Jad Bassil
email: jad.bassil@femto-st.fr

Abdallah Makhoul
email: abdallah.makhoul@femto-st.fr

Benoît Piranda
email: benoit.piranda@femto-st.fr

Julien Bourgeois
email: julien.bourgeois@femto-st.fr

Univ Bour

Distributed Size-Constrained Clustering Algorithm for Modular Robot-based Programmable Matter

Keywords: CCS Concepts:, Theory of computation → Distributed algorithms;, Computer systems organization → Robotics programmable matter, modular robots, clustering algorithms, distributed algorithms

Modular robots are defined as autonomous kinematic machines with variable morphology. They are composed of several thousands or even millions of modules which are able to coordinate in order to behave intelligently. Clustering the modules in modular robots has many benefits, including scalability, energy-efficiency, reducing communication delay and improving the self-reconfiguration process that focuses on finding a sequence of reconfiguration actions to convert robots from an initial shape to a goal one. The main idea of clustering is to divide the modules in an initial shape into a number of groups based on the final goal shape in order to enhance the self-reconfiguration process by allowing clusters to reconfigure in parallel. In this work, we prove that the size-constrained clustering problem is NP-complete and we propose a new tree-based size-constrained clustering algorithm called "SC-Clust". The idea is to divide a network into a predefined number of clusters constrained by a given number of modules in each cluster based on the final goal shape. The result is an efficient algorithm that scales to large modular robot systems. To show the efficiency of our approach, we implement and demonstrate our algorithm in simulation on networks of up to 30,000 modules and on the Blinky Blocks hardware with up to 144 modules.

INTRODUCTION

Programmable matter is matter that can be programmed to change its physical properties on demand or due to internal or external events [START_REF] Liu | Configuration recognition with distributed information for modular robots[END_REF]. It can be achieved using modular self-reconfigurable robots (MSR) composed of thousands or millions of homogeneous micro-modules. The shape of the micro-modules differs depending on the modular robotic system used. They can communicate by exchanging messages and move around each other to reconfigure from their initial shape to a goal one in order to adapt to their task-environment, accommodate different conditions and cover failure. Figure 1 shows a self-reconfiguration example of an initial mug shape made of tiny spherical modules into a goal plate shape. Such matter can have many applications and can be deployed in a large variety of domains including surgery, space exploration, environmental science, construction, etc [START_REF] Reem | Evolutionary Modular Robotics: Survey and Analysis[END_REF][START_REF] Tucci | A Distributed Self-Assembly Planning Algorithm for Modular Robots[END_REF]. Examples of future applications include delivering drugs in the human body, monitoring hostile environments, educational robots, new sets of robotics toys, etc [START_REF] Reem | Evolutionary Modular Robotics: Survey and Analysis[END_REF][START_REF] Luna | Shape formation by programmable particles[END_REF][START_REF] Qi | 3D printed shape-programmable magneto-active soft matter for biomimetic applications[END_REF].

Planning for self-reconfiguration which consists of finding the sequences of movements to be carried out by the modules to change the shape of the MSR is a difficult process. The number of possible configurations increases exponentially when the number of modules in the system increases. The self-reconfiguration planning problem has been shown and proven to be NP-complete for chain-type MSR where modules are arranged in a chain and is expected to be at least NP-complete for lattice MSR [START_REF] Thalamy | A survey of autonomous self-reconfiguration methods for robot-based programmable matter[END_REF] where modules are arranged in a regular lattice structure. Therefore, the self-reconfiguration problem stands as a major challenge for achieving programmable matter. Clustering the modular robot can help reduce the search space thus enhancing the self-reconfiguration process. Accomplishing tasks in clusterbased approaches allows parallelization and increases the efficiency in terms of execution time, communication load and energy consumption. In fact, a cluster head (CH) will be designated in each cluster to schedule tasks and activities in its cluster and to coordinate intra-clusters operations with other CHs. Cluster's members will only communicate with their CH reducing the communication scope to inter-cluster only thus avoiding passing of redundant messages.

Fig. 2. Clustering motivation

Figure 2 shows the benefit that clustering can yield to the self-reconfiguration process. The modules in the initial shape are clustered into 5 clusters with sizes chosen according to the goal shape. The formed clusters can then reconfigure in parallel to form their corresponding part of the goal shape thus, reducing the time and communication required for transforming the configuration from the initial shape to the goal one. For instance, in [START_REF] Moussa | Cluster-Based Distributed Self-reconfiguration Algorithm for Modular Robots[END_REF], the authors proposed a Manuscript submitted to ACM cluster-based self-reconfiguration algorithm where clusters of modules in the initial shape reconfigure in parallel to form the goal shape. To show the advantage that clustering can yield to self-reconfiguration, they compared the execution time and communication load while varying the number of clusters. The results showed that both the execution time and the number of exchanged messages decrease by a factor of 𝑘 where 𝑘 is the number of clusters. However, they suppose that the clusters are given initially and do not propose a clustering method.

Our objective is to propose an efficient distributed clustering algorithm to partition the modules in the initial shape given the number of clusters and the size of each cluster according to the goal shape in order to enhance the self-reconfiguration process. A tree-based density-cut algorithm was proposed in [START_REF] Bassil | Linear Distributed Clustering Algorithm for Modular Robots Based Programmable Matter[END_REF] for the same purpose. However, it resulted in arbitrary sized clusters so, we aim to propose a new algorithm to control the number of modules in each cluster which is crucial for self-reconfiguration since a cluster of modules in the initial shape needs to reconfigure into a specific part of the goal shape requiring a fixed number of modules. Prior to self-reconfiguring, modules can be assembled randomly so they are not aware of their initial configuration.

But, an efficient encoding of the goal configuration is required for self-reconfiguration since a module needs to know its position according to the goal map. A solution based on Constructive Solid Geometry (CSG) [START_REF] Requicha | Constructive Solid Geometry[END_REF] is proposed in [START_REF] Tucci | Efficient scene encoding for programmable matter self-reconfiguration algorithms[END_REF]. It can be used to determine the number and sizes of clusters. It defines the goal shape as a tree made of basic geometrical objects and transformations (union, intersection, difference) that when combined form the final scene as shown in Figure 3. First, the 3D object to be formed is discretized and encoded into the CSG tree via centralized computations.

During this process, the number of clusters and the size of each cluster can also be calculated according to the goal shape. Then, the CSG tree can be transmitted along with the number of clusters and clusters' sizes to a master module to be then flooded and stored in all modules.

In this paper, we present SC-Clust, a distributed algorithm that partition the modules of a modular robot in a predefined number of clusters with predefined cluster sizes. This paper is organized as follow. Section 2 presents the size-constrained clustering problem and lists the system assumptions. Section 3 gives an overview of the related works existing in the literature. In section 4, our proposed solution, the SC-Clust algorithm is described. Section 5 gives a . complexity analysis in terms of communication load and execution time. Section 6 shows the conducted simulations and evaluates the performance of the SC-Clust algorithm in terms of execution time and communication load on different configurations and cluster distributions. In section 7, we conclude this paper and mention the intended future works.

PROBLEM DEFINITION AND SYSTEM ASSUMPTIONS

The modular robot ensemble can be modeled as an undirected graph 𝐺 (𝑉 , 𝐸,𝑊) where 𝑉 represents the set of modules, Manuscript submitted to ACM

𝐸
• The goal shape is known and can be efficiently encoded and stored in each module, as explained in [START_REF] Tucci | Efficient scene encoding for programmable matter self-reconfiguration algorithms[END_REF].

• Each module is identified by an unique number (ID).

• Modules are placed in the cells of a regular 3D lattice and they store locally their coordinates and orientation.

• Only neighbor-to-neighbor communications are possible. A module may send a message to its adjacent neighbors through one of its connectors. The receiver can respond by sending a message through the connector that received the message.

• No global view of the modular robot network is available. The view of each module is limited to its direct neighborhood. Modules perform their computations locally, and they can only access local information in their neighborhood via message-passing.

• A module is aware of its direct connections (i.e., which borders are connected to other modules and which ones are not).

• We consider the configuration to be fixed and always connected during the process, that is, no new modules are connected or disconnected during the execution of the algorithm.

Size-constrained 𝑘-partitioning is NP-complete

In this section, we first define the k-balanced clustering problem and then prove that the size-constrained 𝑘-partitioning problem is NP-complete. To do so, we prove that it is NP-hard by restriction from the k-balanced clustering problem. NP-completeness follows since it is simple to verify a given solution with a linear algorithm. The k-balanced partitioning problem defined in Definition 3 is proved to be NP-hard on 2D lattice graphs by reduction from Hamiltonian path in [START_REF] Berenger | Balanced connected partitioning of unweighted grid graphs[END_REF] and 3-partition in [START_REF] Emil | Fast balanced partitioning is hard even on grids and trees[END_REF]. The size-constrained 𝑘-partitioning problem contains the 𝑘-balanced clustering problem as a special case where all clusters are equal in size. Therefore, by restriction [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF],

The size-constrained 𝑘-partitioning problem is NP-hard on 2D lattice graphs and therefore, it is at least NP-hard on 3D lattice graphs representing module connections in lattice-based modular robots.

RELATED WORKS

The problem we consider is related to graph clustering or graph partitioning. The graph partitioning problem has been widely studied in the literature and it is known to be a NP-hard problem [START_REF] Wilfried | A survey of current challenges in partitioning and processing of graph-structured data in parallel and distributed systems[END_REF][START_REF] Buluç | Recent Advances in Graph Partitioning[END_REF][START_REF] Satu | Graph clustering[END_REF]. Existing graph partitioning methods rely on two search techniques: global and local. They aim to partition a given graph into 𝑘 disjoint balanced dense partitions. Global search algorithms work on the entire graph to find a direct solution. They include solutions based on linear programming [START_REF] Fan | Linear and quadratic programming approaches for the general graph partitioning problem[END_REF][START_REF] Hager | An exact algorithm for graph partitioning[END_REF], spectral clustering [START_REF] Huang | Ultra-scalable spectral clustering and ensemble clustering[END_REF][START_REF] Liu | Spectral clustering[END_REF][START_REF] Ch Martin | Spectral clustering: a quick overview[END_REF] and geometrical clustering [START_REF] Shahab U Ansari | Mesh partitioning and efficient equation solving techniques by distributed finite element methods: A survey[END_REF][START_REF] John R Gilbert | Geometric mesh partitioning: Implementation and experiments[END_REF][START_REF] Horst D Simon | Partitioning of unstructured problems for parallel processing[END_REF]. Local search algorithms use heuristic and metaheuristic methods to iteratively improve an initial solution based on an optimization function. They use techniques such as node swapping [START_REF] Osipov | n-Level Graph Partitioning[END_REF], tabu search [START_REF] Rolland | Tabu search for graph partitioning[END_REF], random walk [START_REF] Yan | Constrained local graph clustering by colored random walk[END_REF], graph growing [START_REF] Diekmann | Shape-optimized mesh partitioning and load balancing for parallel adaptive FEM[END_REF][START_REF] Predari | A k-way greedy graph partitioning with initial fixed vertices for parallel applications[END_REF], genetic algorithms [START_REF] Kim | Genetic approaches for graph partitioning: a survey[END_REF], multilevel approach [START_REF] Henning Meyerhenke | Partitioning complex networks via size-constrained clustering[END_REF][START_REF] Henning Meyerhenke | Parallel graph partitioning for complex networks[END_REF] ... The aforementioned methods are used for graph structured data and are not suitable for modular robots, as they require global knowledge of the graph.

Capacitated clustering problem (CCP) [START_REF] John | Solving capacitated clustering problems[END_REF] is a problem closely related to the graph partitioning problem. Its objective is to partition the weighted nodes of a graph into a set of disjoint clusters where the sum of the nodes' weights in Manuscript submitted to ACM each cluster is constrained by an upper and lower capacity limit while maximizing the edges' weights of each cluster.

Existing CCP solutions use centralized heuristic approaches [START_REF] Gnägi | A matheuristic for large-scale capacitated clustering[END_REF][START_REF] Liu | MEACCP: A membrane evolutionary algorithm for capacitated clustering problem[END_REF][START_REF] Scheuerer | A scatter search heuristic for the capacitated clustering problem[END_REF][START_REF] Zhou | Heuristic search to the capacitated clustering problem[END_REF]. For example, in [START_REF] Zhou | Heuristic search to the capacitated clustering problem[END_REF], two heuristics are used: tabu search and mimetic algorithms. They can be applied to find size-constrained partitions but they require global knowledge of the graph and do not scale to thousands of resource constrained modules since they require thousands of iterations to find an acceptable solution.

Distributed partitioning methods were developed to overcome the high computation cost when the graph size becomes very large. The distributed partitioning model distributes the partitioning task across a network of computers.

For example, in [START_REF] Fatemeh Rahimian | A distributed algorithm for large-scale graph partitioning[END_REF] the author proposed JA-BE-JA, a fully distributed iterative method that can find balanced partitions while reducing the number of cut-edges using local search and simulated annealing. It requires thousands of iterations and uses multi-start strategies to converge towards an optimal solution resulting in a huge communication load, especially in a sparse graph such as the one representing modules connections. In a more recent work, Adoni et al. presented DHPV [START_REF] Yves | DHPV: a distributed algorithm for large-scale graph partitioning[END_REF], a distributed algorithm that outperforms JA-BE-JA. It is more suitable to the master-slave distributed architecture where a master node coordinates the partitioning process and the partitioning task is distributed to slave nodes that operates in parallel to add a new vertex to their partition's subgraph. These methods are suitable for balanced partitioning of graph structured data and can't be applied to distributedly partition the modules of a modular robot with communication limited to neighbor-to-neighbor and no centralized global control.

The multi-robot task allocation problem [START_REF] Khamis | Multi-robot task allocation: A review of the state-of-the-art[END_REF] is about assigning a group of robots to a set of tasks in the most optimal way based on a utility function. The utility function measures how well a robot can perform a task. Some tasks require multiple homogeneous robots or heterogeneous robots with different capabilities to be accomplished. So, robots are partitioned to form 𝑘 coalitions based on the utility function. Then, tasks are assigned to coalitions to be executed simultaneously [START_REF] Dutta | Coalition Formation for Multi-Robot Task Allocation via Correlation Clustering[END_REF][START_REF] Mazdin | Distributed and Communication-Aware Coalition Formation and Task Assignment in Multi-Robot Systems[END_REF][START_REF] Zhang | Coalition coordination for tightly coupled multirobot tasks with sensor constraints[END_REF]. The problem we are tackling in this paper is different from the multi-robot task allocation problem since we consider the partitioning problem independently of the task to be performed which is the self-reconfiguration. Therefore, these methods are not applicable to solve our problem.

Partitioning the set of modules for configuration generation in modular robots has been studied in [START_REF] Dutta | A bottom-up search algorithm for size-constrained partitioning of modules to generate configurations in modular robots[END_REF][START_REF] Dutta | Spanning Tree Partitioning Approach for Configuration Generation in Modular Robots[END_REF]. In [START_REF] Dutta | A bottom-up search algorithm for size-constrained partitioning of modules to generate configurations in modular robots[END_REF], an algorithm based on a coalition search graph is proposed for partitioning a set of modules. It aims for an efficient shape configuration of scattered modules by partitioning-based coalition formation constrained by the maximum number of modules required to form the configuration. It finds the best coalition structure of separated modules based on a utility function. The modules forming a coalition are then docked together to form the goal configuration. Another method for the same purpose is proposed in [START_REF] Dutta | Spanning Tree Partitioning Approach for Configuration Generation in Modular Robots[END_REF] where a minimum spanning tree is built to minimize docking cost. Then, the best coalition or configuration is found by partitioning the built tree taking into consideration the size, communication and battery constraints. These methods focus on configuring small sets of separated modules scattered in their environment. Hence, they are not applicable to solve our problem.

Clustering has been studied for robotic swarms. The purpose is to split the swarm into clusters for pattern formation and for better problem solving efficiency by dividing the problem into sub-problems and allocating different tasks to each cluster. Mostly, the existing methods rely on robot mobility directed by external stimuli in the environment, so they are not suitable for modular robot's based programmable matter, to cite a few [START_REF] Hayes | Swarm Robotic Odor Localization: Off-Line Optimization and Validation with Real Robots[END_REF][START_REF] Sanza Kazadi | On the dynamics of clustering systems[END_REF][START_REF] Pinciroli | Self-organised recruitment in a heteregeneous swarm[END_REF][START_REF] Wahby | Collective Change Detection: Adaptivity to Dynamic Swarm Densities and Light Conditions in Robot Swarms[END_REF]. Other methods based on token clustering were proposed. In [START_REF] Di | A fully distributed communication-based approach for spatial clustering in robotic swarms[END_REF], a fully distributed algorithm is proposed based on consensus and load balancing to partition the robots with wireless communication into two spatially separated clusters. Then it was extended in [START_REF] Bulla | Robust distributed spatial clustering for swarm robotic based systems[END_REF] to spatially partition the set of robots into multiple clusters. However, the experimental results show that the time required for convergence is high for a small number of robots and a small number of clusters. The experiments showed Manuscript submitted to ACM

Work

distributed local knowledge size-constraint Global Search [START_REF] Shahab U Ansari | Mesh partitioning and efficient equation solving techniques by distributed finite element methods: A survey[END_REF][START_REF] Hager | An exact algorithm for graph partitioning[END_REF][START_REF] Huang | Ultra-scalable spectral clustering and ensemble clustering[END_REF][START_REF] Kim | Genetic approaches for graph partitioning: a survey[END_REF][START_REF] Liu | Spectral clustering[END_REF][START_REF] Henning Meyerhenke | Partitioning complex networks via size-constrained clustering[END_REF] × × × Local Search [START_REF] Osipov | n-Level Graph Partitioning[END_REF][START_REF] Predari | A k-way greedy graph partitioning with initial fixed vertices for parallel applications[END_REF][START_REF] Rolland | Tabu search for graph partitioning[END_REF][START_REF] Yan | Constrained local graph clustering by colored random walk[END_REF] × ✓ × CCP [START_REF] Gnägi | A matheuristic for large-scale capacitated clustering[END_REF][START_REF] Liu | MEACCP: A membrane evolutionary algorithm for capacitated clustering problem[END_REF][START_REF] John | Solving capacitated clustering problems[END_REF][START_REF] Scheuerer | A scatter search heuristic for the capacitated clustering problem[END_REF][START_REF] Zhou | Heuristic search to the capacitated clustering problem[END_REF]]

× × ✓ Distributed Methods[2, 51] ✓ ✓ × SWARM clustering [10] ✓ ✓ × WSN clustering [8, 41, 46, 63] ✓ ✓ × DCut [6] ✓ ✓ × SC_Clust ✓ ✓ ✓
that it can take minutes to cluster 20 robots into 4 classes. The convergence time is expected to increase immensely for large scale modular robots with communication limited to neighbor-to-neighbor.

Clustering for wireless sensor networks (𝑊 𝑆𝑁) and mobile ad-hoc networks is related to our problem in which sensors are grouped into clusters to achieve network scalability by creating a hierarchical structure. For each cluster, a cluster-head (𝐶𝐻) plays significant roles such as scheduling tasks and aggregating and relaying data generated by its cluster members to limit inter-clusters communications to 𝐶𝐻𝑠 only thus reducing communication load [START_REF] Afsar | Clustering in sensor networks: A literature survey[END_REF]. Many clustering algorithms have been proposed for 𝑊 𝑆𝑁 [START_REF] Bhola | Genetic algorithm based optimized leach protocol for energy efficient wireless sensor networks[END_REF][START_REF] Mukherjee | LEACH-VD: A Hybrid and Energy-Saving Approach for Wireless Cooperative Sensor Networks[END_REF][START_REF] Pietrabissa | Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control[END_REF][START_REF] Xiangning | Improvement on LEACH protocol of wireless sensor network[END_REF] but they are not suitable to modular robots due to their specific constraints which make them inapplicable on modular robots: wireless communication, existence of a base station, pre-election of cluster heads....

In [START_REF] Bassil | Linear Distributed Clustering Algorithm for Modular Robots Based Programmable Matter[END_REF] we proposed a fully distributed and adapted version of the DCut algorithm originally proposed by Shao et al.

(2018) [START_REF] Shao | Graph Clustering with Local Density-Cut[END_REF] in the context of modular robots.

It takes into consideration the geometrical aspect of the ensemble and captures the density between adjacent modules locally using Jaccard Coefficient. The idea is to build a density-connected tree (DCT) that captures the topological similarities between modules relative to fixed points on the extremities of the geometry bounding box. Since the DCT forms an acyclic graph, an edge connects two partitions. So, instead of partitioning the whole graph representing all connections between modules, it partitions the DCT by recursively finding and removing cut edges until 𝑘 clusters are obtained. It creates a spanning-tree which can be used in tasks such as inter-cluster communication, intra-cluster communication, data aggregation, moving modules from one cluster to another, etc. Furthermore, it is distributed and efficient. However, it does not take into consideration the size-constraint which is crucial for transforming clusters of the initial shape to specific parts of the goal shape requiring a fixed number of modules.

The existing work aforementioned in this section fails to satisfy the requirements to solve the size-constrained 𝑘-partitioning problem for modular robots described in Section 2. The solution must be distributed, based on the limited local knowledge of each module about its neighborhood, and satisfies the size-constraint. Therefore, in this work we present SC-Clust, a distributed solution for the size-constrained 𝑘-partitioning problem for modular robots that uses the local knowledge of modules to cluster the ensemble. Table 1 shows which requirements are met by the existing solutions. We excluded from the table the above-mentioned solutions for the multi-robot task allocation problem and the configuration generation problem because partitioning is not their primary focus and they address a different problem than ours.

ALGORITHM DESCRIPTION

In this section, we propose the SC-Clust algorithm, a solution to the size-constrained clustering for lattice graphs representing module connections in modular robots. It identifies 𝑘 size-constrained partitions in 𝑂 (𝑛𝑙𝑜𝑔𝑛) time and communication complexity. The SC-Clust algorithm operates in three phases. First, we define the edge weights and how they are calculated and stored in each module (Section 4.1). Second, a minimum spanning tree (MST) is built. A fully distributed and asynchronous algorithm [START_REF] Gallager | A Distributed Algorithm for Minimum-Weight Spanning Trees[END_REF] is used for this purpose. Third, the MST is partitioned. Initially, all modules form the initial cluster; then the MST is sequentially partitioned by finding, adjusting, and separating branches having the desired number of modules (Section 4.3).

Weight Calculation

In this section, an edge weight measure is defined that captures the geometric aspects of the ensemble. We start with the following definitions:

Definition 4. Anchors: Given a geometrical shape 𝐼 , the minimum bounding box 𝐵 is the box surrounding 𝐼 aligned with the coordinate axes with the minimum volume. The set of anchors 𝐴 is defined as the set of coordinates of the corners of the minimum bounding box.

Since the modules in a modular robot are placed in a regular lattice, 𝐴 can be easily and efficiently calculated by selecting the different minimum and maximum combinations while varying on the three axes x, y, and z, so a total of 8 points are defined at the corners of 𝐵, that is, all possible combinations of ({𝑚𝑖𝑛 𝑥 , 𝑚𝑎𝑥 𝑥 }, {𝑚𝑖𝑛 𝑦 , 𝑚𝑎𝑥 𝑦 }, {𝑚𝑖𝑛 𝑧 , 𝑚𝑎𝑥 𝑧 }). The weight measure defined in definition 5 captures the geometrical aspects of the ensemble in a way that edges connecting modules near the borders of the configuration will have lower weights. This will later results in having clusters positioned near borders which facilitate modules movements for self-reconfiguration.

Anchors positions are calculated by building a spanning tree rooted at a randomly chosen module. During the building process, the values of 𝑚𝑖𝑛 𝑥 , 𝑚𝑖𝑛 𝑦 , 𝑚𝑖𝑛 𝑧 , 𝑚𝑎𝑥 𝑥 , 𝑚𝑎𝑥 𝑦 and 𝑚𝑎𝑥 𝑧 are returned to the root then broadcasted to all modules via the built tree. Upon reception, modules can calculate and store the distance to their nearest anchor then, store their adjacent edges weights.

Tree Construction

After all modules have stored their adjacent edge weights, a Minimum Spanning Tree (MST) is built. It minimizes the (𝑢,𝑣) ∈𝑉 𝑀𝑆𝑇 𝑤 (𝑢, 𝑣). Any distributed algorithm to find a MST can be used. We use a fully distributed asynchronous algorithm called GHS proposed in [START_REF] Gallager | A Distributed Algorithm for Minimum-Weight Spanning Trees[END_REF]. GHS is known to have an optimal communication complexity of 𝑂 (𝑚 + 𝑛𝑙𝑜𝑔(𝑛)) messages. Its time complexity is 𝑂 (𝑛𝑙𝑜𝑔(𝑛)) which is not optimal. Existing distributed algorithms solve the minimum spanning tree problem with better time complexity at the cost of increasing the communication load [START_REF] Blin | A very fast (linear time) distributed algorithm, on general graphs, for the minimum-weight spanning tree[END_REF][START_REF] Haeupler | Round-and message-optimal distributed graph algorithms[END_REF][START_REF] Mashreghi | Broadcast and minimum spanning tree with o (m) messages in the asynchronous CONGEST model[END_REF][START_REF] Pandurangan | The distributed minimum spanning tree problem[END_REF], which is not suitable for modular robots, as sending messages consumes the limited energy resources of the modules.

Manuscript submitted to ACM

The GHS algorithm requires that each edge has an unique weight. In case the weights are not distinct, which is our case, one can simply append the identities of the edge's adjacent nodes starting by lower order first. Initially, each node forms a fragment. Nodes wake up to start the GHS algorithm execution asynchronously, so there are no restrictions on the wake-up process, thus, all nodes can wake up at the same time or only one node can wake up and the tree is formed which is suitable for our case.

The GHS algorithm operates in phases. During each phase, fragments are extended by merging with other fragments.

Nodes in each fragment are connected with edges to form a rooted MST. Each node holds a pointer to the next node in the tree that leads to the fragment's root. Fragments are merged through their minimum outgoing edge. To find the minimum outgoing edge of a fragment, a message is broadcasted asking all the fragment's nodes about their minimum outgoing edge. Each node waits for the answers of all its children in the tree before sending it upwards on the tree to reach the fragment's root. Once the minimum outgoing edge is found, a message is sent over that edge to the fragment on the other side. The two fragments will then merge into a larger fragment. If the two fragments chose the same minimum outgoing edge they agree to merge and the edge chosen by the two fragments is called core edge.

During the last phase, two fragments will be merged via a core edge into one large fragment forming the MST. We refer the reader to [START_REF] Gallager | A Distributed Algorithm for Minimum-Weight Spanning Trees[END_REF] for a complete description of the algorithm. Once the MST is formed, we can proceed to its partitioning. One can choose one of the core nodes adjacent to the core edge as the root of the tree. However, to have clusters distributed closer to borders as much as possible, we choose the root to be the node with minimum distance to one of the anchors (Definition 4) at the extremities of the initial configuration. Ties are broken randomly. To do so, after the root is found, it broadcasts a message through the tree. The receiving nodes set the sender as a parent leading to the root and save the edges leading to their children in the MST. The resulting tree on a 2D regular lattice is shown in Figure 5. MST Fig. 5. An example of MST construction. On the left the weight distributed according to the distance to the nearest anchor (The flag of the same color). On the right, the MST is constructed and the root is colored in green.

Tree Partitioning

In this phase, given the set of desired cluster sizes 𝑆, the MST is partitioned in order to obtain 𝑘 = |𝑆 | size-constrained clusters. The idea is to find the cut-edge that results in a branch to form the cluster in a way to minimize the difference between the number of modules in the branch and the desired number of modules in the cluster. To do so, we define the cut-edge as follows: Definition 6. cut-edge: A cut-edge 𝑐 𝑖 is an edge 𝑒 (𝑢, 𝑣) that separates the partition containing 𝑢 and 𝑣 in which 𝑐 𝑖 is searched from the new partition. The nodes 𝑉 𝑖 of the new partition 𝐺 𝑖 are the nodes in the branch of the MST rooted at 𝑐𝑢𝑡𝐴𝑡 = 𝑣: the node in 𝑉 𝑖 adjacent to 𝑐 𝑖 . Given the set of desired partitions' sizes 𝑆, in order to satisfy the size constraint described in Section 2, |𝑉 𝑖 | should be equal to 𝑠 𝑖 . However, a cut-edge that satisfies this constraint may not exist since a branch in the MST having exactly 𝑠 𝑖 nodes could not be found. Therefore, the cut-edge 𝑐 𝑖 is found in a way to minimize the difference 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 between the size of the sub-tree rooted at 𝑐𝑢𝑡𝐴𝑡 and 𝑠 𝑖 . Therefore:

𝑐 𝑖 = 𝑒 (𝑢, 𝑣) ∈ 𝐸 | 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 = min 𝑒 (𝑢,𝑣) ∈𝐸 |𝐷𝑖 𝑓 𝑓 𝑒 | s.t. 𝐷𝑖 𝑓 𝑓 𝑒 (𝑢,𝑣) = 𝑠 𝑖 -𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠𝑖𝑧𝑒 (𝑣)
After removing a cut-edge 𝑐 𝑖 , the difference between the resulting cluster size and the desired size 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 may not be null if a branch containing the desired number of modules did not exist in the MST. To fix this issue two methods are presented in the following sections. The first in section 4.4 is a naive method that builds and exchanges a chain of modules to fix the erroneous cluster's size. The second in section 4.5, makes additional cuts and associates the resulting branches to the erroneous cluster until having the desired size.

Naive Solution Based On Modules Exchange

In this section, a way to satisfy the size-constraint for a cluster 𝑉 𝑖 resulted after the 𝑖 𝑡 ℎ cut is described. First, all modules belong to cluster 𝑉 0 . The root of 𝑉 0 initiates 𝑘 -1 cuts to obtain 𝑘 clusters. After each cut, if 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 is not null, 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 modules are exchanged between 𝑉 0 and 𝑉 𝑖 . To do so, the furthest module in 𝑉 𝑖 from the root of 𝑉 𝑖 having at least one neighbor in 𝑉 0 is chosen as chain source. Then, a chain consisting of a sequence of modules starting from the chain source is built. In case 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 > 0, the chain is built in 𝑉 𝑖 consisting of a maximum 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 module and exchanged with 𝑉 0 . In case of 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 < 0, the chain is built in 𝑉 0 starting from the chain source and exchanged with 𝑉 𝑖 . If after an exchange, 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 is still not null, the exchange process is repeated. An example of module exchange is shown in Figure 6 where four clusters of equal size are sequentially formed on a 2D humanoid shape starting from the left figure. The clusters roots are colored in brown, the chain source is colored in grey, and the exchanged chain is colored in white.

To build the chain, the last module added to the chain must choose the next one to add. A strategy is required to make this choice. Three strategies have been studied, they are presented in Figure 7 in an example where four equal sized clusters are formed on a 3D mug shape.

The first strategy in Figure 7a consists in adding the module with minimum distance to the centroid of the cluster.

The second strategy in Figure 7b adds the module with the minimum Euclidean distance to the centroid. The third in Figure 7c builds a chain with modules on the border between 𝑉 𝑖 and 𝑉 0 . As it can be seen the cluster shapes differ according to the exchange strategy.

Exchanging Modules Problem.

A problem that can occur is that an exchanged chain can possibly disconnect a cluster. As shown in Figure 8, the cluster colored in red becomes disconnected : modules circled in red are not accessible Manuscript submitted to ACM by the root of their partition via a path of red modules only. This issue can be solved by checking, while building the exchange chain, if the module to be added causes a disconnection. Or after building the chain, if exchanging the built chain causes a disconnection, then find another chain. However, checking if exchanging a module or a chain causes a disconnection is a heavy time consuming process that requires an additional communication load. In addition, choosing the best strategy is not evident since it depends on the geometry of the ensemble. Therefore, another disconnection-less method to deal with the size difference resulted after a cut is described in the next section and it is considered in future sections.

Additional Cuts

In this section, a new method to deal with size difference after a cut is presented. It consists in performing additional cuts until the size constraint for cluster 𝑖 is satisfied i.e. 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 = 0. Initially, all modules belong to 𝑉 0 . If after a cut 𝑐 𝑖 , |𝑉 𝑖 | ≠ 𝑠 𝑖 , an additional cut is made to find an adjacent branch with size equal to 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 that contains at least one module that has a neighbor in 𝑉 𝑖 and the resulting branch is joined with or cut off the erroneous cluster. The flow chart for creating a partition 𝑉 𝑖 is depicted in Figure 9. Three cases are presented after an initial cut:

(1) If 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 > 0, the root of 𝑉 𝑖 in the 𝑀𝑆𝑇 initiates the search for a new cut-edge 𝑐 𝑖 𝑗 (𝑢, 𝑣) in its partition that minimizes: |𝐷𝑖 𝑓 𝑓 𝑐 𝑖 -𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠𝑖𝑧𝑒 (𝑣)|, the resulting branch is added to 𝑉 0 .

(2) If 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 < 0, the root of the 𝑀𝑆𝑇 initiates the search for a new cut-edge 𝑐 𝑖 𝑗 (𝑢, 𝑣) in its partition 𝑉 0 that minimizes:

|𝐷𝑖 𝑓 𝑓 𝑐 𝑖 -𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠𝑖𝑧𝑒 (𝑣)|.
The resulting branch is added to 𝑉 𝑖 . This method guarantees that the resulted clusters are always connected since the structure of the MST is maintained.

In addition, the size-constraint can always be satisfied because in a worst case scenario where both |𝐷𝑖 𝑓 𝑓 Finding a cut-edge is initiated by calling the 𝑐𝑢𝑡 procedure (see Algorithms 1, 2, 3) with three parameters:

(1) 𝑟𝑒𝑐𝑢𝑡: A boolean that indicates if the cut-edge to be found is an additional cut to deal with a previous partition's size difference.

(2) 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒: The desired size of the partition.

(3) 𝑎𝑑 𝑗: In case of an erroneous size partition 𝑖 (𝐷𝑖 𝑓 𝑓 𝑐 𝑖 ≠ 0), 𝑎𝑑 𝑗 takes the value of the partition id 𝑖 to which the resulted partition needs to be joined. Otherwise it takes the value 0.

Initially, all nodes belong to partition 𝑉 0 with the search for the first cut-edge. FIND_CUT message is sent in broadcast and RESP_CUT is sent using convergecast as described in algorithm 1. During this process, each module calculates the difference between its sub-tree size and the desired cluster size. In case of an additional cut (𝑟𝑒𝑐𝑢𝑡 = 𝑡𝑟𝑢𝑒), the branch to join with partition 𝑉 𝑖 should have at least one neighbor in 𝑉 𝑖 to avoid having disconnected partitions (algorithm 2, lines 32, 35). The minimum difference of a branch size with the maximum number of neighbors possible in 𝑎𝑑 𝑗 is returned to the root, and the module interface to reach the 𝑐𝑢𝑡𝐴𝑡 module is saved in 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡. The root will then send a CUT message to the 𝑐𝑢𝑡𝐴𝑡 module connected to the cut-edge which will become the root of the new partition.

|𝑉 0 | = |𝑉 |. For 𝑖 ∈ [1, 𝑘 -1],
Manuscript submitted to ACM 𝑐𝑢𝑡𝐴𝑡 module, which is the root of 𝑉 𝑖 to deal with this difference (algorithm 3, lines 66, 67). Otherwise, if the root receives REPORT_CUT message with the value of 𝐷𝑖 𝑓 𝑓 𝑐 𝑖 = 0, it updates its cluster tree and then executes 𝑐𝑢𝑡 (𝑓 𝑎𝑙𝑠𝑒, 𝑠 𝑖+1 , 0) to find the partition 𝑉 𝑖+1 (algorithm 3, lines 67, 70). The tree must be updated to join the resulted branches after additional cuts with their corresponding partitions. The 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑟𝑒𝑒 () procedure depends on the algorithm used to build the MST. After considering nodes in additional branches as disconnected nodes, we use the tree maintenance algorithm described in [START_REF] Diaz | Dynamic minimum spanning tree construction and maintenance for Wireless Sensor Networks[END_REF] where the GHS algorithm for building the MST is relaunched inside the partition to join an additional disconnected branch.

COMPLEXITY ANALYSIS

In this section, we give a complexity analysis by phase in terms of communication load and execution time. We note 𝑛 = |𝑉 | the number of modules and 𝑚 = |𝐸| the number of connections between modules.

Communication Load

In the first phase, the anchor positions are found, and all edges' weights are calculated. It requires 𝑂 (𝑛) messages to find and store anchors through tree traversal. In addition, to calculate and store an edge weight, two messages are exchanged between the edge's adjacent modules. Therefore, the communication complexity of the first phase is 𝑂 (𝑛 + 𝑚).

The second phase consists in building a minimum spanning tree. We use the GHS algorithm described in [START_REF] Gallager | A Distributed Algorithm for Minimum-Weight Spanning Trees[END_REF] which has a complexity of 𝑂 (𝑚 + 𝑛 log 𝑛) in addition to 𝑂 (𝑛) for finding the root and redirecting edges towards it.

During the third phase, the tree is partitioned to obtain 𝑘 partitions. The SC-Clust requires 𝑘 -1 cuts plus a number 𝑎 of additional cuts used to fix size differences. Therefore, the number of messages required is 𝑂 ((𝑘 -1 + 𝑎) log 𝑛) since after each cut the search space for the next cut is reduced. The number of additional cuts 𝑎 will be discussed in the next section. Moreover, clusters' trees are updated after each cut to join additional branches resulted by additional cuts which requires 𝑂 (𝑘 log 𝑛) messages.

Overall, by summing the complexities of the three phases, the communication complexity is equal to: 𝑂 (𝑛 + 𝑚) + 𝑂 (𝑛 +𝑚 +𝑚 log 𝑛) + 𝑂 ((𝑘 + 𝑎) log 𝑛) = 𝑂 (𝑛 +𝑚) + 𝑂 ((𝑚 + 𝑘 + 𝑎) log 𝑛). In a filled cubic geometry the maximum number of connections 𝑚 is equal to 3𝑛. Also, in all practical cases 𝑘 ≪ 𝑛 and 𝑎 ≪ 𝑛 unless 𝑠 𝑖 = 1 for 𝑖 ∈ [1, 𝑛]. Therefore, the overall communication complexity can be expressed with the number of modules in the system 𝑛 and it is equal to 𝑂 (𝑛) + 𝑂 (𝑛 log 𝑛) = 𝑂 (𝑛 log 𝑛).

Execution Time

The time required for the first phase in which anchor positions are found and edges weights are calculated depends on the diameter 𝑑 of the network since the maximum tree length is bounded by 𝑑. Three tree traversals are required. Thus, the time complexity of the first phase is 𝑂 (𝑑).

The time complexity of building the tree in the second phase is 𝑂 (𝑛 log 𝑛) [START_REF] Gallager | A Distributed Algorithm for Minimum-Weight Spanning Trees[END_REF]. Redirecting all edges towards the root requires a tree traversal. The time taken for tree traversal is 𝑂 (𝑛) since the maximum possible diameter of the MST can be equal to n. Therefore, the time required for the second phase is 𝑂 (𝑛) + 𝑂 (𝑛 log 𝑛) = 𝑂 (𝑛 log 𝑛).

As for the third phase, the time required for finding a cut is 𝑂 (𝑛). 𝑘 + 𝑎 cuts need to be found. Therefore, the time complexity for partitioning the MST is 𝑂 ((𝑘 + 𝑎).𝑛) in addition to the time required for joining additional cuts and updating clusters' tree which is 𝑂 (𝑘. log 𝑛). Therefore, the overall time complexity of the third phase is 𝑂 (𝑛) + 𝑂 (𝑘. log 𝑛) = 𝑂 (𝑛).

Manuscript submitted to ACM

The overall complexity of the three phases is 𝑂 (𝑑) + 𝑂 (𝑛 log 𝑛) + 𝑂 (𝑛) = 𝑂 (𝑛 log 𝑛). This complexity is mostly due to the construction of the MST.

SIMULATIONS AND RESULTS

We evaluated our algorithm in simulation using 𝑉 𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑖𝑚 [START_REF] Thalamy | VisibleSim: A behavioral simulation framework for lattice modular robots[END_REF], a discrete-event 3D simulator for modular robots that supports thousands of modules that form large-scale ensembles. It supports different modular robotic systems including 3D Catoms [START_REF] Piranda | Designing a quasi-spherical module for a huge modular robot to create programmable matter[END_REF] used in our simulations.

We also validated the SC-Clust algorithm on real robotic systems called Blinky Blocks. 𝑉 𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑖𝑚 allows to light up a module with a certain color to show its status. We use this feature to distinguish clusters by coloring each cluster with a different color. that attach or remove modules on the borders to satisfy the size constraint as explained in Section 4.5.

Evaluating SC-Clust

Execution Time 0 5.0x10 5 1.0x10 6 1.5x10 6 2.0x10 6 2.5x10 6 3.0x10 6 3.5x10 6 To provide an objective evaluation, we carried out different simulations with different shapes consisting of up to 30,000 3D Catoms. Each shape has different geometrical properties to show that the proposed algorithm find a solution independently from the geometrical shape. For each shape, we conducted simulations with the following cluster distributions:

• 4 clusters with 25 % in each cluster.

• 4 clusters with 10 % 20 % 30 % 40 %.

• 10 clusters with 10 % in each cluster.

• 10 clusters with 4 clusters containing 5 % each, 3 clusters containing 10 % each, 2 clusters containing 15 % each and 1 cluster containing 20 %.

6.1.1 Execution Time. Figure 12 shows the execution time of the SC-Clust algorithm. We can see that the execution time increases logarithmically when the number of modules increases. This is valid for all shapes and all cluster distributions.

The reason is obvious. The increase in the number of clusters directly affects the execution time as explained in section 5.2 because as the number of clusters becomes greater, the number of cuts to be found increases. Moreover, the execution time is also affected by the shape and diameter of the system. When the diameter of the ensemble increases and its density decreases, the execution time increases; as can be seen in Figure 12, the humanoid shape requires more time than the other shapes. In addition, when the number of clusters is the same and the clusters sizes distribution differ, the execution time is affected due to the additional number of cuts (see in Figure 14) used to satisfy the size-constraint and the search space to find these cuts which vary according to the clusters sizes.

6.1.2 Communication Load. The communication load is shown in Figure 13. The number of exchanged messages for all shapes increases linearly when the number of modules in the system increases. It also increases when the number of clusters becomes larger due to the messages needed to find the cuts. The communication load complexity in Section 5.1 depends on the number of modules and the connections between modules. The random shape presents the largest number of connections between its modules; thus, it requires a larger number of exchanged messages. Moreover, when sizes distributions with the same number of clusters differ, it slightly affects the number of exchanged messages, which are needed to find additional cuts and join branches to satisfy the size constraint. We recall that additional cuts are needed when the resulted cluster size after an initial cut does not satisfy the size constraint. So, additional cuts are performed until the cluster size is equal to the desired size. Figure 14 shows the number of additional cuts that have a direct impact on execution time and communication load. It can be seen that when the number of clusters becomes larger, the number of additional cuts needed increases. Furthermore, it is not affected by the number of modules in the system. It is directly affected by the formation of the MST, which in its turn affects by the geometrical aspects of the ensemble and not its size. Therefore, it can be arbitrary for the same number of clusters with different size distributions since finding a cut that results in a cluster with a size equal to the desired size depends on finding a cut module with a sub-tree size equal to the desired size, which highly depends on the structure of the MST.

DCut vs SC-Clust

Comparing DCut with SC-Clust

Here, we compare the DCut algorithm with SC-Clust. Figure 15 compares DCut with SC-Clust in terms of execution time and communication load on the shapes of Figures 10 and11 with the same number of modules for each shape and 4 clusters. As seen in Figure 15, the SC-Clust requires more exchanged messages on all shapes since for each cut, additional cuts may be needed to satisfy the size constraint. As for the execution time, the amount needed by SC-Clust is significantly higher. The reason is that the DCut algorithm finds cuts in parallel in case of 𝑘 > 3. On the other hand, finding cuts in SC-Clust is completely sequential: finding a cluster 𝑉 𝑖 cannot begin before the cluster 𝑉 𝑖-1 has been Manuscript submitted to ACM found. In addition, SC-Clust requires 𝑘 -1 + 𝑎 cuts to obtain 𝑘 clusters where 𝑎 is the number of additional cuts. DCut requires 𝑘 -1 cuts.

CONCLUSION AND FUTURE WORKS

In this work, we proposed SC-Clust, a fully distributed size-constrained clustering algorithm based on graph cuts. It assembles modules with neighbor-to-neighbor communication in a large scale modular robot into clusters of given sizes to enhance the self-reconfiguration of modular robot-based programmable matter using cluster-based methods to increase the parallelization of movements. To the best of our knowledge, it is the first distributed tree-based clustering algorithm with a size-constraint in the literature. We evaluated our algorithm on multiple shapes with different geometrical properties while varying the number of modules, the number of clusters, and the cluster sizes. The results show that our algorithm is scalable and efficient with 𝑂 (𝑛𝑙𝑜𝑔𝑛) time and communication complexity.

In the future, we aim to implement our algorithm on real large scale modular robotics ensembles. Then we intend to study the clusters' leaders positions to optimize inter and intra-cluster communication. In addition, we aim to control the shape and position of each cluster in the initial shape to reduce the number of modules in blocking positions in order to facilitate the transition to the goal shape. Furthermore, we seek to show the improvement that clustering can yield to the self-reconfiguration process and work on proposing cluster-based self-reconfiguration algorithms.

Fig. 1 .

 1 Fig. 1. A self-reconfiguration of a programmable matter made with tiny spherical modules [58]. a) initial configuration. b) intermediate configuration during self-reconfiguration. c) goal configuration.

Fig. 3 .

 3 Fig. 3. A mug represented in CSG tree

Fig. 4 .

 4 Fig. 4. An example of two possible size-constrained k-partitioning where 𝑘 = 2, 𝑠 1 = 12 (Red) and 𝑠 2 = 6 (Green). (a) shows a correct size-constrained k-partitioning. (b) shows an incorrect size-constrained k-partitioning because the second partition shown in green is disconnected.

(1)(2)(3)Figure 4

 1234 Figure 4 (a) shows a correct size-constrained 𝑘-partitioning.Figure 4 (b) shows an incorrect solution since the green cluster is disconnected. The objective of this work is to propose a distributed algorithm that clusters the modular robot ensemble into 𝑘 clusters by performing size-constrained 𝑘-partitioning (Definition 2) on 𝐺 given the number of partitions 𝑘 and the desired size of each partition 𝑠 𝑖 and considering the following assumptions:

Definition 3 .

 3 𝑘-balanced clustering Problem: INSTANCE: A connected lattice graph 𝐺 (𝑉 , 𝐸) the number of wanted clusters 𝑘. QUESTION: Does there exist 𝑘 equal sized partitions 𝑉 1 , ..., 𝑉 𝑘 such that |𝑉 𝑖 | = |𝑉 | 𝑘 , 𝑉 1 ∪ 𝑉 2 ∪ ... ∪ 𝑉 𝑘 = 𝑉 and ∀𝑖 ≠ 𝑗, 𝑉 𝑖 ∩ 𝑉 𝑗 = ∅ ?

Definition 5 .

 5 Edge weight: Given two neighboring modules 𝑢 and 𝑣, the weight 𝑤 (𝑢, 𝑣) of the edge 𝑒 (𝑢, 𝑣) connecting 𝑢 and 𝑣 in the graph 𝐺, is defined as: 𝑤 (𝑢, 𝑣) = 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡 (𝑢, 𝐴), 𝑑𝑖𝑠𝑡 (𝑣, 𝐴)) s.t: 𝑑𝑖𝑠𝑡 (𝑢, 𝐴) = 𝑚𝑖𝑛{𝑑𝑖𝑠𝑡 (𝑢, 𝑎) | 𝑎 ∈ 𝐴}, where 𝑑𝑖𝑠𝑡 represents the Euclidean distance.

Fig. 6 .Fig. 7 .

 67 Fig. 6. Modules exchange example

Fig. 8 .Fig. 9 .

 89 Fig. 8. Disconnection problem

Algorithm 2 : 26 if nbWaitedAnswers = 0 then 27 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ← 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 + 1 28 𝑚𝑦𝐷𝑖 38 if 43 if recut = false then 44 𝑡𝑜𝐿𝑎𝑠𝑡𝑐𝑢𝑡𝐴𝑡 ← 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 45 if toBestCut = NULL then 46 𝑐𝑢𝑡𝐴𝑡 ← 𝑡𝑟𝑢𝑒 47 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑖 48 𝑚𝑦𝐷𝑖 56 send

 22627283843444546474856 Partitioning algorithm (Part 2) 20 Msg Handler RESP_CUT(𝑠, 𝑒, 𝑚): 21 𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 -1; 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ← 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 + 𝑠 22 if |𝑒 | < 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 then 23 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ← 𝑒; 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 ← 𝑠𝑒𝑛𝑑𝑒𝑟 24 if 𝑟𝑒𝑐𝑢𝑡 = 𝑡𝑟𝑢𝑒 and |𝑒 | = 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 and 𝑚 > 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 then 25 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 ← 𝑚; 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 ← 𝑠𝑒𝑛𝑑𝑒𝑟 𝑓 𝑓 ← 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 -𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 29 if 𝑐𝑢𝑡𝐴𝑡 = 𝑓 𝑎𝑙𝑠𝑒 and 𝑖𝑠𝑅𝑜𝑜𝑡 = 𝑓 𝑎𝑙𝑠𝑒 then 30 if |𝑚𝑦𝐷𝑖 𝑓 𝑓 | < 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 then 31 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ← 𝑚𝑦𝐷𝑖 𝑓 𝑓 ; 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 ← 𝑁𝑈 𝐿𝐿 32 if 𝑟𝑒𝑐𝑢𝑡 = 𝑡𝑟𝑢𝑒 then // Count nb of modules adjacent to cluster 𝑎𝑑 𝑗 in current branch 33 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 ← 𝑚 + 𝑛𝑏𝐴𝑑 𝑗 34 if maxNbAdj = 0 then // Do not consider the branch 35 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ← ∞ 36 send RESP_CUT(𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒, 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 , 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗) to 𝑝𝑎𝑟𝑒𝑛𝑡 37 else isRoot = true and (recut = false or 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 > 0) then // Cluster i is found 39 send CUT(𝑖) to 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 40 else // 𝑐𝑢𝑡𝐴𝑡 performs an additional cut and join the resulted branch to cluster 0 41 send CUT(0) to 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 42 Msg Handler CUT(𝑖): 𝑓 𝑓 ← 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 -𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 49 assign sub-tree to cluster 𝑖 50 if 𝑚𝑦𝐷𝑖 𝑓 𝑓 > 0 then // Cluster 𝑖 has an excess of modules. Must find a new cut to join the resulting branch to cluster 0 51 execute 𝑐𝑢𝑡 (𝑡𝑟𝑢𝑒, 𝑚𝑦𝐷𝑖 𝑓 𝑓 , 0) 52 else // Cluster 𝑖 has a deficit of modules. Report the difference to the root 53 send REPORT_CUT(-𝑚𝑦𝐷𝑖 𝑓 𝑓) CUT(𝑖) to 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 Manuscript submitted to ACM

 The video 1 shows 6 different experiments on 144 real Blinky Blocks consisting of subdividing 3 different shapes (a square, a cube and a double F shape) into 4 clusters. For each shape, we run the code one time to create clusters with the same number of Blinky Blocks and another time to create heterogeneous clusters with 10 %, 20 %, 30 % and 40 % of the set. 3D Catoms are quasi-spherical modules placed in a FCC lattice where a module can connect to up to 12 neighbors.

Fig. 10 .

 10 Fig. 10. DCut results on 4 different shapes with 4 clusters

Fig. 12 .

 12 Fig. 12. SC-Clust execution time evaluation

Fig. 14 .

 14 Fig. 14. Number of additional cuts

Fig. 15 .

 15 Fig. 15. Comparing DCut and SC-Clust

Table 1 .

 1 Comparative table.

 a partition 𝑉 𝑖 is obtained after removing a cut-edge 𝑐 𝑖 . Algorithms 1, 2 and 3 describe partitioning. The root of the 𝑀𝑆𝑇 first executes the 𝑐𝑢𝑡 procedure that initiate 𝑛𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠 // Number of modules in the system 𝑠𝑢𝑏𝑇 𝑟𝑒𝑒𝑆𝑖𝑧𝑒 // sub-tree size of the module 𝑐𝑢𝑡𝐴𝑡 // a boolean indicating if the module is the root of the cut branch 𝑆 // set containing the desired cluster sizes 𝑀𝑆𝑇 // the minimum spanning tree built in phase 2 𝑖𝑠𝑀𝑆𝑇 𝑅𝑜𝑜𝑡 // a boolean indicating if module is the root of the MST 𝑟𝑒𝑐𝑢𝑡 // a boolean indicating if an additional cut is being found 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 // the interface to reach the cut edge 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 // cluster identifier 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 // minimum 𝐷𝑖 𝑓 𝑓 found 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 // maximum number of modules adjacent to the erroneous cluster 𝑡𝑜𝐿𝑎𝑠𝑡𝐶𝑢𝑡 // root of the latest identified cluster 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 // set containing child modules in the MST 𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠

	Algorithm 1: Partitioning algorithm (Part 1)
	15	else
	16	𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 0
	17	foreach child in children do
		Manuscript submitted to ACM

1 if isMSTRoot then 2 𝑖𝑠𝑅𝑜𝑜𝑡 ← 𝑡𝑟𝑢𝑒; 𝑖 ← 1; 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 ← 𝑆 [𝑖]

3 𝑐𝑢𝑡 (𝑓 𝑎𝑙𝑠𝑒, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒, 0) 4 Procedure Cut(recut, desiredSize, adj): 5 𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 0 6 foreach child in children do 7 send FIND_CUT(𝑟𝑒𝑐𝑢𝑡, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒, 𝑎𝑑 𝑗) to 𝑐ℎ𝑖𝑙𝑑 8 𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑤𝑒𝑟𝑠 + 1 9 Msg Handler FIND_CUT(𝑟𝑒𝑐𝑢𝑡, 𝑑, 𝑎𝑑 𝑗): 10 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ← ∞; 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ← 0; 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 ← 𝑑 11 if |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛| = 0 then // Leaf 12 𝑠𝑢𝑏𝑇 𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ← 1; 𝑛𝑏𝐴𝑑 𝑗 ← 𝑛𝑏 𝑜 𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑖𝑛 𝑎𝑑 𝑗 13 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ← |𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 -𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 |; 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 ← 𝑛𝑏𝐴𝑑 𝑗 14 send RESP_CUT(𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒, 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 , 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗) to 𝑝𝑎𝑟𝑒𝑛𝑡 18 send FIND_CUT(𝑟𝑒𝑐𝑢𝑡, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒, 𝑎𝑑 𝑗) to 𝑐ℎ𝑖𝑙𝑑 19 𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 𝑛𝑏𝑊 𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑤𝑒𝑟𝑠 + 1

Manuscript submitted to ACM

YouTube video: https://youtu.be/niYHGoqWbQs Manuscript submitted to ACM

ACKNOWLEDGMENTS

This work has been supported by the EIPHI Graduate School (contract "ANR-17-EURE-0002")