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We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of
“supervortical” range of temperatures above the deconfining phase transition, T ≃ (1 . . .1.5)Tc

found recently in numerical Monte Carlo simulations by two independent methods. In our work,
we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the
non-perturbative chromomagnetic condensate. We argue that the negative moment of inertia of
gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons
resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total
angular momentum of rotating plasma thus forcing the orbital angular momentum to take negative
values in the supervortical range of temperatures.

Introduction. The moment of inertia I of a physi-
cal body quantifies the angular momentum L carried by
the body when it is set in rotation with an angular veloc-
ity Ω [1]. For slowly rotating rigid mechanical systems,
these quantities are related to each other via the linear
relation, L = ÎΩ, where the moment of inertia takes a
form of the tensor of the second rank, Î. If the body ro-
tates around one of its principal axis of inertia, the above
relation simplifies to:

L = IΩ, (1)

where I is the corresponding eigenvalue of the tensor Î.
In classical systems residing in thermal equilibrium,

the moment of inertia is always a positive quantity, I > 0.
This intuitively clear statement originates from the fact
that a system of physical particles has an everywhere-
positive energy density, implying that the momentum of
any small subsystem of a rigidly rotating body points out
in the direction of its velocity, expressed, in turn, via the
angular velocity Ω. As all physical objects we know have
a positive energy density, our intuition tells us that they
must have also a positive moment of inertia.1

However, the numerical simulations performed by two
different methods both for static [7] and rotating [8]
gluon plasmas show that the assertion of the positivity of
the mechanical moment of inertia cannot be applied to

1 An academic counterexample to this assertion is provided by
the Casimir effect [2], where the moment of inertia associated
with the negative Casimir energy is a negative quantity [3, 4]
in consistency with the equivalence principle established by the
gravitational response of the Casimir energy in the background
gravitational field [5, 6]. We do not consider the Casimir effect
since it does not play a role in the effect discussed in our article.

plasma of gluons. On the contrary, the gluon plasma pos-
sesses a negative moment of inertia in a wide window of
temperatures above the deconfinement transition [7, 8].
This conclusion drastically contradicts our intuition since
(quark-)gluon plasma has a positive energy density in ev-
ery point while possessing at the same time a negative
moment of inertia. According to Ref. [8], the origin of the
negative moment of inertia lies in the particularities of
the evaporation of the chromomagnetic gluon condensate
at high temperatures.

A signature of the opposite direction of the angular mo-
mentum of the QCD vacuum with respect to the angular
velocity, which would be consistent with I < 0 in Eq. (1),
has also been noticed in non-renormalized data of Ref. [9]
about a decade ago. In that work, this property has been
attributed to a classical frame-dependence effect as a par-
ticle that rests in the laboratory seems oppositely rotat-
ing from the point of view of the rotating frame. This
observation – made for the QCD vacuum which is char-
acterized by the gluon and chiral condensates [10, 11]
– lies in the line of our earlier results [7, 8] that high-
light the importance of the chromomagnetic condensate
for rotation in (quark-)gluon plasma.

In our work, we study the contribution of the gluon
condensate to the moment of inertia of gluon plasma,
pointing out to the important role of the chromomagnetic
component as compared to the ordinary mechanical term.

Rotation of quark-gluon plasma. Rotating
quark-gluon plasma (QGP) is routinely produced in rel-
ativistic heavy-ion collisions [12, 13]. The appropriate
quantity in this case is vorticity [14–16] which describes
the local circular motion of plasma constituents at a given
point of spacetime. While simulations show in vortical
plasma, vorticity does not generally correspond to a rigid
rotation [15], the rigid rotation is a useful probe of the
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response of the quark-gluon plasma to vorticity in most
analytical [17–31] and numerical [8, 9, 32–34] approaches
to its thermodynamic properties. Our knowledge of this
system can be tested by confronting the analytical re-
sults with numerical simulations for a rigid rotation. We
follow the same strategy in our paper.

Decomposing gluonic moment of inertia. Our
experience in classical mechanics tells us that we do not
need to set a physical system in motion for the purpose of
evaluating its moment of inertia. In other words, the mo-
ment of inertia can be calculated also in the static limit,
when the object does not rotate at all. This observation
simplifies the calculation of the moment of inertia since
it does not require introduction of the curved space with
a nontrivial metric (the latter method has been actively
used, for example, in Refs. [8, 9, 32–34]). In our pa-
per, we analyze the moment of inertia of (quark-)gluon
plasma using standard, non-rotating lattices for which
the model can conveniently be formulated in a flat Eu-
clidean spacetime following the strategy of Ref. [7].

The moment of inertia I ≡ In of a physical system with
respect to global rotations with the angular velocity Ω =
Ωn around the principal axis of inertia n (with n2 = 1)
is determined via its free energy F in the co-rotating
reference frame as follows [35]:

I(T ) = J(T,Ω)
Ω

∣
Ω→0

≡ − 1
Ω
(∂F (T,Ω)

∂Ω
)
T

∣
Ω→0

. (2)

In this expression, we implicitly implied that the size of
the body in the direction perpendicular to the axis is
bounded, R⊥ < Rlight, by the radius of light cylinder,
Rlight = 1/∣Ω∣, so that the causality is not violated. Equa-
tion (2) also allows us to work in the thermodynamic
limit R⊥ → ∞, provided it is taken with a proper order
of limits, limR⊥→∞ limΩ→0, or taking R⊥ = C0/Ω with the
real-valued parameter 0 < C0 < 1.

The moment of inertia (2) of the gluon plasma can be
decomposed into two parts [8]:

Igl = Iglmech + I
gl
magn . (3)

This result can be readily obtained from Eq. (2) using
the free energy F = −T ln ∫ DAeiS of the rotating gluon
gas described by Yang-Mills theory with the action

S = − 1

2g2
∫ d4x

√
−g gµνgαβF a

µαF
a
νβ , (4)

where the rotation (taken to be around the z-axis) is
defined by the following metric tensor:

gµν =
⎛
⎜⎜⎜
⎝

1 − r2⊥Ω2 Ωy −Ωx 0
Ωy −1 0 0
−Ωx 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
, (5)

with r⊥ =
√
x2 + y2.

The first term in the right-hand side of Eq. (3):

Iglmech =
1

T
⟪(n ⋅ Jgl)2⟫

T
, (6)

is the mechanical contribution which accounts for the
fluctuations of the total angular momentum of gluons,

Jgl
i =

1

2
∫
V
d3x ϵijkM

jk
gl (x) , i, j = 1,2,3 , (7)

projected on the axis of rotation n. The local angular
momentum of gluons,

M ij
gl (x) = x

iT j0
gl (x) − x

jT i0
gl (x) , (8)

is expressed through the gluonic stress-energy tensor:
Tµν
gl = G

a,µαGa,ν
α − (1/4)ηµνGa,αβGa

αβ with the metric

ηµν = diag(+1,−1,−1,−1) of flat Minkowski spacetime.
Here, we use notations

⟪O⟫T = ⟨O⟩T − ⟨O⟩T=0 , (9)

to represent the thermal part of the expectation value of
an operator O. We also notice that ⟨n ⋅ J⟩ ≡ 0 at Ω = 0.
In thermodynamic sense, the moment of inertia of a

system is associated with its susceptibility with respect
to global rotations. For example, Eq. (6) has a form
of a susceptibility, which estimates how the system is
susceptible to rotational motion.
Thermodynamic susceptibilities are associated with

the second-order derivatives of the free energy with re-
spect to the corresponding conjugate variables (for ex-
ample, with respect to a chemical potential if we study
density fluctuations). Since rotation is defined by the
shift of the Hamiltonian, H0 → H = H0 − Ω ⋅ J , the
second-order derivative of the corresponding free energy2

F = −T lnTr e−H/T with respect to the angular frequency
Ω, gives us susceptibility (6) of the angular momentum
J provided the latter does not depend on the angular ve-
locity Ω. The particularity of a vector field, such as the
gluon field considered in our article, is that the angular
momentum does depend on the angular velocity Ω. This
property leads to the second term in Eq. (2).
The second contribution to the total momentum (2) is

given by the fluctuation of chromomagnetic field,

Iglmagn = ∫
V
d3x[⟪(Ba ⋅x⊥)2⟫T + ⟪(B

a ⋅n)2⟫
T
x2
⊥] ,
(10)

where Ba
i = 1

2
ϵijkGa

jk is the chromomagnetic field and
x⊥ = x −n(n ⋅ x) is the vector between the point x and
the axis of rotation set by the unit vector n2 = 1. The

2 Equation (2) can be rewritten as a second derivative since
limx→0 f

′(x)/x = f ′′(0) for any function f(x), continuous in the
origin and possessing a vanishing first derivative, f ′(0) = 0.
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normalization of Eq. (2) is chosen in such a way that cold
(T = 0) vacuum has no moment of inertia with both me-
chanical (6) and magnetic (10) contributions vanishing.3

While the mechanical correlator term (6) always gives
a positive contribution to the moment of inertia, the lo-
cal magnetic term (10) is proportional to the magnetic
gluonic condensate which does change the sign above the
deconfinement phase transition [36]. It is the last term
which is responsible for the negative moment of inertia
of the gluon plasma [7, 8].

Both terms in Eq. (2) are calculated in the static limit,
Ω ≡ 0, which possesses the SO(3) rotational symmetry.
For the magnetic term (10), the space isotropy implies

⟪Ba
i B

a
j ⟫T =

1

3
δij ⟪(Ba)2⟫

T
, (11)

thus allowing us to link the magnetic contribution (10)
to the magnetic component of the gluon condensate:

Iglmagn =
2

3
∫
V
d3xx2⊥ ⟪(B

a)2⟫
T

(12)

Surprisingly, the chromomagnetic contribution (12) has
the same form as the moment of inertia of a classical
body with the mass density ρ(x):

Iclass = ∫
V
d3xρ(x)x2

⊥ . (13)

Indeed, one recovers the non-perturbative quantum con-
tribution of the gluon condensate (12) from the classi-
cal expression (13) with the use the formal substitution
ρ(T )→ 2

3
⟪(Ba)2⟫

T
. While this relation might seem nat-

ural, we will see below that ⟪(Ba)2⟫
T
< 0 in a substantial

range of temperatures above Tc, which, in the classical
formula (13), would correspond to an unphysical nega-
tive mass density, ρ(x) < 0. Of course, it is well known
that the gluon plasma does not have a negative mass (en-
ergy) density [36] and still, we show [7, 8] the moment
of inertia of this plasma becomes a negative quantity in
a range of temperatures. We will discuss this would-be
paradox below.

Thermodynamic and continuum limits. Before
discussing the results of our numerical simulations, we
would like to comment on their reliability to describe
physics in the continuum limit.

Given the extensivity of the moment of inertia I and,
consequently, its dependence on the shape of the system,
it is convenient to consider an associated non-extensive
quantity K2 = −I/(F0R

2
⊥), which represents a dimen-

sionless moment of inertia. This expression, written

3 Therefore, a proper renormalization of the data of Ref. [9] would
give us a zero moment of inertia for the QCD vacuum at zero
temperature as nothing (i.e., vacuum) cannot move or rotate.

for a cylinder-shaped object, is normalized by its size
(squared) in transverse dimensions R⊥ as well as by the
free energy in the nonrotating limit, F0 = limΩ→0 F < 0.
For a non-interacting system of massless particles, one
gets the exact result: K2 = 2 [37]. This result is
also recovered, within the numerical accuracy, in high-
temperature limit of quark-gluon plasma [8], which shows
the consistency of our understanding of the numerical
data.
The independence of the dimensionless moment of iner-

tia K2 on the spatial volume of the system (with various
spatial sizes of the lattice, Ns), established in Ref. [8],
implies that our results are very close to the thermody-
namic limit. In addition, the excellent scaling towards
the continuum limit, taken as a sequence of various Nt,
has been established [7, 8]. Given these observation, we
choose below to work only with a single lattice spacing
(corresponding to the temporal extension Nt = 6) and
tree-level improved Symanzik lattice gauge action, which
is adequately close to continuum physics.
The moment of inertia is an extensive quantity which

behaves as I ∝ V R2
⊥, where V is the volume of the sys-

tem and R⊥ is the size of the system with respect to the
axis of rotation. Since we work on square lattices with
the transverse extension R⊥ = Ls/2, we will present the
results of the specific moment of inertia defined as

i2 =
I

V R2⊥
, R⊥ =

Ls

2
. (14)

Here the specific (size-independent) notations are intro-
duced as in = In/(V Rn

⊥), with n = 2,4, . . . , in order to
highlight the size-dependence of the expansion of the free
energy F , defined in the co-rotating reference frame, over
the angular frequencies Ω:

F (T,R⊥,Ω) = F0(T,R⊥) − V
∞
∑
k=1

i2k(T )
(2k)!

R2k
⊥ Ω2k

≡ F0 −
I

2
Ω2 +O(Ω4) , (15)

(see, e.g., Ref. [37]). The usual moment of inertia, I2 ≡ I,
corresponding to the static limit Ω → 0, appears in the
second term in the series in the second line of Eq. (15). It
is expressed via the specific moment of inertia i2 defined
in Eq. (14). The higher-order terms in Eq. (15) corre-
spond to the nonlinear contributions to the moment of
inertia due to deformation of the system caused by ro-
tation. We will not consider them in this article. For
a rotating system of free bosons, these terms were com-
puted analytically in Ref. [37].

Monte Carlo results for the specific moment of
inertia of SU(3) gluon plasma (quenched QCD) are pre-
sented in Fig. 1. These data were obtained on the finite
temperature lattice 6×24×312 with the zero-temperature
subtraction performed at Nt = 24, while other details of
the lattice simulations may be found in Ref. [7]. We
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FIG. 1. The mechanical (6) and chromomagnetic (10) con-
tribution to the total moment of inertia (16) along with the
fits (25) and (26), respectively (given by the solid lines). The
dashed lines are plotted to guide the eye.

plot separately the mechanical term (6), the magnetic
term (10), and the total specific moment of inertia (3):

i2 = imech
2 + imagn

2 . (16)

How should we understand these results?
Deeply in the confinement (hadronic) phase, the mo-

ment of inertia of the system is zero. This property has
a simple explanation since at temperature substantially
lower than Tc, there is no gluonic matter that can be set
in motion: gluons are confined into glueballs which are
too heavy to be excited thermally. Indeed, intuitively,
we cannot move or rotate nothing (i.e., vacuum). The
vanishing of the moment of inertia is well seen in Fig. 1
for the temperature point T ≃ 0.70Tc. This result also
demonstrates the correctness of the additive normaliza-
tion procedure (9) used in our calculations.

As soon as temperature raises and we are approaching
the deconfining temperature, glueballs become thermally
activated and they form an interacting dilute gas. In ad-
dition, since the phase transition in SU(3) Yang-Mills
theory is of a (weak) first order, the thermal fluctuations
should produce small bubbles of the high-temperature
phase. Thus, slightly below the critical temperature Tc,
we have a warm gluon matter which is expected to be
sensitive to rotation and possess a small moment of in-
ertia. Our results in Fig. 1 at T ≃ 0.94Tc confirm this
anticipated fact which, however, possesses one surprising
property that the total moment of inertia has a tendency
to become a negative quantity in agreement with [7, 8].

Figure 1 shows that this extraordinary property ex-
tends also to the gluon plasma regime above the critical
temperature. The total moment of inertia I is negative
up to the supervortical critical temperature [7, 8],

Ts = 1.50(10)Tc , (17)

at which it vanishes and turns to positive values at
T > Ts. The positivity of I in the high-temperature
regime fits well our understanding that plasma becomes
overwhelmingly perturbative at T →∞.
The mechanical contribution (6) possesses a mundane

constant behaviour with Iglmech > 0, which gets established
right above the critical temperature. The chromomag-
netic part (10) of the moment of inertia is, however, a
non-trivial function of temperature. It takes a negative
value in range of temperatures which makes the total mo-
mentum of inertia negative as well in the supervortical
region of temperatures Tc ≲ T < Ts.
We work in the formalism of Ref. [7] which does not re-

quire introduction of the metric tensor thus giving more
robustness to our calculations. Another way to calcu-
late the moment of inertia on the lattice involves the
simulation of the rotating Yang-Mills theory in curved
space and analytic continuation procedure similarly to
Refs. [32–34]. The results of such calculations, presented
in Ref. [8], firmly overlap with them from non-rotating
lattices thus demonstrating the consistency of our ap-
proaches.
Now let us address the question of how can it be that

the moment of inertia of a gluon gas is negative while
the energy density of the very same gluon gas is positive
everywhere? The last statement contradicts our experi-
ence of classical mechanics, Eq. (13) which implies that
the moment of inertia should both be a positive quantity
as the mass density is a positive quantity as well.

Evaporation of the chromomagnetic conden-
sate. The negative moment of inertia originates from
the thermal properties of (chromo)magnetic conden-
sate (12). The chromomagnetic, ⟪B2⟫

T
, and chromo-

electric, ⟪E2⟫
T
, condensates enter the (thermal part of)

the total gluon condensate:

⟪G2⟫
T
= ⟪B2⟫

T
+ ⟪E2⟫

T
, (18)

which determines, via the trace anomaly [36],

ε − 3p = ⟨Tµ
µ⟩ =

β(αs)
4π

⟪(Ga
µν)2⟫T ≡ −⟪G

2⟫
T
. (19)

the equation of state which relates the energy density ε
with pressure p. Eq. (19) involves the QCD beta function,

β(αs(µ)) =
dαs(µ)
d lnµ

< 0 , (20)

which reflects the running of the QCD coupling constant
αs = g2/(4π) with the energy scale µ.
Our Monte Carlo results for all gluonic conden-

sates (19) are shown in Fig. 2.4 These results were cal-
culated within standard lattice technique [36, 38] on the

4 This figure essentially reproduces Fig. 10 (taken with a minus
sign) of Ref. [36] re-calculated for the improved Symanzik action.
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FIG. 2. The total gluon condensate (19), and, separately,
its electric ⟪E2⟫

T
and magnetic ⟪B2

⟫
T

components (18), as
functions of temperature T .

lattice 6×36×1452 with performed zero-temperature sub-
traction at Nt = 36. The magnetic condensate becomes
negative above the phase transition and then it changes
the sign to a positive domain at T ≃ 2Tc [36].
How to understand the thermal behaviour of the

magnetic condensate? One can associate its behaviour
with the evaporation of the magnetic component of the
gluon plasma [39, 40] and the associated string dynam-
ics [39, 41]. Moreover, the magnetic condensate is an in-
frared non-perturbative property of the vacuum. As any
other condensate, it can be associated with the infrared
coherence of the vacuum state. Strong thermal fluctua-
tions add large ultraviolet noise to the system and, con-
sequently, disorder this condensate. Therefore, the con-
densate quickly evaporates as temperature raises above
the critical point, T = Tc. This behaviour is clearly seen
in Fig. 2 in the temperature range 1 ≲ T /Tc ≲ 1.1. Notice
that the magnetic condensate is not an order parame-
ter of the deconfinement phase transition and, therefore,
nothing special happens with it at the phase transition
T = Tc apart from the quick drop caused by the evapora-
tion.

Finite temperature environment generates also essen-
tially perturbative thermal fluctuations in the system
which contribute positively to the magnetic condensate.
As temperature raises to about T ≃ 1.1Tc, the raise of
the magnetic thermal fluctuations overcome the evapo-
ration of the remaining magnetic condensate, and the
slope changes: at this temperature, the quantity ⟪B2⟫

T

starts to rise.5 At T ≃ 2Tc, the thermal contribution be-
comes larger than the drop due to the evaporation of the

5 At T ≳ 1.1Tc, the quantity ⟪B2⟫
T

includes an essential contribu-
tion coming from thermal fluctuations so that it is not justified,

T = 0 condensate, and ⟪B2⟫
T

becomes a positive quan-
tity at higher temperatures, approaching the expected
⟪B2⟫

T
∝ T 4 Stefan-Boltzmann law at T →∞.

Since the right hand side of the anomaly equation (19),
given by the sum of electric and magnetic condensates is
always a positive quantity, therefore thermodynamic re-
lations imply that the energy density is always a positive
quantity as well [36]. Therefore, the moment of iner-
tia, substantially altered by the chromomagnetic com-
ponent (10) can take negative values while the energy
density, given by the sum of both electric and magnetic
contributions (18), is always a positive quantity. In other
words, one can have a negative moment of inertia for an
object with an everywhere-positive energy density.

Rotating photon gas. It is instructive to compare
our numerical results for gluonic plasma, extrapolated
to the high-temperature limit, with thermodynamics of
non-interacting massless vector fields, that is, photons.
The interest in this comparison originates from the fact
that the generic relation (2) equally applies to rotating
photon gas while the vector nature of the photon field
assures – similarly to the gluon field – that the photon gas
receives two contributions to its moment of inertia (3),
both mechanical (6) and magnetic (10) ones.
One could naively expect that at high temperatures,

the physics of gluons becomes perturbative due to asymp-
totic freedom: in a hot gluon plasma, the mean energy
of gluons is high and for such high-energy gluons, the
Yang-Mills coupling constant is asymptotically vanish-
ing. However, this expectation does not work for all glu-
ons since the magnetic gluon component always contains
a non-perturbative part, regardless how high tempera-
ture is [42].
Moreover, in the studied range of temperatures, the

equation of state of the gluon plasma contains a strong
correction from a non-perturbative sector [42] and there-
fore any relation with free photodynamics are at least far
fetched. In addition, it is the chromomagnetic contribu-
tion (10) which makes the negative contribution to the
moment of inertia. However, contrary to the gluon case,
the magnetic part of photons is not non-perturbative
and easily calculable analytically, which makes the com-
parison of high-temperature gluodynamics with high-
temperature photodynamics especially valuable. Below,
we will make the comparison, normalized by degrees of
freedom, to see how different the thermodynamics of
these rotating vector fields are.
To evaluate the total moment of inertia of rotating pho-

tons, one can take the result for a free scalar field [37] and
rescale it by the factor of 2 corresponding to degrees of
freedom of a photon. One gets for a photon in a cylinder

strictly speaking, to call it a condensate. We will, however, con-
tinue to use the word “condensate” to keep our narration smooth.
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of the radius R and the height L:

Iphtotal ≡ I
ph
mech + I

ph
magn =

2π2

45
LR4T 4 . (21)

This expression excellently agrees with the numerical re-
sults of Ref. [43] for the moment of inertia of hot photon
gas rotating in a cylinder, Iph/(LR4T 4) ≃ 0.44.
Similarly to gluons (3), the total moment of inertia (21)

of the photon gas possesses two contributions which are
easily calculable. The mechanical part, given by the sus-
ceptibility of the angular momentum (6),

Iphmech =
π2

90
(4 − π)LR4T 4 , (22)

can be obtained by subtraction of the contribution from
thermal fluctuations of magnetic field (10),

Iphmagn ≡ ⟨B
2⟩

T
⋅ 2
3
∫
V
d3r r2⊥ =

π3

90
LR4T 4 , (23)

from the full expression (21). In order to calculate
Eq. (23), we took into account the Stefan-Boltzmann
value of the thermal fluctuations of the magnetic field,
⟨B2⟩

T
= π2T 4/15. The mechanical contribution (22),

obtained by the difference between the total value (21)
and the magnetic contribution (23), gives only a small
fraction of the total moment of inertia of the photon gas:

Iphmech

Iphtotal
= 1 − π

4
≃ 0.215, or

Iphmagn

Iphmech

= π

4 − π
≃ 3.66 . (24)

This observation should be compared with the behaviour
of gluon plasma shown in Fig. 1, where the magnetic
contribution is indeed bigger than the mechanical part
which, however, still takes an essential part of the total
moment of inertia at our higher temperature T ≃ 3.6Tc.
The asymptotic values of the mechanical and magnetic

parts of the moment of inertia in the gluon plasma, can be
obtained by suitable fits. The mechanical part is almost
insensitive to temperature in deconfinement phase and
it can be well described in the region T ≳ 1.35Tc, with
χ2/d.o.f. ≃ 0.1, by the constant function,

Iglmech(T )
T 4

=
Igl,∞mech

T 4
= 1.21(6) . (25)

The chromomagnetic contribution, as well as the to-
tal specific moment of inertia, has a more involved be-
haviour which can be fitted at T ≳ 1.35Tc by the follow-
ing function (with χ2/d.o.f. ≃ 1.9 for magnetic part and
χ2/d.o.f. ≃ 0.1 for total values):

Igl,fit
magn/total(T )

T 4
=

=
Igl,∞
magn/total
T 4

[1 + c1
Tc

T − Tc
+ c2 (

Tc
T − Tc

)
2

] , (26)

Igl,∞magn/T 4 = 2.474(15), c1 = −1.001(5), c2 = 0.114(3),

Igl,∞total/T
4 = 3.70(23), c1 = −0.672(61), c2 = 0.076(26).

These fits are shown by the solid lines in Fig. 1.
Asymptotic results normalized by degrees of freedom,

do not coincide with those of the hot photonic gas. The
reason is in the non-Abelian nature of magnetic degrees
of freedom of gluons which receive non-perturbative con-
tributions even in the T →∞ limit [42]. Still, the hierar-
chy of these parts is the same: in the high-temperature
regime, the purely magnetic degrees of freedom provide
a dominant contribution to the total momentum. Still,
just above the deconfinement transition at T = Tc, up
to the supervortical critical temperature Ts ≃ 1.5Tc , the
negative contribution of the chromomagnetic gluons out-
weighs the positive contribution coming from the fluctu-
ation of the angular momentum, and the plasma appears
to carry a negative moment of inertia.

Strong negative Barnett effect for gluons. A
negative moment of inertia implies that the total angu-
lar momentum J = L + S, which (quark-)gluon plasma
possesses, is pointed out in the opposite direction to the
angular velocity Ω with which the (quark-)gluon plasma
rotates. How can this situation be realized in Nature?
We put forward here the suggestion that the key player
here is the gluon spin S, which accumulates too much of
total angular momentum J , forcing, at the same time,
the gluons themselves to rotate orbitally in the opposite
direction with respect to the total angular momentum in
order to compensate the over-excess of the angular mo-
mentum accumulated in the gluon spins S.

We call this effect the “negative Barnett effect” (NBE),
which states that spin polarization of gluons is opposite
to the angular velocity of the system itself. The usual
Barnett effect is the manifestation of the spin-orbital-
coupling which implies that the spin of the particles, ex-
periencing a rotational collective motion, are aligned with
the local angular velocity of the system [44].6 For an or-
dinary uncharged substances such as certain metals [46]
or even water [47], the spin polarization can experimen-
tally be measured via rotation-produced magnetization
of the sample.

The NBE, on the contrary, implies that the spin-
orbital-coupling has a reversed sign, so that the orien-
tation of the spins S and the angular velocity Ω is op-
posite to each other within the supervortical window of

6 The effect of the spin-orbital coupling caused by rotation should
be contrasted to the effect in static (non-rotating) bound sys-
tems. In a hydrogen atom, for example, the spin and orbital
angular momentum of an electron tend to be anti-parallel, re-
sulting in a lower energy of the 2P1/2 state compared to the
2P3/2 state. It is a fine-structure effect [45] caused by the polar-
ization of an electron magnetic moment by magnetic field arising
in a (momentary) rest frame of the electron.
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temperatures Tc ≲ T < Ts. Namely, we suggest that in a
rotating gluon system:

(i) a sizable fraction of the total angular momentum
J = L +S is accumulated in the spin of gluons S;

(ii) the spin polarization S is parallel to the total an-
gular momentum J and anti-parallel to the orbital
angular momentum of plasma L.

Yet in other words, projecting all angular momenta
onto a single axis n and assuming without loss of general-
ity J > 0, the gluonic spins accumulate too large amount
of angular momentum S > J > 0, so that this contribution
needs to be compensated by a negative orbital motion,
L = J − S < 0. Therefore, plasma acquires the angular
momentum in one direction (J > 0) and rotates in the
opposite direction (L < 0), as illustrated in Fig. 3.

FIG. 3. (left) The usual (positive) Barnett effect: the system
possesses the positive angular momentum J which is redis-
tributed between the positive orbital momentum L, corre-
sponding to the counterclockwise rotation and the positive
spin polarization S generated by rotation. (right) The nega-
tive Barnett effect: the system possesses the positive angular
momentum J = Jn (with n2

= 1), which is redistributed
between a large positive spin polarization S = Sn (with
S > J > 0) and an orbital angular momentum L = Ln = ILΩ
that takes a negative value L < 0 due to conservation of total
angular momentum, J = S + L. Since the moment of iner-
tia stored in orbital motion is positive, IL > 0, the system
rotates, as a whole, clockwise: Ω = Ωn with Ω < 0. The neg-
ative Barnett effect implies that the angular velocity Ω and
spin polarization S are anti-parallel to each other.

Notice that it is the orbital momentum which encodes
rotation of plasma as whole, while the spin polarization
is an intrinsic characteristic of the system which does
necessarily manifest itself in rotation. A relevant case is
represented by a ferromagnet in the broken phase which
spontaneously generates magnetic field due to substantial
spin polarization, S ≠ 0, and, at the same time, does not
rotate, L ≡ 0 [35]. Another example is given by superfluid
3He in a metastable, but eternally long-lived p-wave state
where the angular momentum, accumulated vortices, is
opposite to the global rotation of the fluid [48].

Given the suspected negativity of the spin-orbital cou-
pling, one may ask ourselves how the moment of inertia

is redistributed between spin and orbital degrees of free-
dom. Following the analogy with the Barnett effect [44],
we assert that the rotation with angular velocity Ω in-
duces the spin polarization of gluons, S = ISΩ.
Writing similarly for the orbital part, L = ILΩ, one

arrives to Eq. (1) where the total moment of inertia is
the sum of the the spin and orbital contributions: I =
IS + IL. Since the energy density is a positive quantity,
the mechanical orbital rotation can only lead to a positive
value of the orbital moment of inertia, IL > 0. Therefore,
the negative moment of inertia can only be achieved if the
rotation polarizes spin negatively, IS < −IL < 0, against
the rotation direction, so that I = IS + IL < 0.
Implications for quark-gluon plasma. So far, we

discussed the gluonic component of the rotating plasma.
The magnetic condensate term will also exist in the pres-
ence of rotating fermionic component, so that our con-
clusions equally apply to the quark-gluon plasma. The
coupling of quarks to rotation results in a linear term in
the free energy which implies that fermions themselves
cannot generate the negative Barnett effect because their
contribution to the total moment of inertia is associated
with the single, purely mechanical term:

I
(q+gl)
mech =

1

T
⟪n ⋅ (Jq + Jgl)2⟫T . (27)

The angular momentum of quarks Jq is given by Eq. (7)

with the substitution M ij
gl →M ij

q = iψ̄γ0(γiDj −γjDi)ψ.
The covariant derivative Dµ = ∂µ+ igAµ incorporates the
coupling of the quark spinors ψ to the gluon field Aµ.
The mechanical momentum which includes the con-

tribution of quarks (27) is expected to give a positive
addition to the total moment of inertia thus diminishing
the magnitude of its negative value in the supervortical
range of temperatures. However, the evaporation of the
gluon condensate also occurs in the presence of quarks,
implying that the negative moment of inertia and the
associated negative Barnett effect will also be realized
in the quark-gluon plasma in relativistic heavy-ion colli-
sions.

Discussion and Conclusions. It was recently
found that the gluon plasma in the range of tempera-
tures T ≃ (1 . . .1.5)Tc possesses a negative moment of
inertia, which may be interpreted as thermodynamic in-
stability to the global rotation [7, 8]. The result was
obtained using two independent approaches in static [7]
and rotating [8] plasmas. In this paper, we argued, us-
ing thermodynamic arguments and – in relation to the
gluon plasma – the lattice data, that one can have a neg-
ative moment of inertia for an object with an everywhere-
positive energy density.
The moment of inertia of a gluon system contains not

only the expected mechanical term corresponding to the
total angular momenta, but also a local term which incor-
porates the chromomagnetic condensate. This additional
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term emerges due to the vector nature of gluons: the lat-
ter property leads to the non-linearity of the gluonic free
energy which contains terms both linear and quadratic
in Ω. The linear term produces the standard mechan-
ical contribution (6) while the quadratic term leads to
the novel contribution which incorporates the chromo-
magnetic condensate (10). Our Monte Carlo simulation
clearly show that it is the thermal evaporation of the
chromomagnetic condensate that leads to the negative
moment of inertia of rotating plasma.

As a result, we conclude in our paper that the total
angular momentum is still positive, while the plasma me-
chanically rotates in the opposite direction to the angular
momentum implying the unusual relation Ω ⋅ J < 0. We
coin this novel phenomenon as the Negative Barnett Ef-
fect. While this effect can have direct consequences on
rotation of gluon plasma, the detailed implications of the
emergence of the negative moment of inertia remains to
be explored. The Negative Barnett Effect for gluons may
be one of the possible causes of the thermodynamic in-
stability reported in Ref. [8].

Acknowledgements. This work has been carried
out using computing resources of the Federal collective
usage center Complex for Simulation and Data Pro-
cessing for Mega-science Facilities at NRC “Kurchatov
Institute”, http://ckp.nrcki.ru/ and the Supercomputer
“Govorun” of Joint Institute for Nuclear Research. The
work of VVB, IEK, AAR, and DAS, which consisted in
the lattice calculation of the observables used in the pa-
per, was supported by the Russian Science Foundation
(project no. 23-12-00072). The authors are grateful to
Victor Ambrus, and Andrey Kotov for useful discussions.

∗ vvbraguta@theor.jinr.ru
† maxim.chernodub@univ-tours.fr
‡ ilyakudrov@yandex.ru
§ roenko@theor.jinr.ru
¶ sychev.da@phystech.edu

[1] L. D. Landau and E.M. Lifshitz, Mechanics, 3rd ed.,
Course of Theoretical Physics, Vol. 1 (Butterworth-
Heinemann, Oxford, 1976).

[2] H. B. G. Casimir and D. Polder, “The Influence of retar-
dation on the London-van der Waals forces,” Phys. Rev.
73, 360–372 (1948).

[3] M. N. Chernodub, “Permanently rotating devices: ex-
tracting rotation from quantum vacuum fluctuations?”
(2012), arXiv:1203.6588 [quant-ph].

[4] M. N. Chernodub, “Rotating Casimir systems: magnetic-
field-enhanced perpetual motion, possible realization in
doped nanotubes, and laws of thermodynamics,” Phys.
Rev. D 87, 025021 (2013), arXiv:1207.3052 [quant-ph].

[5] Stephen A. Fulling, Kimball A. Milton, Prachi Parashar,
August Romeo, K. V. Shajesh, and Jef Wagner, “How
Does Casimir Energy Fall?” Phys. Rev. D 76, 025004
(2007), arXiv:hep-th/0702091.

[6] Kimball A. Milton, Prachi Parashar, K. V. Shajesh, and
Jef Wagner, “How does Casimir energy fall? II. Gravita-
tional acceleration of quantum vacuum energy,” J. Phys.
A 40, 10935–10943 (2007), arXiv:0705.2611 [hep-th].

[7] V. V. Braguta, I. E. Kudrov, A. A. Roenko, D. A. Sychev,
and M. N. Chernodub, “Lattice Study of the Equation
of State of a Rotating Gluon Plasma,” JETP Lett. 117,
639–644 (2023).

[8] Victor V. Braguta, Maxim N. Chernodub, Artem A.
Roenko, and Dmitrii A. Sychev, “Negative moment of in-
ertia and rotational instability of gluon plasma,” (2023),
arXiv:2303.03147 [hep-lat].

[9] Arata Yamamoto and Yuji Hirono, “Lattice QCD in ro-
tating frames,” Phys. Rev. Lett. 111, 081601 (2013),
arXiv:1303.6292 [hep-lat].

[10] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Za-
kharov, “QCD and Resonance Physics. Theoretical Foun-
dations,” Nucl. Phys. B 147, 385–447 (1979).

[11] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I.
Zakharov, “QCD and Resonance Physics: Applications,”
Nucl. Phys. B 147, 448–518 (1979).

[12] B. I. Abelev et al. (STAR Collaboration), “Global polar-
ization measurement in au+au collisions,” Phys. Rev. C
76, 024915 (2007).

[13] L. Adamczyk et al. (STAR), “Global Λ hyperon polar-
ization in nuclear collisions: evidence for the most vor-
tical fluid,” Nature 548, 62–65 (2017), arXiv:1701.06657
[nucl-ex].

[14] Wojciech Florkowski, Avdhesh Kumar, and Ra-
doslaw Ryblewski, “Relativistic hydrodynamics for spin-
polarized fluids,” Prog. Part. Nucl. Phys. 108, 103709
(2019), arXiv:1811.04409 [nucl-th].

[15] Xu-Guang Huang, Jinfeng Liao, Qun Wang, and Xiao-
Liang Xia, “Vorticity and Spin Polarization in Heavy Ion
Collisions: Transport Models,” Lect. Notes Phys. 987,
281–308 (2021), arXiv:2010.08937 [nucl-th].

[16] Francesco Becattini, “Spin and polarization: a new direc-
tion in relativistic heavy ion physics,” Rept. Prog. Phys.
85, 122301 (2022), arXiv:2204.01144 [nucl-th].
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