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Introduction

The rapid growth in sensing and communication technologies make the network of IoT can connect many physical objects [START_REF] Idrees | Energy-ecient two-layer data transmission reduction protocol in periodic sensor networks of iots[END_REF]. This led to the invention of many IoT applications like remote healthcare monitoring, environment control, intelligent transportation, smart home, etc [START_REF] Idrees | Energy-ecient data transmission 29 and aggregation protocol in periodic sensor networks based fog computing[END_REF][START_REF] Witwit | A comprehensive review for rpl routing protocol in low power and lossy networks[END_REF]. The health technology sector is invaded by IoT techniques and applications to produce a more brilliant future named the Internet of Medical Things (IoMT) [START_REF] Al-Turjman | Intelligence in the internet of medical things era: A systematic review of current and future trends[END_REF][START_REF] Jain | Internet of medical things (iomt)-integrated biosensors for pointof-care testing of infectious diseases[END_REF]. The growth of IoMT occasioned by the increased number of connected health devices that can gather, generate, fuse, analyze, send medical sensed data to Cloud computing.

IoMT is composed of a collected data from medical and biosensor devices and applications [START_REF] Jaber | Energy-saving multisensor data sampling and fusion with decision-making for monitoring health risk using wbsns[END_REF]. These IoMT nodes are used to monitor the health situation of the patient, gather clinical data, and transmit it to the medical experts via the data centers of the remote Cloud platform [START_REF] Oniani | Articial intelligence for internet of things and enhanced medical systems[END_REF]. The main goal of IoMT is to improve the healthcare systems. For instance, most healthcare applications require fast response and decision in case of emergency, high bandwidth over the IoMT network for sending the big data sensed from the patients every day.

These requirements represent big challenges in the IoMT network. This led to the emergence of the concept of fog computing by which the intelligence and processing are brought near the source of data generators [START_REF] Rocha Filho | A fog-enabled smart home solution for decision-making using smart objects[END_REF]. While, the Edge gateway is always close to the biosensors. The Edge gateway has no capability as the Cloud to train the machine learning algorithm and making a big analysis on the huge EEG data. The Fog gateway can be located in the middle between the Cloud and the data generators (biosensors). Figure 1 refers to the Edge-Fog computing architecture in IoMT Network. Therefore, reducing the collected sensed data at the Edge gateway and make a decision at the Fog gateway can provide a fast response to the medical experts.

In addition, it is conserving the IoMT network bandwidth by decreasing the amount of transferred data from Fog to the Cloud data centers. Table 1 shows the list of acronyms with corresponding full terms in this paper.

Various conditions have diagnosed by employing remote monitoring systems of electroencephalogram (EEG) like epileptic seizures detection, brain death testing, anesthesia, and movement disorders [START_REF] Emam | Edgehealth: An energy-ecient edge-based remote mhealth monitoring system[END_REF]. EEG refers to the electrophysiological process of registering the brain's electrical activity [START_REF] Ieracitano | A novel explainable machine learning approach for eeg-based brain-computer interface systems[END_REF]. EEG evaluate variations in the electrical activity that the brain has produced. The ionic current between and within the neurons leads to these voltage changes. EEG signals are scanned by tiny discs of metal named electrodes that were placed on the head. The electrical activity of the brain captured and registered by these EEG electrodes. The gathered signals of EEG are amplied, digitized, and nally transmitted to the computer or mobile gateway for saving and processing these EEG data [START_REF] Le | The neurogeneration: New era in brain enhancement revolutionising the way we think, work and heal[END_REF]. The EEG analysis supports the medical experts to verify the medical investigation, helps the scientists and researchers to understand the behavior of human, and people to enhance their O, S) from Bonn University [START_REF] Andrzejak | Indications of nonlinear deterministic and nite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state[END_REF]. The proposed KCHE technique has compared with some existing methods like [START_REF] Srinivasan | A two-dimensional approach for lossless eeg compression[END_REF] and [START_REF] Srinivasan | Ecient preprocessing technique for real-time lossless eeg compression[END_REF]. The results of comparison prove that the proposed KCHE technique outperformed the other approaches in terms of compression ratio. Furthermore, the results of the proposed Naive Bayes algorithm are better than the results of some existing related work such as Novel CNN [START_REF] Zhao | A novel deep neural network for robust detection of seizures using eeg signals, Computational and mathematical methods in medicine[END_REF], TFA +ANN [START_REF] Tzallas | Epileptic seizure detection in eegs using timefrequency analysis[END_REF], DWT+ Kmeans +MLPNN [START_REF] Orhan | Eeg signals classication using the k-means clustering and a multilayer perceptron neural network model[END_REF], 1D-LBP + FT/BN [START_REF] Kaya | 1d-local binary pattern based feature extraction for classication of epileptic eeg signals[END_REF], DWT+ NB/KNN [START_REF] Sharmila | Dwt based detection of epileptic seizure from eeg signals using naive bayes and k-nn classiers[END_REF], TQWT+KNNE+SVM [START_REF] Bhattacharyya | Tunable-q wavelet transform based multiscale entropy measure for automated classication of epileptic eeg signals[END_REF], LMD+ GA-SVM [START_REF] Zhang | Lmd based features for the automatic seizure detection of eeg signals using svm[END_REF], CNN+ M-V [START_REF] Ullah | An automated system for epilepsy detection using eeg brain signals based on deep learning approach[END_REF], CWT+CNN [START_REF] Türk | Epilepsy detection by using scalogram based convolutional neural network from eeg signals[END_REF], CNN [START_REF] Acharya | Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals[END_REF], MEMD+ANN [START_REF] Zahra | Seizure detection from eeg signals using multivariate empirical mode decomposition[END_REF].

Literature review

One of the most important challenges in the IoMT networks is how to achieve remote patient health monitoring and decision making accurately and rapidly.

To deal with this challenge, it is important to perform data reduction for the gathered EEG data at the Edge gateway using lossless compression before sending it to the Fog gateway and then implement machine learning for detecting the epileptic seizure at the Fog gateway. Several papers considered EEG data compression methods that introduced various algorithms and techniques. The work in [START_REF] Srinivasan | Ecient preprocessing technique for real-time lossless eeg compression[END_REF] proposed a wavelet transform approach to achieve a real-time EEG data lossless compression. The authors in [START_REF] Srinivasan | A two-dimensional approach for lossless eeg compression[END_REF] Human to compress data without loss has introduced by [START_REF] Rajasekar | Human quantization approach for optimized eeg signal compression with transformation technique[END_REF]. To increase the privacy of the data and reduce the complexity of data, the authors used inverse discrete cosine transform and discrete cosine transform, where the EEG data have sent eciently. In [START_REF] Rasheed | Lossless compression and implementation for medical signals using verilog[END_REF], the author introduced a lossless Log2 sub band compression method to calculate the dierence between two 24-bit samples.

The bits are compressed in four cases: 8, 14, 20, 26. The data are compressed and sent serially. The work in [START_REF] Khalid | Eeg compression using motion compensated temporal ltering and wavelet based subband coding[END_REF] presented a new compression method for EEG signal that employs MCTF (motion-compensated temporal ltering ) and DTW (discrete wavelet transform) to eliminate the intra-channel redundancy.

The authors in [START_REF] Chen | Lossless eeg compression algorithm based on semi-supervised learning for vlsi implementation[END_REF] introduced lossless compression method for EEG data that based on two-level prediction, tri-entropy coding, and voting prediction. The two-level prediction used six functions and twenty-seven conditions to predict the current sample from previous samples. The best function with the best error is found by voting prediction. The binary code of the value of the error is generated by using Golomb-Rice coding and Human coding. The authors in [START_REF] Al-Nassrawy | High performance fractal compression for eeg health network trac[END_REF] proposed the Fractals compression approach for decreasing the sent EEG data from patient to the Cloud. This can reduce network trac and enhance the performance of the network.

The other related works are focused on the diagnosis and detection of epileptic seizure in EEG data by presenting various techniques and algorithms. The work in [START_REF] Amin | A novel approach based on wavelet analysis and arithmetic coding for automated detection and diagnosis of epileptic seizure in eeg signals using machine learning techniques[END_REF] suggested an approach for separating the seizure-free signals from epileptic seizure signals using discrete wavelet transform and computer-aided diagnostic method. The EEG data is decomposed by eliminating the nonsignicant coecients to produce a xed number of signicant coecients. The arithmetic coding converts the signicant wavelet coecients to bit streams.

Finally, the set of compression feature is regulated, and then the classiers detect the seizure activity. Authors in [START_REF] Aghababaei | Detection of epileptic seizures from compressively sensed eeg signals for wireless body area networks[END_REF] proposed new automatic single-channel seizure detection by adding a new feature that does not need a full rebuilding of original EEGs. This feature employing an orthogonal matching pursuit method in an iterative way on the compressed EEG sensed data and calculate the ratio that increases the energies of the rebuilt EEG signals. The non-seizure and seizure cases are classied based on partial energy dierence. The proposed method is improved to be used in the multichannel EEG signals. In [START_REF] Qaisar | Eective epileptic seizure detection by using level-crossing eeg sampling sub-bands statistical features selection and machine learning for mobile healthcare[END_REF], the authors proposed an adaptive-rate processing and level-crossing sampling for epileptic seizures detection automatically. This can reduce the EEG data transmission by achieving compression. The latency is not considered because the epileptic seizures classication is implemented in the Cloud. In [START_REF] El-Fequi | Prediction of epileptic seizures: A statistical approach with dct compression[END_REF], the authors proposed a lossy compression for EEG data using Discrete Cosine Transform, and then predict the epileptic seizure for the patients. They have studied the eect of lossy compression on the detector of the epileptic seizure.

Several techniques are introduced for epileptic seizure detection from the EEG data [START_REF] Zhao | A novel deep neural network for robust detection of seizures using eeg signals, Computational and mathematical methods in medicine[END_REF][START_REF] Tzallas | Epileptic seizure detection in eegs using timefrequency analysis[END_REF][START_REF] Orhan | Eeg signals classication using the k-means clustering and a multilayer perceptron neural network model[END_REF][START_REF] Kaya | 1d-local binary pattern based feature extraction for classication of epileptic eeg signals[END_REF][START_REF] Sharmila | Dwt based detection of epileptic seizure from eeg signals using naive bayes and k-nn classiers[END_REF][START_REF] Bhattacharyya | Tunable-q wavelet transform based multiscale entropy measure for automated classication of epileptic eeg signals[END_REF][START_REF] Zhang | Lmd based features for the automatic seizure detection of eeg signals using svm[END_REF][START_REF] Ullah | An automated system for epilepsy detection using eeg brain signals based on deep learning approach[END_REF][START_REF] Türk | Epilepsy detection by using scalogram based convolutional neural network from eeg signals[END_REF][START_REF] Acharya | Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals[END_REF][START_REF] Zahra | Seizure detection from eeg signals using multivariate empirical mode decomposition[END_REF]. In [START_REF] Zhao | A novel deep neural network for robust detection of seizures using eeg signals, Computational and mathematical methods in medicine[END_REF], the authors proposed an epileptic seizure detector by using a deep neural network. This method includes three fully connected layers and three convolutional blocks.

This method is applied to two, three, and ve-class classication problem. Au-thors in [START_REF] Ullah | An automated system for epilepsy detection using eeg brain signals based on deep learning approach[END_REF] introduced a model named P-1D-CNN (Pyramidal one-dimensional convolutional neural network). The rened approach of the standard network model is used. The work in [START_REF] Acharya | Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals[END_REF] applied the CNN for EEG data classication.

The CNN utilized thirteen layers to detect three classes: seizure, normal, and preictal. Authors in [START_REF] Zahra | Seizure detection from eeg signals using multivariate empirical mode decomposition[END_REF] SHORTCOMINGS. Despite presenting various methods for EEG data reduction and epileptic seizure detection, however, to the best of our knowledge, there is no integrated ecient method that combines reducing the volume of EEG data on the Edge network and providing a quick decision at the Fog gateway about the patient's health condition for remote monitoring applications.

For instance, the proposed data reduction methods can aect the quality of reconstructed EEG data and they do not ensure a high EEG data reduction and accuracy at the same time. As for the methods used to detect epileptic seizures, they were not employed at the Fog gateway to monitor patients remotely; in addition to that, they did not provide acceptable percentages for the accuracy of the decision and did not take into account the delay in detecting seizures for remote applications. man encoding approach has utilized to accomplish a high range of compression between 20 -90% according to [START_REF] Rajasekar | Human quantization approach for optimized eeg signal compression with transformation technique[END_REF]. The proposed KCHE method implemented the Human encoding because it is a greedy method, and it requires less time of computation. It minimizes the code length on average to designate the alphabet's representatives. The code with variable length is employed to exchange each character based on the character's repetition. This can make the access time to the characters reduced. The Human coding provides the prex codes to ensure the lossless EEG data compression and avoid the appearance of vagueness. Algorithm 1 refer to the suggested KCHE method.

In Algorithm 1, EEG data values are selected randomly as K centroids a t 1 , ..., a t K . After that, each EEG data in Y is allocated to the closest centroid a t i , where i ∈ K. Then the new centroids are calculated, and the algorithm continues until nding the optimal positions for the centroids. The algorithm converges either: there is no variation in the values of the centroids (i.e., it is stabilized) 

2 for i ← 1 to m do 3 N um ← N odeStructure{Group i }; 4 
Lef.P U SH(N um); 

Accuracy(%) ← Correct N o Length(actual) * 100 (1) 
Where the Correct N o is the number of matching between the actual i and 275 predicted i for i=1,..., Length(actual).

After the training process, the trained model can be used to predict the patient's situation from newly received EEG data to detect the epileptic seizure of the patients and send a notication to the medical experts to take the appropriate decision according to the status of the patient.

Finally, the EEG data of the patients will be compressed using proposed KCHE lossless compression method and then transmitting to the data center of the Cloud platform for archiving and further analytic by the doctors to check the progress of the patients.

Performance Analysis and Simulation Results

This section introduces the performance assessment of the proposed Edge- 

ii) Compression Ratio: it is formulated as follow.

CompressionRatio(%) = 1 - EEG Compressed EEG Original * 100 (3) 
The 2.

As explained in Table 2, when the number of groups K increases, the compression ratio, compression power, and compression time increased while the transmitted EEG data and decompression time are reduced. Therefore, it is essential to select a suitable number of groups that can balance the compression ratio and the compression/decompression time. The suggested KCHE method assigns 100 to K, and this reduces the sent EEG data from the Edge gateway to the fog gateway and improves the performance of the IoMT network. This signicant metric plays an essential role in the performance of the IoMT network. This experiment studies the impact of this measure using several EEG data records and compares the ndings with other methods. Figure 3 presents the compression ratio using EEG records (Z, F, N, O, S) for dierent approaches.
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The proposed KCHE method introduces a better compression ratio compared with HE and LZW. KCHE compressed the EEG data from 85.5% up to 89.5% for all records. HE and LZW compressed the EEG data from 65.9% up to 68.8% and from 42.7% up to 48.4% respectively. 

Compression Time

This study investigates the inuence of the suggested KCHE on the time required to compressing the EEG data. Figure 5 gives the time of compression for KCHE, HE, and LZW using dierent EEG records (Z, F, N, O, S). As illustrated in Figure 5, the proposed KCHE consumed little time for compression compared with LZW, while it consumed a little more time for EEG data compression compared with HE. However, the proposed KCHE presented a higher performance especially, in compression ratio and sent EEG data. KCHE improved the performance of the IoMT network. This section studies the impact of the proposed KCHE on the time of the decompression process. Figure 6 shows the time required for a decompression process of dierent methods using EEG records (Z, F, N, O, S). The presented results in Figure 6 showed that the proposed KCHE spent a lower time for decompression compared with LZW whilst it spent a little bit higher time for decompression compared with HE.

Compression Power

This experiment studied the compression power for several methods of lossless compression such as the proposed KCHE approach, JPEG2000 [START_REF] Srinivasan | A two-dimensional approach for lossless eeg compression[END_REF], 2-D SPIHT + AC [START_REF] Srinivasan | A two-dimensional approach for lossless eeg compression[END_REF], 1-D SHORTEN [START_REF] Srinivasan | A two-dimensional approach for lossless eeg compression[END_REF], 2-D SPIHT [START_REF] Srinivasan | Ecient preprocessing technique for real-time lossless eeg compression[END_REF], AC [START_REF] Srinivasan | A two-dimensional approach for lossless eeg compression[END_REF], and 1-D SPIHT [START_REF] Srinivasan | Ecient preprocessing technique for real-time lossless eeg compression[END_REF]. Figure 7 explains the compression power for dierent lossless compression algorithms.

The introduced results of Figure 7 shows that the proposed KCHE lossless compression approach outperforms the other existing methods by providing a better compression power while keeping the quality of the received EEG data at the Fog gateway. The average of compression power of KCHE is four times 370 the average of compression power of other methods for all EEG records (Z, F, N, O, S). The spatial similarity between the received EEG data at the Edge gateway is exploited by the proposed KCHE to reduce the EEG data before sending them to the Fog gateway.

Simulation Results of ESDNB at Fog Gateway

In this section, The proposed ESDNB (Epileptic Seizure Detector based Naive Bayes) approach is evaluated using dierent performance metrics such as Accuracy (Acc), Mean Square Error (MSE), F-Score (F), Sensitivity(Sen), Specicity(Sp), and Precision(Pr) to show the eectiveness of the proposed ES-DNB. The performance of the proposed ESDNB is compared to some existing related work such as Novel CNN [START_REF] Zhao | A novel deep neural network for robust detection of seizures using eeg signals, Computational and mathematical methods in medicine[END_REF], TFA +ANN [START_REF] Tzallas | Epileptic seizure detection in eegs using timefrequency analysis[END_REF], DWT+ Kmeans +MLPNN [START_REF] Orhan | Eeg signals classication using the k-means clustering and a multilayer perceptron neural network model[END_REF], 1-D-LBP + FT/BN [START_REF] Kaya | 1d-local binary pattern based feature extraction for classication of epileptic eeg signals[END_REF], DWT+ NB/KNN [START_REF] Sharmila | Dwt based detection of epileptic seizure from eeg signals using naive bayes and k-nn classiers[END_REF], TQWT+KNNE+SVM [START_REF] Bhattacharyya | Tunable-q wavelet transform based multiscale entropy measure for automated classication of epileptic eeg signals[END_REF], LMD+ GA-SVM [START_REF] Zhang | Lmd based features for the automatic seizure detection of eeg signals using svm[END_REF], CNN+ M-V [START_REF] Ullah | An automated system for epilepsy detection using eeg brain signals based on deep learning approach[END_REF], CWT+CNN [START_REF] Türk | Epilepsy detection by using scalogram based convolutional neural network from eeg signals[END_REF], CNN [START_REF] Acharya | Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals[END_REF],

MEMD+ANN [START_REF] Zahra | Seizure detection from eeg signals using multivariate empirical mode decomposition[END_REF]. There are three activities in epileptiform EEG: ictal (during a seizure), interictal (between seizures), and postictal (after a seizure). Table 3 shows the average values of the performance metrics using 5-fold crossvalidation. The EEG datasets merged in various combinations to explore the global classication model of the proposed ESDNB approach. Two classes (seizures, nonseizures), three classes (ictal, normal, and interictal), ve classes (Z, O, N, F, and S). can be classied by this model. This section introduces further results, analysis, and discussion to prove the eciency of the work proposed in this paper. Figure 8 shows the comparison between the EEG data size of both compressed EEG data (by KCHE) and Non-compressed EEG data. The results introduced in Figure 8 show that the KCHE approach reduces the EEG data size after the compression from 85.6

As shown in

% up to 89.2% compared with Non-compressed EEG data for dierent EEG data records. These results ensure the eciency of the proposed lossless KCHE approach in compressing and reducing the EEG data before transmitting them to the Fog gateway while keeping the quality of data of the original.

Figure 9 shows the energy consumption at the edge node for both approaches: compressed EEG data (by KCHE) and Non-compressed EEG data. In this paper, the employed energy consumption model is based on the Medusa II sensor 430 device [START_REF] Idrees | Perimeter-based coverage optimization to improve lifetime in wireless sensor networks[END_REF]. It uses the microcontroller called Atmel's AVR ATmega103L. There are four units inside this device: processing, communication, sensing, and power supply. Table 5 summarizes the consumed energy (denoted in milliWatt/second) for various states of the sensor device. The packet size is 1024 bits. 

E EdgeN ode = P i=1 E i S * T i S + E i P r * T i Compr * T Dif f + E i C * D i Bits P (4) 
Where P is the total number of periods (P =50), E i S refers to the energy of 435 sensing at period i, T i S refers to the time required to sense the EEG data during period i (T i S = 47.2 seconds), E i P r is the energy needed to process while applying the compression algorithm, T i Compr refers to the compression time, E i C is the energy required to transmit one bit in period i (E i C = 0.2575), D i Bits refers to the total number of transmitted bits by the Edge node. The results conrm that the KCHE approach reduces the consumed energy at the Edge device from 86 % up to 89% compared with the Non-compressed EEG data approach for dierent EEG data records. One might think that the proposed lossless KCHE approach is too costly in terms of energy due to the time required for compression, but the results show that it is very useful to lose as little time as possible during the compression to highly reduce the transmitted data without aecting the quality of received data at the Fog gateway.

In this paper, latency is dened as the time required by the EEG data to travel from the Edge node to the Fog gateway. The EEG data represents a collection of data packets belonging to the same period. The main purpose of reducing the latency is to provide a fast decision response to the medical sta about the situation of the patient. The latency is directly proportional to EEG data size. Therefore, larger EEG data sizes have higher latencies. The latency time T L can be calculated as follows.

T L = T Edge T rans + T Link + T F og Queue + T F og P r .

(

) 5 
The T Edge T rans is the time required to transmit EEG data (T Edge T rans =

P ktN o i=1 L/R),
where PktNo is the total number of packets in the period. The T Link refers to the time required to transfer the EEG data across the communication link to Fog gateway (T Link = P ktN o i=1

T L), where TL is the time required by one packet to travel over the communication link to reach the Fog node. The T F og Queue is the waiting time for the received EEG data at the queue of the Fog gateway, and T F og P r is the processing time at the Fog node. In this experiment, the packet length (L) is set to 128 Bytes and the transmission data rate (R) is 250 Kbps. For simplicity's sake, it is assumed that there is only one hop and the T L is It can be seen from the results that the KCHE approach decreases the latency time between the edge and Fog nodes due to the high reduction of the EEG data at the Edge node while keeping the quality of received EEG data at the Fog gateway. The KCHE reduces the latency time from 84.6 % up to 88.2% compared with the Non-compressed EEG data approach for dierent EEG data records. This will help the medical sta to make fast decisions concerning their patients.

Conclusion and perspectives

This paper proposed an Edge-Fog Computing Enabled Lossless EEG data compression with Epileptic Seizure Detection in IoMT networks. The proposed approach applies two ecient algorithms. The KCHE lossless compression algorithm is implemented at the Edge gateway to reduce a large amount of the EEG data before sending it to the Fog gateway. The Epileptic Seizure Detector based Naive Bayes (ESDNB) designed for predicting the Epileptic Seizure at the Fog node from the received EEG data. Finally, the EEG data at Fog node is compressed to send them to the Cloud platform for archiving and further analysis. The results show that the proposed KCHE approach outperforms other existing methods in terms of compression power and compression ratio.

The suggested ESDNB approach outperformed the other algorithms in terms of accuracy. In future works, the lossless compression method will be improved to increase the compression power. Furthermore, a new machine learning approach can be developed to introduce a higher accuracy and robust seizure detection.
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 1 Figure 1: Edge-Fog computing architecture in IoMT Network.
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 234 wellness and productivity. These EEG signals require a large storage capacity to save, process, decision making about the patient situation, and transfer. To deal with these challenges, the compression techniques can be used at the Edge gateway and the machine learning at the Fog gateway to decrease the volume of EEG data before transmitting it to the Fog and to make a fast decision at the Fog level instead of Cloud data centers. Several research works have proposed in the literature either reducing the EEG data or making the decision about the status of the patient. Unlike the above-mentioned works, achieving ecient compression at the Edge layer and accurate decision about the seizure detection at the Fog layer can play important role in reducing the large size of data to the Cloud and decrease the energy consumption and latency. This paper includes the following contributions. 1. A hybrid approach of Edge-Fog Computing Enabled Lossless EEG data compression with Epileptic Seizure Detection in IoMT network is proposed. The proposed approach is based on the Edge-Fog computing architecture in IoMT Network (see Figure 1) and it achieves the lossless compression technique at the Edge gateway and the epileptic seizure detection using Machine Learning at the Fog gateway. The proposed hybrid lossless compression technique combines two ecient methods: K-means Clustering and Human Encoding called (KCHE) to produce a larger lossless compression rate on the gathered data of EEG at the Edge gateway before transmitting it to the Fog gateway. This KCHE technique is employed at the Edge gateway in the proposed architecture of the Edge-Fog computing in IoMT Network. This can lead to improving the performance of the IoMT Network due to decreasing the transmitted EEG data of the patient toward the Fog gateway by proposed KCHE technique along with maintaining the integrity and the accuracy of EEG data at the Fog gateway. Employing the machine learning based on the Naive Bayes algorithm at the Fog gateway for epileptic seizure detection. Naive Bayes algorithm has been trained based on the received EEG data from the Edge gateway. The employed Naive Bayes algorithm introduced a strong detector for epileptic seizure and high accuracy while enhancing the response time concerning IoMT applications. The performance improvement of the proposed work presented through several experiments using Python programming language and depending on real EEG captured data for patients with various records (Z, F, N,

  introduced a model based on MEMD (Multivariate extension of Empirical Mode Decomposition) and neural network for classifying the EEG data into non-ictal EEG and ictal signals. The non-stationary data sets are decomposed and analysed using MEMD. The work in [23] proposed a model combining Continuous Wavelet Transform (CWT) and CNN. The CWT converts the EEG data into ve classes to produce two-dimensional frequencytime scalograms. The CNN is used for the classication of these ve dierent classes.

  OUR APPROACH. An edge-fog computing enabled lossless EEG data compression with epileptic seizure detection in IoMT Network is proposed.Three main functions have performed on the proposed Edge-Fog computing architecture. A hybrid lossless EEG data compression approach is composed of Human encoding and k-means algorithms at the Edge gateway to reduce EEG trac transmitted from Edge to fog while maintaining the quality of received data. An epileptic seizure detector based on an ecient Naive Bayes machine learning algorithm is implemented at the Fog gateway to predict the patient's situation and notify the medical experts rapidly without introducing latency. Finally, the EEG data is compressed and then transmitted to the data centers of the Cloud for further analytic and archiving. The proposed approach can reduce the volume of data trac on the network, keeping the quality of data, reduce the latency, and providing accurate decision about the patient's situation.

  3. Proposed TechniquesThis section introduced an edge-fog computing enabled lossless EEG data compression with epileptic seizure detection in IoMT Network. Figure2refers to the proposed approach based on Edge-Fog computing architecture.
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 2 Figure 2: Proposed approach based on Edge-Fog computing architecture..
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 56893423456 Lef.Length() = 1 do 7 N um ← N ovelN ode(); um.Lef t ← X ← Lef.P OP (); um.Right ← Y ← Lef.P OP (); 10 Repetition(N um) ← Repetition(X) + Repetition(Y ); 11 Lef.P U SH(N um); 12 end 13 return Lef ;continue. The nodes with the highest priority in the queue will be eliminated (see lines (7)-[START_REF] Le | The neurogeneration: New era in brain enhancement revolutionising the way we think, work and heal[END_REF]). Then, a new node is built that contains these nodes and their frequency summation as a child. This novel node would be inserted into the queue. Eventually, the node's root is the remaining one in the queue and the tree is formed. Algorithm 2 consumes O(nlogn) of time requirements. 250 In Algorithm 3, the prex codes series converted to a particular byte value in decompression strategy. It accomplished through traversing the tree node by node as each bit collected from the input series. If the traversing arrives at the leaf node, the value of the byte realised, where the value of the leaf represents the needed value of EEG data. Algorithm 3: Human Decoding Input: Rot : Human tree's root, BS : the stream of bits is needed to be decoding. Output: DF : reconstructed le from decompression process 1 M S ← Length(BS); 2 for j ← 1 to M S do DF.LEF T = N U LL and DF.RIGHT = N U LL do 5 if (BS j = 0) then 6 DF ← DF.LEF T ; Fog Gateway Level In the Fog gateway, the decompression process using Algorithm 3 achieved upon receiving the compressed data to reconstruct the original EEG data. These collected data can be used to learn a machine learning algorithm based on a Naive Bayes method to predict the epileptic seizure of the patients in IoMT 260 Network. The Naïve Bayes is simple to construct and precise approach for prediction. The cost of computation of the Naive Bayes is low, consequently, it can be used eciently on a massive dataset [40]. Algorithm 4 shows the Machine Learning based Naïve Bayes. In Line (1) of Algorithm 4, the collected EEG dataset has spitted into K 265 groups using the K-fold cross-validation approach. Each group contains training Algorithm 4: Machine Learning based Naïve Bayes Input: DataSet : dataset of EEG patients, K : Number of folds. Output: M eanAccuracy: Mean Accuracy 1 {trainSet, testSet} ← Split Dataset using K-fold Cross Validation(DataSet, K); 2 for j ← 1 to K do ← P redicting(Summarizing, Row); Out to Predicted ; eanAccuracy ; data set and a test data set. The lines (2)-(13) are used to evaluate the Naïve Bayes algorithm using the split of the cross validation. The lines (3)-(7) refer to the main steps of the Naïve Bayes algorithm. In line (3), the EEG training set has split by class, and the statistics have calculated for every row. These 270 statistics include standard deviation, mean, and count for every column in the EEG dataset. In line (5), the predicting probabilities have calculated to predict the class for a yielded row. In line (9), the AccuracyMetric function returns the percentage of the accuracy that can be calculated as follow.

  EEG Compressed represents the volume of Compressed EEG data after implementing proposed KCHE. The EEG Original represents the volume of the original EEG data before process of compression. iii) Decompression and Compression Processing Time (T): represents the total time of the process of compression and decompression respectively. iv) Transmitted data volume(in KB): represents the volume of the EEG compressed data transferred to the data center of the Cloud platform from Edge gateway. 4.1.1. Number of groups This section investigates the inuence of the groups (clusters) number on the performance of suggested KCHE technique utilizing several metrics of performance. The results conducted by using several sizes of groups (K) like 10, 30, 50, 70, and 100. The record Z of the EEG dataset of Bonn University used during this experiment. The performance metrics versus the number of groups presented in Table
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  0.05 second, and the waiting time for each packet at the queue of the Fog node (T F og Queue ) is 0.001 second. It is assumed there is no packet loss during the simulation. Figure 10 shows the latency time for both approaches: the Compressed EEG data (by KCHE) and the Non-compressed EEG data for dierent EEG data records.
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 10 Figure 10: The latency time.

Table 1 :

 1 The list of acronyms with corresponding full terms

	Acronym	Full term
	IoMT	Internet of Medical Things
	EEG	Electroencephalogram
	KCHE	k-means Clustering and Human Encoding
	ESDNB	Epileptic Seizure Detector based Naive Bayes
	IoT	Internet of Things
	CNN	Convolutional Neural Network
	TFA	TimeFrequency Analysis
	ANN	Articial Neural Network
	DWT	Discrete Wavelet Transform
	MLPNN	Multi-Layer Perceptron Neural Network
	1D-LBP	One-Dimensional Local Binary Pattern
	FT/BN	Functional Tree/BayesNet
	NB/KNN	Naive Bayes/K-Nearest Neighbor
	TQWT	Tunable-Q Wavelet Transform
	KNNE	K-Nearest Neighbor Entropy
	SVM	Support Vector Machine
	LMD	Local Mean Decomposition
	GA	Genetic Algorithm
	M-V	Majority-Vote
	CWT	Continuous Wavelet Transform
	MEMD	Multivariate Empirical Mode Decomposition
	1-D SPIHT One Dimentional Set Partitioning In Hierarchical Trees
	AC	Arithmetic Coding
	JPEG	Joint Photographic Experts Group
	SHORTEN Simple lossless and near lossless waveform compression
	DWT	Discrete Wavelet Transform
	BCI	Brain Computer Interface
	ASCII	American Standard Code for Information Interchange
	MCTF	Motion Compensated Temporal Filtering
	P-1D-CNN Pyramidal one-Dimensional Convolutional Neural Network
	HE	Human Encoding
	LZW	LempelZivWelch

  3.1. Edge Gateway LevelAfter receiving the EEG data at the Edge gateway, a lossless hybrid compression method applied to decrease the gathered EEG data trac size before transmitting it to the Fog gateway while maintaining the accuracy of received data at the Fog node. The hybrid lossless compression method is consisting of two ecient data reduction techniques: Human Encoding and K-means Clustering. The sensed data of EEG is periodically gathered at the Edge node from the electrodes devices on the head of the patient. There are two records of EEG

data are handled at the Edge gateway in each period. They are denoted as Y = y1, . . . , ym, where m represents the sensed data number of EEG values for the two records (i.e., 8194 EEG data values). In KCHE method, the EEG data of Y are grouped into many groups according to their similarity using K-means Clustering. The main reason behind implementing the K-means clustering by the proposed KCHE is that it is almost easy to implement, scalable for huge data, ensure convergence, simply adjusts to new instances, and generalizes to groups of various sizes and shapes. After that, the lossless Human Encoding is applied to each group of EEG data to compress it into a compressed le. Hu-

  Algorithm 1: KCHE Lossless Compression Input: Y = y 1 , . . . , y m : vector of EEG data values, m : size of vector Y, K : number of clusters CL j ← Φ // ∀ j ∈ K; 6 for each y j ∈ Y do 7 s ← argM in i {||y j -a t i } // allocate y j to the closest point center ;

		Algorithm 2: Human Encoding
		Input: Group, m
		Output: C: compressed le of the clusters
		1 t ← 0;
		2 Initialize K clusters: a t 1 , ..., a t K ;
		3 Repeat ;
		4 t ← t + 1;
		5 end
		return GF ;
		or the maximum number of iterations has reached. The FetchGroups(CL, K)
		function is to produce the needed groups depend on the supplied number of
		groups named K.
		In Algorithm 2, each EEG value (leaf node) is created and put in the queue of
	245	priority. As shown in line (6), if there are many nodes in the queue, the loop will

8 CL s ← CL s ∪ y j ; 9 end for each i ∈ K do a t i ← 1 |CLi| yj ∈CLi y j end Until Convergence ; {Group 1 , . . . , Group K } ← F etchGroups(CL, K); GF ← // empty le; for i ← 1 to K do F L i ← Human Encoding(Group i , Length(Group i )) ; GF ← GF ∪ F L i // combine the compressed le F L i with GF; Output: F L: compressed le of the EEG data group 1 Lef ← QueueStructure();

  Compression Power: it is named the compression ratio. It is the ratio between the volume of uncompressed (EEG Original ) and compressed volume (EEG Compressed ) of data. It is formulated as follow.

	i) CompressionP ower =	EEG Original EEG Compressed
	4.1. Simulation Results of KCHE at Edge Gateway
	The proposed KCHE approach evaluated by achieving several performance
	measures like compression/decompression processing time, the volume of trans-
	mitted data, and Compression Ratio. To show the eectiveness of the proposed
	KCHE approach, some signicant performance criteria are used to evaluate the
	proposed KCHE approach for EEG lossless compression. These metrics are
	dened as follow.	

Fog Computing Enabled Lossless EEG data compression with Epileptic Seizure

Detection in IoMT networks. The simulation experiments have achieved using the EEG data of Bonn University. This EEG dataset includes several records (N, O, Z, F, S)

[START_REF] Andrzejak | Indications of nonlinear deterministic and nite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state[END_REF]

. A custom simulator-based Python programming language has used to perform the simulation experiments. In this paper, KCHE refers to the name of the proposed EGG compression technique implemented at the Edge node. The Human Encoding algorithm is named as HE, while the Lem-pelZivWelch compression algorithm is named as LZW. The Epileptic Seizure Detector based Naive Bayes method implemented at the Fog gateway is named ESDNB.

Table 2 :

 2 Number of Groups vs Performance Metrics

	Metric	Number of Groups (K) 10 30 50 70 100 150 190
	Compression	85.8987.1488.1588.8089.4690.3790.74
	Ratio	
	Compression	7.09 7.78 8.45 8.94 9.52 10.4110.82
	Power	
	Transmitted Data	10.39 9.47 8.73 8.24 7.75 7.08 6.79
	in KB	
	Compression time	0.03 0.06 0.07 0.08 0.13 0.22 2.82
	(Seconds)	
	Decompression time	0.07 0.10 0.18 0.21 0.28 0.31 3.42
	(Seconds)	
	4.1.2. Compression Ratio	

Table 3

 3 

	, the proposed ESDNB approach can provide an accuracy
	from 99.95% up to 99.99% for two classes classication and from 99.53% up to
	99.98% for three classes classication. The ve classes classication is more
	complex and dicult to solve compared to other classes of classication and
	the proposed ESDNB still introduce an accuracy of 99.98%. In two classes
	classication, the proposed ESDNB provides MSE between 0.02% and 0.12%,
	while for three classes classication, ESDNB provides MSE between 0.02% and
	0.49% and for ve classications, ESDNB provides 0.08 of MSE. Moreover, the
	MSE for the ve classes classication of the proposed ESDNB is 0.08. Hence,
	the proposed ESDNB model has a powerful generalization capability and is
	appropriate for dierent problems of classication.
	Table 4 refers to the comparison between the proposed ESDNB approach and
	some other existing related works in terms of accuracy. As shown in Table 4, the
	proposed ESDNB approach provides accuracy from 99.53 % up to 99.99 % using
	the dataset of Bonn University. In the problem of two-class classication, the

Table 3 :

 3 Performance metrics using 5-fold cross-validation.

		Data sets	Acc	MSE	F	Sen	Sp	Pr
		combination					
		Z_S	99.99	0.01	99.99 99.99 99.99 99.99
		O_S	99.95	0.05	99.95 99.95 99.95 99.95
		N_S	99.95	0.05	99.95 99.95 99.95 99.95
		F_S	99.95	0.05	99.95 99.95 99.95 99.95
		ZO_S	99.98	0.02	99.97 99.96 99.96 99.98
		ZN_S	99.98	0.02	99.97 99.96 99.96 99.98
		ZF_S	99.98	0.02	99.97 99.96 99.96 99.98
		ON_S	99.98	0.02	99.97 99.96 99.96 99.98
		OF_S	99.98	0.02	99.97 99.96 99.96 99.98
		NF_S	99.98	0.02	99.97 99.96 99.96 99.98
		ZON_S	99.98	0.02	99.97 99.95 99.95 99.98
		ZOF_S	99.95	0.12	99.95 99.93 99.97 99.97
		ONF_S	99.98	0.02	99.97 99.95 99.95 99.98
		ZONF_S	99.95	0.05	99.92 99.93 99.93 99.91
		Z_N_S	99.96	0.07	99.96 99.96 99.98 99.96
		Z_F_S	99.96	0.07	99.96 99.96 99.98 99.96
		O_N_S	99.98	0.02	99.98 99.98 99.99 99.98
		O_F_S	99.98	0.02	99.98 99.98 99.99 99.98
		ZO_NF_S	99.53	0.49	99.60 99.59 99.74 99.61
		Z_O_N_F_S 99.98	0.08	99.98 99.98 100.00 99.98
		accuracy of the ictal and interictal by the proposed ESDNB approach and for
		the datasets combinations N _S,F _S, ZO_S, N F _S, and ZON F _S is better
		than all other methods while it is slightly lower than some methods for Z_S and
		O_S. In a three-class classication problem, the proposed ESDNB approach
	410	provides better accuracy than other methods for O_F _S and ZO_N F _S
		datasets combination. Moreover, the proposed ESDNB approach introduced a

Table 4 :

 4 Comparison between proposed ESDNB approach and some existing methods in terms

	of accuracy.			
	Data sets	Existing Methods	Acc	Acc of
	combination			ESDNB
		Novel CNN	99.52	
		TFA +ANN	100	
		DWT+ Kmeans +MLPNN	100	
		1-D-LBP + FT/BN	99.50	
	Z_S	DWT+ NB/KNN	100	99.99
		TQWT+KNNE+SVM	100	
		LMD+ GA-SVM	100	
		CNN+ M-V	100	
		CWT+CNN	99.50	
		Novel CNN	99.11	
		DWT+ NB/KNN	99.25	
	O_S	TQWT+KNNE+SVM	100	99.95
		CNN+ M-V	99.6	
		CWT+CNN	99.50	
		Novel CNN	98.02	
		DWT+ NB/KNN	99.62	
	N_S	TQWT+KNNE+SVM	99.50	99.95
		CNN+ M-V	99.1	
		CWT+CNN	98.50	
		Novel CNN	97.63	
		1-D-LBP + FT/BN	95.50	
		DWT+ NB/KNN	95.62	
	F_S	TQWT+KNNE+SVM	98	99.95
		LMD+ GA-SVM	98.10	
		CNN+ M-V	99.4	
		CWT+CNN	98.50	
		Novel CNN	99.38	
	ZO_S	DWT+ NB/KNN	99.16	99.97
		CNN+ M-V	99.8	
		Novel CNN	98.03	
	NF_S	1-D-LBP + FT/BN	97.00	99.98
		DWT+ NB/KNN	98.75	
		CNN+ M-V	99.7	

4.3. Further Results and Discussion

Table 5 :

 5 The consumed power values EdgeN ode ) at the Edge node is calculated as follows.

	Device Status Sensing Microcontroller Radio Power (mW)
	Processing	ON	ON	ON	26.83
	Listening	ON	ON	ON	20.05
	Active	ON	ON	OFF	9.72
	Sleep	OFF	OFF	OFF	0.02
	The energy required to transmit or receive one bit is 0:2575 Joule
	The simulations were achieved on HP laptop with processor Intel(R) Core(TM)
	i7-7500U CPU @ 2.70GHz (4 CPUs) whose Million Instructions Per Second(MIPS)
	rate is 49,360. To be compatible with the use of a sensor device (Edge node)
	based on a microcontroller (Atmels AVR ATmega103L) with 6MHz owning a
	MIPS rate equivalent to 6, the original time of execution on this laptop is multi-
	plied by 2056.67 ([49,360/4] * [1/6]) and this value represented as the parameter
	T Dif f . The EEG data is composed of 5 data records (Z, F, S, N, O). Each one
	includes 100 les of EEG data. Each EEG data le includes 4097 EEG data
	that require 23.6 seconds to be captured. This paper combines the data of each
	two les to constitute 50 periods for each record. Hence, the average of energy
	consumption (E