
HAL Id: hal-04257266
https://hal.science/hal-04257266

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model checking for TCC calculus
Jaime Arias

To cite this version:

Jaime Arias. Model checking for TCC calculus. Universidad Javeriana. 2012. �hal-04257266�

https://hal.science/hal-04257266
https://hal.archives-ouvertes.fr

Model Checking for tcc Calculus

Jaime Eduardo Arias Almeida

Pontificia Universidad Javeriana
Facultad de Ingeniería

Ingeniería de Sistemas y Computación
Ingeniería Electrónica

Santiago de Cali
2012

Model Checking for tcc Calculus

Jaime Eduardo Arias Almeida

Proyecto de grado para optar al título de
Ingeniero de Sistemas y Computación e

Ingeniero Electrónico

Directores : Dr. Carlos Olarte
Dr. Eugenio Tamura

Pontificia Universidad Javeriana
Facultad de Ingeniería

Ingeniería de Sistemas y Computación
Ingeniería Electrónica

Santiago de Cali
2012

Santiago de Cali, Diciembre 10 de 2012

Doctor
MAURICIO JARAMILLO AYERBE
Decano Académico de la Facultad de Ingeniería
Pontificia Universidad Javeriana
Ciudad

Certificamos que el presente trabajo de grado, titulado "MODEL CHECKING FOR TCC CALCU-
LUS" realizado por JAIME EDUARDO ARIAS ALMEIDA, estudiante de Ingeniería de Sistemas
y Computación e Ingeniería Electrónica, se encuentra terminado y puede ser presentado para sus-
tentación.

Atentamente,

Dr. CARLOS OLARTE VEGA Dr. EUGENIO TAMURA MORIMITSU
Director del Proyecto Director del Proyecto

Santiago de Cali, Diciembre 10 de 2012

Doctor
MAURICIO JARAMILLO AYERBE
Decano Académico de la Facultad de Ingeniería
Pontificia Universidad Javeriana
Ciudad

Por medio de ésta, presento a usted el trabajo de grado titulado "MODEL CHECKING FOR TCC
CALCULUS" para optar el título de Ingeniero de Sistemas y Computación e Ingeniero Electrónico.

Espero que este trabajo reúna todos los requisitos académicos y cumpla el propósito para el cual
fue creado, y sirva de apoyo para futuros proyectos en la Universidad Javeriana relacionados con la
materia.

Atentamente,

JAIME EDUARDO ARIAS ALMEIDA

ARTICULO 23 de la Resolución No. 13 del 6 de Julio de 1946
del Reglamento de la Pontificia Universidad Javeriana.

“La Universidad no se hace responsable por los conceptos emitidos
por sus alumnos en sus trabajos de Tesis. Sólo velará porque no se

publique nada contrario al dogma y a la moral católica y porque las
Tesis no contengan ataques o polémicas puramente personales;

antes bien, se vea en ellas el anhelo de buscar la Verdad y la Justicia”

Resumen

La Programación Concurrente por Restricciones (ccp) es un formalismo para modelar sistemas con-
currentes en el cual agentes (procesos) interactúan con otros agregando (telling) y leyendo (asking)
información representada como restricciones en un medio compartido (store). La Programación
Concurrente Temporal por Restricciones (tcc), extiende el modelo ccp agregrándole constructores
temporales para modelar agentes temporales y sistemas reactivos.

La verificación formal cumple un papel muy importante en la detección de errores en sistemas
concurrentes, ya que permite determinar si el modelo de un sistema satisface o no una propiedad.
Model checking es una técnica de verificación formal que, dado el modelo de un sistema y una
propiedad, comprueba sistemáticamente si el modelo satisface o no la fórmula.

Este proyecto de grado investiga la técnica de model checking como un método formal para la
verificación de programas tcc. La investigación se lleva a cabo mediante la definición de un algoritmo
de model checking para el cálculo tcc. Para lograr esto, nosotros extendemos el algoritmo clásico
de model checking para LTL.

Primero definimos una estructura llamada tcc Structure la cual permite modelar el compor-
tamiento de un sistema tcc, además describimos una lógica que permite razonar sobre programas
tcc. Luego se presenta el grafo de model checking y las propiedades que debe cumplir para deter-
minar que el modelo satisface la propiedad. Al final, se presenta un prototipo que implementa el
algoritmo propuesto.

Palabras Clave: Model checking, programación concurrente temporal por restricciones, verifi-
cación formal automática.

Abstract

Concurrent Constraint Programming (ccp) is a formalism for concurrency in which agents (pro-
cesses) interact with one another by adding (telling) and reading (asking) information represented
as constraints in a shared medium (store). Temporal Concurrent Constraint Programming (tcc)
extends ccp by adding temporal constructs for modeling timed and reactive systems.

Formal verification plays an important role in detecting errors in concurrent systems since it
allows to check whether or not a system satisfies a given property. Model checking is a formal
verification technique that, given a finite-state model of a system and a property, it systematically
checks whether the property is satisfied by the model.

This project degree studies model checking as a formal method for the verification of tcc pro-
grams. The study is conducted by defining a model checking algorithm for tcc. To accomplish this,
we extend the classical algorithm of model checking for LTL.

We define a structure called tcc Structure which allows to model the behavior of a tcc system,
and we then describe a specific logic which allows to reason about tcc programs. We also introduce
the model checking graph and the properties that it must meet to determine that the model satisfies
the property. Finally, we present a prototype which implements the proposed algorithm.

Keywords: Automatic formal verification, model checking, temporal concurrent constraint pro-
gramming.

Acknowledgments

First of all, I want to express my gratitude for my supervisor Carlos Olarte. He has always guided
me in the right direction and provided a warm environment to grow as a researcher and as person.
Having met Carlos was, to say the least, a very important event in my life. His dedication and
enthusiasm for Computer Sciences have inspired me to pursue a research career. I am very fortunate
to have worked with him.

I am most grateful to Camilo Rueda for giving the opportunity to belong to the AVISPA group,
and fund my research. Also, I want to express my deepest admiration for his outstanding work.

I want also to express my gratitude to the members of the AVISPA group for their important
remarks to the work.

I also want to show my affection for my friends Laura Pérez, Andrés Oviedo, Sandra Forero,
Jairo Alegría, Daniel Almeida, Anthony Illera, and Leidy Siachoque.

Special thanks to my colleagues at Research Laboratory of the Department of Electronics and
Computer Science, Jairo Velasco, Andrés Barco, Jheyson Vargas, Claudia Oviedo, Mauricio Toro,
Alejandro Arbeláez, Mario Mora, and Natalia Villegas. Thanks to you I was never bored during
my stay in the laboratory.

I thank my friends in the #archlinux-co IRC channel who made my sleepless nights less painful.
They are Alejandro Rean, Matias Russitto, Mariano Street, Gustavo Gómez. Julián Camargo, Juan
Camilo Noreña, Johan Duarte, Andrés Quintero, and Diego Herrera.

And to everyone who directly or indirectly helped with the development of this work.
I dedicate this work to the two most important persons in my life: my mother María Almeida

and my brother Diego Arias. They always encouraged me and showed me their affection.

Jaime E. Arias Almeida,
December 14, 2012

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Document Structure . 3

2 Preliminaries 5
2.1 Process Calculi . 5
2.2 Concurrent Constraint Programming . 5

2.2.1 Reactive Systems and Timed CCP . 6
2.3 Transition Systems . 7

2.3.1 Kripke Structure . 8
2.4 Linear-Time Temporal Logic . 9

2.4.1 Syntax . 9
2.4.2 Semantics . 11

2.5 Model Checking . 11

3 The tcc Language 13
3.1 Constraint System . 13
3.2 Syntax . 14
3.3 Operational Semantics . 15
3.4 Program Example . 15
3.5 Summary . 16

4 A Model for tcc Programs 17
4.1 Program Labeling . 17
4.2 The tcc Structure . 18
4.3 Construction of the Model . 20
4.4 Simplification of the Model . 22
4.5 Construction Example . 24
4.6 Summary . 24

5 A Logic for the Specification of Properties 29
5.1 The ntcc Logic . 29

5.1.1 Temporal Logic Syntax . 29
5.1.2 Temporal Logic Semantics . 30
5.1.3 Specification Example . 31

5.2 Summary . 31

xviii Contents

6 The Model Checking Algorithm 33
6.1 The Closure of the Formula . 33

6.1.1 Closure Example . 34
6.2 The Model-Checking Graph . 34

6.2.1 Model Checking Graph Example . 35
6.3 The Searching Algorithm . 41

6.3.1 Searching Algorithm Example . 43
6.4 Model Checking Example . 44
6.5 Summary . 50

7 A Prototypical Tool 53
7.1 Inputs . 53

7.1.1 Property . 53
7.1.2 System Model . 54

7.2 Model Checking Function . 55
7.2.1 Closure . 56
7.2.2 Model Checking Nodes . 56
7.2.3 Model Checking Graph . 57
7.2.4 Self-Fulfilling Strongly Connected Components 57

7.3 Summary . 59

8 Concluding Remarks 61
8.1 Overview . 61
8.2 Future Work . 61

Bibliography 63

Chapter 1

Introduction

This degree project studies Model Checking as a formal method for the verification of Temporal
Concurrent Constraint (tcc) programs. In particular, we propose a structure for modeling the
behavior of a system, a temporal logic to reason about the system, and a model checking algorithm
to formally verify the system properties. The method proposed is based on the work developed by
Falaschi and Villanueva [FV06].

1.1 Motivation

Nowadays concurrent systems are pervasive in several domains and applications. For example, the
sciences (e.g. biological systems), the engineering (e.g. communication protocols), and the arts (e.g.
tools for computer music).

The previous examples illustrate the practical relevance and complexity of concurrent systems.
Therefore, it is crucial to develop computational models which allow to describe, analyze and reason
about the behavior of such complex systems. Process calculi are computational formalisms that are
commonly used for modeling and reasoning about concurrent systems. The main idea underlying
process calculi is the abstraction of systems in terms of basic units known as processes. The most
representatives are CCS [Mil89], the π calculus [Mil99, SW03] and CSP [Hoa85].

Concurrent Constraint Programming (ccp) [SRP91, Sar93] has emerged as a model for con-
currency that combines the traditional operational view of process calculi with a declarative one
based upon logic. A fundamental feature in ccp is the specification of concurrent systems in terms
of constraints. A constraint is a first order formula representing partial information about certain
variables (e.g. x+ y > 0). In this model, agents interact with each other by adding (or telling) and
asking information (constraints) in a shared medium (store).

Some concurrent systems react continuously with their environment (e.g. biological systems).
These systems are known as reactive systems [BG92]. Saraswat, Jagadeesan and Gupta developed
the Timed ccp [SJG94a, SJG94b] for modeling this type of systems. The fundamental move in
the tcc model is to extend the standard ccp with delay and time-out operators. Time in tcc is
conceptually divided into time intervals (or time units). In a particular time interval, a deterministic
ccp process receives a stimulus (i.e. a constraint) from the environment, it executes with this
stimulus as the initial store, and when it reaches its resting point, it responds to the environment
with the final store. Also, the resting point determines a residual process, which is then executed
in the next time interval.

Formal verification plays an important role in detecting errors in concurrent systems since it
allows to check whether or not a system satisfies a specific property. Nowadays the early detection

2 Chapter 1. Introduction

of errors is essential because the presence of a fault in systems could be catastrophic: take for
instance air traffic control systems, medical instruments, aircrafts among others. Clarke, Grumberg
and Peled [CGP99] show some significant examples how formal verification techniques help to find
errors in modeled systems.

There are two important formal verification techniques: theorem proving and model checking.
Theorem proving was the first technique for formal verification. The idea was introduced by Floyd
and Hoare in [Flo67, Hoa69]. This is a deductive method which is performed essentially manually,
thus it can be very difficult, inefficient and error prone. The success of the verification process
depends on the capability of the user. Therefore, this technique must be used by people expert in
mathematics and logic. On the other hand, this method is very reliable because it uses mathematics
and logic theory, and it can verify large systems since it is not limited by the size of the state space.

The second formal verification technique is model checking. This technique was first introduced
by Clarke and Emerson [CE82] and Quielle and Sifakis [QS82]. This method checks in a fully
automatic way that the execution sequences of the system (i.e. an exhaustive analysis of the state-
space) are a model of the formula representing the property. The main problem of this technique
is that the state-space of a concurrent system can be huge, then the number of states needed to
model the system accurately may exceed the amount of available computer memory (state explosion
problem).

Currently, the AVISPA1 research group has developed several applications in emergent areas
such as security, biology and multimedia interaction using the tcc model. However, the verification
of these models is performed using inductive techniques since the model does not provide automatic
formal verification tools. Therefore, the verification is difficult, error prone and performed only by
experts in the field.

This degree project then strives for developing a model checking algorithm for Temporal Con-
current Constraint Programming (tcc) calculus. Doing that, we provide the tcc model with an
automatic formal verification tool which allows to verify systems easily and faster. Moreover, we
contribute to the points made by Hubert Garavel [Gar08]:

The times have gone, where formal methods were primarily a pen-and-pencil activity
for mathematicians. Today, only languages properly equipped with software tools will
have a chance to be adopted by industry. It is therefore essential for the next generation
of languages based on process calculi to be supported by compilers, simulators, verifica-
tion tools, etc. This also applies to new models for concurrency, such as mobile calculi
and bigraphs. The research agenda for theoretical concurrency should therefore address
the design of efficient algorithms for translating and verifying formal specifications of
concurrent systems.

Our approach is based on the work by Falaschi and Villanueva [FV06]. Then, we divide the
model checking algorithm into three main phases: modeling, specification and verification.

Firstly, we start by defining a structure that models the behavior of a system. Moreover, we
present an algorithm for building the structure from a tcc specification. This algorithm does not

1http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:avispa:avispa

http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:avispa:avispa

1.2. Contributions 3

include the local agent. Although our approach is based on the work done in [FV06], the structure
defined here is quite different from the structure presented in [FV06]. Finally, we introduce a method
to reduce the number of states of a model in order to mitigate the state explosion problem.

Secondly, we present a temporal logic for reasoning about tcc programs. This logic is based on
sequences of constraints instead of classical states. Thus, we can check properties directly over the
model of the system.

Thirdly, we define an algorithm that determines if the system satisfies the property. This
algorithm receives as input the model of the system and the formula to be verified.

Finally, we describe a prototype at that implements our model checking algorithm.
This work is part of the REACT PLUS2 project of the AVISPA research group. REACT

PLUS addresses the development and application of formal methods in real-life systems. It takes
the challenging task of developing the underlying theory and machine-assisted tools for verifying
concurrent systems

1.2 Contributions

The main contributions associated with this work are presented below:

1. We define a structure called tcc Structure which allows to model the behavior of a tcc
program. Moreover, we specify an algorithm to construct the model from a tcc specification.

2. We introduce a method to reduce the size of a tcc Structure.

3. We specify a model checking algorithm to verify tcc programs.

4. We develop a prototype of the proposed model checking algorithm.

1.3 Document Structure

In what follows we describe the structure of this document. Each chapter concludes with a summary
of its content.

Chapter 2 [Background]. In this chapter we introduce the basic concepts and terminology
used in this document. We start by describing the Concurrent Constraint Programming model
and its temporal extension tcc. We then present the notions of transition systems and temporal
logic which are important for modeling systems and specify properties. Finally, we explain the
model checking technique.

Chapter 3 [tcc Language]. This chapter presents the formal syntax of tcc and its opera-
tional semantics. Furthermore, this chapter introduces the notion of constraint system which is
fundamental to ccp based calculi, and it shows a program modeled using this language.

2http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:avispa:react-plus

http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:avispa:react-plus

4 Chapter 1. Introduction

Chapter 4 [Model for tcc Programs]. In this chapter we define the structure which allows
us to model the behavior of tcc systems. Moreover, we describe how to construct the model
from the specification of the tcc system, and we present a procedure to reduce its size in order
to mitigate the state explosion problem.

Chapter 5 [Property Specification]. This chapter describes the temporal logic that we use
to reason about tcc systems and to express properties of them. This logic has the feature that
it is based on sequences of constraints instead of states.

Chapter 6 [Model Checking Algorithm]. In this chapter we present the algorithm which
allows us to determine if a formula is satisfied by the model. This algorithm is based on the
classical tableau algorithm for the LTL model checking problem. Thus, we define the structure
called model checking graph which is essential to the algorithm. At the end of the chapter, we
illustrate our algorithm by showing two examples.

Chapter 7 [Prototype]. This chapter introduces a prototype tool that implements the model
checking algorithm presented in Chapter 6, and it also describes the auxiliary functions employed.
Furthermore, this chapter defines a structure to represent a model of the system and a formula
since these are the inputs of the algorithm.

Chapter 8 [Concluding Remarks]. This chapter presents the main results derived from this
degree project and gives some directions for future work.

Chapter 2

Preliminaries

In this chapter we introduce the basic concepts and terminology used in this document. We briefly
describe the Concurrent Constraint Programming model and its temporal extension tcc, transition
systems, temporal logic and the model checking technique. We do not intent to give an in-depth
review of these concepts but rather to contextualize the development of the model checking algo-
rithm in this degree project. We encourage the reader to follow the references to have a complete
description of each topic addressed in this chapter.

2.1 Process Calculi

Process calculi [Bae05] are formal methods for reasoning about concurrent systems. The main
idea underlying process calculi is the abstraction of real systems in terms of basic units known as
processes. The calculi provide precise elements to describe systems as combination of processes, as
well as offer tools to study the behavior of systems over time, providing a high level description
of interactions, communication, and synchronization between a group of independent agents or
processes.

Process calculi in the literature mainly agree in their emphasis upon algebraic semantics. The
main representatives are CSS [Mil89], CSP [Hoa85] and the process algebra ACP [BK85, BW90].
The distinctions among them arise from issues such as the process constructions considered (i.e. the
language of processes), the methods used for giving meaning to process terms (i.e. the semantics),
and the methods to reason about process behavior (e.g. process equivalences or process logics).
Some other issues addressed in the theory of these calculi are their expressive power, and analysis
of their behavioral equivalences.

2.2 Concurrent Constraint Programming

Concurrent Constraint Programming (ccp) [SRP91, Sar93] is a simple but powerful formalism to
model concurrent systems. This model is based on the shared-variables communication model and
a few primitives taking root in logic. A fundamental feature in ccp model is the specification of
concurrent systems in terms of constraints. A constraint (e.g. x + y > 42) is a first-order formula
representing partial information about certain variables. The ccp model is parameterized in a
constraint system which provides a signature from which constraints can be built and an entailment
relation (|=) specifying interdependencies between constraints (e.g. x+ y > 42 |= x+ y > 0).

6 Chapter 2. Preliminaries

During computation, the current state of the system is specified by a set of constraints called
the store. Conceptually, the store in ccp is the medium through which agents interact with each
other. The ccp processes can update the state of the system by telling information to the store
(i.e. adding constraints). This is represented as the (logical) conjunction of the constraint being
added and the store representing the previous state. Furthermore, processes can synchronize by
asking information to the store (i.e. determining whether a given constraint can be inferred from
the store). Ask processes block until there is enough information in the store to entail (i.e. answer
positively) their query. A ccp computation terminates whenever it reaches a point called quiescent
point, in which no more new information can be added to the store. The final store, also called
quiescent store (i.e. the store at the quiescent point), is the output of the computation.

In the spirit of process calculi, the language of processes in the ccp model is given with a reduced
number of primitive operators or combinators. A typical ccp process language features the following
operators:

• A tell operator adding a constraint to the store.

• An ask operator querying if a constraint can be deduced from the store.

• Parallel Composition combining processes concurrently.

• A hiding operator (or locality) introducing local variables that delimit the interface through
which a process can interact with others.

• Recursion defining infinite behavior.

2.2.1 Reactive Systems and Timed CCP

Reactive systems [BG92] are those that react continuously with their environment (e.g. a controller
or a signal-processing system). These systems typically operate in a cyclic fashion; in each cycle
they receive an input (stimulus) from the environment, compute on this input, and then return the
corresponding output to the environment.

Languages such as Esterel [BG92], Lustre [HCRP91] and Signal [BG91] have been proposed in
the literature for programming reactive systems. Those languages are based on the hypothesis of
Perfect Synchrony : program combinators are determinate primitives that respond instantaneously
to input signals.

The timed ccp calculus (tcc) [SJG94a, SJG94b] is an extension of ccp aimed at programming
and modeling timed, reactive systems. In tcc the notion of time is conceptually divided into
time intervals (or time units). In each time interval, a deterministic ccp process gets as input
a constraint from the environment, it executes with this input as the initial store, and when it
reaches its quiescent point, it outputs the resulting store to the environment. The quiescent point
determines a residual process which is then executed in the next time unit. The resulting store is
not automatically transferred to the next time unit.

In particular, the tcc model extends the standard ccp with delay and time-out operations. The
delay operation forces the execution of a process to be postponed to the next time interval. The

2.3. Transition Systems 7

time-out operation waits during the current time interval for a given piece of information to be
present and if it is not, triggers a process in the next time interval.

We postpone the presentation of the syntax and the operational semantics of tcc to Chapter 3.

2.3 Transition Systems

Transitions systems [BK08] are often used to reason about the behavior of a system. They are ba-
sically directed graphs where nodes represent the set of possible states (the state space), and edges
model how the system can evolve from one state into the other (the transition relation between
states). A state describe some information about a system at a certain moment of its behavior.
Action names represent communication mechanisms between processes, and atomic propositions
intuitively express simple known facts about the states of the system and formalize temporal char-
acteristics. In the following, we assume that time is discrete; in other words, a behavior will consist
of an enumerable number of states.

Definition 2.1 (Transition System). A transition system TS is a tuple (S,Act,→, I, AP,L) where

• S is a set of states,

• Act is a set of actions,

• →⊆ S ×Act× S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labeling function.

The transition relation→ denotes possible state changes; if (s, a, s′) ∈→ we say that the system
can move from state s to s′ performing action a. As a more compact notation, we usually write
s

a−−→ s′.
The labeling function L relates a set of atomic propositions to any state s. L(s) intuitively

stands for exactly those atomic propositions a ∈ AP which are satisfied by state s.
Next we present the definition of some notions that are important in transition systems.

Definition 2.2 (Direct Predecessors and Successors). Let TS = (S,Act,→, I, AP,L) be a transition
system. For s ∈ S and α ∈ Act, the set of direct α-successors of s is defined as:

Post(s, α) =
{
s′ ∈ S | s→ s′

}
, Post(s) =

⋃
α∈Act

Post(s, α)

The set of α-predecessors of s is defined by:

Pre(s, α) =
{
s′ ∈ S | s′ → s

}
, P re(s) =

⋃
α∈Act

Pre(s, α)

8 Chapter 2. Preliminaries

Definition 2.3 (Terminal State). State s in transition system TS is called terminal if and only if
Post(s) = ∅.

Intuitively, terminal states of a transition system TS are states without any outgoing transitions.
Once the system reaches a terminal state, the complete system comes to a halt.

Definition 2.4 (Execution Fragment). Let TS = (S,Act,→, I, AP,L) be a transition system. A
finite execution fragment % of TS is an alternating sequence of states and actions ending with a
state

% = s0α1s1α2 . . . αnsn such that si
αi+1−−−→ si+1 for all 0 ≤ i < n,

where n ≥ 0. We refer to n as the length of the execution fragment %. An infinite execution
fragment ρ of TS is an infinite, alternating sequences of states and actions:

ρ = s0α1s1α2 . . . such that si
αi+1−−−→ si+1 for all i ≥ 0

Definition 2.5 (Maximal and Initial Execution Fragment). A maximal execution fragment is either
a finite execution fragment that ends in a terminal state, or an infinite execution fragment. An
execution fragment is called initial if it starts in an initial state (i.e. if s0 ∈ I).

Definition 2.6 (Execution). An execution of transition system TS is an initial, maximal execution
fragment.

Definition 2.7 (Reachable States). Let TS = (S,Act,→, I, AP,L) be a transition system. A state
s ∈ S is called reachable in TS if there exists an initial, finite execution fragment

s0
α1−−→ s1

α2−−→ . . .
αn−−→ sn = s

Let us now introduce a well-known class of transition system relevant for the Chapter 4.

2.3.1 Kripke Structure

A Kripke Structure is used to capture the behavior of a system. This structure consists of a set
of states, a set of transitions between states and a function that labels each state with a set of
properties that are true in that state. Paths in a Kripke Structure model computations of the
system.

Formally, a Kripke Structure is defined as follows:

Definition 2.8 (Kripke Structure [CGP99]). Let AP be a set of atomic propositions. A Kripke
Structure M over AP is a 4-tuple M = (S, S0, R, L) where

1. S is a finite set of states.

2. S0 ⊆ S is the set of initial states.

3. R ⊆ S × S is a transition relation that must be total, that is, for every state s ∈ S there is a
state s′ ∈ S such that R(s, s′).

2.4. Linear-Time Temporal Logic 9

4. L : S → 2AP is a function that labels each state with the set of atomic propositions true in
that state.

A path in the structure M from a state s is an infinite sequence of states π = s0s1s2 . . . such
that s0 = s and R(si, si+1) holds for all i ≥ 0.

2.4 Linear-Time Temporal Logic

Temporal logic [HR00] is a formalism which provides a very intuitive and precise notation for
specifying and verifying properties of reactive systems. This logic extends propositional or predicate
logic by adding modalities that permit to represent the infinite behavior of a reactive system.
Temporal logics were introduced into computer science by Pnueli [Pnu77] and thereafter proven to
be a good basis for the specification as well as (automatic and machine-assisted) reasoning about
concurrent systems.

The underlying nature of time in temporal logic can be either linear or branching. In the linear
view, at each moment in time there is a single successor moment, whereas in the branching view it
has a branching, tree-like structure, where time may split into alternative courses.

In Chapter 5, we shall present a linear-temporal logic which is essential for our model checking
algorithm. For this reason, in this section we will focus our attention on Linear Temporal Logic
(LTL), a propositional temporal logic (i.e. extension of propositional logic by temporal modalities)
that is based on a linear-time perspective. In following, we recall the syntax and semantics of LTL.

2.4.1 Syntax

This subsection describes the syntactic rules according to which a formula of LTL can be constructed.
The basic elements of a LTL-formula are atomic propositions (state labels a ∈ AP), the Boolean
connectors like conjunction ∧, and negation ¬, and two basic temporal modalities ◦ (next) and U
(until). In the following, we present an intuitive explanation of the LTL operators.

The operator ◦ is an unary operator. It is used to specify properties not for the current state
but for the next state of a path. This is depicted in the Figure 2.1.

AA�

Figure 2.1: The ◦ (next time) operator

The operator ♦ is an unary operator. It is used to specify properties for some future state,
further down the execution path. The operator does not specify exactly which successor will have
that property. It only promises that eventually something will happen. This can be seen visually
in Figure 2.2.

The operator � is an unary operator. It is used to specify properties for the current state and
all its successors. Figure 2.3 shows this operator.

10 Chapter 2. Preliminaries

A.}A

Figure 2.2: The ♦ (sometimes in the future) operator

A A A A A.⇤A

Figure 2.3: The � (always in the future) operator

The operator U is a binary operator. For example the formula ϕU ψ states that ϕ will be true
until ψ. That is ψ will be true at some time in the future but until that time ϕ will be true.
Figure 2.4 shows this behavior visually.

A A A B.A U B

Figure 2.4: The U (until) operator

Next we define formally the syntax of LTL.

Definition 2.9 (Syntax of LTL [BK08]). LTL formulae over the AP of atomic proposition are
formed according to the following grammar:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ◦ ϕ | ϕ1 U ϕ2

where a ∈ AP

Using the Boolean connectives ∧ and ¬, the full power of propositional logic is obtained. Other
Boolean connectives such as disjunction ∨, implication →, and equivalence ↔ can be derived as
follows:

ϕ1 ∨ ϕ2
def
= ¬(¬ϕ1 ∧ ¬ϕ2)

ϕ1 → ϕ2
def
= ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2
def
= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

The until operator allows to derive the temporal modalities ♦ (“eventually”, sometime in the
future) and � (“always”, from now on forever) as follows:

♦ϕ def
= trueU ϕ �ϕ def

= ¬♦¬ϕ

2.5. Model Checking 11

2.4.2 Semantics

LTL formulas stand for properties of paths (or in fact their trace). This means that a path can
either fulfill an LTL-formula or not. The semantics of LTL formula ϕ is defined as a language
Words(ϕ) that contains all infinite words over the alphabet 2AP that satisfy ϕ.

Definition 2.10 (Semantics of LTL (Interpretation over Words) [BK08]). Let ϕ be an LTL formula
over AP . The LT property induced by ϕ is

Words(ϕ) =
{
σ ∈ (2AP)ω| σ |= ϕ

}
where the satisfaction relation |= ⊆ (2AP)ω× LTL is the smallest relation with the properties in
Figure 2.5.

Here, for σ = A0A1A2 · · · ∈ (2AP)ω, σ[j . . .] = AjAj+1Aj+2 . . . is the suffix of σ starting in the
j-th symbol of Aj .

σ � true

σ � a iff a ∈ A0 (i.e. A0 � a)

σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2

σ � ¬ϕ iff σ 2 ϕ
σ � ◦ϕ iff σ[1 . . .] = A1A2A3 · · · � ϕ
σ � ϕ1 U ϕ2 iff ∃j ≥ 0. σ[j . . .] � ϕ2 and σ[i . . .] � ϕ1, for all 0 ≤ i < j

σ � ♦ϕ iff ∃j ≥ 0. σ[j . . .] � ϕ
σ � �ϕ iff ∀j ≥ 0. σ[j . . .] � ϕ

Figure 2.5: LTL semantics for infinite words over 2AP

2.5 Model Checking

Model checking is an automated technique that, given a finite-state model of a system and a formal
property, systematically checks whether this property holds for (a given state in) that model [BK08].
It was first introduced in [CE82] and [QS82]. In essence, this technique consists in an exhaustive
analysis of the state-space of the system to determine if some specification is true or false.

The main drawback of the model checking technique is that the state space of a system can be
huge and it is difficult (or impossible) to build its model (the state space explosion problem). On
the other hand, this technique has two major advantages: it is fully-automatic and its application
requires no user supervision or expertise in mathematical disciplines (as opposed to completely
deductive techniques) and when a state violates the property, the model checker provides a coun-
terexample that indicates how the model could reach the undesired state.

In following we describe the different phases of model checking [BK08]. The required input to
model checking are a model of the system under consideration and a formal specification of the
property to be verified.

12 Chapter 2. Preliminaries

1. Modeling phase.

• Model the system under consideration using the model description language that can be
handled by the model checker. Models of systems describe the behavior of systems in a
formal way. They are mostly expressed using state transition graphs.

2. Specification phase.

• Describe the property to be checked using a property specification language. For this
purpose temporal logic is used.

3. Running phase.

• Run the model checker to check the validity of the property in all states of the system
model.

4. Analysis phase.

• There are three possible outcomes: the specified property is either valid in the given
model or not, or the model turns out to be too large to fit within the physical limits of
the computer memory.

In Figure 2.6, we present the phases of the model checking technique in a schematic view. We
shall addresses the above mentioned phases in Chapter 4, 5 and 6, respectively of this document.

Requirements System

Formalizing Modeling

Property
Specification System Model

Model Checking

Satisfied Violated +
Counterexample

Figure 2.6: Schematic view of the model-checking approach [BK08]

Chapter 3

The tcc Language

Concurrent Constraint Programming (ccp) [SRP91, Sar93] is a powerful paradigm for concurrency.
The fundamental issue of the ccp model is the specification of concurrent systems in terms of
constraints. A constraint represents partial information about the variables of the system. A
temporal extension of ccp is the timed concurrent constraint programming (tcc) [SJG94a, SJG94b].
In particular, tcc extends the deterministic fragment of the ccp paradigm with agents that are able
to model temporal behavior and also notions such as timeout and preemption. These operations
are fundamental for programming reactive systems. In this chapter, we recall the syntax of the tcc
calculus as well as its operational semantics.

We shall begin by introducing the notion of a constraint system which is fundamental to ccp
based calculi. We then present the formal syntax of tcc and its operational semantics. We shall
describe the basic agents of tcc in an intuitive way. Finally, we shall specify a simple program using
tcc.

3.1 Constraint System

Concurrent Constraint Programming (ccp) based calculi are parametric in a constraint system
[Sar93] which specifies the basic constraints that agents can tell or ask during execution. In this
section we present the definition of constraint system.

A constraint represents a piece of partial information upon which processes may act. A con-
straint system then provides a signature from which constraints can be built. Furthermore, the
constraint system provides an entailment relation (|=) specifying interdependencies between con-
straints. Intuitively, c |= d means that the information d can be deduced from the information
represented by c (e.g. x > 60 |= x > 42). We next define the notion of constraint system based on
First-Order Logic as in [Smo94, NPV02].

Definition 3.1 (Constraint System). A constraint system is a pair (Σ,∆) where Σ is a signature
specifying constants, functions and predicate symbols, and ∆ is a consistent first-order theory over
Σ (i.e. a set of first-order sentences over Σ having at least one model).

Given a constraint system (Σ,∆), let L be the underlying first-order language with a countable
set of variables x, y, . . . , and logic symbols ¬,∧,∨,⇒, ∃, ∀, true and false which denote logical
negation, conjunction, disjunction, implication, existential and universal quantification, and the
always true and false predicates, respectively. Constraints, denoted by c, d, . . . , are first-order
formulas over L. We say that c entails d in ∆, written c |=∆ d iff the formula c ⇒ d is true in

14 Chapter 3. The tcc Language

all models of ∆. We write |= instead of |=∆ when ∆ is unimportant or can be inferred from the
context. We say that c is equivalent to d, written c ≡ d, iff c |=∆ d and d |=∆ c.

Henceforth we shall use the following notation.

Notation 3.1 (Constraints and Equivalence). Henceforth, C denotes the set of constraints modulo
≡ in the underlying constraint system. So, we write c = d iff c and d are in the same (≡) class.
Furthermore, whenever we write expressions such as c = (x = y) we mean that c is (equivalent to)
the constraint x = y.

3.2 Syntax

In the ccp model, the information in the store evolves monotonically (i.e. once a constraint is added
it cannot be removed). In tcc, time is conceptually divide into time intervals (or time units). In a
particular time interval, a ccp agent P gets an input c from the environment, it executes with this
input as the initial store, and when it reaches its resting point, it outputs the resulting store d to
the environment. The resting point determines a residual process Q which is then executed in the
next time unit. The resulting store d is not automatically transferred to the next time unit.

Following the notation in [SJG94a, SJG94b] the syntax of tcc is presented in Figure 3.1.

(Agents) A ::= c (Tell)
| now c then A (Timed Positive Ask)
| now c else A (Timed Negative Ask)
| next A (Unit Delay)
| abort (Abort)
| skip (Skip)
| A || A (Parallel Composition)
| ∃x(A) (Hiding)
| g (Procedure Call)

(Procedure Calls) g ::= p(t1, . . . , tn)

(Declarations) D ::= g :: A (Definition)
| D.D (Conjunction)

(Programs) P ::= D.A

Figure 3.1: Syntax of tcc

In the following description we present an intuitive definition of the tcc agents.

• CCP constructs: These agents do not cause extension over time.

Tell. This agent adds c to the store in the current time unit.
Skip. This agent does nothing thus representing inaction.

3.3. Operational Semantics 15

Timed positive ask. This agent checks if c can be deduced from the current store. If
so, it behaves as A. In other case, it remains blocked until the store contains at least as
much information as c.
Parallel composition. This agent denotes two processes running concurrently during
the current time unit.
Hiding. This agent behaves like A, except that all the information on the variables x
produced by A can only be seen by A and the information on the global variable x produced
by other processes cannot be seen by A.

• Timed Constructs: These constructs cause extension over time.

Timed negative ask. This agent executes A in the next time unit if and only if, on the
quiescence of the current time unit, c is not entailed by the store.
Unit delay. This agent executes A in the next time unit.
Abort. This agent terminates the execution of all processes in the next time unit.

Using the basic constructs presented in Figure 3.1 we can define other derived constructs. Such
constructs make easier to the user to use the language since makes more intuitive the specification
of programs. For example, the always A agent behaves like A at every time instant. This agent is
defined as follows [SJG94b]:

always A = A || next always A

3.3 Operational Semantics

The operational semantics of tcc considers transitions over configurations. A configuration is de-
fined as a multiset ? of agents. The store in a configuration ? is represented by σ(?) and it denotes
the sub-multiset of tokens in ?. Moreover, the semantics is given in terms of the binary transition re-
lations→ and . The relation→ represents transitions within a time instant (internal transition),
and the relation represents a transition from one time instant to the next (temporal transition).

To ensure that computation in each time-step is lexically bounded (i.e. bounded by the size of
the program) the recursion variable occurs within the scope of an else or a next.

The operational semantics given in [SJG94a, SJG94b] is presented in Figure 3.2.

3.4 Program Example

In this section we model a system that controls the behavior of an electronic door. The door opens
every time there is a person in front of it, otherwise it keeps closed. We assume that the door opens
when it receives the signal x=2, and closes when it receives the signal x=1. Moreover, we assume
that the system has a sensor which sends the signal in=true when there is a person in front of the
door. In Figure 3.3, we show a simple tcc specification of the above system.

16 Chapter 3. The tcc Language

Axioms for →. The binary relation → on configurations is the least
relation satisfying the rules :

(?, skip) → ?
(?, abort) → abort
(?, A || B) → (?, A, B)
(?, ∃x(A)) → (?, A[y/x]) (y not free in ?)

(?, p(t1, . . . , tn)) → (?, A[x1 7→ t1, . . . , xn 7→ tn])

σ(?) ` c
(?, now c then A)→ (?, A)

σ(?) ` c
(?, now c else B)→ ?

Axioms for . The binary relation is the least relation satisfying
the single rule :

∆, {now ci else Ai | i < n}9
∆, {now ci else Ai | i < n}, {next Bj | j < m} {Ai | i< n}, {Bj | j < m}

Figure 3.2: Operational semantics for tcc language

p()::
now (in=true) then next(tell(x=2)) ||
now (in=true) else tell(x=1) || next(p())

Figure 3.3: Example of a tcc program

3.5 Summary

In this chapter we described the syntax and operational semantics of tcc. We introduced the notion
of constraint system to which tcc calculus is parametric. We also showed with an example how to
specify a system using the tcc agents.

The tcc calculus [SJG94a, SJG94b] is an extension of the ccp model [SRP91, Sar93] which
extends the deterministic fragment of the ccp paradigm with agents that are able to model temporal
behavior and also notions such as timeout and preemption.

Chapter 4

A Model for tcc Programs

In the previous chapter we presented the syntax and the operational semantics of tcc and we showed
an example of how to specify a system with this formalism. The first phase of the model checking
technique is to construct a model that faithfully represents the behavior of the specified system.

In this chapter, we show our approach to construct the model of the system from a tcc specifica-
tion. That is to say, we take a program written in tcc, and we construct the model in a systematic
way. This approach is based on the ideas developed by Falaschi and Villanueva [FV06] to model tccp
programs. Nevertheless, the structure defined here is quite different from the structure presented
in [FV06].

We shall start by defining a labeling process in order to identify in which point of the execution of
the program we are, and also to determine if an agent can be executed or not during the computation.
We then define a structure called tcc Structure which allows us to model the behavior of a system
specified in tcc. Furthermore, we describe how to construct the tcc Structure from a labeled
specification and we show as example the model of the tcc program presented in the previous
chapter. Finally, we show how to reduce the number of states generated in the construction of the
system model.

4.1 Program Labeling

The labeling process consists in assigning a different label to each occurrence of an agent in the
program. The authors in [FV06] adapted the idea introduced by Manna and Pnueli in [MP95] to
their framework. Labels fulfill the role of providing an unique identification for agents in order to
know in which point of the execution of the program we are during the construction of the model.
The presence or absence of a label determines if the associated agent can be executed or not during
the computation.

In the following definition we specify how to transform a tcc specification to its labeled version.

Definition 4.1. Let P be a tcc specification, the labeled version Pl of P is defined as follows. The
subindex k ∈ N corresponds to the number of labels introduced up to a given point. When the
labeling process starts, k = 0 and each time that we introduce a new label, k is incremented by one.

• If P = tell c then Pl = {ltellk} tell c.
• If P = now c then A then Pl = {lnowpk} now c then Al.
• If P = now c else A then Pl = {lnownk} now c else Al.

18 Chapter 4. A Model for tcc Programs

• If P = next A then Pl = {lnextk} next Al.
• If P = skip then Pl = {lskipk} skip.
• If P = A || B then Pl = {l||k} (Al || Bl).
• If P = p(t1, . . . , tn) then Pl = {lpk} p(t1, . . . , tn).

The labeling of a declaration D of the form p(x) : − A is defined as {lpk} p(x) : − Al, called Dl.
Finally, the labeled version of a program of the form D.A is Dl.Al.

Fundamentally, the labeling process consists in exploring the tcc specification, and each time
that we find an agent we introduce a new label. In Figure 4.1, we show the labeled version of the
tcc program in Figure 3.3. Note that the structure of the program has not changed, only labels
have been added to each occurrence of an agent.

{lp0}p()::
{l||1}({lnowp2}now (in=true) then {lnext3}next({ltell4}tell(x=2)) ||

{l||5}({lnown6}now (in=true) else {ltell7}tell(x=1) ||
{lnext8}next({lp9}p())))

Figure 4.1: Example of a labeled tcc program

4.2 The tcc Structure

In this section we define a structure called tcc Structure that allows to model the behavior of a
system specified in tcc. This structure is a variant of a Kripke Structure (see Definition 2.8).
Intuitively, a Kripke Structure is a finite graph structure which could have many initial nodes and
each node is always related to another one (or to itself). Additionally, each state has associated a
set of atomic propositions which are true in such state.

The main difference between the above mentioned structures lies in the definition of state; the
Kripke Structure adopts the classical notion of state whereas in the tcc Structure, a state consists
of a conjunction of constraints and intuitively it can be seen as a set of classical states (i.e. a set of
assignments).

Before formally defining the tcc Structure, we require the definition of some concepts. First,
we need to define what is the set of propositions AP of atomic propositions.

Definition 4.2. The set AP of atomic propositions is defined as the set of elements in the constraint
system C.

In the rest of the document, we abuse of notation by using the term constraint as an equivalent
concept to atomic proposition. Next we present the definition of state in the tcc Structure.

Definition 4.3 (tcc State). Let AP be the atomic propositions in the tcc syntax and L be the
set of all labels generated during the labeling process described above. We define the set of states
as S ⊆ 2AP × 2L.

4.2. The tcc Structure 19

Now we define the notion of equivalent states. For this, we need the classical notion of renaming
of variables. Let y1, . . . , yn be n distinct variables, the substitution {x1/y1, . . . xn/yn} is a renaming
whenever the sets y1, . . . , yn and x1, . . . , xn are disjoint.

Definition 4.4 (Equivalent States). Given two tcc states s and s′, we say that two states are
equivalent if

1. the set of labels of s and s′ coincide, and

2. there exists a renaming γ of variables of the constraints in s which makes them syntactically
identical to the set of constraints of s′.

Finally, we define the tcc Structure. We consider internal and temporal labels to identify the
agents that can be executed on the same or the next time unit, respectively.

Definition 4.5 (tcc Structure). Let AP be a set of atomic propositions, we define a tcc Structure
M over AP as a seven tuple M = (S, S0, T,R,C, L, LT) where

1. S is a finite set of states.

2. S0 ⊆ S is the set of initial states.

3. T = {i, t} is the set of possible type of transitions. i denotes an internal transition while t
denotes a temporal transition.

4. R ⊆ S × S × T is a transition relation.

5. C : S → 2AP is the function that returns the set of atomic propositions in a given state.

6. L : S → 2L is the function that returns the set of internal labels in a given state.

7. LT : S → 2L is the function that returns the set of temporal labels in a given state.

We assume that an internal transition in the graph represents a computation within the same
time unit in the system, and a temporal transition represents an increment of one time unit. In
Figure 4.2, we show the graphical representation of the transitions in our framework.

Intuitively, C labels a state with the set of constraints true in such state. In other words, this
function represents the information that we know in a specific instant (current store). L labels a
state with the set of labels associated to agents that must be executed within the same time instant
(internal labels). LT labels a state with the set of labels associated to agents that must be executed
in the following time instant (temporal labels). For better readability we graphically represent a tcc
state with three spaces: current store, internal labels and temporal labels (see Figure 4.2).

Notice that the differences w.r.t a Kripke Structure (see Definition 2.8) are the definition of
state (see Definition 4.3) and the three labeling functions C, L and LT which replace the labeling
function L of the Kripke Structure.

When two states s and s′ are related by R(s, s′, T), it means that is possible to reach the state
s′ from state s by executing the agents associated to the labels in L(s) (T = i, internal transition)
or LT (s) (T = t, temporal transition) with the store C(s) deriving as a result (by applying the
renaming γ) the store C(s′) and the point of execution L(s′) and LT (s′).

20 Chapter 4. A Model for tcc Programs

current store

internal labels temporal labels

internal transition

temporal transition

Figure 4.2: Representation of a tcc state

4.3 Construction of the Model

In this section we explain in an intuitive way how to construct a tcc Structure from a tcc speci-
fication. A specification is composed by a set of declarations. Then, for each different declaration
we construct a tcc Structure that is labeled with a unique name and it is used when a procedure
call refers to the body of such declaration. Essentially, transitions are described according to the
operational rules of each tcc process.

Each state is composed of labels associated with agents that can be executed in a step of the
construction process. Each label can be active or disabled. A label is active when the conditions
to execute the agent associated are satisfied, and disabled when the agent associated cannot be
executed in that moment because the store does not entail the necessary conditions. The labels
associated with temporal agents (i.e. next, now c else A , etc.) cannot be executed before all
the labels associated with normal agents (i.e. agents that do not cause extension over time) are
executed. This is because only after that we can be sure that no more information can be produced
in the present time instant.

Our procedure consists in locating an active label and perform the actions associated with such
agent. The process is performed while there are active labels. When we reach a state where there
are no active labels (quiescent point) we have to pass to the next time unit, and then we continue
with the procedure. We represent this passage in our graph as follows:

1. Introduce a new node s′ related with s by a temporal transition. The state s is a state where
there is no active labels.

2. We introduce the temporal labels of s in the labels of s′.

4.3. Construction of the Model 21

3. The store and the temporal labels of s′ are empty.

As mentioned above, each time an agent is analyzed some actions are executed. In the following
description we show the actions performed by each agent in order to construct the graph structure.
The created nodes in the following steps are connected by an internal transition with the predecessor
node. We use the notation ∼ c to denote that the current store does not entail the constraint c.

Tell S ≡ {ltellk} tell c. The new information c is added to the store in the current time. We
translate this behavior to our graph structure as follows:

1. Add a new node s′ related with the node s from which the agent is execute.
2. The store of s′ is defined as the store of s plus the constraint c (i.e. C(s′) = C(s) ∧ c).
3. The internal labels of s′ are obtained from those of s by removing {ltellk} (i.e. L(s′) =

L(s)\{ltellk}).
4. The temporal labels of s′ are the same as s (i.e. LT (s′) = LT (s)).

Parallel S ≡ {l||k} (Al || Bl). The agents A and B are executed in parallel. We translate this
behavior to our graph structure as follows:

1. Introduce a new node s′ related with the node s from which the agent is execute.
2. The internal labels of s′ are obtained from those of s by adding Al and Bl, and removing
{l||k}. Notice that this corresponds to a concurrent semantics rather than an interleaving
interpretation of the parallel operator.

3. The store and the temporal labels of s′ are the same as s.

Timed Positive Ask S ≡ {lnowpk} now c then Al. If the current store entails c then the agent
A is executed or does nothing otherwise. Next we describe how to translate this agent to our
graph.

1. Add two new nodes s′1, s′2 related with the node s from which the agent is execute. This
branch corresponds to the two possible behaviors.

2. The store of s′1 is defined as the union of the store of s and the constraint c.
3. The store of s′2 is defined as the store of s plus the absence of the constraint c (i.e. C(s′2) =

C(s) ∧ ∼ c).
4. The internal labels of s′1 are obtained from those of s by adding Al and removing {lnowpk}.
5. The internal labels of s′2 are the same as s.
6. The temporal labels of s′1 and s′2 are the same as s.

Skip S ≡ {lskipk} skip. This agent does nothing at every time instant. We translate this agent
to our graph as follows:

1. Construct a new node s′ related with the node s from which the agent is executed.
2. The internal labels of s′ are obtained from those of s by removing {lskipk}.

22 Chapter 4. A Model for tcc Programs

3. The store and the temporal labels of s′ are the same as s.

Procedure Call S ≡ {lpk} p(t1, . . . , tn). This operator refers to another procedure which have
different labels and variables. To translate this agent to our graph we create a new node and
the label associated to the first agent of p is added to the internal labels of the node.

Timed Negative Ask S ≡ {lnownk} now c else Al. If on the quiescent point the store does
not entail c then the agent A is executed in the next time instant, or does nothing otherwise.
We translate this behavior to our graph as follows:

1. Introduce two new nodes s′1, s′2 related with the node s from which the agent is execute.
This branch corresponds to the two possible behaviors of the agent.

2. The store of s′1 is defined as the union of the store of s and the constraint c.
3. The store of s′2 is defined as the store of s plus the absence of the constraint c.
4. The internal labels of s′1 and s′2 are the same as s by removing {lnownk}.
5. The temporal labels of s′1 are the same as s.
6. The temporal labels of s′2 are obtained from those of s by adding Al.

Unit Delay S ≡ {lnextk} next Al. The agent A is executed in the next time instant. We
translate this agent to our graph as follows:

1. Construct a new node s′ related with the node s from which the agent is execute.
2. The internal labels of s′ are the same as s but removing {lnextk}.
3. The temporal labels of s′ are obtained from those of s by adding Al.
4. The store of s′ is the same as s.

When we generate a new node we must check if there are two equivalent states (see Definition
4.4). If we find a node s2 equivalent to the new node created s1, then we must relate the predecessor
of s1 with the node s2, and delete the node s1. Moreover, the construction following this branch
will terminate. The previous step allows to avoid generating unnecessary states.

4.4 Simplification of the Model

This section is devoted to describing the simplification process of the tcc Structure. Our approach
to construct the model generates a large number of states due to the operational semantics of tcc.
Therefore, a reduction of states is necessary to decrease the state explosion problem of the model
checking technique.

In Chapter 3, we presented the operational semantics of tcc. This semantics is defined in terms of
internal and temporal transitions. The internal transitions describe evolutions within a time unit,
and thus they are regarded as being unobservable. On the other hand, the temporal transitions
describe evolutions across the times units, and thus they are regarded as being observable [NV03].
A temporal transition is obtained by performing a sequence of internal transitions until no further

4.4. Simplification of the Model 23

internal evolution is possible. In this point (quiescent point) no more information can be added to
the store. This store is defined as the output of the computation. Therefore, we are interested only
in maintaining the nodes where there is no active labels, and also the temporal transitions.

Hence, we simplify the tcc Structure compacting nodes which contain active labels. This nodes
generate internal transitions, thus the final structure will have only temporal transitions. We must
ensure that the new tcc Structure models the same behavior as the original. Taking the previous
observations into account, we describe the procedure to simplify the structure as follows:

1. If we find a sequence of internal transitions without branching, then we collapse all nodes and
we keep the last node in the sequence (see Figure 4.3(a)).

2. If we find a node s1 related with a node s2 which has a branching, then we divide the node
s2 into two identical nodes. Each node follows only one branch of s2, and s1 is related with
them (see Figure 4.3(b)).

3. We repeat these steps until no more simplifications can be done.

1 54

1 2 3 4 5

Sequence of internal transitions

(a) Reduction of a sequence of internal transitions

2

1

3 4

2 2

1

3 4

(b) Reduction of a branching

Figure 4.3: Reduction rules

24 Chapter 4. A Model for tcc Programs

A more compelling application of our procedure of simplification is given in the next section
where we show a complete example of the construction of a model.

4.5 Construction Example

In this section we shall illustrate the construction process of the tcc Structure and the simplification
process. In Figure 4.4, we present the tcc Structure of the tcc program in Figure 3.3. For the sake
of readability, we do not show the extension of the branch from the node 23.

Notice that the nodes 14 and 7 are equivalents, thus we delete node 14 and relate node 13 to node
7 through a temporal transition. We perform the same process with the nodes 18 and 22. To reduce
the size of the graph, we execute all labels associated with the unit delay agent simultaneously (e.g.
node 5). Moreover, the store in some nodes can satisfy the guard of the time negative ask agent,
thus we construct only the corresponding branch and discard the other (e.g. node 4).

In Figure 4.5, we show the tcc Structure with the loops generated by the equivalent nodes.
We use the simplification procedure described in the previous section in order to reduce the large
number of nodes. First, we eliminate all the sequences of internal transitions (i.e. 1-3, 4-6, 7-10,
11-13, 15-17, 19-21, 22-25, 26-28 and 30-32). Figure 4.5 shows the graph after the first reduction.
Then, we simplify the branches of the graph as shown in Figure 4.6. Finally, we delete the remaining
sequences of internal transitions (i.e. 3-6, 10-13, 10-17, 3-21, 25-28, 25-32). Figure 4.7 shows the
resulting graph after the simplification process. Notice the significant reduction in the number of
states. Furthermore, we can observe that this graph maintains the behavior of the original graph
and it contains only temporal transitions.

4.6 Summary

In this chapter we defined a structure which allows to model the behavior of a system specified in
tcc. Furthermore, we defined in an intuitive way how to construct the model of the system from
a tcc specification. Since a labeled version of the program is necessary for the construction of the
model, we defined a labeling process.

We illustrate our approach by modeling a tcc specification, and showed that we can construct a
finite graph from a reactive system that runs forever. This is possible thanks to the loops generated
by some equivalent states. Moreover, we simplify the graph eliminating all the internal transitions in
order to reduce the number of states to decrease the state explosion problem. Further simplifications
can be done. For instance, if a given state has an active label associated with timed positive ask or
timed negative ask agents, and the store only allows the agent to follow a branch. These reductions
will be essential to our model checking algorithm defined in Chapter 6.

4.6. Summary 25

nowp2,
||5

nowp2,
nown6,
next8

next3,
nown6,
next8

in=true ~(in=true)

next3,
next8

in=true

~(in=true)

tell7,
p9

tell4,
p9

in=true

2

tell4,
p9

tell7,
p9

7

X=2

p9

X=1

p9

8

X=2

nowp2,
||5

X=2

nowp2,
nown6,
next8

next3,
nown6,
next8

X=2, in=true

nowp2,
nown6,
next8

X=2, ~(in=true)

next3,
next8

tell7,
p9

tell4,
p9

tell4,
p9

tell7,
p9

X=2, in=true

X=2, ~(in=true)X=2, in=true

3

4

5

6

9

nowp2,
next8

~(in=true)

tell7

19 nowp2,
nown6,
next8

20

21

22

23

10

11

12

13

14

nowp2,
next8

X=2, ~(in=true)

tell7

15

16

17

18

||1
1

p0

nowp2 nowp2

Figure 4.4: tcc Structure for the tcc program in Figure 3.3

26 Chapter 4. A Model for tcc Programs

nowp2,
nown6,
next8

~(in=true)

tell7,
p9

tell4,
p9

in=true

X=2

nowp2,
nown6,
next8

tell7,
p9

tell4,
p9

X=2, ~(in=true)X=2, in=true

3

6 21

10

13 17

p0

nowp2

nowp2

X=1

nowp2,
nown6,
next8

tell7,
p9

tell4,
p9

X=1, ~(in=true)X=1, in=true

25

28 32
nowp2

Figure 4.5: First reduction of the tcc Structure

4.6. Summary 27

~(in=true)

p0

3nowp2,
nown6,
next8

tell7,
p9

21

X=2

nowp2,
nown6,
next8

10

17

nowp2,
nown6,
next8

25
X=1

28

3nowp2,
nown6,
next8

X=2

nowp2,
nown6,
next8

10

in=true

6
tell4,
p9

X=2, in=true

tell4,
p9

13

nowp2,
nown6,
next8

25
X=1

X=2, ~(in=true)

tell7,
p9

X=1, in=true

tell4,
p9

X=1, ~(in=true)

tell7,
p9

32

nowp2

nowp2 nowp2

Figure 4.6: Second reduction of the tcc Structure

p0

~(in=true)

tell7,
p9

tell4,
p9

in=true

tell7,
p9

X=2, ~(in=true)X=2, in=true

tell4,
p9

tell7,
p9

X=1, ~(in=true)X=1, in=true

tell4,
p9

6 (s1)

13 (s2)

17 (s3)

21 (s4)

28 (s5)

32 (s6)
nowp2

nowp2

nowp2

Figure 4.7: tcc Structure after the simplification process

Chapter 5

A Logic for the Specification of
Properties

In Chapter 3, we presented the tcc calculus. This formalism allows to specify complex reactive
systems. Then, in Chapter 4 we presented an algorithm to construct a model of the system from
the tcc specification. Now we need a temporal logic to reason about tcc systems and to express
temporal properties of them. In this chapter we shall address the second phase of the model checking
technique: to specify the property that we want to verify.

We shall start by defining the linear-time temporal logic that we shall use to express temporal
properties of tcc systems. This logic is based on sequences of constraints. Finally, we specify a
property of a tcc program using the temporal logic presented in this chapter.

5.1 The ntcc Logic

In this section we present the linear temporal logic which we use to specify properties of tcc
systems in our framework. We start by defining the syntax of the logic and then we give a semantic
interpretation of it.

In [Val05] Valencia presented a linear temporal logic (LTL) named CLTL. This logic expresses
properties over sequences of constraints, and it is employed to reason about ntcc processes. The
ntcc calculus is an extension of tcc which can represent timed concepts such as unit delays, un-
bounded finite delays, time-outs, pre-emption, synchrony and asynchrony [Val02]. We use this logic
to reason about programs specified in tcc since it is a subcalculus of ntcc.

Before defining formally the above logic, we require the following notation on sequences of
constraints.

Notation 5.1. Throughout this section Cω denotes the set of infinite (or ω) sequences of constraints
in the underlying set of constraints C. We use α, α′, . . . to range over Cω.

5.1.1 Temporal Logic Syntax

The syntax of CLTL is given by the following definition.

Definition 5.1 (CLTL Syntax). The formulae F,G, . . . ∈ F are built from constraints c ∈ C in the
underlying constraint system by

F,G, . . . := c | ˙true | ˙false | F ∧̇G | F ∨̇G | ¬̇F | ∃̇xF | ◦ F | �F | ♦F

30 Chapter 5. A Logic for the Specification of Properties

where c denotes a constraint representing a state formula c. The symbols ˙true, ˙false, ∧̇, ∨̇, ¬̇
and ∃̇ represent linear-temporal logic true, false, conjunction, disjunction, negation and existential
quantification. As clarified later, these symbols are not be confused with the symbols true, false,
∧, ∨, ¬ and ∃ in the underlying constraint system. The symbol ◦, � and ♦ denote the temporal
operators next, always and sometime. We use F ⇒̇G as an abbreviation of ¬̇F ∨̇G.

5.1.2 Temporal Logic Semantics

The standard interpretation structures of linear temporal logic are infinite sequences of states [MP92].
Nevertheless, in CLTL the states are replaced by constraints, and it considers as interpretations
the elements of Cω. Before defining the semantics of CLTL, let us introduce the notion of x-variant.
But first we need the following notation.

Notation 5.2. Given a sequence α = c1.c2 . . . , we use ∃xα to denote the sequence ∃xc1.∃xc2
We shall use α(i) to denote the i−th element of α.

Definition 5.2 (x-variant [MP92]). A constraint d is an x-variant of c iff ∃xc = ∃xd. Similarly α′

is an x-variant of α iff ∃xα = ∃xα′

Intuitively, d and α′ are x-variants of α and c, respectively, if they are the same except for the
information about x. For example, x = 1 ∧ y = 0 is an x-variant of x = 42 ∧ y = 0.

We can now define the semantics of CLTL.

Definition 5.3 (CLTL Semantics). We say that α ∈ Cω satisfies (or that it is a model of) F in
CLTL, written α �CLTL F , iff 〈α, 1〉 �CLTL F , where:

〈α, i〉 �CLTL ˙true

〈α, i〉 �CLTL ˙false

〈α, i〉 �CLTL c iff α(i) � c
〈α, i〉 �CLTL ¬̇F iff 〈α, i〉 2CLTL F

〈α, i〉 �CLTL F ∧̇G iff 〈α, i〉 �CLTL F and 〈α, i〉 �CLTL G

〈α, i〉 �CLTL F ∨̇G iff 〈α, i〉 �CLTL F or 〈α, i〉 �CLTL G

〈α, i〉 �CLTL ◦F iff 〈α, i+ 1〉 �CLTL F

〈α, i〉 �CLTL �F iff for all j ≥ i 〈α, j〉 �CLTL F

〈α, i〉 �CLTL ♦F iff there is a j ≥ i s.t. 〈α, j〉 �CLTL F

〈α, i〉 �CLTL ∃̇xF iff there is an x-variant α′ of α s.t. 〈α′, i〉 �CLTL F

Define JF K = {α |α �CLTL F}. We say that F is CLTL valid iff JF K = Cω, and that F is CLTL
satisfiable iff JF K 6= ∅.

Next we explain why the operators of the constraint system should not be confused with those
of the temporal logic (i.e. the dotted notation). A temporal formula F expresses properties over
sequences of constraints. As a state formula, c expresses a property which is satisfied only by those
e.α′ such that e � c holds. Therefore, the state formula false (and consequently � false) has at
least one sequence that satisfies it (e.g. falseω). On the contrary, the temporal formula ˙false has

5.2. Summary 31

no models whatsoever. Something similar happens with the disjunction and negation operators. In
contrast, the formula c ∧̇ d and the atomic proposition c ∧ d have the same models since e � (c ∧ d)

holds if and only if both e � c and e � d hold.

5.1.3 Specification Example

Now we shall illustrate how specify a property using the logic presented in this chapter. For this
purpose we shall use as reference the tcc program in Figure 3.3. Remember that such program
has a process which repeatedly checks if the information in=true is available. If the information
is available in the current time unit, then the process tell that x=2 in the next time unit or x=1
otherwise. Therefore, we could check if it true that when the information in=true is available,
then the information x=2 will be available in the next time unit. Formula 5.1 represents the above
property.

ϕ = �((in = true) ⇒̇ ◦ (x = 2)) (5.1)

5.2 Summary

In this chapter we presented a temporal logic which allows us to specify properties of tcc systems.
In particular, this logic is based on sequences of constraints, and it is used to reason about ntcc
processes which is an extension of tcc. Furthermore, we expressed a property of the program in
Figure 3.3 which we shall verify in Chapter 6.

Chapter 6

The Model Checking Algorithm

In Chapter 4 we defined a structure called tcc Structure which allows us to model the behavior of a
system specified in tcc. Furthermore, we defined a procedure to construct the model of the system
from a tcc specification. Then, in Chapter 5 we studied a linear-temporal logic which permits to
express temporal properties over constraints and to reason about tcc programs. In this chapter,
we shall address with the third and last phase of the model checking technique which consists in
defining an algorithm that checks if a given temporal formula is satisfied by the model.

We shall start by defining how to construct the closure of a formula. Our definition is based
on the ideas presented by Manna and Pnueli in [MP95]. This closure is reminiscent to the Fischer-
Ladner’s one [FL79]. We then define how to construct a graph structure called model checking
graph which allows to verify if the property is satisfied or not by the system. This graph is built
combining the nodes of a tcc Structure and the closure of a formula. Our algorithm is based on
the classical tableau algorithm for the LTL model checking problem [LP85]. Hence, if we intent to
prove that the model satisfies the formula φ, then we must construct the model checking graph with
the closure of the negated formula (i.e. ¬φ). Finally, we describe the properties that the model
checking graph must fulfill to decide if the model satisfies or not the property. Furthermore, we
present two examples to show the two possible results of the algorithm.

6.1 The Closure of the Formula

Firstly, given the formula φ we have to compute the closure CL(φ). The closure of a formula ϕ,
CL(ϕ), contains the sub-formulas whose truth values can influence the truth value of ϕ [CGP99,
MP95, FL79]. More precisely, it is the smallest set of formulas satisfying the following conditions:

1. ϕ ∈ CL(ϕ),

2. ¬̇ϕ1 ∈ CL(ϕ), iff ϕ1 ∈ CL(ϕ),

3. if ϕ1∧̇ϕ2 ∈ CL(ϕ), then ϕ1, ϕ2 ∈ CL(ϕ),

4. if ϕ1∨̇ϕ2 ∈ CL(ϕ), then ϕ1, ϕ2 ∈ CL(ϕ),

5. if ∃̇xϕ1 ∈ CL(ϕ), then ϕ1 ∈ CL(ϕ),

6. if ◦ϕ1 ∈ CL(ϕ), then ϕ1 ∈ CL(ϕ),

7. if ¬̇ ◦ ϕ1 ∈ CL(ϕ), then ◦¬̇ϕ1 ∈ CL(ϕ),

8. if �ϕ1 ∈ CL(ϕ), then ϕ1, ◦�ϕ1 ∈ CL(ϕ),

34 Chapter 6. The Model Checking Algorithm

9. if ♦ϕ1 ∈ CL(ϕ), then ϕ1, ◦♦ϕ1 ∈ CL(ϕ)

Note that in the case of ¬̇ ◦ ϕ1 it is necessary to introduce the formula ◦¬̇ϕ1 which cannot be
generated by the other rules. To keep the closure finite, we assume that ¬̇¬̇ϕ = ϕ.

6.1.1 Closure Example

We now give an example illustrating the closure of the resulting formula from the negation of
Formula 5.1. For convenience, we change the implication operator into a disjunction and we use the
duality of the box operator:

ϕ = �((in = true) ⇒̇ ◦ (x = 2))

= �(¬̇(in = true) ∨̇ ◦ (x = 2)) (6.1)

¬̇ϕ = ¬̇�(¬̇(in = true) ∨̇ ◦ (x = 2))

= ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)) (6.2)

Next we show the closure of Formula 6.2.

CL(¬ϕ) = {♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

◦ (x = 2), (x = 2), ¬̇(x = 2),

(in = true), ¬̇(in = true)

}

6.2 The Model-Checking Graph

In this section we define the structure called model checking graph which is essential to check if a
model satisfies a formula. This structure is a directed graph derived from a temporal formula and
the model of the system.

To determine that a formula φ is satisfied by a model, we must construct the graph for the
negation of the formula φ (i.e. ¬φ). If we prove that there is no computation of the system
which satisfies the negated formula, then we are proving that the formula is satisfied for all the
computations. This will be discussed in more detail in Section 6.3.

The following definition formalize the construction of the model checking graph.

6.2. The Model-Checking Graph 35

Definition 6.1 (Model-Checking Graph). Let ϕ be a formula, CL(ϕ) be the closure of ϕ as defined
in Section 6.1 and Z the tcc Structure constructed following the algorithm described in Section 4.3.
A node n of the model-checking graph is formed by a pair of the form (sn,Qn) where sn is a state
of Z and Qn is a subset of CL(ϕ) and the atomic propositions such that the following conditions
are satisfied:

1. for every atomic proposition p, p ∈ Qn iff p ∈ C(sn),

2. for every ∃̇xϕ1 ∈ CL(ϕ), ∃̇xϕ1 ∈ Qn iff ∃̇xϕ1 ∈ C(sn),

3. for every ϕ1 ∈ CL(ϕ), ϕ1 ∈ Qn iff ¬̇ϕ1 /∈ Qn,
4. for every ϕ1∧̇ϕ2 ∈ CL(ϕ), ϕ1∧̇ϕ2 ∈ Qn iff ϕ1 ∈ Qn and ϕ2 ∈ Qn,
5. for every ϕ1∨̇ϕ2 ∈ CL(ϕ), ϕ1∨̇ϕ2 ∈ Qn iff ϕ1 ∈ Qn or ϕ2 ∈ Qn,
6. for every ¬̇ ◦ ϕ1 ∈ CL(ϕ), ¬̇ ◦ ϕ1 ∈ Qn iff ◦ ¬̇ϕ1 ∈ Qn,
7. for every �ϕ1 ∈ CL(ϕ),�ϕ1 ∈ Qn iff ϕ1 ∈ Qn and ◦�ϕ1 ∈ Qn,
8. for every ♦ϕ1 ∈ CL(ϕ),♦ϕ1 ∈ Qn iff ϕ1 ∈ Qn or ◦ ♦ϕ1 ∈ Qn.

An edge in the graph is defined as follows: there will be an edge from one node n1 = (s1,Q1) to
another node n2 = (s2,Q2) iff there is an arc from the node s1 to the node s2 in Z and for every
formula ◦ϕ1 ∈ CL(ϕ), ◦ϕ1 ∈ Q1 iff ϕ1 ∈ Q2. This means that the next state s2 must satisfy φ if s1

satisfies ◦φ.

Intuitively, for each node of the model-checking graph, in Q we have the largest consistent set
of formulas that is also consistent with the store (function C) of the states of the tcc Structure.
Moreover, two nodes of the graph are related if the temporal formulas in their Q sets are consistent.

For each node si of the tcc Structure many nodes are generated in the graph with a different
consistent set of formulas derived from C(si) and the closure of the formula CL(φ). We exemplify
this in the following section.

6.2.1 Model Checking Graph Example

We next illustrate the construction of the model checking graph. In the following example, we
construct the graph which we shall use in the next section in order to determine if Formula 6.1 is
satisfied by the model in Figure 4.7. Recall that such graph was generated from the specification
in Figure 3.3.

Firstly, we take the tcc Structure shown in Figure 4.7 and the closure set of Formula 6.2 shown
in the example of the previous section. Remind that if we want to prove that the formula φ is
satisfied by the model, then we must generate the closure of the negated formula (i.e. ¬φ). After
that, using the Definition 6.1 we generate all the possible nodes from the nodes of the tcc Structure
and the formulas of the closure.

Next we show all the nodes generated.

36 Chapter 6. The Model Checking Algorithm

n1 = (s1, Q1) where

Q1 ={in = true, x = 2, ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n2 = (s1, Q2) where

Q2 ={in = true, x = 2, ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n3 = (s1, Q3) where

Q3 ={in = true, x = 2,

◦ ¬̇(x = 2), ¬̇ ◦ (x = 2),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n4 = (s1, Q4) where

Q4 ={in = true, x = 2,

◦ ¬̇(x = 2), ¬̇ ◦ (x = 2),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n5 = (s1, Q5) where

Q5 ={in = true, ¬̇(x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n6 = (s1, Q6) where

Q6 ={in = true, ¬̇(x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

6.2. The Model-Checking Graph 37

n7 = (s1, Q7) where

Q7 ={in = true, ¬̇(x = 2),

◦ ¬̇(x = 2), ¬̇ ◦ (x = 2),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n8 = (s1, Q8) where

Q8 ={in = true, ¬̇(x = 2),

◦ ¬̇(x = 2), ¬̇ ◦ (x = 2),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n9 = (s2, Q9) where

Q9 ={in = true, (x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n10 = (s2, Q10) where

Q10 ={in = true, (x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n11 = (s2, Q11) where

Q11 ={in = true, (x = 2),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n12 = (s2, Q12) where

Q12 ={in = true, (x = 2),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

38 Chapter 6. The Model Checking Algorithm

n13 = (s3, Q13) where

Q13 ={¬̇(in = true), (x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n14 = (s3, Q14) where

Q14 ={¬̇(in = true), (x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n15 = (s3, Q15) where

Q15 ={¬̇(in = true), (x = 2),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n16 = (s3, Q16) where

Q16 ={¬̇(in = true), (x = 2),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n17 = (s4, Q17) where

Q17 ={¬̇(in = true), (x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n18 = (s4, Q18) where

Q18 ={¬̇(in = true), (x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

6.2. The Model-Checking Graph 39

n19 = (s4, Q19) where

Q19 ={¬̇(in = true), (x = 2),

◦ ¬̇(x = 2), ¬̇ ◦ (x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n20 = (s4, Q20) where

Q20 ={¬̇(in = true), (x = 2),

◦ ¬̇(x = 2), ¬̇ ◦ (x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n21 = (s4, Q21) where

Q21 ={¬̇(in = true), ¬̇(x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n22 = (s4, Q22) where

Q22 ={¬̇(in = true), ¬̇(x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n23 = (s4, Q23) where

Q23 ={¬̇(in = true), ¬̇(x = 2),

◦ ¬̇(x = 2), ¬̇ ◦ (x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n24 = (s4, Q24) where

Q24 ={¬̇(in = true), ¬̇(x = 2),

◦ ¬̇(x = 2), ¬̇ ◦ (x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

40 Chapter 6. The Model Checking Algorithm

n25 = (s5, Q25) where

Q25 ={(in = true), (x = 1),

¬̇(x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n26 = (s5, Q26) where

Q26 ={(in = true), (x = 1),

¬̇(x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n27 = (s5, Q27) where

Q27 ={(in = true), (x = 1), ¬̇(x = 2),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n28 = (s5, Q28) where

Q28 ={(in = true), (x = 1), ¬̇(x = 2),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

(in = true) ∧̇ ¬̇ ◦ (x = 2),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

n29 = (s6, Q29) where

Q29 ={¬̇(in = true), (x = 1),

¬̇(x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n30 = (s6, Q30) where

Q30 ={¬̇(in = true), (x = 1),

¬̇(x = 2), ◦(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

6.3. The Searching Algorithm 41

n31 = (s6, Q31) where

Q31 ={¬̇(in = true), (x = 1), ¬̇(x = 2),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

}

n32 = (s6, Q32) where

Q32 ={¬̇(in = true), (x = 1), ¬̇(x = 2),

¬̇ ◦ (x = 2), ◦¬̇(x = 2),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 2)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 2)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 2))

}

For instance, nodes n31 and n32 are generated from the state s6 of the model, but n31 satisfies
♦((in = true) ∧ ¬ ◦ (x = 2)) while n32 does not.

Then, we define the arcs of the graph following the definition of the model-checking graph. In
Figure 6.1, we show the resulting model checking graph for the tcc Structure shown in Figure 4.7
and Formula 6.2.

6.3 The Searching Algorithm

In this section we define the algorithm that allows to determine if a model satisfies or not a formula.
Our algorithm is based on the classical approach [CGP99, MP95, LP85]: to prove that a property
is satisfied, it suffices to prove that there is no path in the model checking graph satisfying the
negation of the formula. Before defining our algorithm, let us introduce some necessary definitions.

Firstly, we need to define what is a strongly connected component in a graph.

Definition 6.2 (Strongly Connected Component [MP95]). Given a graph G, we define a Strongly
Connected Component (SCC) S as a maximal subgraph of G such that for every two distinct nodes
A,B ∈ S, there exists a path from A to B that passes through nodes of S.

We say that S is transient if it consists of a single node that is not connected to itself.

Now we define a kind of SCC called Self-fulfilling SCC which satisfies some properties. The
following definition is based on the idea of promising formulas presented in [MP95]. A formula of
the form ♦φ can be viewed as a promise that φ will eventually hold.

Definition 6.3 (Self-fulfilling SCC). Given a model-checking graph G, a self-fulfilling strongly
connected component C is defined as a non-transient strongly connected component in G that
satisfies that for every node n in C and for every ♦φ ∈ Qn there exists a node m in C such that
φ ∈ Qm.

Notice that assuming that φ is in the same SCC is important. It could be the case that ♦φ
holds but φ is satisfied "outside" the SCC.

42 Chapter 6. The Model Checking Algorithm

s3 State

s2 State

s1 State

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n12

n13

n14

n15

n16

s4 State

n17

n18

n19

n20

n21

n22

n23

n24

s5 State

n25

n26

n27

n28

s6 State

n29

n30

n31

n32

n11

Figure 6.1: Model checking graph for the tcc Structure shown in Figure 4.7 and the formula 6.2

We say that a sequence is an eventually sequence if it is an infinite path in a model checking
graph G such that if there exists a node n in the path with ♦φ ∈ Qn, then there exists another
node m in the same path reachable from n along the path, such that φ ∈ Qm. Now we can define
our model checking algorithm.

1. Construct the model checking graph using the negation of φ (¬φ) and the model of the system.

2. Look for a sequence such that starting from an initial node of the graph that satisfies the
negation of φ, it reaches a self-fulfilling strongly connected component.

3. If we find a self-fulfilling SCC in the model-checking graph, then the system satisfies the
property represented by the negated formula. Thus, we need to prove that such self-fulfilling
SCC does not exist in order to prove that the original formula is satisfied by the model.

Having defined the model checking algorithm, we implemented a prototype of the algorithm.

6.3. The Searching Algorithm 43

This prototype is described in Chapter 7. We apply our implementation of the model checking
algorithm on the examples of Subsection 6.3.1 and Section 6.4.

6.3.1 Searching Algorithm Example

The following example illustrates the model checking algorithm. We use the model checking graph
shown in Figure 6.1 in order to prove that Formula 6.1 is satisfied by the model shown in Figure
4.7. Next, in Figure 6.2(a) and 6.2(b) we show the non-transient strongly connected components of
the model checking graph.

s2 State

n1

n5

n9

n15

s4 State

n19

n23

s5 State

n25

n31

s3 State s6 State

s1 State

Strongly Connected Component

(a) First non-transient SCC

s4 State

s3 State

s1 State

n2

n6

n10

n16

n20

n24

n26

s6 State

n32

s2 State s5 State

Strongly Connected Component

(b) Second non-transient SCC

Figure 6.2: Non-transient SCCs of the model checking graph shown in Figure 6.1

Notice that the SCC in Figure 6.2(a) is not self-fulfilling because the node n9 satisfies the formula
◦♦((in = true) ∧ ¬ ◦ (x = 2) and any node in the SCC eventually holds the formula promised (i.e.

44 Chapter 6. The Model Checking Algorithm

♦((in = true)∧¬◦(x = 2))). Moreover, the SCC in Figure 6.2(b) has not an initial node satisfying
the negated formula (i.e. ♦((in = true) ∧̇ ¬̇ ◦ (x = 2))). Thus, the model does not satisfy the
negated formula (i.e. the model satisfies the original formula �(¬̇(in = true) ∨̇ ◦ (x = 2))).

6.4 Model Checking Example

In this section we illustrate other application of our model checking algorithm. We shall prove that
Formula 6.3 is not satisfied by the model shown in Figure 4.7. As in the previous example, here we
change the implication operator into a disjunction and we use the duality of the box operator.

ϕ = �((in = true) ⇒̇ ◦ (x = 1))

= �(¬̇(in = true) ∨̇ ◦ (x = 1)) (6.3)

We start by calculating the closure of the resulting formula from the negation of Formula 6.3.

¬̇ϕ = ¬̇�(¬̇(in = true) ∨̇ ◦ (x = 1))

= ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)) (6.4)

CL(¬ϕ) = {♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ (x = 1), ◦¬̇(x = 1),

◦ (x = 1), (x = 1), ¬̇(x = 1),

(in = true), ¬̇(in = true)

}

Then, we generate all the possible nodes of the model checking graph using Definition 6.1. We
next show the nodes generated from the model of the system and the closure of Formula 6.4.

6.4. Model Checking Example 45

n1 = (s1, Q1) where

Q1 ={in = true, x = 1, ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

n2 = (s1, Q2) where

Q2 ={in = true, x = 1, ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

n3 = (s1, Q3) where

Q3 ={in = true, x = 1,

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n4 = (s1, Q4) where

Q4 ={in = true, x = 1,

◦ ¬̇(x = 1) ¬̇ ◦ (x = 1),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

n5 = (s1, Q5) where

Q5 ={in = true, ¬̇(x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

n6 = (s1, Q6) where

Q6 ={in = true, ¬̇(x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

46 Chapter 6. The Model Checking Algorithm

n7 = (s1, Q7) where

Q7 ={in = true, ¬̇(x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n8 = (s1, Q8) where

Q8 ={in = true, ¬̇(x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

n9 = (s2, Q9) where

Q9 ={
in = true, x = 2,

¬̇(x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n10 = (s2, Q10) where

Q10 ={in = true, x = 2,

¬̇(x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

n11 = (s2, Q11) where

Q11 ={in = true, x = 2, ¬̇(x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n12 = (s2, Q12) where

Q12 ={in = true, x = 2, ¬̇(x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

6.4. Model Checking Example 47

n13 = (s3, Q13) where

Q13 ={¬̇(in = true), x = 2,

¬̇(x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n14 = (s3, Q14) where

Q14 ={¬̇(in = true), x = 2,

¬̇(x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

n15 = (s3, Q15) where

Q15 ={¬̇(in = true), x = 2, ¬̇(x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n16 = (s3, Q16) where

Q16 ={¬̇(in = true), x = 2, ¬̇(x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1))

}

n17 = (s4, Q17) where

Q17 ={¬̇(in = true), (x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n18 = (s4, Q18) where

Q18 ={¬̇(in = true), (x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

48 Chapter 6. The Model Checking Algorithm

n19 = (s4, Q19) where

Q19 ={¬̇(in = true), (x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n20 = (s4, Q20) where

Q20 ={¬̇(in = true), (x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n21 = (s4, Q21) where

Q21 ={¬̇(in = true), ¬̇(x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n22 = (s4, Q22) where

Q22 ={¬̇(in = true), ¬̇(x = 1), ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n23 = (s4, Q23) where

Q23 ={¬̇(in = true), ¬̇(x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n24 = (s4, Q24) where

Q24 ={¬̇(in = true), ¬̇(x = 1),

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

6.4. Model Checking Example 49

n25 = (s5, Q25) where

Q25 ={in = true, x = 1, ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n26 = (s5, Q26) where

Q26 ={in = true, x = 1, ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n27 = (s5, Q27) where

Q27 ={in = true, x = 1,

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n28 = (s5, Q28) where

Q28 ={in = true, x = 1,

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

(in = true) ∧̇ ¬̇ ◦ (x = 1),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n29 = (s6, Q29) where

Q29 ={¬̇(in = true), x = 1, ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n30 = (s6, Q30) where

Q30 ={¬̇(in = true), x = 1, ◦(x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

50 Chapter 6. The Model Checking Algorithm

n31 = (s6, Q31) where

Q31 ={¬̇(in = true), x = 1,

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

n32 = (s6, Q32) where

Q32 ={¬̇(in = true), x = 1,

◦ ¬̇(x = 1), ¬̇ ◦ (x = 1),

¬̇((in = true) ∧̇ ¬̇ ◦ (x = 1)),

◦ ¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇ ◦ ♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

¬̇♦((in = true) ∧̇ ¬̇ ◦ (x = 1)),

}

Using the definition of the model checking graph, we define the arcs of the graph. In Figure 6.3,
we show the resulting model checking graph for the tcc Structure shown in Figure 4.7 and Formula
6.4.

Now we must look for a self-fulfilling SCC in the model checking graph generated above. In
Figure 6.4, we show the only non-transient SCC of the graph. Notice that it is a self-fulfilling
SCC because all the promised formulas in the subgraph are eventually satisfied. Moreover, it has
an initial node which satisfies the negated formula (i.e. ♦((in = true) ∧̇ ¬̇ ◦ (x = 1))). Thus,
the model satisfies the negated formula (i.e. the model does not satisfy the original property
�(¬̇(in = true) ∨̇ ◦ (x = 1))).

6.5 Summary

In this chapter, we defined the algorithm which allows to determine if a formula is satisfied or not by
a model. This algorithm uses a structure called model checking graph which is constructed from a
formula and the model of the system. We defined how to construct this graph and how to calculate
the closure of a formula. The key idea of the algorithm is to construct the model checking graph
using the negation of the formula and the model of the system, and then to look for a sequence
such that starting from an initial node in the graph, it reaches a self-fulfilling strongly connected
component. If we do not find the path, then we prove that the model does not satisfy the negated
formula. This is equivalent to prove that the model satisfies the original formula.

Furthermore, we presented two examples that exhibit the two possible outputs of the algorithm.
Each example shows in detail the different steps of the algorithm.

6.5. Summary 51

s3 State

s2 State

s1 State

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n12

n13

n14

n15

n16

s4 State

n17

n18

n19

n20

n21

n22

n23

n24

s5 State

n25

n26

n27

n28

s6 State

n29

n30

n31

n32

n11

Figure 6.3: Model checking graph for the tcc Structure shown in Figure 4.7 and Formula 6.4

52 Chapter 6. The Model Checking Algorithm

s3 State

s2 State

s1 State

n3

n7

n13

s4 State

n17

n21

s5 State

n27

s6 State

n29

n11

Self-Fulfilling SCC

Figure 6.4: Non-transient SCC of the model checking graph shown in Figure 6.3

Chapter 7

A Prototypical Tool

In the previous chapter we described the model checking algorithm which determines whether the
model of the system constructed from a tcc specification satisfies a temporal formula. Now we
focus on developing a tool to run the algorithm automatically. In this chapter, we shall describe a
prototype tool that implements our model checking algorithm.

The algorithm takes as input the model of the system and the formula to be verified. Thus, we
start by specifying the structures to define them. We then show the output of the algorithm and
we describe the functions that calculate the closure of a formula, the model checking nodes, the
model checking graph, and the strongly connected components. We use the Python programming
language to implement the algorithm.

7.1 Inputs

The model checking algorithm receives as input the model of the system and the temporal formula
to be verified. We then need a structure to represent a tcc Structure and a temporal formula using
the proposed logic. Recall that the tcc Structure is formally defined in Chapter 4 and the syntax
of the logic in Chapter 5.

7.1.1 Property

First of all, we define a structure to represent temporal formulas and constraints. We use the syntax
presented in Definition 5.1.

Let us first introduce the encoding of the logical operators we use in our implementation.

• Always: []

• Sometimes: <>

• Next: o

• Negation: ~

• Or: v

• And: ^

We represent a temporal formula as a binary abstract syntax tree (AST)1. For example, the
formula ♦((in = true) ∧ ¬ ◦ (x = 1)), would be represented as such:

1http://en.wikipedia.org/wiki/Abstract_syntax_tree

http://en.wikipedia.org/wiki/Abstract_syntax_tree

54 Chapter 7. A Prototypical Tool

♦

∧

¬

◦

x=1

in=true

Figure 7.1: Representation of ♦((in = true) ∧ ¬ ◦ (x = 1)) using AST

Let us illustrate the above notion in Python.

>>> phi = Formula ({"<>": {"^":{"":"in=true","~":{"o":"x=1"}}}})

Figure 7.2: Example of a formula in Python

The Formula class implements some operations over a formula such as getting the main connec-
tor.

7.1.2 System Model

In the following we define a structure to represent a tcc node. Recall that a node has constraints
(store), internal labels, temporal labels. Moreover, it is related to other nodes and it can be an
initial node. In Figure 7.3, we show a schematic representation of the structure that describes a
tcc node.

store: (list of Formulas)
internal: (list of strings)
temporal: (list of strings)
edges: (list of integers)
initial: (boolean)

tcc node

Figure 7.3: Representation of a tcc node

In Figure 7.4, we show the encoding of the node s1 of the tcc Structure in Figure 4.7.
Now we can represent a system model. Basically, we assume that a tcc Structure is a list of

tcc nodes. For convenience, we use a dictionary structure which has the number of the node as key
and a tcc node structure as value. Figure 7.5 shows the encoding of the tcc Structure shown in
Figure 4.7.

7.2. Model Checking Function 55

>>> {"store": [Formula ({"":"in=true"})], "internal": [], "temporal": ["
tell4","p9"], "edges": [2,3], "initial": True}

Figure 7.4: Example of a tcc node in Python

>>> tcc_structure = {
... 1: {"store": [Formula ({"":"in=true"})], "internal": [], "temporal": ["

tell4","p9"], "edges": [2,3], "initial": True},
... 2: {"store": [Formula ({"": "x=2"}),Formula ({"": "in=true"})], "

internal": [], "temporal": ["tell4","p9"], "edges": [2,3], "initial":
False},

... 3: {"store": [Formula ({"": "x=2"}),Formula ({"~": "in=true"})], "
internal": ["nowp2"], "temporal": ["tell7","p9"], "edges": [5,6], "
initial": False},

... 4: {"store": [Formula ({"~": "in=true"})], "internal": ["nowp2"], "
temporal": ["tell7","p9"], "edges": [5,6], "initial": True},

... 5: {"store": [Formula ({"": "x=1"}),Formula ({"": "in=true"})], "
internal": [], "temporal": ["tell4","p9"], "edges": [2,3], "initial":
False},

... 6: {"store": [Formula ({"": "x=1"}),Formula ({"~": "in=true"})], "
internal": ["nowp2"], "temporal": ["tell7","p9"], "edges": [5,6], "
initial": False}

... }

Figure 7.5: Example of a system model in Python

7.2 Model Checking Function

In this section we show the output of the main function (modelSaltisfiesProperty), and we
describe the auxiliary functions. The main function takes as input a system model and the resulting
formula from the negation of the formula to be verified.

In the following example we determine if the Formula 6.3 is satisfied by the model shown in
Figure 4.7. Recall that we must enter the negated formula as input to the function. We assume
that the variables phi and tcc_structure are the same as defined in the examples in the previous
section.

>>> result = modelSatisfiesProperty(phi , tcc_structure)
is Self Fulfilling: True
Initial Nodes Entail Formula: True
>>> print "Model Satisfies Original Formula: ", not result
Model Satisfies Formula: False

Figure 7.6: Outcome of the main function

56 Chapter 7. A Prototypical Tool

Notice that we negate the outcome of the function. This is because we are verifying the negation
of the formula that we want to prove. Furthermore, the model does not satisfy the original formula.

Let us now describe the functions that calculate the main components of the model checking
algorithm. We shall introduce the functions following the execution flow of the algorithm.

7.2.1 Closure

First of all, the algorithm must calculate the closure of the formula. We implement the function that
calculates the closure of a formula (getClosure) following the conditions presented in Section 6.1
in a recursive way. The following example shows the result of calculating the closure of the formula
defined in Figure 7.2.

>>> closure = []
>>> getClosure(phi ,closure)
>>> for formula in closure:
... print formula.getFormula ()
...
{’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}
{’~’: {’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}}
{’o’: {’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}}
{’~’: {’o’: {’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}}}
{’o’: {’~’: {’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}}}
{’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}
{’~’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}
{’’: ’in=true’}
{’~’: ’in=true’}
{’o’: ’x=1’}
{’~’: {’o’: ’x=1’}}
{’o’: {’~’: ’x=1’}}
{’’: ’x=1’}
{’~’: ’x=1’}

Figure 7.7: Output of getClosure function

7.2.2 Model Checking Nodes

Then, the algorithm must generate all the possible nodes of the model checking graph from the tcc
Structure and the closure of the formula. We implement this function (getModelCheckingAtoms)
based on Definition 6.1. We next show the nodes generated from the tcc Structure defined in
Figure 7.5 and the closure calculated in Figure 7.7. To save space we show only two atoms of 32
possible atoms.

7.2. Model Checking Function 57

>>> atoms = getAllAtoms(closure)
>>> model_checking_atoms = getModelCheckingAtoms(tcc_structure ,atoms)
>>> for tcc_node in model_checking_atoms.keys():
... print "tcc State", tcc_node
... tcc_atoms = model_checking_atoms.get(tcc_node)
... for atom_index in tcc_atoms.keys():
... print "Atom ", atom_index
... for formula in tcc_atoms.get(atom_index):
... print formula.getFormula ()
... print "\n"
tcc State 1
Atom 1
{’o’: {’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}}
{’’: ’in=true’}
{’o’: ’x=1’}
{’’: ’x=1’}
{’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}
{’~’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}

Atom 2
{’~’: {’o’: {’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}}}
{’’: ’in=true’}
{’o’: ’x=1’}
{’’: ’x=1’}
{’o’: {’~’: {’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}}}
{’~’: {’<>’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}}
{’~’: {’^’: {’’: ’in=true’, ’~’: {’o’: ’x=1’}}}}

Figure 7.8: Outcome of getModelCheckingAtoms function

7.2.3 Model Checking Graph

Having generated the nodes of the model checking graph, we are ready to construct the graph defin-
ing arcs between the nodes previously generated. We implement this function (getModelCheckingGraph)
following Definition 6.1. The graph is represented by a dictionary structure which has a node as
key and the list of its successors as value. In Figure 7.9, we present the model checking graph
constructed from the nodes generated in Figure 7.8 and the tcc Structure defined in Figure 7.5.

7.2.4 Self-Fulfilling Strongly Connected Components

Finally, the algorithm must look for a path in the model checking graph that, starting from
an initial node that satisfies the formula, it reaches a self-fulfilling strongly connected compo-
nent (SCC). To implement this, we first obtain the SCCs of the graph using the Tarjan’s algo-

58 Chapter 7. A Prototypical Tool

>>> model_checking_graph = getModelCheckingGraph(tcc_structure ,
model_checking_atoms)

>>> model_checking_graph
{1: [], 2: [], 3: [9, 11, 12, 13, 15], 4: [10, 16, 14], 5: [], 6: [], 7:

[9, 11, 12, 13, 15], 8: [10, 16, 14], 9: [], 10: [], 11: [9, 11, 12,
13, 15], 12: [10, 16, 14], 13: [25, 27, 28, 29, 31], 14: [26, 32, 30],
15: [], 16: [], 17: [25, 27, 28, 29, 31], 18: [26, 32, 30], 19: [], 20:
[], 21: [25, 27, 28, 29, 31], 22: [26, 32, 30], 23: [], 24: [], 25:

[], 26: [], 27: [9, 11, 12, 13, 15], 28: [10, 16, 14], 29: [25, 27, 28,
29, 31], 30: [26, 32, 30], 31: [], 32: []}

Figure 7.9: Outcome of getModelCheckingGraph function

rithm2, and we discard the transient SCCs (see Definition 6.2). This is done by the tarjan and
getModelCheckingSCCSubgraphs functions. Then, we check if the SCCs obtained are self-fulfilling
SCC (see Definition 6.3) and they have an initial node that satisfies the formula. We implement the
functions isSelfFulfilling and initialNodesEntailFormula to perform these tasks. In Figures
7.10, 7.11 and 7.12, we present the output of the functions listed above.

>>> strongly_connected_components = tarjan(model_checking_graph)
>>> sccGraphs = getModelCheckingSCCSubgraphs(strongly_connected_components

, tcc_structure , model_checking_atoms ,model_checking_graph)
>>> sccGraphs [0]
[{3: [11, 13], 7: [11, 13], 11: [11, 13], 13: [27, 29], 17: [27, 29], 21:

[27, 29], 27: [11, 13], 29: [27, 29]}]

Figure 7.10: Output of getModelCheckingSCCSubgraphs function

>>> initialNodes = getInitialNodes(tcc_structure ,model_checking_atoms)
>>> initialNodes
[1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19, 20, 21, 22, 23, 24]
>>> isSelfFulfilling(sccGraphs [0], initialNodes , model_checking_atoms)
True

Figure 7.11: Output of isSelfFulfilling function

Notice that the algorithm obtains a self-fulfilling SCC (see Figure 7.11) and it has an initial
node that satisfies the formula (see Figure 7.12). For this reason, the output of the main function
shown in Figure 7.6 is True, thus the model satisfies the formula.

2http://en.wikipedia.org/wiki/Tarjan’s_strongly_connected_components_algorithm

http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm

7.3. Summary 59

>>> initialNodesEntailFormula(sccGraphs [0], initialNodes ,
model_checking_atoms ,formula)

True

Figure 7.12: Output of initialNodesEntailFormula function

7.3 Summary

In this chapter we introduced a prototype tool which implements the model checking algorithm
presented in Chapter 6. Recall that this algorithm determines if a formula is satisfied by a model.
Since the algorithm receives as input the model of the system and the formula to be verified, we
defined a structure to represent them. We also described the auxiliary functions that calculates
the closure of a formula, the model checking nodes, the model checking graph and the strongly
connected components (SCC).

Source code and documentation of the prototype can be found on http://escher.puj.edu.co/
~jearias/files/tccModelChecking.zip.

http://escher.puj.edu.co/~jearias/files/tccModelChecking.zip
http://escher.puj.edu.co/~jearias/files/tccModelChecking.zip

Chapter 8

Concluding Remarks

We conclude this document by stating the main results derived from this degree project and we also
identify some directions for future work.

8.1 Overview

In this degree project we studied Model Checking as a formal method for the verification of tcc
programs. To do this, we developed a model checking algorithm for tcc. The method proposed is
based on the work by Falaschi and Villanueva [FV06].

We defined a structure called tcc Structure which is able to model the behavior of a tcc
system. We also described a procedure to construct this structure from a tcc specification. Since
the construction rules of the model follows the operational semantics of tcc, the resulting graph
will consist of many node (state explosion problem). We addressed this problem by introducing a
method to simplify the graph by removing its internal transitions. We illustrated the construction
process and we obtained a finite-state model from a system that runs forever (Chapter 4).

We also studied a temporal logic that allows to specify properties of tcc systems (Chapter 5).
We used this logic because it is based on sequences of constraints instead of classical states. In order
to specify properties, we made use of the temporal logic proposed in [Val05] to specify properties of
ntcc. Since tcc is a subcalculus of ntcc, this logic worked for our purposes.

We introduced the algorithm that proves if the model of a system satisfies a formula (Chapter 6).
Our algorithm is based on the classical algorithm of model checking for LTL. Thus, we presented a
structure which combines the model of the system and the formula to be verified. Then, we specified
the properties that must have this graph to determine if the formula is satisfied by the model.

Finally, we described a prototype of the model checking algorithm (Chapter 7). We illustrated
its performance verifying a property of a simple system.

8.2 Future Work

The following are, in the author’s opinion, some interesting directions for future work:

Local Operator. In chapter 4 we presented an algorithm to construct the model of a system from
the tcc specification. However, the algorithm does not support the local operator. This restricts
the model checking algorithm to certain types of programs and then, many interesting programs

62 Chapter 8. Concluding Remarks

can not be verified. An approach to handle this operator is to keep track of the “already used”
(hidden) variables. Then, we require to augment the tcc structure with that set of variables.

Model Implementation. So far, the construction of the model is performed manually. This
task takes a long time and it is prone to errors. For this reason, we believe that the development
of a tool to perform this task automatically will make our technique more amenable for non-expert
users. Furthermore, the phase of translation of the specification into the tcc Structure will be more
reliable.

State Explosion Problem. The state explosion problem is inherent in the model checking tech-
nique. We attempted to mitigate this problem by reducing the number of states with our method.
But even so, the number of states generated in the model checking graph is huge. An interesting
work of research is to consider symbolic and abstract techniques in order to reduce the number of
states of the system.

ntcc Model Checking. The ntcc [Val02] calculus is an extension of tcc. This calculus is founded
upon solid mathematical principles and it has attained a wide range of applications in emergent
areas such as security, system biology and multimedia interaction. In spite of its modeling success,
at present, ntcc does not provide tools for the automatic verification of system properties. We
strongly believe that our algorithm can be extended to verify properties in ntcc. Fundamentally,
the model of the system must be adapted to be able to represent the non-deterministic computation.

Prototype Improvement. The current prototype is very simple and it is not equipped to perform
certain operations. For example, the implementation has a very simple constraint system, and then,
we only can verify basic programs. Thus, we think that the implementation can be enhanced with
an improved constraint engine. Moreover, a better support for formulas can be provided in order
to, for instance, compute automatically the negated form of the formulas in the verification phase.

Bibliography

[Bae05] J.C.M. Baeten. A Brief History of Process Algebra. Theoretical Computer Science,
335(2-3):131–146, May 2005. 5

[BG91] Albert Benveniste and Paul Le Guernic. Synchronous Programming with Events and
Relations: the SIGNAL Language and its Semantics. Science of Computer Programming,
16(2):103–149, 1991. 6

[BG92] Gérard Berry and Georges Gonthier. The ESTEREL Synchronous Programming
Language: Design, Semantics, Implementation. Science of Computer Programming,
19(2):87–152, 1992. 1, 6

[BK85] Jan A. Bergstra and Jan Willem Klop. Algebra of Communicating Processes with Ab-
straction. Theoretical Computer Science, 37(1):77–121, 1985. 5

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008. 7, 10, 11, 12

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1990. 5

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic. In Proceedings of Workshop on Logic
of Programs, volume 131 of Lectures Notes in Computer Science, pages 52–71, London,
1982. Springer-Verlag. 2, 11

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
Cambridge, 1999. 2, 8, 33, 41

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular
Programs. Journal of Computer and System Sciences, 18(2):194–211, 1979. 33

[Flo67] R. W. Floyd. Assigning Meaning to Programs. In Proceedings of the Symposium on
Applied Maths, volume 19, pages 19–32. American Mathematical Society, 1967. 2

[FV06] Moreno Falaschi and Alicia Villanueva. Automatic Verification of Timed Concurrent
Constraint Programs. Theory and Practice of Logic Programming, 6(3):265–300, 2006.
1, 2, 3, 17, 61

[Gar08] Hubert Garavel. Reflections on the Future of Concurrency Theory in General and Pro-
cess Calculi in Particular. In Proceedings of LIX Colloquium on Emergent Trends in
Concurrency Theory, volume 209 of Electronic Notes in Theoretical Computer Science,
pages 149–164. Elsevier, 2008. 2

64 Bibliography

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data Flow
Programming Language LUSTRE. Proceedings of the IEEE, 79(9):1305 –1320, 1991. 6

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of
the ACM, 12(10):576–580, 1969. 2

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. 1, 5

[HR00] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, New York, 2000. 9

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that Finite State Concurrent Programs
Satisfy their Linear Specification. In Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 97–107, New York, NY,
USA, 1985. ACM Press. 33, 41

[Mil89] Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989. 1, 5

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, 1999. 1

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York, 1992. 30

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag New York, Inc., 1995. 17, 33, 41

[NPV02] Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valencia. Temporal Concurrent
Constraint Programming: Denotation, Logic and Applications. Nordic Journal of Com-
puting, 9(2):145–188, 2002. 13

[NV03] Mogens Nielsen and Frank D. Valencia. Notes on Timed CCP. In Lectures on Concur-
rency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 702–741.
Springer-Verlag, 2003. 22

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57, Washington, 1977. IEEE
Computer Society. 9

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and Verification of Concurrent
Systems in CESAR. In Proceedings of the Fifth Colloquium on International Symposium
on Programming, volume 137 of Lectures Notes in Computer Science, pages 337–351,
London, 1982. Springer-Verlag. 2, 11

[Sar93] Vijay A. Saraswat. Concurrent Constraint Programming. The MIT Press, 1993. 1, 5,
13, 16

Bibliography 65

[SJG94a] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Foundations of Timed Con-
current Constraint Programming. In Proceedings of the Ninth Annual IEEE Symposium
on Logic in Computer Science, pages 71–80. IEEE Computer Press, 1994. 1, 6, 13, 14,
15, 16

[SJG94b] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Programming in Timed Con-
current Constraint Languages. In Constraint Programming: Proceedings 1993, NATO
Advanced Science Institute Series, pages 361–410, Berlin, 1994. Springer-Verlag. 1, 6,
13, 14, 15, 16

[Smo94] Gert Smolka. A Foundation for Higher-order Concurrent Constraint Programming. In
Proceedings of the First International Conference on Constraints in Computational Log-
ics, pages 50–72, London, 1994. Springer-Verlag. 13

[SRP91] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The Semantic Foundations
of Concurrent Constraint Programming. In Proceedings of the 18th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 333–352, New
York, 1991. ACM Press. 1, 5, 13, 16

[SW03] Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile Processes.
Cambridge University Press, 2003. 1

[Val02] Frank D. Valencia. Temporal Concurrent Constraint Programming. Phd thesis, Univer-
sity of Aarhus, 2002. 29, 62

[Val05] Frank D. Valencia. Decidability of Infinite-State Timed CCP Processes and First-Order
LTL. Theoretical Computer Science, 330(3):577–607, 2005. 29, 61

