let X be a connected graph, and α : EX → G be a voltage assignment. Then,
the graph X(G,α) is connected if and only if the monodromy representation ρα,v0 attached to
α at some (equivalently, any) vertex v0 ∈ VX is surjective.

Remark 3.3. Let X be a connected graph, v0 ∈ VX a vertex of X , and α : EX → G a voltage
assignment such that ρα,v0 is surjective. Fix moreover a universal cover π : X̃ ↠ X , and a point
w0 ∈ X̃ such that π(w0) = v0. Then, it can be shown that the intermediate Galois cover of
X̃ → X given by X(G,α) corresponds to the subgroup φw0(ker(ρα,v0)) ⊴ Gal(X̃/X), where
φw0

: π1(X, v0)
∼−→ Gal(X̃/X) is the usual group isomorphism.

Systems of Galois covers. LetX be a graph andα : EX → G a voltage assignment taking values
in a groupG. Given a group homomorphism f : G→ H and a vertex v0 ∈ VX , the monodromy
representation attached at v0 to the Galois cover f∗ defined in (3.2) is given by f ◦ ρα,v0 . This
shows in particular that if the graph X(G,α) is connected, the graph X(H, f ◦ α) will be
connected whenever f is surjective.

Moreover, any morphism of groups f : G→ H induces another morphism of groups

(3.4) ker(f) → Aut(X(G,α)/X(H, f ◦ α))

which sends each τ ∈ ker(f) to the automorphism ϕτ : X(G,α) → X(H,α) defined by setting
ϕτ (v, σ) := (v, τ · σ) for each vertex (v, σ) ∈ VX ×G, and ϕτ (e, σ) := (v, τ · σ) for each edge
(e, σ) ∈ EX × G. The morphism of groups (3.4) is actually an isomorphism whenever f is
surjective, as follows from the unique lifting theorem [Sun13, Theorem 5.1].

In particular, the previous discussion shows that any voltage assignment α : EX → G induces
a system of Galois covers indexed by the lattice of quotients of the group G. As we will see in
the upcoming sections of this paper, it is interesting to study how various graph invariants evolve
when moving across this system.

3.2. The number of spanning trees in finite abelian covers of finite graphs. One particularly
interesting kind of invariant of a connected finite graphX is given by its Picard group Pic0(X),
also known as the Jacobian, sandpile or class group of X . Its cardinality, denoted by κ(X),
is given by the number of spanning trees of the graph X . The aim of this section is to recall,
following [Val21, Section 3], how this number changes in an abelian cover of a finite graph,
using Ihara’s determinant formula.



SPANNING TREES IN Z-COVERS OF A FINITE GRAPH AND MAHLER MEASURES 15

Ihara zeta functions. To do so, we will make use of another invariant of a finite connected
graphX , namely its Ihara zeta function, which we denote by ZX(u). This is a rational function
of u, which can be explicitly computed thanks to the Ihara determinant formula, which we
recall below in (3.5), and is proven in [KS00] and [Bas92]. More precisely, given an ordering
VX = {v1, . . . , vg} of the vertices of X , we let AX := (ai,j) ∈ Zg×g denote the adjacency
matrix of X , which is defined by setting ai,j := #{e ∈ EX : o(e) = vi, t(e) = vj}. Moreover,
we let DX := (di,j) ∈ Zg×g denote the valency (or degree) matrix of X , which is a diagonal
matrix defined by setting di,i := valX(vi) for each i ∈ {1, . . . , g}. Then, we can write the Ihara
zeta function ZX(u) using the following explicit formula:

(3.5) ZX(u) =
1

(1− u2)−χ(X) · det(Idg − AXu+ (DX − Idg)u2)
,

where Idg denotes the g × g identity matrix, and χ(X) := |VX | − |EX |/2 is the Euler charac-
teristic of X . In particular, we have that ZX(u)−1 = (1− u2)−χ(X) · hX(u), where

hX(u) := det(Idg − AXu+ (DX − Idg)u
2) ∈ Z[u]

is a polynomial.

Hashimoto’s formula. This explicit formula can be used to relate the Ihara zeta function to the
number of spanning trees of X . More precisely, given a finite connected graph X , one has

(3.6) h′X(1) = −2χ(X)κ(X),

as was proven by Hashimoto in [Has90] (see also [Bas92]). Such a formula, which can be
considered as an analogue of the class number formula in the context of graph theory, admits
an equivariant generalization.

Artin-Ihara L-functions. Given a Galois cover of finite connected graphs Y/X , one can asso-
ciate to any linear complex representation ρ : Gal(Y/X) → GLn(C) an Artin-Ihara L-function
LY/X(u, ρ). This admits an explicit description analogous to (3.5). More precisely, let dρ ∈ N
denote the degree of the representation ρ, and fix an ordering VX = {v1, . . . , vg} of the vertices
of X , and a section of the projection VY → VX . Then, [Ter11, Theorem 18.15] shows that the
Artin-Ihara L-function LY/X(u, ρ) can be explicitly computed thanks to the following formula:

LY/X(u, ρ) =
1

(1− u2)−χ(X)·dρ · det(Idgdρ − Aρu+Qρu2)
,

where Aρ, Qρ ∈ Cgdρ×gdρ are two explicit matrices, whose definitions can be found in [Ter11,
Definition 18.13]. As before, this implies that LY/X(u, ρ)−1 = (1 − u2)−χ(X)·dρ · hY/X(u, ρ),
where

hY/X(u, ρ) := det(Idgdρ − Aρu+Qρu
2) ∈ C[u]

is a polynomial. In particular, if Gal(Y/X) is abelian and ψ is a character of Gal(Y/X), we
have that LY/X(u, ψ)−1 = (1− u2)−χ(X) · hY/X(u, ψ), where

(3.7) hY/X(u, ψ) := det(Idg − Aψu+ (DX − Idg)u
2),

because dψ = 1 and Qψ = DX − Idg, as follows easily from [Ter11, Definition 18.13].
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Spanning trees and abelian covers. To conclude this sub-section, let us recall that the Artin-
Ihara L-functions satisfy the Artin formalism (see [Bas92] and [ST00]). This implies that for
every Galois cover of finite graphs Y/X , with Galois group G := Gal(Y/X), the Ihara zeta
function ZY (u) admits the following factorization:

ZY (u) =
∏

ρ∈Irr(G)

LY/X(u, ρ)
dρ ,

where Irr(G) denotes the set of equivalence classes of complex irreducible representations of a
finite group G (see [Ter11, Corollary 18.11]). Therefore, we see easily that

(3.8) hY (u) =
∏

ρ∈Irr(G)

hY/X(u, ρ)
dρ ,

using the relation χ(Y ) = |G| · χ(X) =
(∑

ρ∈Irr(G) d
2
ρ

)
χ(X) between the Euler character-

istics of Y and X , which is explained in [Sun13, Page 55]. Finally, if ρ0 denotes the trivial
representation of G, and χ(X) ̸= 0, we have that

|G| · κ(Y ) = κ(X) ·
∏
ρ ̸=ρ0

hY/X(1, ρ)
dρ ,

thanks to the formulas (3.6) and (3.8), combined with the fact that

hY/X(1, ρ0) = hX(1) = 0,

which holds because the Laplacian matrixDX −AX is singular (as explained in [CP18, Propo-
sition 2.8]). In particular, if Y/X is a Galois cover of finite graphs such that χ(X) ̸= 0 and
G := Gal(Y/X) is abelian, we have

(3.9) |G| · κ(Y ) = κ(X)
∏
ψ ̸=ψ0

hY/X(1, ψ),

where ψ0 denotes the trivial character of G, and ψ ∈ G∨ runs over all non-trivial characters of
G.

3.3. Exact formulas for the number of spanning trees. In this sub-section, we introduce
what we take the liberty to call the Ihara polynomial Iα associated to a voltage assignment
α : EX → G. When G = Zd for some d ∈ N, this polynomial was introduced, with a
slightly different terminology, in the work of Silver and Williams [SW21] (see Remark 3.4 for
a comparison between the two definitions). Moreover, when G ∈ {Z,Zℓ}, for some rational
prime ℓ, this polynomial was considered by Lei and the second author of the present paper
[LV23]. In the general case, this invariant consists of an element of the group ring Z[G], which
we write as a generalized polynomial ring Z[tG] by adding a formal variable t.

The Ihara polynomial. More precisely, let X be a finite connected graph such that χ(X) ̸= 0,
and let us start with a voltage assignment α : EX → G. As before, let us fix an ordering of the
vertices of X , given by VX = {v1, . . . , vg}. Then, we can define the matrix

Aα(t) :=

 ∑
e∈EX

inc(e)=(vi,vj)

tα(e)

 ∈ Z[tG]g×g,



SPANNING TREES IN Z-COVERS OF A FINITE GRAPH AND MAHLER MEASURES 17

which we use to introduce the Ihara polynomial

(3.10) Iα(t) = det(DX − Aα(t)) ∈ Z[tG],

where DX denotes, as before, the valency (or degree) matrix of X .
We note in particular that the Ihara polynomial is self-reciprocal. In other words, we have the

following identity:

(3.11) Iα
(
1

t

)
= Iα(t),

which comes from the fact that the transpose of the matrix Aα(t) equals the matrix Aα(t−1) by
definition. Moreover, for every morphism of group f : G→ H we have by definition that

(3.12) Iβ = f∗(Iα),
where β := f ◦ α and f∗ : Z[tG] → Z[tH ] denotes the morphism of rings induced by f .

Remark 3.4. ForG = Zd with d ∈ N, this polynomial was introduced in [SW21] under the name
of Laplacian polynomial. In particular, an unsigned d-periodic graph X in the sense of [SW21,
Section 6] can be obtained as X = X(Zd, α), where X is a finite graph and α : EX → Zd is a
voltage assignment.

The Ihara polynomial and the number of spanning trees. Suppose now that X is a finite con-
nected graph such that χ(X) ̸= 0, and fix a voltage assignment α : EX → G with values in
some finite abelian group G, such that the induced graph X(G,α) is connected. The following
result expresses how the number of spanning trees changes from X to X(G,α), using the Ihara
polynomial Iα.

Proposition 3.5. For every finite connected graph X such that χ(X) ̸= 0, and every voltage
assignment α : EX → G with values in a finite abelian groupG, such that the associated graph
X(G,α) is connected, we have that

|G| · κ(X(G,α)) = κ(X) ·
∏
ψ ̸=ψ0

Iα(ψ(1))

where Iα(ψ(1)) := ψ(Iα) ∈ C is obtained by applying to Iα the natural linear extension of the
character ψ to the group ring Z[tG].

Proof. First of all, observe that Iα(ψ(1)) = det(DX − Ãψ), where we define

Ãψ :=

 ∑
e∈EX

inc(e)=(vi,vj)

ψ(α(e))

 ∈ Cg×g

for every character ψ ∈ G∨. In particular, one can prove that Ãψ = Aψ, as explained in [MV22,
Corollary 5.3]. Therefore, we see from the definition of hY/X(u, ψ), which was given in (3.7),
that Iα(ψ(1)) = hY/X(1, ψ) for every character ψ ∈ G∨. To conclude the proof, it is just
sufficient to substitute this equality in the explicit expression

|G| · κ(Y ) = κ(X)
∏
ψ ̸=ψ0

hY/X(1, ψ)

which was recalled in (3.9). □
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Z-towers of graphs and Pierce-Lehmer sequences. From now on, we will specialize to the case
of Z-towers of graphs. More precisely, we will consider a finite connected graph X such that
χ(X) ̸= 0, endowed with a voltage assignment α : EX → Z with values in the additive group
of the integers, such that the derived graph X∞ := X(Z, α) is connected. In this case, we have
a natural isomorphism Z[tZ] ∼= Z[t±1]. Therefore, we see from (3.11) that the Ihara polynomial
can be written as

Iα(t) = c0 + c1(t+ t−1) + · · ·+ cb(t
b + t−b)

for some c0, . . . , cb ∈ Z such that cb ̸= 0. Clearing denominators, we can define

Iα(t) := tbIα(t) ∈ Z[t],

which is a polynomial of degree 2b. Finally, we define e := ordt=1(Iα), and we write

(3.13) Iα(t) = (t− 1)eJα(t)

for some polynomial Jα ∈ Z[t] such that Jα(1) ̸= 0.
Now, one can associate to the voltage assignment α : EX → Z a system of finite graphs

Xn := X(Z/nZ, πn ◦ α), where πn : Z ↠ Z/nZ is the natural quotient map. In particular,
each of these graphs will be connected, because X∞ is assumed to be connected, and the maps
πn are surjective. Moreover, the number of spanning trees of each graph Xn can be computed
in terms of a Pierce-Lehmer sequence associated to the polynomial Jα, as the following result
shows.

Theorem 3.6. Let X be a finite connected graph such that χ(X) ̸= 0, and fix a voltage assign-
ment α : EX → Z such that the graphX∞ := X(Z, α) is connected. Moreover, for every n ∈ N
we let Xn := X(Z/nZ, πn ◦ α), where πn : Z ↠ Z/nZ is the natural quotient map. Then, the
number of spanning trees of Xn can be computed as

(3.14) κ(Xn) = (−1)b(n−1) · κ(X) · ne−1 · ∆n(Jα)

∆1(Jα)

where the integers b := −ordt=0(Iα) ≥ 0 and e := ordt=1(Iα) ≥ 1 are defined in terms
of the Ihara polynomial Iα ∈ Z[t±1], whose definition was recalled in (3.10). Moreover,
{∆n(Jα)}n∈N is the Pierce-Lehmer sequence, defined as in (2.5), which is associated to the
polynomial Jα(t) := tb · (t− 1)−e · Iα(t) ∈ Z[t].

Proof. Applying Proposition 3.5 to the Galois cover Xn/X , we see that

(3.15) n · κ(Xn) = κ(X) ·
∏
ψ ̸=ψ0

Iαn(ψ(1))

where αn := πn ◦ α for every n ∈ N. Moreover, it is easy to see using (3.12) that

(3.16)
∏
ψ ̸=ψ0

Iαn(ψ(1)) =
∏
ψ ̸=ψ0

Iα(ψ(1)) =
∏
ζ∈W ∗

n

Iα(ζ),

where W ∗
n := Wn \ {1} denotes the set of non-trivial roots of unity whose order divides n.

Now, let us observe that

(3.17)

∏
ζ∈W ∗

n

Iα(ζ) =
∏
ζ∈W ∗

n

(ζ−b · Iα(ζ)) = (−1)b(n−1)
∏
ζ∈W ∗

n

Iα(ζ)

= (−1)b(n−1)Res

(
Iα(t),

tn − 1

t− 1

)
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as follows from the definition of resultant recalled in Section 2.1. Thus, we see that

(3.18) n · κ(Xn) = (−1)b(n−1) · κ(X) · Res
(
Iα(t),

tn − 1

t− 1

)
by combining (3.15) with (3.16) and (3.17). To conclude, it suffices to observe that

Res

(
Iα(t),

tn − 1

t− 1

)
= Res

(
t− 1,

tn − 1

t− 1

)e

· Res
(
Jα(t),

tn − 1

t− 1

)
= ne · Res

(
Jα(t),

tn − 1

t− 1

)
= ne · ∆n(Jα)

∆1(Jα)
,

thanks to the multiplicative property of resultants. □

Remark 3.7. Formulas such as (3.18) appear also in the theory of curves over finite fields and
in knot theory. Indeed:

• if C is a non-singular, geometrically irreducible projective curve over a finite field Fq
with at least one rational point over Fq, and J is its Jacobian variety, then [Ros02, Corol-
lary, Page 110] implies that

#J(Fqn) = |Res(PC(t), tn − 1)|,
where PC(t) is the Weil polynomial of C, defined as the reverse of the L-polynomial
LC(t);

• if K ⊆ S3 is a knot, and Mn is a Galois cover of M := S3 \ K, with Galois group
Z/nZ, Fox’s formula (see [Web79]) implies that

#H1(Xn,Z) = |Res(AK(t), tn − 1)|,
where AK(t) is the Alexander polynomial associated to the knot K.

Remark 3.8. Let us note that, combining Theorem 3.6 with Corollaries 2.8 and 2.9, one can re-
cover the formulas (1.2) and (1.3) for theZℓ-towers {Xℓn}+∞

n=0 induced from aZ-tower {Xn}+∞
n=1.

Remark 3.9. Since the polynomial Jα is a reciprocal polynomial, it is known that the quantity
|∆n(Jα)/∆1(Jα)| is a square when n is odd and Jα is a monic polynomial, as explained for
instance in [EEW00, Section 2]. It follows that if p and ℓ are two distinct rational primes with
ℓ odd and Jα is monic, then

ordp(κ(Xℓk)) = ordp(κ(X)) + ordp
(
∆ℓk(Jα)/∆1(Jα)

)
,

and the parity of ordp(κ(Xℓk)) for all k ≥ 1 depends only on the parity of ordp(κ(X)). This
remark explains the parity of the p-adic valuation of the number of spanning trees in various
Zℓ-towers appearing in [Val21; MV23; MV22] and [LV23], since in each case the tower in
question is constructed from a voltage assignment α : EX → Zℓ such that α(EX) ⊆ Z. We
point out as well that the formula (3.14) is compatible with various results in the literature, such
as [KMM17, Theorem 5.5], [Med18, Theorem 5.5], and [MM19, Theorem 3].

3.4. An explicit example. Let us revisit [Val21, Example 2] using the results proven in the
present paper. Consider the bouquet graph X = B2 on two loops and pick an orientation
S = {s1, s2}. Consider the function α : S → Z given by α(s1) = 3 and α(s2) = 5. Note
that α(s21 · s̄2) = 1, and thus Theorem 3.2 implies that X(Z, α) is connected. Therefore, so are
all the finite graphs Xn := X(Z/nZ, πn ◦ α), where πn : Z ↠ Z/nZ denotes the canonical
projection map. The infinite graph X(Z, α) is a connected 4-regular graph which is not a tree,
but it is a quotient of the infinite 4-regular tree. All the finite graphs Xn are finite quotients of
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X(Z, α). Moreover, one can draw each of these graphs Xn, using their definition, and we did
so for n ∈ {1, . . . , 10, 25, 27} in the following figure, where we also drew a line Xn → Xm

whenever m | n:

...
...

...
...

...

...

Note in particular that the Z2-tower considered in [Val21, Example 2] corresponds to the
leftmost column of the previous figure. For the Z-tower considered in the present example, the
Ihara polynomial is given by

(3.19) Iα(t) = 4− (t3 + t−3)− (t5 + t−5) = t−5 · (t− 1)2 · Jα(t),

with Jα(t) = −(t8+2t7+4t6+6t5+8t4+6t3+4t2+2t+1). Using SageMath [SAGE], we
computed the number of spanning trees κ(Xn), the resultants Res(Iα(t), t

n−1
t−1

) and the values
of the Pierce-Lehmer sequence ∆n(Jα) for each n ∈ {1, . . . , 10}. Doing so, we obtained the
values which are tabulated in the following table, which shows in particular that the relationship
between these invariants is the one predicted by (3.14):

n 1 2 3 4 5 6 7 8 9 10

κ(Xn) 1 4 3 32 5 300 1183 1024 12321 16820

Res(Iα(t),
tn−1
t−1

) 1 -8 9 -128 25 -1800 8281 -8192 110889 -168200

∆n(Jα) -24 68 -34 272 -34 1700 -5746 4352 -46546 57188

3.5. Asymptotics for the number of spanning trees. The aim of this sub-section is to ob-
tain some asymptotic results for the number of spanning trees in a Z-tower of graphs, using
the relation between the number of spanning trees and Pierce-Lehmer sequences, provided by
Theorem 3.6, in combination with the asymptotic results for Pierce-Lehmer sequences, which
we explored in Section 2.3.

Archimedean asymptotics. We will start from the Archimedean asymptotics of the number of
spanning trees, which are provided by the following corollary of Theorem 3.6.

Corollary 3.10. Let X be a finite connected graph such that χ(X) ̸= 0, and fix a voltage
assignment α : EX → Z such that X(Z, α) is connected. Then, if the polynomial Jα defined by
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(3.13) does not have any root on the unit circle of C, one has

κ(Xn) ∼ ne−1 κ(X)

|∆1(Jα)|
M∞(Iα)

n

as n→ +∞.

Proof. This follows directly by combining (3.14) with (2.12). □

Remark 3.11. Let us note that given an Ihara polynomial Iα associated to some voltage assign-
ment α, either M∞(Iα) = 1 or M∞(Iα) ≥ 2, as was proved in [SW21, Proposition 12.7].

Remark 3.12. It is reasonable to ask what happens when the Ihara polynomial Iα has some roots
on the Archimedean unit circle. In this case, it is easy to see that these roots will prevent one
from getting a precise asymptotic for the growth of κ(Xn). To see this, fix some α = eiθ ∈ C
with θ ∈ R \Q. Then, the sequence

|αn − 1|2∞ = 2(1− cos(nθ))

is distributed on the interval [0, 4] according to the probability density function 2
π
√
4x−x2 , thanks

to Weyl’s equidistribution theorem. Therefore, we see that any asymptotic expansion for the
growth of κ(Xn) would have to feature some oscillating term, which takes into account this
equidistribution phenomenon.

The previous Corollary 3.10 allows us to recover the asymptotics for the number of spanning
trees of two particular examples of Z-towers, which were thoroughly studied in [Med18] and
[MM19].

Example 3.13. Consider the following orientation S = {s1, s2, s3} on the dumbbell graph:
s2s1 s3

and fix a function α : S → Z such that α(s2) = 0. This defines a voltage assignment on the
dumbbell graph X , with values in Z. Moreover, the derived covers Xn := X(Z/nZ, πn ◦ α),
where πn : Z ↠ Z/nZ denotes the canonical projection, are given by the I-graphs I(n, k, l),
where k := α(s1) and l := α(s3). In particular, if k = 1 one gets the family of generalized
Petersen graphs GP(n, l).

Now, one sees from Theorem 3.2 that the graphX(Z, α) is connected if and only if (k, l) = 1,
which we will assume for the rest of this example. Then, we can compute the Ihara polynomial
associated to the voltage assignment α, which is given by

Iα(t) = (3− tk − t−k)(3− tl − t−l)− 1 = t−(k+l) · Iα(t)
where Iα(t) = (3tk − t2k − 1) · (3tl − t2l − 1) − tk+l. Since Iα(1) = I ′α(1) = 0 ̸= I ′′α(1), we
see that e := ordt=1(Iα) = 2, which allows us to write

Iα(t) = (t− 1)2 · Jα(t)
for some Jα ∈ Z[t] such that Jα(1) ̸= 0. A simple calculation shows that Jα has no roots on the
unit circle, as explained for instance in [Med18, Lemma 5.2]. Moreover, it is easy to see that

|∆1(Jα)| = |Jα(1)| = |I ′′

α(1)|/2 = k2 + l2,

and that κ(X) = 1. Therefore, Corollary 3.10 shows that

κ(I(n, k, l)) ∼ n

k2 + l2
·M∞(Iα)

n

as n→ ∞, which is precisely [Med18, Theorem 6.1].
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Example 3.14. Consider the graphX consisting of a bouquet with k loops for some k ∈ N, and
take an orientation S = {s1, . . . , sk} of X . Moreover, fix any function α : S → Z such that

1 ≤ α(s1) < α(s2) < . . . < α(sk),

and write ai := α(si) for every i ∈ {1, . . . , k}. Then, for n large enough, the derived graph
Xn := X(Z/nZ, πn ◦ α) is the circulant graph Cn(a1, . . . , ak). Note in particular that the
example described in Section 3.4 belongs to this more general family.

Once again, it is easy to see by Theorem 3.2 that the graph X(Z, α) is connected if and only
if (a1, . . . , ak) = 1, which we will assume for the rest of this example. Then, we can compute
the Ihara polynomial associated to the voltage assignment α, and we obtain

Iα(t) = 2k −
k∑
i=1

(tai + t−ai) = t−akIα(t)

where Iα(t) := 2ktak −
∑k

i=1(t
ak+ai + tak−ai) ∈ Z[t]. In particular, we easily see that

Iα(1) = I ′α(1) = 0 ̸= I ′′α(1),

which implies that e := ordt=1(Iα) = 2, and that Iα(t) = (t − 1)2 · Jα(t), for some Jα ∈ Z[t]
satisfying Jα(1) ̸= 0. Moreover, one can easily show that Jα does not have any root on the unit
circle of C, as explained in [MM19, Lemma 2]. Finally, we see that κ(X) = 1 and

|∆1(Jα)| = |Jα(1)| = |I ′′

α(1)|/2 =
k∑
i=1

a2i

which, thanks to Corollary 3.10, implies that

κ(Cn(a1, . . . , ak)) ∼
n∑k
i=1 a

2
i

·M∞(Iα)
n

as n→ ∞, which is [MM19, Theorem 5] in the particular case when d = 1.

p-adic asymptotics. Let us look at the asymptotics of the p-adic valuations of the number of
spanning trees in a Z-tower, for a fixed prime p. As in the Archimedean setting, we start from
the case when the Ihara polynomial Iα does not have any non-trivial root lying on the unit circle
of Cp.

Corollary 3.15. Let X be a finite connected graph such that χ(X) ̸= 0, and fix a voltage
assignment α : EX → Z such thatX(Z, α) is connected. Fix moreover a rational prime p ∈ N.
Then, if the polynomial Jα defined by (3.13) has no root on the unit circle of Cp, we have that

|κ(Xn)|p = |n|e−1
p

|κ(X)|p
|∆1(Jα)|p

Mp(Iα)
n

for every n ∈ N, where e := ordt=1(Iα) is the order of vanishing at t = 1 of the Ihara
polynomial associated to α.

Proof. This follows immediately by combining (3.14) with (2.11). □

Remark 3.16. Let f(t) =
∑d

j=0 cjt
j ∈ Z[t] be any polynomial. Then every root of f lies in the

unit circle of Cp whenever p ∤ c0 · cd. Therefore, we see that, for every given Z-tower of graphs,
Corollary 3.15 can be applied only for finitely many primes p.
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3.6. Exact formulas for the p-adic valuation of the number of spanning trees. The previous
remark prompts us to study the case when Jα has some roots on the unit circle of Cp. In this
case, we can prove the following result, which gives a partial analogue of Iwasawa’s theorem
for Z-towers.

Theorem 3.17. Let X be a finite connected graph with χ(X) ̸= 0, and let α : EX → Z be a
voltage assignment such that X(Z, α) is connected. Let Iα ∈ Z[t] be the Ihara polynomial as-
sociated to α, and set Jα(t) := tb(t−1)−eIα(t), where b := −ordt=0(Iα), and e := ordt=1(Iα).

Fix now a rational prime p ∈ N, an algebraic closure Qp of the field of p-adic numbers, and
let Op be the ring of integers of Qp. Using this notation, we can define the quantities

µp(X,α) := −mp(Jα)/ log(p)

cp(X,α) := ordp(κ(X))− ordp
(
∆1(Jα)

)
where mp(Jα) denotes the logarithmic p-adic Mahler measure of Jα, defined as in (2.4).

Moreover, for every n ∈ N we introduce the set

(3.20) Bp,n(X,α) := {β ∈ Op : Jα(β) = 0, |β|p = 1, |βn − 1|p < 1},

which can be used to define the quantity

λp,n(X,α) := #Bp,n(X,α) + e− 1.

Finally, for every β ∈ Op such that |β|p = 1 we write

(3.21) sp(β) := min{s ∈ N : ps(p− 1)ordp(β − τp(πp(β))) > 1}

and for every n ∈ N we set rp,n(β) := min(ordp(n), sp(β)), where τp(πp(β)) denotes the
Teichmüller lift of the reduction πp(β) of β modulo the maximal ideal of Op. This can be used
to define the quantity

νp,n(X,α) :=
∑

β∈Bp,n(X,α)

(
ordp(β

prp,n(β) − τp(πp(β))
prp,n(β)

)− rp,n(β)
)
.

Then, we have

ordp(κ(Xn)) = µp(X,α) · n+ λp,n(X,α) · ordp(n) + νp,n(X,α) + cp(X,α)

for every n ∈ N.

Proof. From Theorem 3.6, one has the identity

(3.22) ordp(κ(Xn)) = ordp(∆n(Jα)) + (e− 1) · ordp(n) + cp(X,α).

Moreover, Corollary 2.5 implies that

(3.23) ordp(∆n(Jα)) = µp(X,α) · n+#Bp,n(X,α) · ordp(n) + νp,n(X,α)

because Bp,n(X,α) = Bp,n(Jα) and νp,n(X,α) = νp,n(Jα) by definition. Therefore, we can
conclude by combining (3.23) with (3.22). □

Using Theorem 3.17, one can easily show Theorem 1.1, as we explain in the following proof.

Proof (of Theorem 1.1). Fix a finite connected graph X and a voltage assignment α : EX → Z
such as in the setting of Theorem 1.1. Moreover, fix a rational prime p and let β1, . . . , βd denote
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the roots of Jα which lie on the unit circle of Cp, and let N1, . . . , Nd denote the multiplicative
orders of πp(β1), . . . , πp(βd) in F×

p . Then, we can take

Np(X,α) := {N1, . . . , Nd}
Rp(X,α) := max

j=1,...,d

(
min{s ∈ N : ps(p− 1)ordp(βj − τp(πp(βj))) > 1}

)
,

and for every subset n ⊆ Np(X,α) we can take

λp(X,α, n) := #n+ e− 1,

as we will now show.
First of all, suppose that n = ∅. In other words, let us take an integer n ∈ N such that N1 ∤

n, . . . , Nd ∤ n. Then, the set Bp,n(X,α) defined in (3.20) is empty. Therefore, Theorem 3.17
shows that for every r ∈ {0, . . . , Rp(X,α)} we can take

νp(X,α, ∅, r) := cp(X,α)

and (1.5) will hold true.
On the other hand, let us suppose that n ̸= ∅, and let J ⊆ {1, . . . , d} be the unique non-empty

subset such that n = {Nj : j ∈ J}. Then, if we suppose in addition that p ̸= 2 and p ∤ Disc(Jα),
we have that Bp,n(X,α) = {βj : j ∈ J}. Moreover, the quantity rp,n(β), which was defined in
(3.21), vanishes whenever β ∈ Bp,n(X,α), because ordp(β − τp(πp(β))) ∈ N and p − 1 > 1
in this case. Therefore, Theorem 3.17 shows that for every prime p ̸= 2 such that p ∤ Disc(Jα),
and every r ∈ {0, . . . , Rp(X,α)}, we can take

νp(X,α, n, r) := cp(X,α) +
∑
j∈J

ordp(βj − τp(πp(βj))),

and (1.5) will hold true. On the other hand, if p = 2 and Disc(Jα) is odd, we still have that
Bp,n(X,α) = {βj : j ∈ J} and ordp(β− τp(πp(β))) ∈ N for every β ∈ Bp,n(X,α). Therefore,
we see that for every β ∈ Bp,n(X,α) we have rp,n(β) = 0 if 2 ∤ n, and rp,n(β) = 1 otherwise.
In other words, if Disc(Jα) is odd we can take

(3.24) ν2(X,α, n, r) := c2(X,α) +

{∑
j∈J(ord2(β

2
j − τ2(π2(βj))

2)− 1), if r ≥ 1;∑
j∈J ord2(βj − τ2(π2(βj))), if r = 0,

and Theorem 3.17 will ensure that (1.5) holds true when p = 2.
To conclude, let us assume that p | Disc(Jα), and let again n = {Nj : j ∈ J} for some

non-empty J ⊆ {1, . . . , d}, so that Bp,n(X,α) = {βj : j ∈ J}. Then, if r = Rp(X,α), which
implies that ordp(n) ≥ sp(X,α), we see that

rp,n(β) = sp(β) := min{s ∈ N : ps(p− 1)ordp(β − τp(πp(β))) > 1}
for every β ∈ Bp,n(X,α). Therefore, Theorem 3.17 guarantees that if we take

νp(X,α, n, Rp(X,α)) := cp(X,α) +
∑
j∈J

ordp

(
βp

sp(βj)

j − τp(πp(βj))
psp(βj)

)
the identity (1.5) will hold true. Finally, if we fix r ∈ {0, . . . , Rp(X,α)− 1}, we can take

νp(X,α, n, r) := cp(X,α) +
∑
j∈J

ordp

(
βp

min(r,sp(βj))

j − τp(πp(βj))
pmin(r,sp(βj))

)
and Theorem 3.17 still guarantees that (1.5) holds true. □
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Remark 3.18. The previous proof shows that the p-adic valuation of the number of spanning
trees is actually constant along many of the sequences Sp(X,α, n, r). More precisely, let ∥Jα∥
be the greatest common divisor of the coefficients of Jα. Then, if p is a prime such that

p ∤ Disc(Jα) · ∥Jα∥,

for every n = {Nj : j ∈ J} ⊆ Np(X,α) we have that

ordp(κ(Xn)) = cp(X,α) +
∑
j∈J

ordp(βj − τp(πp(βj)))

whenever n ∈ Sp(X,α, n, 0).

Remark 3.19. It is clear from the proof of Theorem 1.1 that the multiplicative ordersN1, . . . , Nd

play a crucial role in the understanding of the evolution of the p-adic valuation of the number of
spanning trees along a Z-tower. Therefore, it would be nice to know how these orders vary with
the prime number p. This can be understood in terms of a far reaching generalization of Artin’s
primitive root conjecture, due to Lenstra [Len77], which is known to hold under the assumption
of the generalized Riemann hypothesis.

3.7. The Fibonacci tower. To conclude this paper, let us note how the formula provided by
Theorem 3.17 generalizes a famous formula for the p-adic valuation of the Fibonacci numbers,
due to Lengyel [Len95]. More precisely, if in Example 3.14, we take the bouquet on two loops
X , with an orientation S = {s1, s2}, and we letα be the unique voltage assignmentα : EX → Z
such thatα(s1) = 1 andα(s2) = 2, then we obtain theZ-tower portrayed in the following figure:

...
...

...
...

...

...

It turns out that the number of spanning trees of the finite layers of this tower is intimately
related to the sequence of Fibonacci numbers. To show this, let us observe that κ(X) = 1 and

Iα(t) := 4− (t+ t−1)− (t2 + t−2),

which implies that e = 2 and Jα(t) = −(t2+3t+1). We denote by β1 = −3−
√
5

2
and β2 = −3+

√
5

2
the roots of Jα, and we observe that ∆1(Jα) = −5.

Then, Theorem 3.6 can be combined with a simple computation to show that

κ(Xn) = n
∆n(Jα)

∆1(Jα)
= n

(−1)n(βn1 − 1)(βn2 − 1)

−5
= nF 2

n ,
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where Fn is the nth Fibonacci number. Therefore, Theorem 3.17 implies that
2 · ordp(Fn) = ordp(κ(Xn))− ordp(n) = #Bp,n(X,α) · ordp(n) + νp,n(X,α)

for every prime p ̸= 5 and every n ∈ N, becausemp(Jα) = 0 for every prime p ∈ N. Now, let us
note that the two roots β1 and β2 of the polynomial Jα are both reciprocal units, which implies
that either Bp,n(X,α) = ∅ or Bp,n(X,α) = {β1, β2}. The latter happens if and only if n is a
multiple of the multiplicative order Np of β1 (and β2) in F×

p . Therefore, Theorem 3.17 shows
that Np coincides with the so called rank of apparition of the prime p, i.e. with the smallest
index n such that p | Fn. Since Np ≡ 1 mod p, we see that ordp(Np) = 0, and thus that∑2

j=1 ordp(βj − τp(πp(βj))) = 2 · ordp(FNp). Hence, these considerations entail that

ordp(Fn) =

{
ordp(n) + ordp(FNp), if Np | n,
0, otherwise,

for every p ̸= 2, 5, as was proven in [Len95, § 3].
To conclude this example, and this paper, let us see what happens when p = 2 and p = 5. In

the first case, we have that N2 = 3 and ord2(F3) = 1, whereas ord2(β
2
j − τ2(π2(βj))

2) = 3 for
every j ∈ {1, 2}, as can be checked by an explicit computation. Thus, (3.21) implies that

ord2(Fn) =


0, if n ≡ 1, 2 mod 3,

1, if n ≡ 3 mod 6,

ord2(n) + 2, if n ≡ 0 mod 6,

which was proven in [Len95, Lemma 2]. Finally, let us suppose that p = 5. In this case, the
multiplicative order of β1 and β2 in F×

5 is 1, which is not the rank of apparition of the prime 5.
One has ord5(βj − τ5(π5(βj))) = 1/2 and r5,n(βj) = 0 for every j ∈ {1, 2}. Combining this
with the fact that c5(X,α) = −1, we see that

ord5(Fn) = ord5(n) +
1

2
+

1

2
− 1 = ord5(n)

for every n ∈ N, as was proven in [Len95, Lemma 1]. This shows that Theorem 3.17 can be
seen as a generalization of Lengyel’s theorem to sequences that arise as the number of spanning
trees in a Z-cover of finite graphs.
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