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Abstract

The existence of only a few bubbles could drastically reduce the acoustic wave
speed in a liquid. Wood’s equation models the linear sound speed, while
the speed of an ideal shock waves is derived as a function of the pressure
ratio across the shock. The common finite amplitude waves lie, however, in
between these limits. We show that in a bubbly medium, the high frequency
components of finite amplitude waves are attenuated and dissipate quickly,
but a low frequency part remains. This wave is then transmitted by the
collapse of the bubbles and its speed decreases with increasing void fraction.
We demonstrate that the linear and the shock wave regimes can be smoothly
connected through a Mach number based on the collapse velocity of the
bubbles.

1. Introduction

Since the observation of damping of sound in frothy liquid in 1910 (Mal-
lock, 1910), the physics of sound propagation in bubbly liquid has attracted
many research works. The simplest models make the assumptions that
the bubbly liquid is a continuum, the sound wave has a small amplitude,
and the bubbles are uniformly distributed (Minnaert, 1933; Carstensen and
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Foldy, 1947; Meyer and Skudrzyk, 1953; Wijngaarden, 1968). Wijngaarden
(1968) showed that a void fraction of 0.3% reduces the speed of sound to
about 200 m/s, from 1500 m/s in the pure liquid.

Wave velocity and attenuation depend on frequency in a complex way.
Effective medium approaches estimate that the dispersion relation of pure
gas bubbles (Carstensen and Foldy, 1947; Wijngaarden, 1972; Commander
and Prosperetti, 1989) and gas/vapor bubbles (Fuster and Montel, 2015) to
be in the linear regime. At low frequencies, dispersion effects are negligible,
and the effective speed approaches an asymptotic value known as Wood’s
limit (Wood, 1941):
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where cl and cg are the speed of sound in the liquid and gas respectively, α is
the void fraction, and κ the ratio of specific heats (Wijngaarden, 2007). Sil-
berman (1957), among others, have measured the sound velocity in a standing
wave tube filled with a mixture of bubbles and water, and verified Wood’s
derivation.

For the strongly nonlinear regime where the small amplitude assump-
tion is not valid, Campbell and Pitcher (1958) connected Eqn. (1) with the
propagation speed of a shock wave, U . They used the shock relations for
continuity, momentum, and energy in a bubbly liquid and obtained
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)(
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, (2)

with p0 and p1 being the pressures in the bubbly liquid ahead and behind
the shock wave, respectively (Wijngaarden, 2007). This expression for κ = 1,
i.e. U2 = (p1/p0)c

2, was confirmed by Campbell and Pitcher (1958) with a
vertical shock tube experiment where small gas bubbles and void fractions
between α = 5% and α = 30% were used. It is noted that Eqn. (2) is
only valid for sufficiently high void fractions and thus c ≪ cl, for which the
effective sound speed of Eqn. 1 no longer depends on cl

c ≈
√

κp0
ρl α(1− α).

Interestingly, this theory predicts that the effective speed of sound of the
medium is proportional to

√
p1/p0.
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Between the linear and the strongly nonlinear regimes, models for disper-
sion and relaxation of weak and moderate-strength shock waves have been
established and tested experimentally. Kameda et al. (Kameda and Mat-
sumoto, 1996; Kameda et al., 1998) confirmed Wijngaarden’s (Wijngaarden,
1968) bubble-liquid mixture model with ∆p = p1 − p0 up to 1 bar. Ando
et al. (2011) modeled bubble poly-dispersity’s effect on shock front shape,
and found that the broad bubble size distributions smooth out the profile.
Therefore, the linear theory is found not to be suitable for predicting strong
shock propagation speed.

In this paper, we study how finite amplitude waves propagate through
bubbles in gelatin. Our research is inspired by Dear and Field’s classic work
on shock waves interaction with gas bubbles in hydrogels (Dear et al., 1988;
Dear and Field, 1988). Firstly, we use Direct Numerical Simulation to un-
derstand wave transmission across all acoustic regimes. After that, the ex-
periments on compressive wave propagation through bubbles in gelatin gels
are presented. We found that the experimental results are in agreement with
DNS simulations on high-pressure finite amplitude wave regimes.

2. Direct Numerical Simulation

The simulations are conducted with a multiphase compressible solver
presented in Fuster and Popinet (2018), where the two-phase compressible
Navier–Stokes equations in a Newtonian fluid are solved using the density ρ,
momentum ρu, and total energy ρE, for the ith phase as primitive variables

∂ρi
∂t

+∇ · (ρiui) = 0, (3)

∂ρiui

∂t
+∇ · (ρiuiui) +∇pi = ∇ · (2µiDi), (4)

∂(ρiEi)

∂t
+∇ · (ρiEiui) +∇ · (uipi) = ∇ · (2µiDi)ui, (5)

where D dentotes the viscous stress tensor. In the all-Mach solver used
here the pressure field required to compute the fluxes is estimated from the
solution of a Poisson-Helmholtz equation which is corrected at the end of the
timestep using the stiffened gas equation of state (EOS)

ρiEi −
1

2
ρiu

2 =
pi + ΓiΠi

Γi − 1
. (6)
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with Γg = 1.4 and Πg = 0 for the bubble content and Γl = 7.15 and Πl = 3000
atm for the liquid. This solver has previously been applied for sub-harmonic
emissions of bubbles oscillating in a tube (Fan et al., 2020) and the collapse
of a bubble close to a wall (Saini et al., 2022).

Here we model an idealized system where a pressure pulse propagates
through a mono-dispersed line of bubbles with size R0 = 100µm in a vis-
cous fluid (Figure 1(a)). We consider a periodic axisymmetric configura-
tion where the bubbles are uniformly distributed along the axis of symmetry
at a constant inter-bubble distance d. On the top domain boundary, slip
boundary conditions are applied. The simulation domain covers the range
−d/2 ≤ z ≤ 52.5d and 0 ≤ r ≤ d in the radial direction. A uniform grid
of size ∆x/d = 1/128 is used to carry out the simulations, which makes in
total 868,352 grid points. With this configuration, the effective void fraction
is α = 4/3(R0/d)

3.
A Gaussian pulse, denoted by equations

p(z, t = 0) = p0 +∆pe−z2/λ2

(7)

uz(z, t = 0) =
p(z, 0)− p0

ρlcl
(8)

is propagating in the simulation domain from left to right. The pulse shape
is designed to mimic the finite amplitude wave profile in the experiment. The
initial amplitude of the pressure pulse is left as a variable parameter, and the
wavelength λ is set to λ = 500 µm. The spectral content gaussian pulse
considered is also a gaussian function where the range of forcing frequencies
excited is ω

ω0
≤ 100 with ω0 being the bubble natural resonant frequency.

The gas inside the bubble is modeled as an ideal gas. The viscous fluid is
assumed to be water-like but with a higher viscosity (νl = 2.3×10−4m2/s)(see
supplementary file ”Viscosity derivation” for value derivation), although this
parameter has revealed not to be crucial in describing the physics in what
follows.

Figure 1(b) depicts various snapshots of the pressure field and the bubble
interface contour during the propagation of a wave with amplitude ∆p/p0 =
100. The precursor wave, which is the high frequency component of the finite
amplitude wave, propagates across the bubbly medium at approximately the
speed of sound in the pure liquid, inducing an initial compression of the
bubbles. The term “high frequency” here is referring to the signal frequencies
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Figure 1: (a) Domain and boundary conditions used for DNS simulations. (b) A series
of snapshots of the pressure field and interface contour at an initial void fraction, α =
9.2× 10−4 and ∆p/p0 = 100 with indicated timing.
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Figure 2: Spatio-temporal representation of the evolution of the bubble volume of the first
30 bubbles contained in the domain. The red line represents the theoretical propagation
of a wave propagating at the pure liquid speed of sound. The yellow line represents a line
fitting the instant of minimum radius of the various bubbles.

which are higher than the bubble resonance frequency, ω ≫ ω0. There is an
increasing delay between the instant at which the precursor wave reaches a
given bubble location and the instant at which the bubble volume becomes
minimum.

Figure 2 depicts the temporal evolution of the bubble volume of the first
30 bubbles contained in the domain in a spatio-temporal diagram. The figure
reveals that we can fit a straight line going through the points defined by the
instant of minimum radius as a function of the bubble position. The slope
of this line defines a clear and unique effective propagation velocity at which
the front associated to the collapse of bubbles propagates. This velocity
cannot be directly associated with the velocity of the pressure pulse, where
existing theories predict the dispersion relation where the effective phase
velocity depends on the frequency. More description and discussion of the
wave propagation is given in the supplementary file ”Additional Explanation
and Simulation”.

To further examine the behavior of this effective wave, Figure 3 shows
the effect of the strength of the propagating compression wave, ∆p/p0, and
the void fraction on the value of the effective velocity obtained. Defining the
Mach number as the ratio between the characteristic speed of the bubble col-
lapse and the linear speed of sound in the bubbly liquid, Ma = 1

cwood

√
∆p/ρl,
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Figure 3: (a) Effective wave velocity for all values tested of ∆p/p0 and void fraction. (b)
Velocities rescaled with the Wood velocity as a function of the Mach number. (c) Velocities
rescaled with the Campbell & Pitcher velocity as a function of the Mach number.
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it is possible to collapse well the dimensional values obtained for all the dif-
ferent conditions tested. The derivation of the Ma number is presented in
detail in the Section 4. The velocities obtained for low amplitudes of the
forcing pulse (low Ma) are independent of the Mach number (e.g. the forcing
amplitude) and are predicted by the Wood theory. This points to the fact
that the effective wave speed is controlled by the low frequency content of
the signal, which have small effective attenuation in comparison with the
high frequency components. Figure 3 reveals that as we approach values of
the Mach number close to one, the Campbell & Pitcher velocity serves to
collapse the results for the various bubble concentration and pressure am-
plitudes tested. The limitations of numerical simulations on the maximum
values of the Mach number that can be reached or the differences of the initial
pulse profile used in this work with respect to the shock propagation problem
considered in the theory may be behind the differences in the prefactor, but
the results seem to point out that, at least at first order, the nondimensional
velocity U/UCP tends to a value close to one for Ma > 0.2.

3. Experimental setup and observations

The experiments are carried out using gelatin gel which is placed within
a custom-made cuvette. This cuvette is cut from a square cross section ex-
truded plastic tube (K.+C.Weiss GmbH) with dimensions 20.3×20.3×30.0 mm3.
One of the plastic side wall of the cuvette is replaced with glass to facilitate
good visualization of the bubbles (Figure 4(a)). During the experiment the
bottom and top of the cuvette is open, and the whole cuvette is submerged in
the water bath, allowing both the top and bottom gelatin gel surfaces to be
in contact with water. This arrangement allows for good acoustic coupling
as the compressive wave propagates through the gel.

The gelatin is prepared from industrial gelatin granules made from pork
or beef skin (Gelatin 250 bloom, Yasin Gelatin, China). The gelatin granules
are weighted and mixed with deionised water. A 4% gelatin contains 4 grams
of gelatin granules per 100 grams of the gelatin-water mixture. Gelatin gel of
various concentrations are prepared (4%, 6%, and 8%). The mixture is then
heated under stirring on a hot plate to around 80◦C. Once homogeneity is
reached, the hot mixture is removed from the hot plate, and poured into a
customised plastic cuvette with the bottom lid on. The cuvette with gelatin
is placed in a refrigerator at 5 ◦C for 72 hours. The long refrigeration time
is needed because it is observed that if the gelatin gel has been stored for
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less than 48 hours, the bubbles created by the waves in the gelatin gel will
dissolve over a time scale of a few seconds. However, if the gelatin sample has
been kept for more than 72 hours, the gas bubbles grow slowly with time once
nucleated. We speculate that the long storage time is needed to saturate the
gelatin gel with air. The heating during preparation depleted the sample from
its initial saturation concentration at room temperature. Once the sample
is brought back to room temperature, the aged gelatin is supersaturated
with air and can’t equilibrate in the duration of the experiment. Thus a
sample that has achieved room temperature is still supersaturated, causing
the growth of gas bubbles against the elastic forces.

At least two hours before the experiment, the cuvette is taken out of
the fridge and is allowed to return to room temperature. It is then placed
in the focal volume of the shock wave generator in the water tank during
the experiment. The shock wave generator is a modified medical lithotripter
equipped with two layers of piezoelectric transducers. In this study, only the
top piezo layer is used, and it is operated at 7 kV. The repeatability of the
pressure signatures in water is high, for details see Arora et al. (2005).

Initially the gelatin gel is clear and is absent of gas bubbles. Only after the
first passage of the finite amplitude wave, gas bubbles are formed along the
acoustic path in the center of the cuvette due to the tensile part of the wave.
These bubbles do not dissolve and they persist in the gelatin. A waiting
interval of 10 minutes is set between successive wave admission. During
this time, the bubbles grow in size via diffusion of gas from the gel into the
bubble, and thus the void fraction is increased. A photograph of a typical
sample taken after 100 minutes (i.e. after 10 applied finite amplitude waves)
is shown in Figure 4(b). The experiment is then concluded for this sample.
Although the bubbles are nucleated only in the focal region of the shock
waves generator, within the observation window of the high speed camera
(Figure 4(d)), the bubbles are distributed homogeneously throughout the
frame. Similarly from the top of the cuvette (Figure 4(e)), the region of
interest (Figure 4(f)) can be seen to be filled with bubbles. The boundaries
of the bubble cloud are not studied in this experiment.

The pressure is measured with a needle hydrophone (diameter 1.1 mm,
model Müller-Platte Nadelsonde) inserted into the gelatin cuvette about
2mm sideways from the focus. The hydrophone is connected to an oscil-
loscope (DS1054Z, Rigol Technology Inc). The first bubbles are nucleated
in the tensile region with approximately −10 bar amplitude when the finite
amplitude wave as shown in 5(a) passes through the gelatin gel. The bub-
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Figure 4: (a) Gelatin in a customised cuvette prior to the experiment. One face of the
cuvette is replaced with glass and the bottom of the cuvette is removed. The dimen-
sion is 20.3×20.3×30.0 mm3. The center of the cuvette is placed at the focal volume,
approximately 135 mm from the shock wave generator surface (where z = 0). For pres-
sure measurement, a hydrophone is placed about 10 mm from the bottom of the cuvette
and 2 mm left from the center. (b) The cuvette after 10 wave applications resulting in
a central cloud of bubbles trapped in the gelatin. (c) The zoomed areas show the limits
of the observation window of the high-speed videos (region of interest) viewed from the
side. (e) The cuvette as viewed from the top and (f) the corresponding region of interest
as observed from the top. It is noted that the camera is viewing from the side only.
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Figure 5: (a) A typical measurement of the finite amplitude wave generated with the
lithotripter. Maximum pressure of around 100 bar is measured in gelatin without bubbles.
(b) The pressure peaks (black squares) as measured by the needle hydrophone placed in
4% gelatin approximately 2 mm to the left of the focal volume, in a separate experiment
where all other parameters remain the same. With successive waves, the wave arrival is
delayed and its amplitude is reduced.

ble dynamics is captured with a high speed camera (HPV2, Shimadzu Inc.)
together with a generic camera flash light at a framing rate of 1 million
frames per second and a pixel resolution of 312 x 260 pixels. The timing of
the devices is controlled with a digital delay generator (BNC 525, Berkeley
Nucleonics).

The slow down of the compression wave is observed in the hydrophone
measurements in Figure 5(b). During the measurements, the position of
the hydrophone in a 4% gelatin sample was fixed while consecutive finite
amplitude waves at an interval of 10minutes are applied. Wave 1 in Fig-
ure 5(b) relates to the virgin sample, and the later waves are interacting
with the bubbles. The time, t = 0, corresponds to the moment when wave
1 is detected. The pressure peaks of subsequent waves are shifted to later
times and are considerably reduced in amplitude from the initial 100 bar to
10 bar after only 5 finite amplitude waves. This observation suggests that the
wave speed is a function of the void fraction (which increased over time as
the bubble grows in size over the multiple application of the finite amplitude
waves), as well as the wave amplitude since the wave is dissipated by the
bubble oscillations.

Figure 6(i) depicts a high-speed recording of the first pressure pulse prop-
agating in a virgin gelatin block (4% by weight) from the bottom to the top
in positive z-direction.This 4% gelatin has a density of 1010 kg/m−3. The
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Figure 6: Bubble nucleation and compression by a traveling finite amplitude wave in 4%
gelatin. The frame height is 4.974mm and the time is indicated in microseconds. (i)1st

finite amplitude wave, (ii) 2nd wave, and (iii) 8th wave.

time between frames is 1µs. Within the first 4 frames, the bubbles are nu-
cleated over a distance of about 5mm. The approximate location where
the rarefaction wave starts is indicated with a solid white line. In the later
frames, the bubbles grow to a larger size and collapse approximately 150µs
later (not shown here). In contrast to the bubbles observed in a liquid, these
gas bubbles in gelatin do not quickly dissolve or rise out of the field of view.
Once formed, they remain at their location. This is utilized by allowing the
bubbles to grow in between wave applications for about 10 minutes through
the diffusion of gasses from the gelatin Ando and Shirota (2019), thus to
increase the void fraction. This void fraction growth is repeated 10 times.
After about 100 minutes, the experiment for one gelatin sample is concluded.

The frames obtained from the high-speed recording are analyzed with
home-built algorithms (Rosselló and Ohl, 2021; Rosselló and Ohl, 2023) to
detect the bubbles, register their locations and shapes, and link them across
frames to follow their dynamics. The wave speed was then obtained by
performing a numerical fit on the position where the bubbles reach a min-
imum size over time using a linear model. Initially, there is no bubble in
the gelatin gel (Figure 6(i)), and thus to get the speed for the first finite
amplitude wave, we track the bubble nucleation as the tensile phase of the
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wave passes through. Details about the gelatin gel elasticity measurement
and image processing are provided in the appendixes.

Figure 6(ii) shows the compressive wave that passes through the gel that
contains gas bubbles from the first wave administration. Over time, we see
an upwards propagating region of compressed bubbles, i.e. over 3µs in the
frames from 1µs ≤ t ≤ 4µs. The approximate location of the minimum
bubble volume is indicated with the dash horizontal line. Figure 6(iii) shows
the bubble dynamics induced by the 8th finite amplitude wave. We find
a considerable delay in the arrival of the compressive wave, which enters
the field of view from below only at t = 5µs. This later arrival time is
confirmed by the considerably slower propagation of the wave front. Now the
compressed bubbles are seen at the top of the frame in the right-most frame,
i.e. t = 14µs. The average speed by which the compression region propagates
upwards can be very roughly estimated from the distance of 4.5mm over 9 µs.
This wave speed is only ≈ 500m/s! If we compare this value with the speed
of the tensile wave propagating through the virgin gelatin in Figure 6(i), the
wave travels within 3µs from the bottom to the top of the frame, a distance
of 5mm, i.e. at a speed of about 1600m/s. The high-speed recordings are
provided as supplementary materials.

4. Discussion

Experimental results from 61 individual measurements of the compression
wave speed in 6 gelatin samples with concentrations of 4%, 6%, and 8% by
weight are shown in Figure 7. The lowest velocity measured is 298m/s at a
void fraction of 1.5%. The wave speed is a function of the void fraction and
the pressure amplitude. Thus, the measured pressure is fitted to a polyno-
mial function of order 2 to obtain an approximated function of the pressure
amplitude as a function of the void fraction. The dashed line in Figure 7 is
obtained from Eqn. 2 using this fitted function for the pressure. Additionally,
we plot in Figure 7 Wood’s speed of sound Eqn. 1 as a dashed-dotted line.
The latter predicts a much faster reduction of the propagation speed than
measured. Clearly, important characteristics of the finite amplitude waves
need to be accounted for. The expression of Campbell & Pitcher (Eqn. 2),
however, is in reasonable agreement with the experimental results and is
within measurement errors for sufficiently high void fractions starting from
about 0.3%. For smaller void fractions, the measured pressure amplitude is
above 70 bar. The combination of small void fraction and high-pressure ratio

13



Figure 7: Collected finite amplitude wave velocities for the 4%, 6%, and 8% gelatin as a
function of the void fraction. The graph is compared to the acoustic speed of sound, c,
from Eqn. 1, the shock velocity, U , from Eqn. 2, and the results from DNS simulations.
The upper horizontal scale is the Mach number, Ma = c−1(∆p/ρ)1/2.

p1/p0 limits the applicability of Eqn. 2. Figure 7 also compares the mea-
sured wave speed with the speed of bubble compression from the numerical
simulations (DNS) (solid line).

We use a Mach number to characterize the different wave regimes. By
considering the importance of nonlinear wave propagation phenomena, the
Mach number is quantified by the ratio between the characteristic flow ve-
locity Uc and the wave propagation velocity in the linear regime of the flow
c, that is, the Mach number Ma = Uc/c. The characteristic flow velocity
Uc is derived from the average velocity for a bubble to collapse, which is
Uc = Rmax/TC where Rmax is the maximum bubble size and TC the col-
lapse time. Using the approximate relationship of the Rayleigh (inertial)
collapse time TC ≈ Rmax

√
ρ/∆p, we obtain for the average speed of collapse

Uc =
√
∆p/ρ.

It is noted that the response of our system transits between the two
limiting regimes, the linear regime MaLF ≪ 1, and the fully supersonic
regime MaHF ≥ 1, where Campbell and Pitcher’s theory certainly applies.
This theory is indeed shown to provide a good first-order approximation
to the influence of the bubble concentration and pressure amplitude on the
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evolution of the finite amplitude waves in the gelatin gel. This can be justified
if we assume that the energy exchanges between the long wavelengths and
the short wavelengths (or low and high frequencies) can be neglected at
the leading order. These effects only appear as a second-order correction
when MaLF ≥ 1. Overall, the DNS provides a better agreement with the
experimental data considering the simplifications involved. This agreement
supports the explanation that with increasing void fraction, a low frequency
wave with an approximately constant speed compresses the bubbles.

5. Conclusion

We presented a Direct Numerical Simulation of a pressure pulse through
a line of mono-dispersed bubbles. The bubbles cause the dispersion of the
initial pulse into a high frequency component (the precursor wave), and a
low frequency component which is propagated by the collapsing bubbles.
The precursor wave, which travels at sound speed in pure liquid, vanishes
quickly. Essentially, the collapsing bubbles act as a low-band filter that
mainly propagates the low frequency component of the initial pulse at a ve-
locity that transits from the Wood’s limit in the low concentration regime to
a value close to the Campbell & Pitcher predictions in the high concentration
regime.

Experimentally, we used high-speed photography to observe the slow-
down of the compressive wave by following the bubble collapses. The gas
bubbles are generated in the rarefaction part of the first lithotripter wave
administered to the gelatin gel. As the bubbles grow by diffusion and thereby
increase the void fraction, both amplitude and velocity of the compressive
wave are reduced. Delays in the arrival of subsequent finite amplitude waves
are observed by high-speed photography.

The wave propagation in a bubbly gelatin gel can be characterized with
a Mach number, Ma = 1

c

√
∆p/ρl, which compares the characteristic speed

of the bubble collapses with the linear speed of sound in the bubbly liq-
uid. At low void fraction and small Ma, the wave propagation follows
Wood’s Wood (1941) prediction for small amplitude waves. At the high void
fraction regime, the linear acoustic velocity approaches the speed of collapse,
i.e. Ma approaches 1. In our experimental domain where a finite amplitude
wave is used, the experimental results span a Ma number between about 0.2
to slightly above 1. The experimental data agree with Wood’s and Camp-
bell’s models only in the asymptotic limit of small and large void fractions;
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the DNS simulation gives reasonable agreement over the whole measurement
range.

An important implication of this study is that the effect of the void frac-
tion on focusing compression waves in tissue should be accounted for in medi-
cal treatments such as in histotripsy (Maxwell et al., 2011), and high-intensity
focused ultrasound. While experimentally challenging, we expect that exper-
iments in a liquid such as water should provide similar results, as predicted
by our simulations.

Appendix A. Elastic modulus measurement

For the measurement of elastic modulus, samples of 4, 6 and 8 percentage
of gelatin by weight are prepared as described in Section 3. The gelatin
are allowed to solidify in the fridge in a cylindrical shape container with a
diameter of 25.7mm and height 30mm. These gelatin samples are kept 72
hours in the fridge. Two hours before measurement, the samples are taken
out of the fridge, and are left aside to return to room temperature. Before a
measurement, a gelatin sample is removed from its container, and is placed
on top of a electronic balance under a piston that is attached to a stepper
motor. Both the stepper motor and the electronic balance are controlled by
a home-built program from a computer.

Our measurements are done based on the indention method as described
by Hall et al. (1997). The theory behind this method is based on the fact
that, uniaxial compression of an elastic material generates strain that is de-
pendent on the material’s elastic modulus, its geometry and its boundary
conditions. For simplicity, we assume linear elasticity during the loading of
the gelatin samples (Hall et al., 1997), i.e. the gel’s Young’s modulus equals
to the gradient of the loading portion of the stress-strain curve. The unload-
ing portion depicts the visco-elastic property of the gel. The stress σ and
strain e are defined as

σ =
F (t)

A
, (A.1)

e = −
∫ h(t)

h0

dh

h
, (A.2)

where F (t) andA are the force on the sample area with areaA at time t; h(t) is
the height of the sample at time t and h0 is the initial height of the sample
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Figure A.8: The stress strain curve for a 6% gelatin gel measurement. The black line is
the linear estimation which is considered to be the Young’s Modulus of the sample.

after the pre-loading. The sample sits on a platform that allows the sample
to slip freely at its boundaries.

Appendix A.1. Measurement parameters

The gelatin gels are taken out of the cylindrical container and placed
between the custom-made platform and the compression plate. The sample
size is 13 mm in radius and 22 mm in height. The compression plat is
mounted on a stage which can be mechanically moved by a stepper motor. We
control the stepper motor movement from the computer using a customised
software code (Ohl, 2021b). The platform is placed on top of a modified
kitchen scale which has been re-purposed to allow direct reading out of the
measured weight at high sampling rate (Virag et al., 2021).

The sample is pre-loaded to -3.5 mm. Then it is subjected to 20 cycles of
loading and unloading at 0.5 Hz. Ignoring the end points, the stable middle
points are used to calculate the stress strain curve. A typical stress strain
curve as shown in Figure A.8, from which a linear estimation is used to obtain
the Young’s modulus of the sample. The software code for the analysis is
available from Github (Ohl, 2021a).

Appendix A.2. Elasticity measurement results

The Young’s Modulus of the gelatin gel is depicted in Table A.1. The
Young’s modulus for the 4%, 6%, and 8% gelatin are 6.5 ± 1.5 kPa, 10.7 ±
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Gelatin Percentage (%) Young’s Modulus (kPa)
4 6.5± 1.5
6 10.7± 1.7
8 17.0 ± 0.5

Table A.1: Young’s Modulus of the gelatin gel measured

1.7 kPa and 17.0± 0.5 kPa, respectively. The data is obtained using two sets
of gelatine gels (each with one 4%, one 6%, and one 8% gel) over three mea-
surements. The young’s modulus of the gelatin gels used in this experiment
is within the stiffness range of various tissues, such as fat, skin, pancreas,
kidney and liver (Guimarães et al., 2020; Liu et al., 2015). Within this range
of tissue stiffness, the wave speed measured (as indicated by the structural
wave traveling through the bubbly medium), is independent of the elasticity
of the medium.

Appendix B. Image processing of the high speed photography

The frames from the high-speed recording are analyzed with home-built
algorithms to detect the bubbles, register their locations and shapes, and link
them across frames to follow their dynamics. Similar codes have been used
in Rosselló and Ohl (2021); Rosselló and Ohl (2023). As shown in the inset
of Figure B.9(b), the detection of the bubbles is achieved with the Hough–
transformation, which allows the discrimination of individual bubbles even
when they overlap each other in the images.

The high pressure of the wave front induces a sudden collapse of gas
bubbles. The wave speed was then obtained by performing a numerical fit on
the position where the bubbles reach a minimum size over time using a linear
model as shown in Figure B.9(a). We assume that the wave has a constant
speed in the area of observation. This assumption of a constant speed in
the short distance within the field of view of the video frames (see inset in
Figure B.9(b) is consistent over all 61 measurements analyzed. It is noted
that as there are no bubbles in the gelatin gel initially, an alternative method
was employed to obtain the wave speed for the first finite amplitude wave.
Instead of the collapsing bubble, we tract the bubbles that are nucleated as
the tensile phase of the finite amplitude wave passes through the gelatin gel.
The same detection software was used to track the vertical coordinates of
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Figure B.9: a) Volume dynamics of a selection of bubbles at different heights z extracted
from the high-speed recordings. The yellow line is connecting the minimum volume of the
bubbles. Its slope is 385m/s, the red line indicates a slope of 1605m/s, i.e. the speed
of the wave front in the pure gelatin. b) Bubble size histogram of the bubble population
showed in a). The most probable bubble radius might slightly change with time due to
gas diffusion into the bubbles. (Inset) Example of the bubble detection method using the
Hough–transformation applied to the experimental video frames.

bubble nucleation to find out the distance travelled by the wave between two
frames, and then the wave speed was computed with the inter-frame period
of 1 µs.

The void fraction is obtained from the accumulated bubble volume as-
suming that the bubbles are spherical in shape. This is done within the
camera frame area of 4.145 mm x 4.974 mm inscribed in the focal volume. In
this small window of observation, we find a homogeneous distribution. Due
to the two dimensional nature of the imaging, a projection of the bubble
volume is obtained experimentally; bubbles outside the field of depth are
image-blurred and are not counted. This field of depth where bubbles can
be detected has been measured by translating the camera and observing the
threshold of bubble detection. An error estimation for this process is used in
the results for the void fraction presented in the main text. For the partic-
ular imaging setup and aperture setting of the lens used in the experiment,
we find a depth of field of approximately 5mm. Thus the void fraction is
calculated from V −1

gel

∑
i Vb,i, where Vgel = 72.160mm3 and Vb,i the volume of

the i-th bubble in that gel volume.
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