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I. INTRODUCTION

The port-Hamiltonian (pH) framework has been introduced in [START_REF] Maschke | Port-controlled hamiltonian systems: modelling origins and systemtheoretic properties[END_REF] and has shown to be well suited for the modelling and control of multi physical systems [START_REF] Van Der Schaft | L2-gain and passivity techniques in nonlinear control[END_REF][START_REF] Duindam | Modeling and control of complex physical systems: the port-Hamiltonian approach[END_REF]. It has been widely studied for finite-dimensional systems in [START_REF] Van Der Schaft | L2-gain and passivity techniques in nonlinear control[END_REF][START_REF] Ortega | Interconnection and damping assignment passivitybased control of port-controlled hamiltonian systems[END_REF][START_REF] Ortega | Interconnection and damping assignment passivity-based control: A survey[END_REF][START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF] and it has been generanized to infinite-dimensional systems in [START_REF] Van Der Schaft | Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF][START_REF] Le Gorrec | Dirac structures and boundary control systems associated with skewsymmetric differential operators[END_REF]. The main idea of the pH approach is to describe physical systems in terms of the energy and its exchanges between each internal component and the environment.

Stabilization of pH systems using interconnection and damping assignment (IDA) has been proposed in [START_REF] Ortega | Interconnection and damping assignment passivitybased control of port-controlled hamiltonian systems[END_REF][START_REF] Ortega | Interconnection and damping assignment passivity-based control: A survey[END_REF] and extensively developed for linear system in [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF], where a linear matrix inequality (LMI) approach has been employed to obtain a solution of the IDA control problem. This LMI problem allows designing a static feedback matrix to have desired closed-loop performances. It can be seen as an alternative to traditional approaches as pole-placement, LQ-control or H ∞control. This result is also implemented for the dual problem, i.e., for the observer design in [START_REF] Kotyczka | Dual observer-based compensator design for linear port-hamiltonian systems[END_REF]. Further works on observer design for linear and nonlinear pH systems have been reported in [START_REF] Venkatraman | Full-order observer design for a class of port-hamiltonian systems[END_REF][START_REF] Vincent | Porthamiltonian observer design for plasma profile estimation in tokamaks[END_REF][START_REF] Yaghmaei | Structure preserving observer design for port-hamiltonian systems[END_REF] where the properties of the system are used to ensure the observer convergence. Nevertheless, no results are reported regarding observer based control design.

An observer-based controller designed for pH systems is proposed in [START_REF] Kotyczka | Dual observer-based compensator design for linear port-hamiltonian systems[END_REF], where the observer-based state feedback is designed from the linearization of the system and used to stabilize the non linear system by means of a feedforward term. However, the passivity of the system is not preserved in closed-loop since the observer-based controller is not passive, thus the closed-loop stability is not guaranteed using the passivity properties of pH systems. In [START_REF] Wu | Reduced order LQG control design for port Hamiltonian systems[END_REF], an observer-based state feedback design is proposed such that the controller is on the pH form and in [START_REF]Reduced Order LQG Control Design for Infinite Dimensional Port Hamiltonian Systems[END_REF] the same authors proposed a similar controller for infinite-dimensional port-Hamiltonian system with distributed actuation. Nevertheless, the closedloop performances can only be modified through damping injection. Recently in [START_REF] Toledo | Observer-based state feedback controller for a class of distributed parameter systems[END_REF][START_REF]Observer-based boundary control of distributed port-hamiltonian systems[END_REF], this result has been improved allowing to modify the whole structure of the plant in closedloop and then, having more degrees of freedom in terms of control design.

In this work an observer-based state feedback design based on LMIs is proposed for linear pH system developing the LMIs presented in [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF] for IDA control design. The feedback consists of a Luenberger observer and a negative feedback on the observed states. The novelty and main contribution of this paper is to recast the feedback and the Luenberger observer as a pH control system interconnected with the system to be controlled in a power preserving manner. This reinterpretation of the observer-based controller allows to use the passivity properties of the system to guarantee the closed-loop stability. A second contribution of this work is to explicitly give the conditions such that the observer based control system is strictly positive real, output strictly passive and zero state detectable. This result allows to use the proposed controller to asymptotically stabilize a large class of boundary controlled infinite dimensional pH systems [START_REF] Le Gorrec | Dirac structures and boundary control systems associated with skewsymmetric differential operators[END_REF][START_REF] Jacob | Linear port-Hamiltonian systems on infinite-dimensional spaces[END_REF] and non-linear pH system [START_REF] Van Der Schaft | L2-gain and passivity techniques in nonlinear control[END_REF] when using a linear approximation of these systems to design the controller.

The paper is organized as follows. Section II presents the main result of the paper, namely the pH observer based control system and its design parameters in terms of a set of LMIs. Section III presents two examples. An infinite dimensional Timoshenko beam model on a one dimensional spatial domain and a non-linear microelectromechanical system (MEMS), which are used to show the design procedure and the achieved closed-loop performances by means of numerical simulations. Finally, Section IV gives some final remarks and discussions on possible future work related to this topic.

II. OBSERVER-BASED STATE FEEDBACK DESIGN

Consider the following linear pH system

P ẋ(t) = (J -R)Qx(t) + Bu(t), x(0) = x 0 y(t) = B Qx(t) (1) 
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where x(t) ∈ R n is defined for all t ≥ 0, x 0 ∈ R n is the unknown initial condition, u(t) ∈ R m is the input and y(t) ∈ R m is the power conjugated output of u(t), which in this work is considered to be measurable. J = -J , R = R ≥ 0 and Q = Q > 0 all known real matrices of size n × n and B ∈ R n×m . For simplicity, we refer to system (1) as the system (A, B, C), with A = (J -R)Q and C = B Q, and we assume that it is controllable and observable. Define the following Luenberger observer

ẋ(t) = Ax(t) + Bu(t) + L(y(t) -C x(t)), x(0) = x0 (2)
for the pH system [START_REF] Maschke | Port-controlled hamiltonian systems: modelling origins and systemtheoretic properties[END_REF], where x ∈ R n is the estimation of x, x0 is a known initial condition and L ∈ R n×m is a matrix to design.

In this work, we use the results from [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF] to design the matrix L such that (2) converge asymptotically to [START_REF] Maschke | Port-controlled hamiltonian systems: modelling origins and systemtheoretic properties[END_REF]. Then, we design the state feedback matrix K such that the observer based control law

u(t) = r(t) -K x(t), r(t) ∈ R m , K ∈ R m×n (3)
leads to a closed-loop system (2)-(3) on a pH form with inputs r(t) and y(t). The importance of guaranteeing this closed-loop property is that it is instrumental to assure asymptotic stability of the closed-loop system [START_REF] Van Der Schaft | L2-gain and passivity in nonlinear control[END_REF].

A. Observer design by LMIs

Define the error of the state as x(t) = x(t)-x(t). The error dynamics is obtained from (1) and (2):

ẋ(t) = (A -LC)x(t), x(0) = x0 = x 0 -x0 , ( 4 
)
where x0 is a unknown initial condition. We recall the following proposition from [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF], which is instrumental for the design of the matrix L such that A -LC is Hurwitz.

Proposition 1: [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF] Denote by B ⊥ a full rank (n -m) × n matrix that annihilates B, i.e. B ⊥ B = 0. Let us also denote

E ⊥ = B ⊥ A. There exist matrices J d = -J d , R d = R d ≥ 0, Q d = Q d > 0 and F such that (J d -R d )Q d = A + BF if
and only if there exists a solution X = X ∈ R n×n to the LMIs:

X > 0, -[E ⊥ XB T ⊥ + B ⊥ XE T ⊥ ] ≥ 0. (5) 
Given such an X, compute S d as follows:

S d = B ⊥ B T -1 E ⊥ X -B T XE T ⊥ (B ⊥ B T ⊥ ) -1 B ⊥ , (6) 
then the following matrices

J d = 1 2 (S d -S T d ), R d = -1 2 (S d + S T d ), Q d = X -1 , F = (B T B) -1 B T (S d X -1 -A) (7) satisfy J d = -J d , R d = R d ≥ 0, Q d = Q d > 0 and (J d -R d )Q d = A + BF .
Remark 1: Proposition 1 is related to the stabilizability of (1). In fact, the LMI (5) has a solution if and only if the pair (A, B) is stabilizable [Proposition 9 in [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF]].

Remark 2: The dual problem consists in following Proposition 1, but replacing A by A T , B by C T and F by -L T . The reader can also refer to Proposition 1 in [START_REF] Kotyczka | Dual observer-based compensator design for linear port-hamiltonian systems[END_REF].

Remark 3: Similar to Remark 1, the pair (A, C) is detectable if and only if the LMI (5) has a solution with E ⊥ = B ⊥ A T and B ⊥ ∈ R (n-m)×n a left annihilator of C T , i.e. B ⊥ C T = 0.

The performances obtained using Proposition 1 are in terms of Q d (energy matrix) and R d (dissipation matrix). As it is mentioned in [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF], the LMI (5) can be slightly modified in order to keep the energy matrix in a desired interval and to have sufficient but not excessive damping. This is formalized in the following proposition.

Proposition 2: Under the same statements of Proposition 1, if the following LMIs:

Λ -1 2 -X < 0, -Λ -1 1 + X < 0, Ξ 1 + E ⊥ XB T ⊥ + B ⊥ XE T ⊥ + ≤ 0, -Ξ 2 -E ⊥ XB T ⊥ -B ⊥ XE T ⊥ + ≤ 0, (8) 
have a solution X = X for some symmetric matrices

Λ 1 , Λ 2 ∈ R n×n , Ξ 1 , Ξ 2 ∈ R (n-m)×(n-m) , such that 0 < Λ 1 < Λ 2 and 0 ≤ Ξ 1 < Ξ 2 , then Λ 1 < Q d < Λ 2 . Moreover, choosing S d = B ⊥ B T -1 E ⊥ X -B T XE T ⊥ (B ⊥ B T ⊥ ) -1 B ⊥ -γB T , (9) 
for some scalar γ > 0, and the matrices J d , R d and F as in [START_REF] Van Der Schaft | Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF], then

A + BF = (J d -R d )Q d with R d > 0.
Proof. The proof of Proposition 1 is a direct application of Proposition 7 and Remark 8 in [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF]. See also Proposition 1 in [START_REF] Kotyczka | Dual observer-based compensator design for linear port-hamiltonian systems[END_REF].

Remark 4: Matrices Λ 1 and Λ 2 allow to fix the lowest and highest eigenvalues of Q d respectively. Matrices Ξ 1 and Ξ 2 bound the damp term, while the scalar γ > 0 implies R d > 0 and then, the asymptotic behavior is ensured.

In the following section, we consider the Luenberger observer (2) already designed by Proposition 2 using the dual problem, i.e. replacing A by A T , B by C T , and L = -F T , and then we design the matrix K in the control law (3) such that the system is equivalent to control by interconnection.

B. PH observer-based controller

Consider the Luenberger observer (2) combined with the state feedback (3). The aim is to formulate this observer-based state feedback as the power preserving interconnection

u(t) = r(t) -y c (t), u c (t) = y(t) (10) 
of ( 1) with a pH dynamic control system, defined as

P      ẋ(t) = (J c -R c )Q c x(t) + B c u c (t) + Br(t), y c (t) = B c Q c x(t), y r (t) = B Q c x(t). (11) 
as depicted in Fig. 1. This is possible if the control gain is defined as is satisfied for some n × n matrices

K = B T c Q c , B c = L and the following matching equation A -LC -BK = (J c -R c )Q c (12)
J c = -J c , R c = R c 0, Q c = Q c > 0 and (A, B, C) defined in (1).
The following proposition, which presents a set of LMIs whose solution allows to define K, J c , R c and Q c such that the observer-based controller ( 11) is a pH system, is the main contribution of this work.

Proposition 3: Given (A, B, C) (1), the power preserving interconnection [START_REF] Venkatraman | Full-order observer design for a class of port-hamiltonian systems[END_REF] and a matrix L such that A L := A -LC is Hurwitz. Then ( 11) is a pH system if the LMIs

2Γ 1 -BL -LB + A L X + XA L ≤ 0, -2Γ 2 + BL + LB -A L X -XA L ≤ 0, -∆ -1 1 + X ≤ 0, ∆ -1 2 -X ≤ 0, (13) 
have a solution X = X , for some n × n symmetric matrices

Γ 1 , Γ 2 , ∆ 1 and ∆ 2 such that 0 ≤ Γ 1 < Γ 2 and 0 < ∆ 1 < ∆ 2 . S c = A L X-BL , we have J c = 1 2 (S c -S c ), R c = -1 2 (S c + S c ), Q c = X -1 , B c = L and K = B c Q c .
Corollary 1: The following results are direct consequences of Proposition 3.

(i) [START_REF] Vincent | Porthamiltonian observer design for plasma profile estimation in tokamaks[END_REF] is strictly positive real (SPR), output strictly passive (OSP) and zero state detectable (ZSD) with respect to the input/output pair u c /y c . Proof. The proof of Proposition 3 and Corollary 1 are shown here. X being the solution of the LMI [START_REF] Wu | Reduced order LQG control design for port Hamiltonian systems[END_REF] 11) is a pH system it has to be verified that R c ≥ 0 and Q c > 0. From (13),

lim t→∞ (x(t) -x(t)) = 0, characterized by the eigenvalues of A L ; (ii) Matrices R c and Q c satisfy a) Γ 1 ≤ R c ≤ Γ 2 ; b) ∆ 1 ≤ Q c ≤ ∆ 2 ; (iii) If Γ 1 > 0,
, from S c = A L X- BL , J c = 1 2 (S c -S c ), R c = -1 2 (S c + S c ), Q c = X -1 , B c = L and K = B c Q c , one can verify that J c = -J c , R c = R c and Q c = Q c . To conclude that (
2Γ 1 ≤ BL + LB -A L -XA L ≤ 2Γ 2 , ∆ 2 -1 ≤ X ≤ ∆ 1 -1 .
Replacing X, A L X -BL T by their expression with respect to S c and Q c , and inverting the second inequality we obtain

2Γ 1 ≤ -(S c + S c ) ≤ 2Γ 2 , ∆ 1 ≤ Q c ≤ ∆ 2 . ( 14 
) Using R c = -(S c +S c ) we conclude that Q c > 0 and R c ≥ 0 since ∆ 1 > 0 and Γ 1 ≥ 0. Implication (i) of Corollary 1 is
directly obtained from ( 4) and the assumption that A L is Hurwitz. Implication (ii) is verified replacing R c = -(S c + S c ) in ( 14). The SPR property of implication (iii) is verified applying the Kalman-Yakubovich-Popov Lemma [START_REF] Tao | Strictly positive real matrices and the Lefschetz-Kalman-Yakubovich Lemma[END_REF]. To this end, the existence of real matrices P = P T > 0, S and a scalar ε > 0 such that P A c + A T c P = -S T S -εP and C c = B T c P is proved by choosing P = Q c , which implies S T S = 2Q c R c Q c -εQ c , and since Γ 1 > 0 implies R c > 0, we can always find a small enough ε such that 2Q c R c Q c -εQ c is positive definite. Then, the matrix 2Q c R c Q c -εQ c can always be decomposed as S T S using for instance Cholesky factorization. The OSP property follows noting that Γ 1 > 0 implies R c > 0, and taking the time derivative of the Hamiltonian of the controller

H c = 1 2 x c Q c x c . It is not difficult to show that Ḣc = -x c Q c R c Q c x c + y c u c = -x c Q c (R c -B c B c )Q c x c + y c u c -y c 2 (15) 
where we have added ± y c y c , with > 0, to the first line of ( 15) and used 15). Hence it is always possible to find a small enough such that ( 11) is dissipative with respect to the supply rate y c u c -y c 2 , implying that ( 11) is OSP. The ZSD property is inferred from [START_REF] Toledo | Observer-based state feedback controller for a class of distributed parameter systems[END_REF] setting u c = y c = B c Q c x c = 0 and noting that since R c > 0, the states of (11) converge exponentially to zero.

y c = B c Q c x c and Q c = Q c in the second line of (
Remark 5: Matrix L of Proposition 3 can be designed with Proposition 2 or with any other control design technique such as, for instance, Linear Quadratic Regulator (LQR) or poleplacement approaches.

Remark 6: A simple choice for designing matrices Γ 1 , Γ 2 , ∆ 1 and ∆ 2 is to use identity matrices modulated by a constant.

Proposition 3 permits to assure that the observer-based controller can be formulated as a pH system. This is instrumental to guarantee the asymptotic stability of the closed-loop system in some particular cases of interest. Indeed, if (1) is the finite-dimensional approximation of a boundary controlled pH system (BC-PHS) defined on a 1-dimensional spatial domain as in [START_REF] Le Gorrec | Dirac structures and boundary control systems associated with skewsymmetric differential operators[END_REF]Theorem 4.4], or the linear approximation of a finite dimensional non-linear system (see the appendix for the precise definition of the class of considered systems), then the controller [START_REF] Vincent | Porthamiltonian observer design for plasma profile estimation in tokamaks[END_REF] from Proposition 3 asymptotically stabilizes the non-approximated systems under some very general conditions. This is formalized in the following proposition.

Proposition 4: Let (1) be the finite-dimensional and linear approximation of (i) a linear boundary controlled pH system (BC-PHS) defined on a 1-dimensional spatial domain, or (ii) an output strictly passive (OSP) and zero-state detectable (ZTD) finite dimensional non-linear system as defined by [START_REF] Trenchant | Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct[END_REF], then, (11) designed using Proposition 3 asymptotically stabilizes (i), respectively (ii), if Γ 1 > 0.

Proof. By Corollary 1 [START_REF] Vincent | Porthamiltonian observer design for plasma profile estimation in tokamaks[END_REF] is SPR, OSP and ZSD if Γ 1 > 0. Hence the proof of (i) follows by direct application of Theorem 5.10 in [START_REF] Villegas | A port-Hamiltonian approach to distributed parameter systems[END_REF], concerning the power preserving interconnection of a BC-PHS defined on a 1-dimensional spatial domain and a SPR finite dimensional system and the proof of (ii) follows by direct application of Proposition 4.3.1 in [START_REF] Van Der Schaft | L2-gain and passivity techniques in nonlinear control[END_REF], concerning the power preserving interconnection of OSP and ZSD systems.

III. EXAMPLES

In this section we illustrate the design approach on an infinite dimensional Timoshenko flexible beam model and on a non-linear model of a microelectromechanical optical switch.

A. Boundary control of a flexible beam

The Timoshenko beam model describes the behavior of a thick beam in a one dimensional spatial domain. It admits the following BC-PHS formulation ( 18)- [START_REF] Macchelli | Modeling and control of the Timoshenko beam. The distributed port Hamiltonian approach[END_REF] with 

P 1 =     0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0     , P 0 =     0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0     , H(ζ) =     T (ζ) 0 0 0 0 ρ(ζ) -1 0 0 0 0 EI(ζ) 0 0 0 0 I ρ (ζ) -1     , with state variables z = (z 1 , z 2 , z 3 , z 4 ) , where z 1 (ζ, t) = w ζ (ζ, t) -φ(ζ, t) is the shear displacement, z 2 (ζ, t) = ρ(ζ)w t (ζ, t) is the transverse momentum distribution, z 3 (ζ, t) = φ ζ (ζ,
u(t) =     ρ(a) -1 z 2 (a, t) I ρ (a) -1 z 4 (a, t) T (b)z 1 (b, t) EI(b)z 3 (b, t)     , y(t) =     -T (a)z 1 (a, t) -EI(a)z 3 (a, t) ρ(b) -1 z 2 (b, t) I ρ (b) -1 z 4 (b, t)    
the energy balance is given by Ḣ(t) = u(t) y(t). The reader is refereed to [START_REF] Macchelli | Modeling and control of the Timoshenko beam. The distributed port Hamiltonian approach[END_REF] for more details on the model, to [START_REF] Le Gorrec | Dirac structures and boundary control systems associated with skewsymmetric differential operators[END_REF][START_REF] Jacob | Linear port-Hamiltonian systems on infinite-dimensional spaces[END_REF] for the well-posedness of this class of systems and to [START_REF] Villegas | A port-Hamiltonian approach to distributed parameter systems[END_REF] for stability analysis. The parameters of the model are shown in Table I. To design the passive observer-based controller using Proposition 3, the infinite-dimensional model is first approximated by a finite-dimensional system using the finite difference discretization scheme on staggered grids proposed in [START_REF] Trenchant | Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct[END_REF]. This is a structure preserving spatial approximation method which preserves the pH structure of the system. The matrices of the finite-dimensional approximation on the form (1) are 

J =     0 D 0 -F -D 0 0 0 0 0 0 D F 0 -D 0     , R = 0, Q =     hQ 1 0 0 0 0 hQ 2 0 0 0 0 hQ 3 0 0 0 0 hQ 4     , B =     b 11 b 12 0 0 0 0 b 23 0 0 b 32 0 0 0 0 b 43 b 44     where D = 1 h 2       1 0 . . . 0 -1 1 . . . 0 . . . . . . . . . . . . 0 0 . . . 1       , F = 1 2h       1 
b 11 = 1 h      -1 0 . . . 0      , b 12 = 1 2      -1 0 . . . 0      , b 32 = b 11 , b 23 = 1 h      0 0 . . . 1      , b 43 = 1 2      0 0 . . . 1      , b 44 = b 23 .
The state variables of the approximated model are

x(t) = (x d 1 , x d 2 , x d 3 , x d 4 )
, where

x d i (t) ∈ R n d , i ∈ {1, • • • , 4} and the i -th component of x d 1 , x d 2 ,
x d 3 and x d 4 corresponds to the approximation of z 1 ((i -0.5)h, t), z 2 (ih, t), z 3 ((i -0.5)h, t) and z 4 (ih, t) respectively, with h = 2 b-a 2 * n d +1 , b -a being the length of the beam and n d the number of element. In this example, we choose n d = 5 and hence the complete state is composed of 20 elements. The reader is refereed to [START_REF] Trenchant | Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct[END_REF] for further details about this discretization method. The observer design is done following Propositions 1, 2 and Remark 2. The design parameters for the observer are shown in Table II and III varying only the matrix ∆ 1 . The eigenvalues of both closed-loop matrices are shown in Figure 2, where K 1 and K 2 refer to design 1 and 2, respectively. Since for both controllers Γ 1 > 0, the closed-loop between the low order observer-based controller and the infinite-dimensional system is asymptotically stable Proposition 4. For the simulation we use a time interval t = [0, 10s] with step time δ t = 0.1 ms and mid point temporal discretization [START_REF] Trenchant | Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct[END_REF]. The simulation is done taking 100 elements per state variable for the infinite-dimensional system (in order to approach the infinite dimensional system over a large set of frequencies), 400 in total, while for the observer we only take 5 elements per state variable, i.e. 20 in total. The initialization is such that the beam is in equilibrium position with a force of 0.01 N applied at the end tip, which gives the following initial conditions for the plant:

z 1 (ζ, 0) = 0.01, z 2 (ζ, 0) = 0, z 3 (ζ, 0) = -0.01(ζ -1) and z 4 (ζ, 0) = 0.
The observer is initialized with null initial conditions, i.e. x(0) = 0. The deformation of the beam is reconstructed from the state variables z(ζ, t) and ẑ(ζ, t), taking into account that the beam is clamped at the left side. Figure 3 shows the end tip responses in open-loop and closed-loop for design 1 and 2. The settling time is improved when increasing ∆ 1 . Figure space and time are shown in Figure 5, where the first row of sub-plots shows, from left to right, the deformation in openloop and its estimation, the second row the deformation in closed-loop and its estimation when K 1 is applied, and the third row the deformation in closed-loop and its estimation when K 2 is applied. Notice that, the observer convergence is ensured when applying the controller to the discretized model and not when applying to the BC-PHS. However, stability is preserved when applying the controller to the BC-PHS and performances will be closer to the desired one as long as the discretization is closer to the BC-PHS.

B. Microelectromechanical optical switch

Microelectromechanical systems (MEMS) are micro robots with an electronic actuation part. Due to the miniaturization of technology, MEMS are being an important tool in the micro-robotic industry. In optics for instance [START_REF] Borovic | Control of a MEMS optical switch[END_REF], using tiny mirrors MEMS allows to connect two optical devices without converting continuous signals into electronic ones. A dynamical model of this system can be found in [START_REF] Borovic | Control of a MEMS optical switch[END_REF] and its 

  q ṗ Q  =   0 1 0 -1 -b 0 0 0 -1 r      ∂H ∂q ∂H ∂p ∂H ∂Q    +   0 0 1 r   u y = 1 r ∂H ∂Q H = p 2 2m + 1 2 k 1 q 2 + 1 4 k 2 q 4 + Q 2 2C(q) C(q) = εA s q max -q (16)
where q(t), p(t) and Q(t) are respectively, the position, the momentum, and the charge in the capacitor, k 1 and k 2 are the spring coefficients, m is the mass of the moving part, C(q) is the non-linear capacitance which depends on the gap of the MEMS, b > 0 and r > 0 are the damping and resistance constant parameters, respectively, ε is the dielectric constant, A s is the surface of the MEMS and q max is such that q < q max . The input of the system u(t) is the input voltage and y(t) is the supplied current. The balance equation of the Hamiltonian is

Ḣ(t) = -b p(t) m 2 -ry(t) 2 + y(t)u(t)
which implies that the system is OSP. Under realistic operation conditions we can assume that the state space of the system is such that Q(t) > 0 for all t > 0, allowing to conclude that the system is ZSD. The parameters of the plant are shown in Table IV. The linearization of ( 16) around an equilibrium operation point is given by

A =    0 1 m 0 -3k 2 (q * ) 2 -k 1 -b m Q * Asε Q * Asεr 0 q * -qmax Asεr    B =   0 0 1 r   , C = -Q * Asεr 0 -q * -qmax Asεr ( 17 
)
In the current example the studied equilibrium is given in Table V. Following the design procedure of section II the 17) is used for the synthesis of an observerbased controller. For the observer design Proposition 2 is used with the parameters given in Table VI. The eigenvalues of the matrix A L = A -LC are shown in Figure [START_REF] Prajna | An LMI approach to stabilization of linear port-controlled Hamiltonian systems[END_REF]. Two state feedbacks are designed using Proposition 3 with the parameters given in Table VII. Note that the first and second controller only differ by ∆ 1 . Since ( 16) is OSP and for booth controllers Γ 1 > 0, the closed-loop system in asymptotically stable by Proposition 4. The feedback matrices are for each controller denoted by K 1 and K 2 , respectively, and the closedloop eigenvalues are shown in Figure 6. For the simulation, time t = [0, 0.01s] is used with a step time δt = 1 µs. The initial conditions are set equal to q(0) = q * , p(0) = p * , Q(0) = 0.9Q * for the non linear system, while for the observer all initial conditions are set exactly at the equilibrium 

Matrix

Value point. Figure 7 shows the open-loop response and the closedloop responses when applying the two different controllers on the non linear system. Figure 8 shows the closed-loop response for the second controller together with the observed variables.

Λ 1 1 × 10 -2 × diag([1, 200, 1]) Λ 2 1 × 10 10 I 3 Ξ 1 1 × 10 -1 I 2 Ξ 2 1 × 10 4 I 2 γ 30 × 10 4
In both cases, the mechanical oscillations have been reduced by increasing the electrical ones. We observe that changing the lower bound of Q c , i.e. ∆ 1 , better performances for the mechanical part of the micro robot are obtained. 

IV. CONCLUSION

An observer-based state feedback controller design based on LMIs is proposed for linear pH systems. The feedback consists on a Luenberger observer and a negative feedback on the observed states. The novelty and main contribution of this paper is to cast the feedback and the Luenberger observer as a pH control system interconnected in a power preserving manner with the system to be controlled. This reinterpretation of the observer based controller allows to use the passivity properties of the system to guarantee the closed-loop stability. The second contribution of this work is to explicitly give the conditions such that the observer-based control system is strictly positive real, output strictly passive, and zero state Fig. 8. Top: q 2 is the displacement of the moving part, q2 its estimations and qeq the equilibria. Middle: p 2 is the momenta of the moving part, p2 its estimations and peq the equilibria. Bottom: Q 2 is the displacement of the moving part, Q2 its estimations and Qeq the equilibria. This simulation is under the design 2.

detectable. This result allows to use the proposed controller to asymptotically stabilize a large class of linear boundary controlled infinite dimensional pH systems and non-linear pH systems when using a linear approximation of these system to design the controller. An infinite dimensional Timoshenko beam model and a finite dimensional non-linear model of a microelectromechanical actuator are used to illustrate the effectiveness of the proposed approach.

APPENDIX

Boundary controlled PHS on 1D domain

In this subsection the definition of boundary controlled port-Hamiltonian (BC-PHS) system is given. The reader is refereed to [START_REF] Le Gorrec | Dirac structures and boundary control systems associated with skewsymmetric differential operators[END_REF][START_REF] Jacob | Linear port-Hamiltonian systems on infinite-dimensional spaces[END_REF][START_REF] Villegas | A port-Hamiltonian approach to distributed parameter systems[END_REF] for further details and definitions. A BC-PHS is a dynamical system governed by the following partial differential equation 

W B f ∂ (t) e ∂ (t) = u(t), (19) 
y(t) = W C f ∂ (t) e ∂ (t) . ( (20) 
) 21 
where the initial condition is given by ( 19), the boundary input by [START_REF] Villegas | A port-Hamiltonian approach to distributed parameter systems[END_REF] and the boundary output by [START_REF] Macchelli | Modeling and control of the Timoshenko beam. The distributed port Hamiltonian approach[END_REF]. 

ZSD and OSP non-linear control system

In this subsection the definition of zero-state detectable (ZSD) and output strictly passive (OSP) non-linear systems is given. The reader is refereed to [START_REF] Van Der Schaft | L2-gain and passivity techniques in nonlinear control[END_REF] for further details and definitions. Consider a non-linear controlled system ẋ = f (x, u), y = h(x, u) [START_REF] Trenchant | Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct[END_REF] with x ∈ R n , u ∈ R m , y ∈ R m and f (•) and h(•) sufficiently smooth differentible mappings, then ( 22) is

• OSP if there exists > 0 such that it is dissipative with respect to the supply rate s(u, y) = u y -y 2 , • ZSD if u(t) = 0, y(t) = 0, ∀t ≥ 0, implies lim t→∞ x(t) = 0. A (non-linear) PHS is a dissipative system with storage function H(x) [START_REF] Van Der Schaft | L2-gain and passivity techniques in nonlinear control[END_REF].
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 1 Fig. 1. Power preserving interconnection.

  i ∈ {1, • • • , 4} are diagonal matrices containing the evaluation of T (ζ), ρ(ζ) -1 , EI(ζ) and I ρ (ζ) -1 respectively, at the specific discretization points and

I 20 1 × 1 ×

 11 10 15 I 20 ∆ 1 0.1 × 10 -1 I 20 0.18 × 10 -1 I 20 ∆ 2 10 15 I 20 1 × 10 15 I 20 the eigenvalues of the matrix A L = A -LC are shown in Figure 2. For the state feedback design, we follow Proposition 3 with the design matrices given in Table

Fig. 2 .

 2 Fig. 2. λ(A): Eigenvalues of A, λ(A L ): Eigenvalues of A -LC, λ(A K i ): Eigenvalues of A -BK i , with i = {1, 2}.

Fig. 3 .

 3 Fig. 3. End tip displacement in open-loop (w 0 (b, t)), in closed-loop using K 1 (w 1 (b, t)), and in closed-loop using K 2 (w 2 (b, t)).
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  shows the observer convergence at the end tip displacement in the design 2 case. The deformation and its estimation along

Fig. 4 .

 4 Fig. 4. End tip displacement in closed-loop w 2 (b, t) and its estimations ŵw(b, t) under design 2.

Fig. 5 .

 5 Fig. 5. (a) and (b): Deformation and its estimation in open-loop. (c) and (d): Deformation and its estimation in closed-loop under design 1. (e) and (f ): Deformation and its estimation in closed-loop under design 2.

Fig. 6 .

 6 Fig. 6. λ(A): Eigenvalues of A, λ(A L ): Eigenvalues of A -LC, λ(A Ki ): Eigenvalues of A -BK i , with i = {1, 2}.

Fig. 7 .

 7 Fig.7. Top: q i is the displacement of the moving part. Middle: p i is the momentum of the moving part. Bottom: Q i is the electric charge. In all sub-plots i = {0, 1, 2, eq} refers respectively to the open-loop response, the response under design 1, the response under design 2 and the equilibria.

  ∂z ∂t (ζ, t) = P 1 ∂ ∂ζ (H(ζ)z(ζ, t)) + P 0 H(ζ)z(ζ, t),(18)z(ζ, 0) = z 0 (ζ),

  Here z(ζ, t) ∈ R n is the state variable with initial condition z 0 (ζ). ζ ∈ [a, b] is the 1D domain and t ≥ 0 is the time. P 1 = P T 1 ∈ R n×n is a nonsingular matrix, P 0 = -P T 0 ∈ R n×n , H(ζ) is a bounded and continuously differentiable matrix-valued function satisfying for all ζ ∈ [a, b], H(ζ) = H T (ζ) and mI < H(ζ) < M I with 0 < m < M both scalars independent on ζ. The Hamiltonian energy function of (18) is given by Ht) T H(ζ)z(ζ, t)dζ.

f√ 2 P 1

 21 ∂ (t) e ∂ (t)are the boundary port variables defined asf ∂ (t) e ∂ (t) = 1 -P 1 I I H(b)z(b, t) H(a)z(a, t) . W B , W C ∈ R n×2n are two matrices such that if W B ΣW T B = W C ΣW T C = 0 and W C ΣW T B = I, with Σ = ( 0 I I 0 ), then Ḣ(t) = u(t) T y(t).
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