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Distributed Size-Constrained Clustering Algorithm for Modular Robot-based
Programmable Matter

JAD BASSIL, ABDALLAH MAKHOUL, BENOÎT PIRANDA, and JULIEN BOURGEOIS, Univ. Bour-

gogne Franche-Comté, FEMTO-ST Institute, CNRS, France

Modular robots are defined as autonomous kinematic machines with variable morphology. They are composed of several thousands or
even millions of modules which are able to coordinate in order to behave intelligently. Clustering the modules in modular robots has
many benefits, including scalability, energy-efficiency, reducing communication delay and improving the self-reconfiguration process
that focuses on finding a sequence of reconfiguration actions to convert robots from an initial shape to a goal one. The main idea of
clustering is to divide the modules in an initial shape into a number of groups based on the final goal shape in order to enhance the
self-reconfiguration process by allowing clusters to reconfigure in parallel. In this work, we prove that the size-constrained clustering
problem is NP-complete and we propose a new tree-based size-constrained clustering algorithm called "SC-Clust". The idea is to divide
a network into a predefined number of clusters constrained by a given number of modules in each cluster based on the final goal
shape. The result is an efficient algorithm that scales to large modular robot systems. To show the efficiency of our approach, we
implement and demonstrate our algorithm in simulation on networks of up to 30,000 modules and on the Blinky Blocks hardware with
up to 144 modules.

CCS Concepts: • Theory of computation→ Distributed algorithms; • Computer systems organization→ Robotics.
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1 INTRODUCTION

Programmable matter is matter that can be programmed to change its physical properties on demand or due to internal
or external events [32]. It can be achieved using modular self-reconfigurable robots (MSR) composed of thousands or
millions of homogeneous micro-modules. The shape of the micro-modules differs depending on the modular robotic
system used. They can communicate by exchanging messages and move around each other to reconfigure from their
initial shape to a goal one in order to adapt to their task-environment, accommodate different conditions and cover
failure. Figure 1 shows a self-reconfiguration example of an initial mug shape made of tiny spherical modules into a
goal plate shape. Such matter can have many applications and can be deployed in a large variety of domains including
surgery, space exploration, environmental science, construction, etc [4, 61]. Examples of future applications include
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Fig. 1. A self-reconfiguration of a programmable matter made with tiny spherical modules [58]. a) initial configuration. b) intermediate
configuration during self-reconfiguration. c) goal configuration.

delivering drugs in the human body, monitoring hostile environments, educational robots, new sets of robotics toys, etc
[4, 13, 50].

Planning for self-reconfiguration which consists of finding the sequences of movements to be carried out by the
modules to change the shape of the MSR is a difficult process. The number of possible configurations increases
exponentially when the number of modules in the system increases. The self-reconfiguration planning problem has
been shown and proven to be NP-complete for chain-type MSR where modules are arranged in a chain and is expected
to be at least NP-complete for lattice MSR [58] where modules are arranged in a regular lattice structure. Therefore, the
self-reconfiguration problem stands as a major challenge for achieving programmable matter. Clustering the modular
robot can help reduce the search space thus enhancing the self-reconfiguration process. Accomplishing tasks in cluster-
based approaches allows parallelization and increases the efficiency in terms of execution time, communication load
and energy consumption. In fact, a cluster head (CH) will be designated in each cluster to schedule tasks and activities
in its cluster and to coordinate intra-clusters operations with other CHs. Cluster’s members will only communicate
with their CH reducing the communication scope to inter-cluster only thus avoiding passing of redundant messages.

Fig. 2. Clustering motivation

Figure 2 shows the benefit that clustering can yield to the self-reconfiguration process. Themodules in the initial shape
are clustered into 5 clusters with sizes chosen according to the goal shape. The formed clusters can then reconfigure
in parallel to form their corresponding part of the goal shape thus, reducing the time and communication required
for transforming the configuration from the initial shape to the goal one. For instance, in [40], the authors proposed a
Manuscript submitted to ACM
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Distributed Size-Constrained Clustering Algorithm for Modular Robot-based Programmable Matter 3

cluster-based self-reconfiguration algorithm where clusters of modules in the initial shape reconfigure in parallel to form
the goal shape. To show the advantage that clustering can yield to self-reconfiguration, they compared the execution
time and communication load while varying the number of clusters. The results showed that both the execution time
and the number of exchanged messages decrease by a factor of 𝑘 where 𝑘 is the number of clusters. However, they
suppose that the clusters are given initially and do not propose a clustering method.

Our objective is to propose an efficient distributed clustering algorithm to partition the modules in the initial
shape given the number of clusters and the size of each cluster according to the goal shape in order to enhance the
self-reconfiguration process. A tree-based density-cut algorithm was proposed in [6] for the same purpose. However, it
resulted in arbitrary sized clusters so, we aim to propose a new algorithm to control the number of modules in each
cluster which is crucial for self-reconfiguration since a cluster of modules in the initial shape needs to reconfigure into
a specific part of the goal shape requiring a fixed number of modules.

Fig. 3. A mug represented in CSG tree

Prior to self-reconfiguring, modules can be assembled randomly so they are not aware of their initial configuration.
But, an efficient encoding of the goal configuration is required for self-reconfiguration since a module needs to know its
position according to the goal map. A solution based on Constructive Solid Geometry (CSG)[52] is proposed in [60]. It
can be used to determine the number and sizes of clusters. It defines the goal shape as a tree made of basic geometrical
objects and transformations (union, intersection, difference) that when combined form the final scene as shown in
Figure 3. First, the 3D object to be formed is discretized and encoded into the CSG tree via centralized computations.
During this process, the number of clusters and the size of each cluster can also be calculated according to the goal
shape. Then, the CSG tree can be transmitted along with the number of clusters and clusters’ sizes to a master module
to be then flooded and stored in all modules.

In this paper, we present SC-Clust, a distributed algorithm that partition the modules of a modular robot in a
predefined number of clusters with predefined cluster sizes. This paper is organized as follow. Section 2 presents the
size-constrained clustering problem and lists the system assumptions. Section 3 gives an overview of the related works
existing in the literature. In section 4, our proposed solution, the SC-Clust algorithm is described. Section 5 gives a

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Jad Bassil, Abdallah Makhoul, Benoît Piranda, and Julien Bourgeois

(a) (b)

Fig. 4. An example of two possible size-constrained k-partitioning where 𝑘 = 2, 𝑠1 = 12 (Red) and 𝑠2 = 6 (Green). (a) shows a correct
size-constrained k-partitioning. (b) shows an incorrect size-constrained k-partitioning because the second partition shown in green is
disconnected.

.

complexity analysis in terms of communication load and execution time. Section 6 shows the conducted simulations and
evaluates the performance of the SC-Clust algorithm in terms of execution time and communication load on different
configurations and cluster distributions. In section 7, we conclude this paper and mention the intended future works.

2 PROBLEM DEFINITION AND SYSTEM ASSUMPTIONS

The modular robot ensemble can be modeled as an undirected graph𝐺 (𝑉 , 𝐸,𝑊 ) where𝑉 represents the set of modules,
𝐸 represents the set of edges such that for each pair of modules (𝑢, 𝑣) ∈ 𝑉 2, 𝑒 (𝑢, 𝑣) ∈ 𝐸 denotes a connection between 𝑢
and 𝑣 . Therefore, two nodes 𝑢 and 𝑣 are neighbors if ∃𝑒 (𝑢, 𝑣) ∈ 𝐸. For each edge 𝑒 ∈ 𝐸, a non-negative weight𝑤 ∈𝑊 is
associated,𝑤 : 𝐸 −→ R+∗.

Modules are homogeneous, placed in a regular lattice and they are attached border-to-border. Since they can only
communicate with their direct connected neighbors in their adjacent cells, they form a sparse communication graph
with large network diameter [43].

Definition 1. Size-constrained partition: A size-constrained partition𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 ,𝑊𝑖 ) is a connected sub-graph of G
that have a predefined number of nodes 𝑠𝑖 i.e. |𝑉𝑖 | = 𝑠𝑖 .

Definition 2. Size-constrained k-partitioning: partitions the graph 𝐺 into 𝑘 size-constrained partitions (Defini-
tion 1) such as:

(1) Partitions are exhaustive, each node must belong to a partition: 𝑉1 ∪𝑉2 ∪ ... ∪𝑉𝑘 = 𝑉

(2) Each node belongs to only one partition, such as: ∀𝑖 ≠ 𝑗,𝑉𝑖 ∩𝑉𝑗 = ∅
(3) The size of each size-constrained partition 𝐺𝑖 is predefined before partitioning, such as,

∑𝑘
𝑖=1 𝑠𝑖 = |𝑉 |

Figure 4 (a) shows a correct size-constrained 𝑘-partitioning. Figure 4 (b) shows an incorrect solution since the green
cluster is disconnected. The objective of this work is to propose a distributed algorithm that clusters the modular
robot ensemble into 𝑘 clusters by performing size-constrained 𝑘-partitioning (Definition 2) on 𝐺 given the number of
partitions 𝑘 and the desired size of each partition 𝑠𝑖 and considering the following assumptions:
Manuscript submitted to ACM
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Distributed Size-Constrained Clustering Algorithm for Modular Robot-based Programmable Matter 5

• The goal shape is known and can be efficiently encoded and stored in each module, as explained in [60].
• Each module is identified by an unique number (ID).
• Modules are placed in the cells of a regular 3D lattice and they store locally their coordinates and orientation.
• Only neighbor-to-neighbor communications are possible. A module may send a message to its adjacent neighbors
through one of its connectors. The receiver can respond by sending a message through the connector that
received the message.
• No global view of the modular robot network is available. The view of each module is limited to its direct
neighborhood. Modules perform their computations locally, and they can only access local information in their
neighborhood via message-passing.
• A module is aware of its direct connections (i.e., which borders are connected to other modules and which ones
are not).
• We consider the configuration to be fixed and always connected during the process, that is, no new modules are
connected or disconnected during the execution of the algorithm.

2.1 Size-constrained 𝑘-partitioning is NP-complete

In this section, we first define the k-balanced clustering problem and then prove that the size-constrained 𝑘-partitioning
problem is NP-complete. To do so, we prove that it is NP-hard by restriction from the k-balanced clustering problem.
NP-completeness follows since it is simple to verify a given solution with a linear algorithm.

Definition 3. 𝑘-balanced clustering Problem:
INSTANCE: A connected lattice graph 𝐺 (𝑉 , 𝐸) the number of wanted clusters 𝑘 .
QUESTION: Does there exist 𝑘 equal sized partitions 𝑉1, ...,𝑉𝑘 such that |𝑉𝑖 | = |𝑉 |

𝑘
, 𝑉1 ∪ 𝑉2 ∪ ... ∪ 𝑉𝑘 = 𝑉 and

∀𝑖 ≠ 𝑗,𝑉𝑖 ∩𝑉𝑗 = ∅ ?

The k-balanced partitioning problem defined in Definition 3 is proved to be NP-hard on 2D lattice graphs by
reduction from Hamiltonian path in [7] and 3-partition in [20]. The size-constrained 𝑘-partitioning problem contains
the 𝑘-balanced clustering problem as a special case where all clusters are equal in size. Therefore, by restriction [22],
The size-constrained 𝑘-partitioning problem is NP-hard on 2D lattice graphs and therefore, it is at least NP-hard on 3D
lattice graphs representing module connections in lattice-based modular robots.

3 RELATEDWORKS

The problem we consider is related to graph clustering or graph partitioning. The graph partitioning problem has
been widely studied in the literature and it is known to be a NP-hard problem [1, 11, 54]. Existing graph partitioning
methods rely on two search techniques: global and local. They aim to partition a given graph into 𝑘 disjoint balanced
dense partitions. Global search algorithms work on the entire graph to find a direct solution. They include solutions
based on linear programming [19, 26], spectral clustering [28, 33, 35] and geometrical clustering [5, 23, 57]. Local search
algorithms use heuristic and metaheuristic methods to iteratively improve an initial solution based on an optimization
function. They use techniques such as node swapping [44], tabu search [53], random walk [64], graph growing [15, 49],
genetic algorithms [31], multilevel approach [38, 39] ... The aforementioned methods are used for graph structured data
and are not suitable for modular robots, as they require global knowledge of the graph.

Capacitated clustering problem (CCP) [42] is a problem closely related to the graph partitioning problem. Its objective
is to partition the weighted nodes of a graph into a set of disjoint clusters where the sum of the nodes’ weights in

Manuscript submitted to ACM
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each cluster is constrained by an upper and lower capacity limit while maximizing the edges’ weights of each cluster.
Existing CCP solutions use centralized heuristic approaches [24, 34, 55, 66]. For example, in [66], two heuristics are used:
tabu search and mimetic algorithms. They can be applied to find size-constrained partitions but they require global
knowledge of the graph and do not scale to thousands of resource constrained modules since they require thousands of
iterations to find an acceptable solution.

Distributed partitioning methods were developed to overcome the high computation cost when the graph size
becomes very large. The distributed partitioning model distributes the partitioning task across a network of computers.
For example, in [51] the author proposed JA-BE-JA, a fully distributed iterative method that can find balanced partitions
while reducing the number of cut-edges using local search and simulated annealing. It requires thousands of iterations
and uses multi-start strategies to converge towards an optimal solution resulting in a huge communication load,
especially in a sparse graph such as the one representing modules connections. In a more recent work, Adoni et
al. presented DHPV [2], a distributed algorithm that outperforms JA-BE-JA. It is more suitable to the master-slave
distributed architecture where a master node coordinates the partitioning process and the partitioning task is distributed
to slave nodes that operates in parallel to add a new vertex to their partition’s subgraph. These methods are suitable for
balanced partitioning of graph structured data and can’t be applied to distributedly partition the modules of a modular
robot with communication limited to neighbor-to-neighbor and no centralized global control.

The multi-robot task allocation problem [30] is about assigning a group of robots to a set of tasks in the most
optimal way based on a utility function. The utility function measures how well a robot can perform a task. Some
tasks require multiple homogeneous robots or heterogeneous robots with different capabilities to be accomplished. So,
robots are partitioned to form 𝑘 coalitions based on the utility function. Then, tasks are assigned to coalitions to be
executed simultaneously [18, 37, 65]. The problem we are tackling in this paper is different from the multi-robot task
allocation problem since we consider the partitioning problem independently of the task to be performed which is the
self-reconfiguration. Therefore, these methods are not applicable to solve our problem.

Partitioning the set of modules for configuration generation in modular robots has been studied in [16, 17]. In [16], an
algorithm based on a coalition search graph is proposed for partitioning a set of modules. It aims for an efficient shape
configuration of scattered modules by partitioning-based coalition formation constrained by the maximum number of
modules required to form the configuration. It finds the best coalition structure of separated modules based on a utility
function. The modules forming a coalition are then docked together to form the goal configuration. Another method for
the same purpose is proposed in [17] where a minimum spanning tree is built to minimize docking cost. Then, the best
coalition or configuration is found by partitioning the built tree taking into consideration the size, communication and
battery constraints. These methods focus on configuring small sets of separated modules scattered in their environment.
Hence, they are not applicable to solve our problem.

Clustering has been studied for robotic swarms. The purpose is to split the swarm into clusters for pattern formation
and for better problem solving efficiency by dividing the problem into sub-problems and allocating different tasks to
each cluster. Mostly, the existing methods rely on robot mobility directed by external stimuli in the environment, so they
are not suitable for modular robot’s based programmable matter, to cite a few [27, 29, 47, 62]. Other methods based on
token clustering were proposed. In [12], a fully distributed algorithm is proposed based on consensus and load balancing
to partition the robots with wireless communication into two spatially separated clusters. Then it was extended in [10]
to spatially partition the set of robots into multiple clusters. However, the experimental results show that the time
required for convergence is high for a small number of robots and a small number of clusters. The experiments showed
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Table 1. Comparative table.

Work distributed local knowledge size-constraint
Global Search[5, 26, 28, 31, 33, 38] × × ×
Local Search[44, 49, 53, 64] × ✓ ×
CCP [24, 34, 42, 55, 66] × × ✓
Distributed Methods[2, 51] ✓ ✓ ×
SWARM clustering [10] ✓ ✓ ×
WSN clustering [8, 41, 46, 63] ✓ ✓ ×
DCut [6] ✓ ✓ ×
SC_Clust ✓ ✓ ✓

that it can take minutes to cluster 20 robots into 4 classes. The convergence time is expected to increase immensely for
large scale modular robots with communication limited to neighbor-to-neighbor.

Clustering for wireless sensor networks (𝑊𝑆𝑁 ) and mobile ad-hoc networks is related to our problem in which
sensors are grouped into clusters to achieve network scalability by creating a hierarchical structure. For each cluster,
a cluster-head (𝐶𝐻 ) plays significant roles such as scheduling tasks and aggregating and relaying data generated by
its cluster members to limit inter-clusters communications to 𝐶𝐻𝑠 only thus reducing communication load [3]. Many
clustering algorithms have been proposed for𝑊𝑆𝑁 [8, 41, 46, 63] but they are not suitable to modular robots due to
their specific constraints which make them inapplicable on modular robots: wireless communication, existence of a
base station, pre-election of cluster heads....

In [6] we proposed a fully distributed and adapted version of the DCut algorithm originally proposed by Shao et al.
(2018) [56] in the context of modular robots.

It takes into consideration the geometrical aspect of the ensemble and captures the density between adjacent modules
locally using Jaccard Coefficient. The idea is to build a density-connected tree (DCT) that captures the topological
similarities between modules relative to fixed points on the extremities of the geometry bounding box. Since the DCT
forms an acyclic graph, an edge connects two partitions. So, instead of partitioning the whole graph representing all
connections between modules, it partitions the DCT by recursively finding and removing cut edges until 𝑘 clusters
are obtained. It creates a spanning-tree which can be used in tasks such as inter-cluster communication, intra-cluster
communication, data aggregation, moving modules from one cluster to another, etc. Furthermore, it is distributed and
efficient. However, it does not take into consideration the size-constraint which is crucial for transforming clusters of
the initial shape to specific parts of the goal shape requiring a fixed number of modules.

The existing work aforementioned in this section fails to satisfy the requirements to solve the size-constrained
𝑘-partitioning problem for modular robots described in Section 2. The solution must be distributed, based on the limited
local knowledge of each module about its neighborhood, and satisfies the size-constraint. Therefore, in this work we
present SC-Clust, a distributed solution for the size-constrained 𝑘-partitioning problem for modular robots that uses
the local knowledge of modules to cluster the ensemble. Table 1 shows which requirements are met by the existing
solutions. We excluded from the table the above-mentioned solutions for the multi-robot task allocation problem and
the configuration generation problem because partitioning is not their primary focus and they address a different
problem than ours.
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4 ALGORITHM DESCRIPTION

In this section, we propose the SC-Clust algorithm, a solution to the size-constrained clustering for lattice graphs
representing module connections in modular robots. It identifies 𝑘 size-constrained partitions in 𝑂 (𝑛𝑙𝑜𝑔𝑛) time and
communication complexity. The SC-Clust algorithm operates in three phases. First, we define the edge weights and
how they are calculated and stored in each module (Section 4.1). Second, a minimum spanning tree (MST) is built. A
fully distributed and asynchronous algorithm [21] is used for this purpose. Third, the MST is partitioned. Initially, all
modules form the initial cluster; then the MST is sequentially partitioned by finding, adjusting, and separating branches
having the desired number of modules (Section 4.3).

4.1 Weight Calculation

In this section, an edge weight measure is defined that captures the geometric aspects of the ensemble. We start with
the following definitions:

Definition 4. Anchors: Given a geometrical shape 𝐼 , the minimum bounding box 𝐵 is the box surrounding 𝐼 aligned
with the coordinate axes with the minimum volume. The set of anchors 𝐴 is defined as the set of coordinates of the
corners of the minimum bounding box.

Since the modules in a modular robot are placed in a regular lattice, 𝐴 can be easily and efficiently calculated by
selecting the different minimum and maximum combinations while varying on the three axes x, y, and z, so a total of 8
points are defined at the corners of 𝐵, that is, all possible combinations of ({𝑚𝑖𝑛𝑥 ,𝑚𝑎𝑥𝑥 }, {𝑚𝑖𝑛𝑦,𝑚𝑎𝑥𝑦}, {𝑚𝑖𝑛𝑧 ,𝑚𝑎𝑥𝑧 }).

Definition 5. Edge weight: Given two neighboring modules𝑢 and 𝑣 , the weight𝑤 (𝑢, 𝑣) of the edge 𝑒 (𝑢, 𝑣) connecting
𝑢 and 𝑣 in the graph 𝐺 , is defined as:

𝑤 (𝑢, 𝑣) =𝑚𝑖𝑛(𝑑𝑖𝑠𝑡 (𝑢,𝐴), 𝑑𝑖𝑠𝑡 (𝑣, 𝐴))

s.t:

𝑑𝑖𝑠𝑡 (𝑢,𝐴) =𝑚𝑖𝑛{𝑑𝑖𝑠𝑡 (𝑢, 𝑎) | 𝑎 ∈ 𝐴},

where 𝑑𝑖𝑠𝑡 represents the Euclidean distance.

The weight measure defined in definition 5 captures the geometrical aspects of the ensemble in a way that edges
connecting modules near the borders of the configuration will have lower weights. This will later results in having
clusters positioned near borders which facilitate modules movements for self-reconfiguration.

Anchors positions are calculated by building a spanning tree rooted at a randomly chosen module. During the
building process, the values of𝑚𝑖𝑛𝑥 ,𝑚𝑖𝑛𝑦 ,𝑚𝑖𝑛𝑧 ,𝑚𝑎𝑥𝑥 ,𝑚𝑎𝑥𝑦 and𝑚𝑎𝑥𝑧 are returned to the root then broadcasted to
all modules via the built tree. Upon reception, modules can calculate and store the distance to their nearest anchor then,
store their adjacent edges weights.

4.2 Tree Construction

After all modules have stored their adjacent edge weights, a Minimum Spanning Tree (MST) is built. It minimizes the∑
(𝑢,𝑣) ∈𝑉𝑀𝑆𝑇

𝑤 (𝑢, 𝑣). Any distributed algorithm to find a MST can be used. We use a fully distributed asynchronous
algorithm called GHS proposed in [21]. GHS is known to have an optimal communication complexity of𝑂 (𝑚 +𝑛𝑙𝑜𝑔(𝑛))
messages. Its time complexity is 𝑂 (𝑛𝑙𝑜𝑔(𝑛)) which is not optimal. Existing distributed algorithms solve the minimum
spanning tree problem with better time complexity at the cost of increasing the communication load [9, 25, 36, 45],
which is not suitable for modular robots, as sending messages consumes the limited energy resources of the modules.
Manuscript submitted to ACM
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The GHS algorithm requires that each edge has an unique weight. In case the weights are not distinct, which is our
case, one can simply append the identities of the edge’s adjacent nodes starting by lower order first. Initially, each node
forms a fragment. Nodes wake up to start the GHS algorithm execution asynchronously, so there are no restrictions on
the wake-up process, thus, all nodes can wake up at the same time or only one node can wake up and the tree is formed
which is suitable for our case.

The GHS algorithm operates in phases. During each phase, fragments are extended by merging with other fragments.
Nodes in each fragment are connected with edges to form a rooted MST. Each node holds a pointer to the next node in
the tree that leads to the fragment’s root. Fragments are merged through their minimum outgoing edge. To find the
minimum outgoing edge of a fragment, a message is broadcasted asking all the fragment’s nodes about their minimum
outgoing edge. Each node waits for the answers of all its children in the tree before sending it upwards on the tree to
reach the fragment’s root. Once the minimum outgoing edge is found, a message is sent over that edge to the fragment
on the other side. The two fragments will then merge into a larger fragment. If the two fragments chose the same
minimum outgoing edge they agree to merge and the edge chosen by the two fragments is called core edge.

During the last phase, two fragments will be merged via a core edge into one large fragment forming the MST. We
refer the reader to [21] for a complete description of the algorithm. Once the MST is formed, we can proceed to its
partitioning. One can choose one of the core nodes adjacent to the core edge as the root of the tree. However, to have
clusters distributed closer to borders as much as possible, we choose the root to be the node with minimum distance to
one of the anchors (Definition 4) at the extremities of the initial configuration. Ties are broken randomly. To do so, after
the root is found, it broadcasts a message through the tree. The receiving nodes set the sender as a parent leading to
the root and save the edges leading to their children in the MST. The resulting tree on a 2D regular lattice is shown in
Figure 5.

1 1

1.411.41

3.163.16 2

1.411.41

1

1 1

2

1

1

1

1

1.41

1.41 1.41

1

1

1

1

1

1 1.41 1.41

1

2 23.16

1.41

MST

Fig. 5. An example of MST construction. On the left the weight distributed according to the distance to the nearest anchor (The flag
of the same color). On the right, the MST is constructed and the root is colored in green.
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4.3 Tree Partitioning

In this phase, given the set of desired cluster sizes 𝑆 , the MST is partitioned in order to obtain 𝑘 = |𝑆 | size-constrained
clusters. The idea is to find the cut-edge that results in a branch to form the cluster in a way to minimize the difference
between the number of modules in the branch and the desired number of modules in the cluster. To do so, we define
the cut-edge as follows:

Definition 6. cut-edge: A cut-edge 𝑐𝑖 is an edge 𝑒 (𝑢, 𝑣) that separates the partition containing 𝑢 and 𝑣 in which 𝑐𝑖 is
searched from the new partition. The nodes 𝑉𝑖 of the new partition𝐺𝑖 are the nodes in the branch of the MST rooted at
𝑐𝑢𝑡𝐴𝑡 = 𝑣 : the node in𝑉𝑖 adjacent to 𝑐𝑖 . Given the set of desired partitions’ sizes 𝑆 , in order to satisfy the size constraint
described in Section 2, |𝑉𝑖 | should be equal to 𝑠𝑖 . However, a cut-edge that satisfies this constraint may not exist since a
branch in the MST having exactly 𝑠𝑖 nodes could not be found. Therefore, the cut-edge 𝑐𝑖 is found in a way to minimize
the difference 𝐷𝑖 𝑓 𝑓𝑐𝑖 between the size of the sub-tree rooted at 𝑐𝑢𝑡𝐴𝑡 and 𝑠𝑖 . Therefore:

𝑐𝑖 = 𝑒 (𝑢, 𝑣) ∈ 𝐸 | 𝐷𝑖 𝑓 𝑓𝑐𝑖 = min𝑒 (𝑢,𝑣) ∈𝐸 |𝐷𝑖 𝑓 𝑓𝑒 |

s.t.

𝐷𝑖 𝑓 𝑓𝑒 (𝑢,𝑣) = 𝑠𝑖 − 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠𝑖𝑧𝑒 (𝑣)

After removing a cut-edge 𝑐𝑖 , the difference between the resulting cluster size and the desired size 𝐷𝑖 𝑓 𝑓𝑐𝑖 may not
be null if a branch containing the desired number of modules did not exist in the MST. To fix this issue two methods
are presented in the following sections. The first in section 4.4 is a naive method that builds and exchanges a chain of
modules to fix the erroneous cluster’s size. The second in section 4.5, makes additional cuts and associates the resulting
branches to the erroneous cluster until having the desired size.

4.4 Naive Solution Based On Modules Exchange

In this section, a way to satisfy the size-constraint for a cluster𝑉𝑖 resulted after the 𝑖𝑡ℎ cut is described. First, all modules
belong to cluster 𝑉0. The root of 𝑉0 initiates 𝑘 − 1 cuts to obtain 𝑘 clusters. After each cut, if 𝐷𝑖 𝑓 𝑓𝑐𝑖 is not null, 𝐷𝑖 𝑓 𝑓𝑐𝑖
modules are exchanged between 𝑉0 and 𝑉𝑖 . To do so, the furthest module in 𝑉𝑖 from the root of 𝑉𝑖 having at least one
neighbor in 𝑉0 is chosen as chain source. Then, a chain consisting of a sequence of modules starting from the chain
source is built. In case 𝐷𝑖 𝑓 𝑓𝑐𝑖 > 0, the chain is built in 𝑉𝑖 consisting of a maximum 𝐷𝑖 𝑓 𝑓𝑐𝑖 module and exchanged with
𝑉0. In case of 𝐷𝑖 𝑓 𝑓𝑐𝑖 < 0, the chain is built in 𝑉0 starting from the chain source and exchanged with 𝑉𝑖 . If after an
exchange, 𝐷𝑖 𝑓 𝑓𝑐𝑖 is still not null, the exchange process is repeated. An example of module exchange is shown in Figure
6 where four clusters of equal size are sequentially formed on a 2D humanoid shape starting from the left figure. The
clusters roots are colored in brown, the chain source is colored in grey, and the exchanged chain is colored in white.

To build the chain, the last module added to the chain must choose the next one to add. A strategy is required to
make this choice. Three strategies have been studied, they are presented in Figure 7 in an example where four equal
sized clusters are formed on a 3D mug shape.

The first strategy in Figure 7a consists in adding the module with minimum distance to the centroid of the cluster.
The second strategy in Figure 7b adds the module with the minimum Euclidean distance to the centroid. The third
in Figure 7c builds a chain with modules on the border between 𝑉𝑖 and 𝑉0. As it can be seen the cluster shapes differ
according to the exchange strategy.

4.4.1 Exchanging Modules Problem. A problem that can occur is that an exchanged chain can possibly disconnect a
cluster. As shown in Figure 8, the cluster colored in red becomes disconnected : modules circled in red are not accessible
Manuscript submitted to ACM
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Fig. 6. Modules exchange example

(a) Distance to centroid (b) Distance to center of gravity (c) Exchange on borders

Fig. 7. Modules exchange strategies

by the root of their partition via a path of red modules only. This issue can be solved by checking, while building the
exchange chain, if the module to be added causes a disconnection. Or after building the chain, if exchanging the built
chain causes a disconnection, then find another chain. However, checking if exchanging a module or a chain causes a
disconnection is a heavy time consuming process that requires an additional communication load. In addition, choosing
the best strategy is not evident since it depends on the geometry of the ensemble. Therefore, another disconnection-less
method to deal with the size difference resulted after a cut is described in the next section and it is considered in future
sections.

4.5 Additional Cuts

In this section, a new method to deal with size difference after a cut is presented. It consists in performing additional
cuts until the size constraint for cluster 𝑖 is satisfied i.e. 𝐷𝑖 𝑓 𝑓𝑐𝑖 = 0. Initially, all modules belong to 𝑉0. If after a cut
𝑐𝑖 , |𝑉𝑖 | ≠ 𝑠𝑖 , an additional cut is made to find an adjacent branch with size equal to 𝐷𝑖 𝑓 𝑓𝑐𝑖 that contains at least one
module that has a neighbor in 𝑉𝑖 and the resulting branch is joined with or cut off the erroneous cluster. The flow chart
for creating a partition 𝑉𝑖 is depicted in Figure 9. Three cases are presented after an initial cut:

(1) If 𝐷𝑖 𝑓 𝑓𝑐𝑖 > 0, the root of 𝑉𝑖 in the 𝑀𝑆𝑇 initiates the search for a new cut-edge 𝑐𝑖 𝑗 (𝑢, 𝑣) in its partition that
minimizes: |𝐷𝑖 𝑓 𝑓𝑐𝑖 − 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠𝑖𝑧𝑒 (𝑣) |, the resulting branch is added to 𝑉0.

(2) If𝐷𝑖 𝑓 𝑓𝑐𝑖 < 0, the root of the𝑀𝑆𝑇 initiates the search for a new cut-edge 𝑐𝑖 𝑗 (𝑢, 𝑣) in its partition𝑉0 that minimizes:
|𝐷𝑖 𝑓 𝑓𝑐𝑖 − 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠𝑖𝑧𝑒 (𝑣) |. The resulting branch is added to 𝑉𝑖 .
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Fig. 8. Disconnection problem

(3) If 𝐷𝑖 𝑓 𝑓𝑐𝑖 = 0, the size-constraint is satisfied. The root start the search for a cut-edge 𝑐𝑖+1 for the 𝑉𝑖+1 partition.

Start Desired Size: Find cut-edge Cut the tree at 

Find a new cut-edge in  and
join the resulted branch with 

Find a new cut-edge in  and
join the resulted branch with 

 done

False False

True True

True

False

Fig. 9. Flow chart for the 𝑖𝑡ℎ partition

This method guarantees that the resulted clusters are always connected since the structure of the MST is maintained.
In addition, the size-constraint can always be satisfied because in a worst case scenario where both |𝐷𝑖 𝑓 𝑓𝑐𝑖 | and
∀𝑣 ∈ 𝑉 , |𝐷𝑖 𝑓 𝑓𝑐𝑖 − 𝑠𝑢𝑏𝑡𝑟𝑒𝑒𝑠𝑖𝑧𝑒 (𝑣) | are large, |𝐷𝑖 𝑓 𝑓𝑐𝑖 | additional cuts resulting in partitions containing 1 module each
can be made.

Finding a cut-edge is initiated by calling the 𝑐𝑢𝑡 procedure (see Algorithms 1, 2, 3) with three parameters:

(1) 𝑟𝑒𝑐𝑢𝑡 : A boolean that indicates if the cut-edge to be found is an additional cut to deal with a previous partition’s
size difference.

(2) 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒: The desired size of the partition.
(3) 𝑎𝑑 𝑗 : In case of an erroneous size partition 𝑖 (𝐷𝑖 𝑓 𝑓𝑐𝑖 ≠ 0), 𝑎𝑑 𝑗 takes the value of the partition id 𝑖 to which the

resulted partition needs to be joined. Otherwise it takes the value 0.

Initially, all nodes belong to partition 𝑉0 with |𝑉0 | = |𝑉 |. For 𝑖 ∈ [1, 𝑘 − 1], a partition 𝑉𝑖 is obtained after removing a
cut-edge 𝑐𝑖 . Algorithms 1, 2 and 3 describe partitioning. The root of the𝑀𝑆𝑇 first executes the 𝑐𝑢𝑡 procedure that initiate
Manuscript submitted to ACM
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Algorithm 1: Partitioning algorithm (Part 1)
𝑛𝑏𝑀𝑜𝑑𝑢𝑙𝑒𝑠 // Number of modules in the system

𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 // sub-tree size of the module

𝑐𝑢𝑡𝐴𝑡 // a boolean indicating if the module is the root of the cut branch

𝑆 // set containing the desired cluster sizes

𝑀𝑆𝑇 // the minimum spanning tree built in phase 2

𝑖𝑠𝑀𝑆𝑇𝑅𝑜𝑜𝑡 // a boolean indicating if module is the root of the MST

𝑟𝑒𝑐𝑢𝑡 // a boolean indicating if an additional cut is being found

𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 // the interface to reach the cut edge

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 // cluster identifier

𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 // minimum 𝐷𝑖 𝑓 𝑓 found

𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 // maximum number of modules adjacent to the erroneous cluster

𝑡𝑜𝐿𝑎𝑠𝑡𝐶𝑢𝑡 // root of the latest identified cluster

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 // set containing child modules in the MST
𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠

1 if isMSTRoot then
2 𝑖𝑠𝑅𝑜𝑜𝑡 ← 𝑡𝑟𝑢𝑒; 𝑖 ← 1; 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 ← 𝑆 [𝑖]
3 𝑐𝑢𝑡 (𝑓 𝑎𝑙𝑠𝑒, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒, 0)
4 Procedure Cut(recut, desiredSize, adj):
5 𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 0
6 foreach child in children do
7 send FIND_CUT(𝑟𝑒𝑐𝑢𝑡, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒, 𝑎𝑑 𝑗 ) to 𝑐ℎ𝑖𝑙𝑑
8 𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑤𝑒𝑟𝑠 + 1
9 Msg Handler FIND_CUT(𝑟𝑒𝑐𝑢𝑡, 𝑑, 𝑎𝑑 𝑗):
10 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ←∞; 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ← 0; 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 ← 𝑑

11 if |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | = 0 then
// Leaf

12 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ← 1; 𝑛𝑏𝐴𝑑 𝑗 ← 𝑛𝑏 𝑜 𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑖𝑛 𝑎𝑑 𝑗

13 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ← |𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 − 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 |; 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 ← 𝑛𝑏𝐴𝑑 𝑗

14 send RESP_CUT(𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒,𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ,𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 ) to 𝑝𝑎𝑟𝑒𝑛𝑡
15 else
16 𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 0
17 foreach child in children do
18 send FIND_CUT(𝑟𝑒𝑐𝑢𝑡, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒, 𝑎𝑑 𝑗 ) to 𝑐ℎ𝑖𝑙𝑑
19 𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑤𝑒𝑟𝑠 + 1

the search for the first cut-edge. FIND_CUT message is sent in broadcast and RESP_CUT is sent using convergecast
as described in algorithm 1. During this process, each module calculates the difference between its sub-tree size and the
desired cluster size. In case of an additional cut (𝑟𝑒𝑐𝑢𝑡 = 𝑡𝑟𝑢𝑒), the branch to join with partition 𝑉𝑖 should have at least
one neighbor in 𝑉𝑖 to avoid having disconnected partitions (algorithm 2, lines 32, 35). The minimum difference of a
branch size with the maximum number of neighbors possible in 𝑎𝑑 𝑗 is returned to the root, and the module interface to
reach the 𝑐𝑢𝑡𝐴𝑡 module is saved in 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 . The root will then send a CUT message to the 𝑐𝑢𝑡𝐴𝑡 module connected
to the cut-edge which will become the root of the new partition.

Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Jad Bassil, Abdallah Makhoul, Benoît Piranda, and Julien Bourgeois

Algorithm 2: Partitioning algorithm (Part 2)
20 Msg Handler RESP_CUT(𝑠, 𝑒,𝑚):
21 𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 ← 𝑛𝑏𝑊𝑎𝑖𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠 − 1; 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ← 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 + 𝑠
22 if |𝑒 | < 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 then
23 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ← 𝑒; 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 ← 𝑠𝑒𝑛𝑑𝑒𝑟

24 if 𝑟𝑒𝑐𝑢𝑡 = 𝑡𝑟𝑢𝑒 and |𝑒 | =𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 and𝑚 > 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 then
25 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 ←𝑚; 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 ← 𝑠𝑒𝑛𝑑𝑒𝑟

26 if nbWaitedAnswers = 0 then
27 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ← 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 + 1
28 𝑚𝑦𝐷𝑖 𝑓 𝑓 ← 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 − 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒
29 if 𝑐𝑢𝑡𝐴𝑡 = 𝑓 𝑎𝑙𝑠𝑒 and 𝑖𝑠𝑅𝑜𝑜𝑡 = 𝑓 𝑎𝑙𝑠𝑒 then
30 if |𝑚𝑦𝐷𝑖 𝑓 𝑓 | < 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 then
31 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ←𝑚𝑦𝐷𝑖 𝑓 𝑓 ; 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡 ← 𝑁𝑈𝐿𝐿

32 if 𝑟𝑒𝑐𝑢𝑡 = 𝑡𝑟𝑢𝑒 then
// Count nb of modules adjacent to cluster 𝑎𝑑 𝑗 in current branch

33 𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 ←𝑚 + 𝑛𝑏𝐴𝑑 𝑗
34 if maxNbAdj = 0 then

// Do not consider the branch

35 𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ←∞
36 send RESP_CUT(𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 ,𝑚𝑖𝑛𝐷𝑖 𝑓 𝑓 ,𝑚𝑎𝑥𝑁𝑏𝐴𝑑 𝑗 ) to 𝑝𝑎𝑟𝑒𝑛𝑡
37 else
38 if isRoot = true and (recut = false or 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 > 0) then

// Cluster i is found

39 send CUT(𝑖) to 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡
40 else

// 𝑐𝑢𝑡𝐴𝑡 performs an additional cut and join the resulted branch to cluster 0

41 send CUT(0) to 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡

42 Msg Handler CUT(𝑖):
43 if recut = false then
44 𝑡𝑜𝐿𝑎𝑠𝑡𝑐𝑢𝑡𝐴𝑡 ← 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡

45 if toBestCut = NULL then
46 𝑐𝑢𝑡𝐴𝑡 ← 𝑡𝑟𝑢𝑒

47 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑖

48 𝑚𝑦𝐷𝑖 𝑓 𝑓 ← 𝑠𝑢𝑏𝑇𝑟𝑒𝑒𝑆𝑖𝑧𝑒 − 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒
49 assign sub-tree to cluster 𝑖
50 if 𝑚𝑦𝐷𝑖 𝑓 𝑓 > 0 then

// Cluster 𝑖 has an excess of modules. Must find a new cut to join the resulting branch

to cluster 0

51 execute 𝑐𝑢𝑡 (𝑡𝑟𝑢𝑒,𝑚𝑦𝐷𝑖 𝑓 𝑓 , 0)
52 else

// Cluster 𝑖 has a deficit of modules. Report the difference to the root

53 send REPORT_CUT(−𝑚𝑦𝐷𝑖 𝑓 𝑓 )
54 to 𝑝𝑎𝑟𝑒𝑛𝑡
55 else
56 send CUT(𝑖) to 𝑡𝑜𝐵𝑒𝑠𝑡𝐶𝑢𝑡
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Algorithm 3: Partitioning algorithm (Part 3)
57 Msg Handler REPORT_CUT(𝑑𝑖 𝑓 𝑓 ):
58 if isRoot then
59 if recut = false then
60 𝑡𝑜𝐿𝑎𝑠𝑡𝑐𝑢𝑡𝐴𝑡 ← 𝑠𝑒𝑛𝑑𝑒𝑟

61 if 𝑑𝑖 𝑓 𝑓 > 0 then
// Find a new branch with size 𝑑𝑖 𝑓 𝑓 to join it with cluster 𝑖

62 𝑟𝑒𝑐𝑢𝑡 ← 𝑡𝑟𝑢𝑒

63 execute 𝑐𝑢𝑡 (𝑡𝑟𝑢𝑒, 𝑑𝑖 𝑓 𝑓 , 𝑖)
64 else
65 if 𝑑𝑖 𝑓 𝑓 < 0 then

// Send report to the last 𝑐𝑢𝑡𝐴𝑡 so it can find a new branch with size 𝑑𝑖 𝑓 𝑓 and join

it to cluster 0
66 send REPORT_CUT(|𝑑𝑖 𝑓 𝑓 |) to 𝑡𝑜𝐿𝑎𝑠𝑡𝑐𝑢𝑡𝐴𝑡
67 else

// 𝑑𝑖 𝑓 𝑓 = 0
68 updateTree()

// Initiate the search for the next cluster

69 𝑖 ← 𝑖 + 1
70 execute 𝑐𝑢𝑡 (𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑖 , 0)
71 else
72 if cutAt = true then
73 if 𝑑𝑖 𝑓 𝑓 > 0 then
74 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒 ← 𝑑𝑖 𝑓 𝑓

75 if recut = true then
76 updateTree()
77 𝑟𝑒𝑐𝑢𝑡 ← 𝑡𝑟𝑢𝑒

// Excess of modules. Must find a new cut of size 𝑑𝑖 𝑓 𝑓 and join the resulting branch

to cluster 0
78 execute 𝑐𝑢𝑡 (𝑡𝑟𝑢𝑒, 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑆𝑖𝑧𝑒, 0)
79 else
80 send REPORT_CUT(|𝑑𝑖 𝑓 𝑓 |) to 𝑝𝑎𝑟𝑒𝑛𝑡
81 else
82 if sender = parent then
83 send REPORT_CUT(𝑑𝑖 𝑓 𝑓 ) to 𝑡𝑜𝐿𝑎𝑠𝑡𝑐𝑢𝑡𝐴𝑡
84 else
85 send REPORT_CUT(𝑑𝑖 𝑓 𝑓 ) to 𝑝𝑎𝑟𝑒𝑛𝑡

After a cut 𝑐𝑖 , the 𝑐𝑢𝑡𝐴𝑡 module is aware of the size difference 𝐷𝑖 𝑓 𝑓𝑐𝑖 of its partition. If 𝐷𝑖 𝑓 𝑓𝑐𝑖 > 0 (the resulted
cluster has modules in excess), it calls 𝑐𝑢𝑡 (𝑡𝑟𝑢𝑒, 𝐷𝑖 𝑓 𝑓 , 0) to find a new 𝑐𝑢𝑡-𝑒𝑑𝑔𝑒 inside its partition and the resulted
branch is rejoined with the initial partition 𝑉0 to minimize the difference (algorithm 2, line 45,51). Otherwise, it sends
a REPORT_CUT message with the value of 𝐷𝑖 𝑓 𝑓𝑐𝑖 to the root of partition 𝑉0 (algorithm 2, line 53). When the root
receives the message, if the received value of 𝐷𝑖 𝑓 𝑓𝑐𝑖 is not null, it executes 𝑐𝑢𝑡 (𝑡𝑟𝑢𝑒, 𝐷𝑖 𝑓 𝑓𝑐𝑖 , 𝑖) to find a cut within its
partition and join the resulted branch to the partition 𝑉𝑖 (algorithm 3, line 61,63). If after joining a branch to 𝑉𝑖 the size
of 𝑉𝑖 becomes larger than the desired size 𝑠𝑖 , the root re-sends REPORT_CUT message containing 𝐷𝑖 𝑓 𝑓𝑐𝑖 to the last
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𝑐𝑢𝑡𝐴𝑡 module, which is the root of𝑉𝑖 to deal with this difference (algorithm 3, lines 66, 67). Otherwise, if the root receives
REPORT_CUT message with the value of 𝐷𝑖 𝑓 𝑓𝑐𝑖 = 0, it updates its cluster tree and then executes 𝑐𝑢𝑡 (𝑓 𝑎𝑙𝑠𝑒, 𝑠𝑖+1, 0) to
find the partition 𝑉𝑖+1 (algorithm 3, lines 67, 70). The tree must be updated to join the resulted branches after additional
cuts with their corresponding partitions. The 𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑟𝑒𝑒 () procedure depends on the algorithm used to build the
MST. After considering nodes in additional branches as disconnected nodes, we use the tree maintenance algorithm
described in [14] where the GHS algorithm for building the MST is relaunched inside the partition to join an additional
disconnected branch.

5 COMPLEXITY ANALYSIS

In this section, we give a complexity analysis by phase in terms of communication load and execution time. We note
𝑛 = |𝑉 | the number of modules and𝑚 = |𝐸 | the number of connections between modules.

5.1 Communication Load

In the first phase, the anchor positions are found, and all edges’ weights are calculated. It requires𝑂 (𝑛) messages to find
and store anchors through tree traversal. In addition, to calculate and store an edge weight, two messages are exchanged
between the edge’s adjacent modules. Therefore, the communication complexity of the first phase is 𝑂 (𝑛 +𝑚).

The second phase consists in building a minimum spanning tree. We use the GHS algorithm described in [21] which
has a complexity of 𝑂 (𝑚 + 𝑛 log𝑛) in addition to 𝑂 (𝑛) for finding the root and redirecting edges towards it.

During the third phase, the tree is partitioned to obtain 𝑘 partitions. The SC-Clust requires 𝑘 − 1 cuts plus a number
𝑎 of additional cuts used to fix size differences. Therefore, the number of messages required is𝑂 ((𝑘 − 1 + 𝑎) log𝑛) since
after each cut the search space for the next cut is reduced. The number of additional cuts 𝑎 will be discussed in the
next section. Moreover, clusters’ trees are updated after each cut to join additional branches resulted by additional cuts
which requires 𝑂 (𝑘 log𝑛) messages.

Overall, by summing the complexities of the three phases, the communication complexity is equal to: 𝑂 (𝑛 +𝑚) +
𝑂 (𝑛 +𝑚 +𝑚 log𝑛) +𝑂 ((𝑘 +𝑎) log𝑛) = 𝑂 (𝑛 +𝑚) +𝑂 ((𝑚 +𝑘 +𝑎) log𝑛). In a filled cubic geometry the maximum number
of connections𝑚 is equal to 3𝑛. Also, in all practical cases 𝑘 ≪ 𝑛 and 𝑎 ≪ 𝑛 unless 𝑠𝑖 = 1 for 𝑖 ∈ [1, 𝑛]. Therefore, the
overall communication complexity can be expressed with the number of modules in the system 𝑛 and it is equal to
𝑂 (𝑛) +𝑂 (𝑛 log𝑛) = 𝑂 (𝑛 log𝑛).

5.2 Execution Time

The time required for the first phase in which anchor positions are found and edges weights are calculated depends on
the diameter 𝑑 of the network since the maximum tree length is bounded by 𝑑 . Three tree traversals are required. Thus,
the time complexity of the first phase is 𝑂 (𝑑).

The time complexity of building the tree in the second phase is 𝑂 (𝑛 log𝑛) [21]. Redirecting all edges towards the
root requires a tree traversal. The time taken for tree traversal is 𝑂 (𝑛) since the maximum possible diameter of the
MST can be equal to n. Therefore, the time required for the second phase is 𝑂 (𝑛) +𝑂 (𝑛 log𝑛) = 𝑂 (𝑛 log𝑛).

As for the third phase, the time required for finding a cut is 𝑂 (𝑛). 𝑘 + 𝑎 cuts need to be found. Therefore, the
time complexity for partitioning the MST is 𝑂 ((𝑘 + 𝑎) .𝑛) in addition to the time required for joining additional
cuts and updating clusters’ tree which is 𝑂 (𝑘. log𝑛). Therefore, the overall time complexity of the third phase is
𝑂 (𝑛) +𝑂 (𝑘. log𝑛) = 𝑂 (𝑛).
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The overall complexity of the three phases is 𝑂 (𝑑) +𝑂 (𝑛 log𝑛) +𝑂 (𝑛) = 𝑂 (𝑛 log𝑛). This complexity is mostly due
to the construction of the MST.

6 SIMULATIONS AND RESULTS

We evaluated our algorithm in simulation using 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑖𝑚 [59], a discrete-event 3D simulator for modular robots that
supports thousands of modules that form large-scale ensembles. It supports different modular robotic systems including
3D Catoms [48] used in our simulations.
We also validated the SC-Clust algorithm on real robotic systems called Blinky Blocks. The video1 shows 6 different
experiments on 144 real Blinky Blocks consisting of subdividing 3 different shapes (a square, a cube and a double F
shape) into 4 clusters. For each shape, we run the code one time to create clusters with the same number of Blinky
Blocks and another time to create heterogeneous clusters with 10 %, 20 %, 30 % and 40 % of the set.

3D Catoms are quasi-spherical modules placed in a FCC lattice where a module can connect to up to 12 neighbors.
𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑖𝑚 allows to light up a module with a certain color to show its status. We use this feature to distinguish clusters
by coloring each cluster with a different color.

(a) Random shape (b) Cubic shape (c) Mug shape (d) Humanoid shape

Fig. 10. DCut results on 4 different shapes with 4 clusters

(a) Random shape (b) Cubic shape (c) Mug shape (d) Humanoid shape

Fig. 11. SC-Clust results on 4 different shapes with 4 equal size clusters

Figure 10 shows 4 clusters created by DCut, our previously proposed partitioning algorithm that results in arbitrary
sized clusters on 4 different shapes: a randomly generated shape forming an irregular dense cloud with 8,500 modules,
a cubic shape formed by 7,225 modules with a densely filled volume, a mug shape formed by 8,584 modules and a
humanoid shape formed by 8,291 modules with components of different densities. The 4 clusters are distributed regularly
along the borders of the configuration. Figure 11 shows 4 clusters created by SC-Clust of equal sizes on the same shapes
as in Figure 10. The created clusters shapes differ from the shapes created by the DCut algorithm since they partition
the tree differently. The clusters created by SC-Clust show some irregularities on their borders due to additional cuts
that attach or remove modules on the borders to satisfy the size constraint as explained in Section 4.5.

1YouTube video: https://youtu.be/niYHGoqWbQs
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6.1 Evaluating SC-Clust
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Fig. 12. SC-Clust execution time evaluation
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Fig. 13. SC-Clust communication load evaluation
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Fig. 14. Number of additional cuts

To provide an objective evaluation, we carried out different simulations with different shapes consisting of up
to 30,000 3D Catoms. Each shape has different geometrical properties to show that the proposed algorithm find a
solution independently from the geometrical shape. For each shape, we conducted simulations with the following
cluster distributions:

• 4 clusters with 25 % in each cluster.
• 4 clusters with 10 % 20% 30% 40%.
• 10 clusters with 10 % in each cluster.
• 10 clusters with 4 clusters containing 5 % each, 3 clusters containing 10 % each, 2 clusters containing 15 % each
and 1 cluster containing 20 %.

6.1.1 Execution Time. Figure 12 shows the execution time of the SC-Clust algorithm. We can see that the execution time
increases logarithmically when the number of modules increases. This is valid for all shapes and all cluster distributions.
The reason is obvious. The increase in the number of clusters directly affects the execution time as explained in section
5.2 because as the number of clusters becomes greater, the number of cuts to be found increases. Moreover, the execution
time is also affected by the shape and diameter of the system. When the diameter of the ensemble increases and its
density decreases, the execution time increases; as can be seen in Figure 12, the humanoid shape requires more time
than the other shapes. In addition, when the number of clusters is the same and the clusters sizes distribution differ, the
execution time is affected due to the additional number of cuts (see in Figure 14) used to satisfy the size-constraint and
the search space to find these cuts which vary according to the clusters sizes.

6.1.2 Communication Load. The communication load is shown in Figure 13. The number of exchanged messages for
all shapes increases linearly when the number of modules in the system increases. It also increases when the number of
clusters becomes larger due to the messages needed to find the cuts. The communication load complexity in Section
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5.1 depends on the number of modules and the connections between modules. The random shape presents the largest
number of connections between its modules; thus, it requires a larger number of exchanged messages. Moreover, when
sizes distributions with the same number of clusters differ, it slightly affects the number of exchanged messages, which
are needed to find additional cuts and join branches to satisfy the size constraint.
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Fig. 15. Comparing DCut and SC-Clust

6.1.3 Additional Cuts. We recall that additional cuts are needed when the resulted cluster size after an initial cut does
not satisfy the size constraint. So, additional cuts are performed until the cluster size is equal to the desired size. Figure
14 shows the number of additional cuts that have a direct impact on execution time and communication load. It can be
seen that when the number of clusters becomes larger, the number of additional cuts needed increases. Furthermore, it
is not affected by the number of modules in the system. It is directly affected by the formation of the MST, which in
its turn affects by the geometrical aspects of the ensemble and not its size. Therefore, it can be arbitrary for the same
number of clusters with different size distributions since finding a cut that results in a cluster with a size equal to the
desired size depends on finding a cut module with a sub-tree size equal to the desired size, which highly depends on the
structure of the MST.

6.2 Comparing DCut with SC-Clust

Here, we compare the DCut algorithm with SC-Clust. Figure 15 compares DCut with SC-Clust in terms of execution
time and communication load on the shapes of Figures 10 and 11 with the same number of modules for each shape
and 4 clusters. As seen in Figure 15, the SC-Clust requires more exchanged messages on all shapes since for each cut,
additional cuts may be needed to satisfy the size constraint. As for the execution time, the amount needed by SC-Clust
is significantly higher. The reason is that the DCut algorithm finds cuts in parallel in case of 𝑘 > 3. On the other hand,
finding cuts in SC-Clust is completely sequential: finding a cluster 𝑉𝑖 cannot begin before the cluster 𝑉𝑖−1 has been
Manuscript submitted to ACM



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Distributed Size-Constrained Clustering Algorithm for Modular Robot-based Programmable Matter 21

found. In addition, SC-Clust requires 𝑘 − 1 + 𝑎 cuts to obtain 𝑘 clusters where 𝑎 is the number of additional cuts. DCut
requires 𝑘 − 1 cuts.

7 CONCLUSION AND FUTUREWORKS

In this work, we proposed SC-Clust, a fully distributed size-constrained clustering algorithm based on graph cuts. It
assembles modules with neighbor-to-neighbor communication in a large scale modular robot into clusters of given
sizes to enhance the self-reconfiguration of modular robot-based programmable matter using cluster-based methods to
increase the parallelization of movements. To the best of our knowledge, it is the first distributed tree-based clustering
algorithm with a size-constraint in the literature. We evaluated our algorithm on multiple shapes with different
geometrical properties while varying the number of modules, the number of clusters, and the cluster sizes. The results
show that our algorithm is scalable and efficient with 𝑂 (𝑛𝑙𝑜𝑔𝑛) time and communication complexity.

In the future, we aim to implement our algorithm on real large scale modular robotics ensembles. Then we intend to
study the clusters’ leaders positions to optimize inter and intra-cluster communication. In addition, we aim to control
the shape and position of each cluster in the initial shape to reduce the number of modules in blocking positions in
order to facilitate the transition to the goal shape. Furthermore, we seek to show the improvement that clustering can
yield to the self-reconfiguration process and work on proposing cluster-based self-reconfiguration algorithms.
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