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La Programación Concurrente por Restricciones (ccp) es un formalismo para modelar sistemas concurrentes en el cual agentes (procesos) interactúan con otros agregando (telling) y leyendo (asking) información representada como restricciones en un medio compartido (store). La Programación Concurrente Temporal por Restricciones (tcc), extiende el modelo ccp agregrándole constructores temporales para modelar agentes temporales y sistemas reactivos.

La verificación formal cumple un papel muy importante en la detección de errores en sistemas concurrentes, ya que permite determinar si el modelo de un sistema satisface o no una propiedad. Model checking es una técnica de verificación formal que, dado el modelo de un sistema y una propiedad, comprueba sistemáticamente si el modelo satisface o no la fórmula.

Este proyecto de grado investiga la técnica de model checking como un método formal para la verificación de programas tcc. La investigación se lleva a cabo mediante la definición de un algoritmo de model checking para el cálculo tcc. Para lograr esto, nosotros extendemos el algoritmo clásico de model checking para LTL.

Primero definimos una estructura llamada tcc Structure la cual permite modelar el comportamiento de un sistema tcc, además describimos una lógica que permite razonar sobre programas tcc. Luego se presenta el grafo de model checking y las propiedades que debe cumplir para determinar que el modelo satisface la propiedad. Al final, se presenta un prototipo que implementa el algoritmo propuesto.

Chapter 1

Introduction

This degree project studies Model Checking as a formal method for the verification of Temporal Concurrent Constraint (tcc) programs. In particular, we propose a structure for modeling the behavior of a system, a temporal logic to reason about the system, and a model checking algorithm to formally verify the system properties. The method proposed is based on the work developed by Falaschi and Villanueva [FV06].

Motivation

Nowadays concurrent systems are pervasive in several domains and applications. For example, the sciences (e.g. biological systems), the engineering (e.g. communication protocols), and the arts (e.g. tools for computer music).

The previous examples illustrate the practical relevance and complexity of concurrent systems. Therefore, it is crucial to develop computational models which allow to describe, analyze and reason about the behavior of such complex systems. Process calculi are computational formalisms that are commonly used for modeling and reasoning about concurrent systems. The main idea underlying process calculi is the abstraction of systems in terms of basic units known as processes. The most representatives are CCS [START_REF] Milner | Communication and Concurrency[END_REF], the π calculus [START_REF] Milner | Communicating and Mobile Systems: the Pi-Calculus[END_REF][START_REF] Sangiorgi | The Pi-Calculus: A Theory of Mobile Processes[END_REF] and CSP [Hoa85].

Concurrent Constraint Programming (ccp) [START_REF] Saraswat | The Semantic Foundations of Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Concurrent Constraint Programming[END_REF] has emerged as a model for concurrency that combines the traditional operational view of process calculi with a declarative one based upon logic. A fundamental feature in ccp is the specification of concurrent systems in terms of constraints. A constraint is a first order formula representing partial information about certain variables (e.g. x + y > 0). In this model, agents interact with each other by adding (or telling) and asking information (constraints) in a shared medium (store).

Some concurrent systems react continuously with their environment (e.g. biological systems). These systems are known as reactive systems [BG92]. Saraswat, Jagadeesan and Gupta developed the Timed ccp [START_REF] Saraswat | Foundations of Timed Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Programming in Timed Concurrent Constraint Languages[END_REF] for modeling this type of systems. The fundamental move in the tcc model is to extend the standard ccp with delay and time-out operators. Time in tcc is conceptually divided into time intervals (or time units). In a particular time interval, a deterministic ccp process receives a stimulus (i.e. a constraint) from the environment, it executes with this stimulus as the initial store, and when it reaches its resting point, it responds to the environment with the final store. Also, the resting point determines a residual process, which is then executed in the next time interval.

Formal verification plays an important role in detecting errors in concurrent systems since it allows to check whether or not a system satisfies a specific property. Nowadays the early detection of errors is essential because the presence of a fault in systems could be catastrophic: take for instance air traffic control systems, medical instruments, aircrafts among others. Clarke, Grumberg and Peled [START_REF] Clarke | Model Checking[END_REF] show some significant examples how formal verification techniques help to find errors in modeled systems.

There are two important formal verification techniques: theorem proving and model checking. Theorem proving was the first technique for formal verification. The idea was introduced by Floyd and Hoare in [Flo67,Hoa69]. This is a deductive method which is performed essentially manually, thus it can be very difficult, inefficient and error prone. The success of the verification process depends on the capability of the user. Therefore, this technique must be used by people expert in mathematics and logic. On the other hand, this method is very reliable because it uses mathematics and logic theory, and it can verify large systems since it is not limited by the size of the state space.

The second formal verification technique is model checking. This technique was first introduced by Clarke and Emerson [CE82] and Quielle and Sifakis [START_REF] Queille | Specification and Verification of Concurrent Systems in CESAR[END_REF]. This method checks in a fully automatic way that the execution sequences of the system (i.e. an exhaustive analysis of the statespace) are a model of the formula representing the property. The main problem of this technique is that the state-space of a concurrent system can be huge, then the number of states needed to model the system accurately may exceed the amount of available computer memory (state explosion problem).

Currently, the AVISPA 1 research group has developed several applications in emergent areas such as security, biology and multimedia interaction using the tcc model. However, the verification of these models is performed using inductive techniques since the model does not provide automatic formal verification tools. Therefore, the verification is difficult, error prone and performed only by experts in the field.

This degree project then strives for developing a model checking algorithm for Temporal Concurrent Constraint Programming (tcc) calculus. Doing that, we provide the tcc model with an automatic formal verification tool which allows to verify systems easily and faster. Moreover, we contribute to the points made by Hubert Garavel [START_REF] Garavel | Reflections on the Future of Concurrency Theory in General and Process Calculi in Particular[END_REF]:

The times have gone, where formal methods were primarily a pen-and-pencil activity for mathematicians. Today, only languages properly equipped with software tools will have a chance to be adopted by industry. It is therefore essential for the next generation of languages based on process calculi to be supported by compilers, simulators, verification tools, etc. This also applies to new models for concurrency, such as mobile calculi and bigraphs. The research agenda for theoretical concurrency should therefore address the design of efficient algorithms for translating and verifying formal specifications of concurrent systems.

Our approach is based on the work by Falaschi and Villanueva [FV06]. Then, we divide the model checking algorithm into three main phases: modeling, specification and verification.

Firstly, we start by defining a structure that models the behavior of a system. Moreover, we present an algorithm for building the structure from a tcc specification. This algorithm does not 1 http://cic.javerianacali.edu.co/wiki/doku.php?id=grupos:avispa:avispa include the local agent. Although our approach is based on the work done in [FV06], the structure defined here is quite different from the structure presented in [FV06]. Finally, we introduce a method to reduce the number of states of a model in order to mitigate the state explosion problem.

Secondly, we present a temporal logic for reasoning about tcc programs. This logic is based on sequences of constraints instead of classical states. Thus, we can check properties directly over the model of the system.

Thirdly, we define an algorithm that determines if the system satisfies the property. This algorithm receives as input the model of the system and the formula to be verified.

Finally, we describe a prototype at that implements our model checking algorithm. This work is part of the REACT PLUS2 project of the AVISPA research group. REACT PLUS addresses the development and application of formal methods in real-life systems. It takes the challenging task of developing the underlying theory and machine-assisted tools for verifying concurrent systems

Contributions

The main contributions associated with this work are presented below:

1. We define a structure called tcc Structure which allows to model the behavior of a tcc program. Moreover, we specify an algorithm to construct the model from a tcc specification.

2. We introduce a method to reduce the size of a tcc Structure.

3. We specify a model checking algorithm to verify tcc programs.

4. We develop a prototype of the proposed model checking algorithm.

Document Structure

In what follows we describe the structure of this document. Each chapter concludes with a summary of its content.

Chapter 2 [Background]. In this chapter we introduce the basic concepts and terminology used in this document. We start by describing the Concurrent Constraint Programming model and its temporal extension tcc. We then present the notions of transition systems and temporal logic which are important for modeling systems and specify properties. Finally, we explain the model checking technique.

Chapter 3 [tcc Language]. This chapter presents the formal syntax of tcc and its operational semantics. Furthermore, this chapter introduces the notion of constraint system which is fundamental to ccp based calculi, and it shows a program modeled using this language.

Chapter 4 [Model for tcc Programs]. In this chapter we define the structure which allows us to model the behavior of tcc systems. Moreover, we describe how to construct the model from the specification of the tcc system, and we present a procedure to reduce its size in order to mitigate the state explosion problem.

Chapter 5 [Property Specification]. This chapter describes the temporal logic that we use to reason about tcc systems and to express properties of them. This logic has the feature that it is based on sequences of constraints instead of states. . This chapter introduces a prototype tool that implements the model checking algorithm presented in Chapter 6, and it also describes the auxiliary functions employed. Furthermore, this chapter defines a structure to represent a model of the system and a formula since these are the inputs of the algorithm.

Chapter 8 [Concluding Remarks]. This chapter presents the main results derived from this degree project and gives some directions for future work.

Chapter 2

Preliminaries

In this chapter we introduce the basic concepts and terminology used in this document. We briefly describe the Concurrent Constraint Programming model and its temporal extension tcc, transition systems, temporal logic and the model checking technique. We do not intent to give an in-depth review of these concepts but rather to contextualize the development of the model checking algorithm in this degree project. We encourage the reader to follow the references to have a complete description of each topic addressed in this chapter.

Process Calculi

Process calculi [START_REF] Baeten | A Brief History of Process Algebra[END_REF] are formal methods for reasoning about concurrent systems. The main idea underlying process calculi is the abstraction of real systems in terms of basic units known as processes. The calculi provide precise elements to describe systems as combination of processes, as well as offer tools to study the behavior of systems over time, providing a high level description of interactions, communication, and synchronization between a group of independent agents or processes.

Process calculi in the literature mainly agree in their emphasis upon algebraic semantics. The main representatives are CSS [START_REF] Milner | Communication and Concurrency[END_REF], CSP [Hoa85] and the process algebra ACP [START_REF] Bergstra | Algebra of Communicating Processes with Abstraction[END_REF][START_REF] Baeten | Process Algebra[END_REF]. The distinctions among them arise from issues such as the process constructions considered (i.e. the language of processes), the methods used for giving meaning to process terms (i.e. the semantics), and the methods to reason about process behavior (e.g. process equivalences or process logics). Some other issues addressed in the theory of these calculi are their expressive power, and analysis of their behavioral equivalences.

Concurrent Constraint Programming

Concurrent Constraint Programming (ccp) [START_REF] Saraswat | The Semantic Foundations of Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Concurrent Constraint Programming[END_REF] is a simple but powerful formalism to model concurrent systems. This model is based on the shared-variables communication model and a few primitives taking root in logic. A fundamental feature in ccp model is the specification of concurrent systems in terms of constraints. A constraint (e.g. x + y > 42) is a first-order formula representing partial information about certain variables. The ccp model is parameterized in a constraint system which provides a signature from which constraints can be built and an entailment relation (|=) specifying interdependencies between constraints (e.g. x + y > 42 |= x + y > 0).

During computation, the current state of the system is specified by a set of constraints called the store. Conceptually, the store in ccp is the medium through which agents interact with each other. The ccp processes can update the state of the system by telling information to the store (i.e. adding constraints). This is represented as the (logical) conjunction of the constraint being added and the store representing the previous state. Furthermore, processes can synchronize by asking information to the store (i.e. determining whether a given constraint can be inferred from the store). Ask processes block until there is enough information in the store to entail (i.e. answer positively) their query. A ccp computation terminates whenever it reaches a point called quiescent point, in which no more new information can be added to the store. The final store, also called quiescent store (i.e. the store at the quiescent point), is the output of the computation.

In the spirit of process calculi, the language of processes in the ccp model is given with a reduced number of primitive operators or combinators. A typical ccp process language features the following operators:

• A tell operator adding a constraint to the store.

• An ask operator querying if a constraint can be deduced from the store.

• Parallel Composition combining processes concurrently.

• A hiding operator (or locality) introducing local variables that delimit the interface through which a process can interact with others.

• Recursion defining infinite behavior.

Reactive Systems and Timed CCP

Reactive systems [BG92] are those that react continuously with their environment (e.g. a controller or a signal-processing system). These systems typically operate in a cyclic fashion; in each cycle they receive an input (stimulus) from the environment, compute on this input, and then return the corresponding output to the environment. Languages such as Esterel [BG92], Lustre [HCRP91] and Signal [BG91] have been proposed in the literature for programming reactive systems. Those languages are based on the hypothesis of Perfect Synchrony: program combinators are determinate primitives that respond instantaneously to input signals.

The timed ccp calculus (tcc) [START_REF] Saraswat | Foundations of Timed Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Programming in Timed Concurrent Constraint Languages[END_REF] is an extension of ccp aimed at programming and modeling timed, reactive systems. In tcc the notion of time is conceptually divided into time intervals (or time units). In each time interval, a deterministic ccp process gets as input a constraint from the environment, it executes with this input as the initial store, and when it reaches its quiescent point, it outputs the resulting store to the environment. The quiescent point determines a residual process which is then executed in the next time unit. The resulting store is not automatically transferred to the next time unit.

In particular, the tcc model extends the standard ccp with delay and time-out operations. The delay operation forces the execution of a process to be postponed to the next time interval. The time-out operation waits during the current time interval for a given piece of information to be present and if it is not, triggers a process in the next time interval.

We postpone the presentation of the syntax and the operational semantics of tcc to Chapter 3.

Transition Systems

Transitions systems [BK08] are often used to reason about the behavior of a system. They are basically directed graphs where nodes represent the set of possible states (the state space), and edges model how the system can evolve from one state into the other (the transition relation between states). A state describe some information about a system at a certain moment of its behavior. Action names represent communication mechanisms between processes, and atomic propositions intuitively express simple known facts about the states of the system and formalize temporal characteristics. In the following, we assume that time is discrete; in other words, a behavior will consist of an enumerable number of states.

Definition 2.1 (Transition System). A transition system TS is a tuple (S, Act, →, I, AP, L) where

• S is a set of states,
• Act is a set of actions,

• → ⊆ S × Act × S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2 AP is a labeling function.
The transition relation → denotes possible state changes; if (s, a, s ) ∈ → we say that the system can move from state s to s performing action a. As a more compact notation, we usually write s a --→ s .

The labeling function L relates a set of atomic propositions to any state s. L(s) intuitively stands for exactly those atomic propositions a ∈ AP which are satisfied by state s.

Next we present the definition of some notions that are important in transition systems.

Definition 2.2 (Direct Predecessors and Successors). Let T S = (S, Act, →, I, AP, L) be a transition system. For s ∈ S and α ∈ Act, the set of direct α-successors of s is defined as:

P ost(s, α) = s ∈ S | s → s , P ost(s) = α∈Act P ost(s, α)
The set of α-predecessors of s is defined by: Intuitively, terminal states of a transition system T S are states without any outgoing transitions. Once the system reaches a terminal state, the complete system comes to a halt. Definition 2.4 (Execution Fragment). Let T S = (S, Act, →, I, AP, L) be a transition system. A finite execution fragment of T S is an alternating sequence of states and actions ending with a state

P re(s, α) = s ∈ S | s →
= s 0 α 1 s 1 α 2 . . . α n s n such that s i α i+1 ---→ s i+1 for all 0 ≤ i < n,
where n ≥ 0. We refer to n as the length of the execution fragment . An infinite execution fragment ρ of T S is an infinite, alternating sequences of states and actions:

ρ = s 0 α 1 s 1 α 2 . . . such that s i α i+1
---→ s i+1 for all i ≥ 0 Definition 2.5 (Maximal and Initial Execution Fragment). A maximal execution fragment is either a finite execution fragment that ends in a terminal state, or an infinite execution fragment. An execution fragment is called initial if it starts in an initial state (i.e. if s 0 ∈ I).

Definition 2.6 (Execution). An execution of transition system T S is an initial, maximal execution fragment.

Definition 2.7 (Reachable States). Let T S = (S, Act, →, I, AP, L) be a transition system. A state s ∈ S is called reachable in T S if there exists an initial, finite execution fragment

s 0 α 1 --→ s 1 α 2 --→ . . . αn --→ s n = s
Let us now introduce a well-known class of transition system relevant for the Chapter 4.

Kripke Structure

A Kripke Structure is used to capture the behavior of a system. This structure consists of a set of states, a set of transitions between states and a function that labels each state with a set of properties that are true in that state. Paths in a Kripke Structure model computations of the system. Formally, a Kripke Structure is defined as follows:

Definition 2.8 (Kripke Structure [START_REF] Clarke | Model Checking[END_REF]). Let AP be a set of atomic propositions. A Kripke Structure M over AP is a 4-tuple M = (S, S 0 , R, L) where 1. S is a finite set of states.

2. S 0 ⊆ S is the set of initial states.

3. R ⊆ S × S is a transition relation that must be total, that is, for every state s ∈ S there is a state s ∈ S such that R(s, s ).

4. L : S → 2 AP is a function that labels each state with the set of atomic propositions true in that state.

A path in the structure M from a state s is an infinite sequence of states π = s 0 s 1 s 2 . . . such that s 0 = s and R(s i , s i+1 ) holds for all i ≥ 0.

Linear-Time Temporal Logic

Temporal logic [START_REF] Huth | Logic in Computer Science: Modelling and Reasoning about Systems[END_REF] is a formalism which provides a very intuitive and precise notation for specifying and verifying properties of reactive systems. This logic extends propositional or predicate logic by adding modalities that permit to represent the infinite behavior of a reactive system. Temporal logics were introduced into computer science by Pnueli [START_REF] Pnueli | The Temporal Logic of Programs[END_REF] and thereafter proven to be a good basis for the specification as well as (automatic and machine-assisted) reasoning about concurrent systems.

The underlying nature of time in temporal logic can be either linear or branching. In the linear view, at each moment in time there is a single successor moment, whereas in the branching view it has a branching, tree-like structure, where time may split into alternative courses.

In Chapter 5, we shall present a linear-temporal logic which is essential for our model checking algorithm. For this reason, in this section we will focus our attention on Linear Temporal Logic (LTL), a propositional temporal logic (i.e. extension of propositional logic by temporal modalities) that is based on a linear-time perspective. In following, we recall the syntax and semantics of LTL.

Syntax

This subsection describes the syntactic rules according to which a formula of LTL can be constructed. The basic elements of a LTL-formula are atomic propositions (state labels a ∈ AP ), the Boolean connectors like conjunction ∧, and negation ¬, and two basic temporal modalities • (next) and U (until). In the following, we present an intuitive explanation of the LTL operators.

The operator • is an unary operator. It is used to specify properties not for the current state but for the next state of a path. This is depicted in the Figure 2 The operator ♦ is an unary operator. It is used to specify properties for some future state, further down the execution path. The operator does not specify exactly which successor will have that property. It only promises that eventually something will happen. This can be seen visually in Figure 2.2.

The operator is an unary operator. It is used to specify properties for the current state and all its successors. Figure 2.3 shows this operator. The operator U is a binary operator. For example the formula ϕ U ψ states that ϕ will be true until ψ. That is ψ will be true at some time in the future but until that time ϕ will be true. Definition 2.9 (Syntax of LTL [BK08]). LTL formulae over the AP of atomic proposition are formed according to the following grammar:

ϕ ::= true | a | ϕ 1 ∧ ϕ 2 | ¬ϕ | • ϕ | ϕ 1 U ϕ 2
where a ∈ AP Using the Boolean connectives ∧ and ¬, the full power of propositional logic is obtained. Other Boolean connectives such as disjunction ∨, implication →, and equivalence ↔ can be derived as follows:

ϕ 1 ∨ ϕ2 def = ¬(¬ϕ 1 ∧ ¬ϕ 2 ) ϕ 1 → ϕ 2 def = ¬ϕ 1 ∨ ϕ 2 ϕ 1 ↔ ϕ 2 def = (ϕ 1 → ϕ 2 ) ∧ (ϕ 2 → ϕ 1 )
The until operator allows to derive the temporal modalities ♦ ("eventually", sometime in the future) and ("always", from now on forever) as follows:

♦ϕ def = true U ϕ ϕ def = ¬♦¬ϕ

Semantics

LTL formulas stand for properties of paths (or in fact their trace). This means that a path can either fulfill an LTL-formula or not. The semantics of LTL formula ϕ is defined as a language W ords(ϕ) that contains all infinite words over the alphabet 2 AP that satisfy ϕ.

Definition 2.10 (Semantics of LTL (Interpretation over Words) [BK08]). Let ϕ be an LTL formula over AP . The LT property induced by ϕ is

W ords(ϕ) = σ ∈ (2 AP ) ω | σ |= ϕ
where the satisfaction relation |= ⊆ (2 AP ) ω × LTL is the smallest relation with the properties in Figure 2.5.

Here, for σ 

= A 0 A 1 A 2 • • • ∈ (2 AP ) ω , σ[j . . . ] = A j A j+1 A j+2 . . . is the suffix of σ starting in the j-th symbol of A j . σ true σ a iff a ∈ A 0 (i.e. A 0 a) σ ϕ 1 ∧ ϕ 2 iff σ ϕ 1 and σ ϕ 2 σ ¬ϕ iff σ ϕ σ •ϕ iff σ[1 . . . ] = A 1 A 2 A 3 • • • ϕ σ ϕ 1 U ϕ 2 iff ∃j ≥ 0. σ[j . . . ] ϕ 2 and σ[i . . . ] ϕ 1 , for all 0 ≤ i < j σ ♦ϕ iff ∃j ≥ 0. σ[j . . . ] ϕ σ ϕ iff ∀j ≥ 0. σ[j . . . ] ϕ

Model Checking

Model checking is an automated technique that, given a finite-state model of a system and a formal property, systematically checks whether this property holds for (a given state in) that model [BK08].

It was first introduced in [CE82] and [START_REF] Queille | Specification and Verification of Concurrent Systems in CESAR[END_REF]. In essence, this technique consists in an exhaustive analysis of the state-space of the system to determine if some specification is true or false.

The main drawback of the model checking technique is that the state space of a system can be huge and it is difficult (or impossible) to build its model (the state space explosion problem). On the other hand, this technique has two major advantages: it is fully-automatic and its application requires no user supervision or expertise in mathematical disciplines (as opposed to completely deductive techniques) and when a state violates the property, the model checker provides a counterexample that indicates how the model could reach the undesired state.

In following we describe the different phases of model checking [BK08]. The required input to model checking are a model of the system under consideration and a formal specification of the property to be verified.

1. Modeling phase.

• Model the system under consideration using the model description language that can be handled by the model checker. Models of systems describe the behavior of systems in a formal way. They are mostly expressed using state transition graphs.

2. Specification phase.

• Describe the property to be checked using a property specification language. For this purpose temporal logic is used.

3. Running phase.

• Run the model checker to check the validity of the property in all states of the system model.

Analysis phase.

• There are three possible outcomes: the specified property is either valid in the given model or not, or the model turns out to be too large to fit within the physical limits of the computer memory.

In Figure 2.6, we present the phases of the model checking technique in a schematic view. We shall addresses the above mentioned phases in Chapter 4, 5 and 6, respectively of this document. The tcc Language Concurrent Constraint Programming (ccp) [START_REF] Saraswat | The Semantic Foundations of Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Concurrent Constraint Programming[END_REF] is a powerful paradigm for concurrency. The fundamental issue of the ccp model is the specification of concurrent systems in terms of constraints. A constraint represents partial information about the variables of the system. A temporal extension of ccp is the timed concurrent constraint programming (tcc) [START_REF] Saraswat | Foundations of Timed Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Programming in Timed Concurrent Constraint Languages[END_REF]. In particular, tcc extends the deterministic fragment of the ccp paradigm with agents that are able to model temporal behavior and also notions such as timeout and preemption. These operations are fundamental for programming reactive systems. In this chapter, we recall the syntax of the tcc calculus as well as its operational semantics.

We shall begin by introducing the notion of a constraint system which is fundamental to ccp based calculi. We then present the formal syntax of tcc and its operational semantics. We shall describe the basic agents of tcc in an intuitive way. Finally, we shall specify a simple program using tcc.

Constraint System

Concurrent Constraint Programming (ccp) based calculi are parametric in a constraint system [START_REF] Saraswat | Concurrent Constraint Programming[END_REF] which specifies the basic constraints that agents can tell or ask during execution. In this section we present the definition of constraint system.

A constraint represents a piece of partial information upon which processes may act. A constraint system then provides a signature from which constraints can be built. Furthermore, the constraint system provides an entailment relation (|=) specifying interdependencies between constraints. Intuitively, c |= d means that the information d can be deduced from the information represented by c (e.g. x > 60 |= x > 42). We next define the notion of constraint system based on First-Order Logic as in [START_REF] Smolka | A Foundation for Higher-order Concurrent Constraint Programming[END_REF][START_REF] Nielsen | Temporal Concurrent Constraint Programming: Denotation, Logic and Applications[END_REF]. Definition 3.1 (Constraint System). A constraint system is a pair (Σ, ∆) where Σ is a signature specifying constants, functions and predicate symbols, and ∆ is a consistent first-order theory over Σ (i.e. a set of first-order sentences over Σ having at least one model). Given a constraint system (Σ, ∆), let L be the underlying first-order language with a countable set of variables x, y, . . . , and logic symbols ¬, ∧, ∨, ⇒, ∃, ∀, true and false which denote logical negation, conjunction, disjunction, implication, existential and universal quantification, and the always true and false predicates, respectively. Constraints, denoted by c, d, . . . , are first-order formulas over L. We say that c entails d in ∆, written c |= ∆ d iff the formula c ⇒ d is true in all models of ∆. We write |= instead of |= ∆ when ∆ is unimportant or can be inferred from the context. We say that c is equivalent to d,

written c ≡ d, iff c |= ∆ d and d |= ∆ c.
Henceforth we shall use the following notation.

Notation 3.1 (Constraints and Equivalence). Henceforth, C denotes the set of constraints modulo ≡ in the underlying constraint system. So, we write c = d iff c and d are in the same (≡) class. Furthermore, whenever we write expressions such as c = (x = y) we mean that c is (equivalent to) the constraint x = y.

Syntax

In the ccp model, the information in the store evolves monotonically (i.e. once a constraint is added it cannot be removed). In tcc, time is conceptually divide into time intervals (or time units). In a particular time interval, a ccp agent P gets an input c from the environment, it executes with this input as the initial store, and when it reaches its resting point, it outputs the resulting store d to the environment. The resting point determines a residual process Q which is then executed in the next time unit. The resulting store d is not automatically transferred to the next time unit. Following the notation in [START_REF] Saraswat | Foundations of Timed Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Programming in Timed Concurrent Constraint Languages[END_REF] the syntax of tcc is presented in In the following description we present an intuitive definition of the tcc agents.

• CCP constructs: These agents do not cause extension over time.

Tell. This agent adds c to the store in the current time unit. Skip. This agent does nothing thus representing inaction.

Timed positive ask. This agent checks if c can be deduced from the current store. If so, it behaves as A. In other case, it remains blocked until the store contains at least as much information as c.

Parallel composition. This agent denotes two processes running concurrently during the current time unit.

Hiding. This agent behaves like A, except that all the information on the variables x produced by A can only be seen by A and the information on the global variable x produced by other processes cannot be seen by A.

• Timed Constructs: These constructs cause extension over time.

Timed negative ask. This agent executes A in the next time unit if and only if, on the quiescence of the current time unit, c is not entailed by the store.

Unit delay. This agent executes A in the next time unit. Abort. This agent terminates the execution of all processes in the next time unit.

Using the basic constructs presented in Figure 3.1 we can define other derived constructs. Such constructs make easier to the user to use the language since makes more intuitive the specification of programs. For example, the always A agent behaves like A at every time instant. This agent is defined as follows [START_REF] Saraswat | Programming in Timed Concurrent Constraint Languages[END_REF]:

always A = A || next always A

Operational Semantics

The operational semantics of tcc considers transitions over configurations. A configuration is defined as a multiset ? of agents. The store in a configuration ? is represented by σ(?) and it denotes the sub-multiset of tokens in ?. Moreover, the semantics is given in terms of the binary transition relations → and . The relation → represents transitions within a time instant (internal transition), and the relation represents a transition from one time instant to the next (temporal transition). To ensure that computation in each time-step is lexically bounded (i.e. bounded by the size of the program) the recursion variable occurs within the scope of an else or a next.

The operational semantics given in [START_REF] Saraswat | Foundations of Timed Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Programming in Timed Concurrent Constraint Languages[END_REF] is presented in Figure 3.2.

Program Example

In this section we model a system that controls the behavior of an electronic door. The door opens every time there is a person in front of it, otherwise it keeps closed. We assume that the door opens when it receives the signal x=2, and closes when it receives the signal x=1. Moreover, we assume that the system has a sensor which sends the signal in=true when there is a person in front of the door. In Figure 3.3, we show a simple tcc specification of the above system.

Axioms for →. The binary relation → on configurations is the least relation satisfying the rules :

(?, skip) → ? (?, abort) → abort (?, A || B) → (?, A, B) (?, ∃x(A)) → (?, A[y/x]) (y not free in ?) (?, p(t 1 , . . . , t n )) → (?, A[x 1 → t 1 , . . . , x n → t n ]) σ(?) c (?, now c then A) → (?, A) σ(?) c (?, now c else B) → ?
Axioms for . The binary relation is the least relation satisfying the single rule : 

∆, {now c i else A i | i < n} ∆, {now c i else A i | i < n}, {next B j | j < m} {A i | i < n}, {B j | j < m}

Summary

In this chapter we described the syntax and operational semantics of tcc. We introduced the notion of constraint system to which tcc calculus is parametric. We also showed with an example how to specify a system using the tcc agents.

The tcc calculus [START_REF] Saraswat | Foundations of Timed Concurrent Constraint Programming[END_REF][START_REF] Saraswat | Programming in Timed Concurrent Constraint Languages[END_REF] is an extension of the ccp model [SRP91, Sar93] which extends the deterministic fragment of the ccp paradigm with agents that are able to model temporal behavior and also notions such as timeout and preemption.

Chapter 4

A Model for tcc Programs

In the previous chapter we presented the syntax and the operational semantics of tcc and we showed an example of how to specify a system with this formalism. The first phase of the model checking technique is to construct a model that faithfully represents the behavior of the specified system.

In this chapter, we show our approach to construct the model of the system from a tcc specification. That is to say, we take a program written in tcc, and we construct the model in a systematic way. This approach is based on the ideas developed by Falaschi and Villanueva [FV06] to model tccp programs. Nevertheless, the structure defined here is quite different from the structure presented in [FV06].

We shall start by defining a labeling process in order to identify in which point of the execution of the program we are, and also to determine if an agent can be executed or not during the computation. We then define a structure called tcc Structure which allows us to model the behavior of a system specified in tcc. Furthermore, we describe how to construct the tcc Structure from a labeled specification and we show as example the model of the tcc program presented in the previous chapter. Finally, we show how to reduce the number of states generated in the construction of the system model.

Program Labeling

The labeling process consists in assigning a different label to each occurrence of an agent in the program. The authors in [FV06] adapted the idea introduced by Manna and Pnueli in [START_REF] Manna | Temporal Verification of Reactive Systems: Safety[END_REF] to their framework. Labels fulfill the role of providing an unique identification for agents in order to know in which point of the execution of the program we are during the construction of the model. The presence or absence of a label determines if the associated agent can be executed or not during the computation.

In the following definition we specify how to transform a tcc specification to its labeled version.

Definition 4.1. Let P be a tcc specification, the labeled version P l of P is defined as follows. The subindex k ∈ N corresponds to the number of labels introduced up to a given point. When the labeling process starts, k = 0 and each time that we introduce a new label, k is incremented by one.

• If P = tell c then P l = {l tell k } tell c.

• If P = now c then A then P l = {l nowp k } now c then A l .

• If P = now c else A then P l = {l nown k } now c else A l .

• If P = next A then P l = {l next k } next A l .
• If P = skip then P l = {l skip k } skip.

• If P = A || B then P l = {l || k } (A l || B l ). • If P = p(t 1 , . . . , t n ) then P l = {l p k } p(t 1 , . . . , t n ).
The labeling of a declaration D of the form p(x) : -A is defined as

{l p k } p(x) : -A l , called D l . Finally, the labeled version of a program of the form D.A is D l .A l .
Fundamentally, the labeling process consists in exploring the tcc specification, and each time that we find an agent we introduce a new label. In Figure 4.1, we show the labeled version of the tcc program in Figure 3.3. Note that the structure of the program has not changed, only labels have been added to each occurrence of an agent. 

{l p0 } p () :: {l || 1 } ( {l nowp 2 } now ( in = true ) then {l next3 } next ( {l tell4 } tell ( x =2) ) || {l || 5 } ( {l nown6 } now ( in = true ) else {l tell7 } tell ( x =1) || {l next8 } next ( {l p9 } p () ) ) )

The tcc Structure

In this section we define a structure called tcc Structure that allows to model the behavior of a system specified in tcc. This structure is a variant of a Kripke Structure (see Definition 2.8).

Intuitively, a Kripke Structure is a finite graph structure which could have many initial nodes and each node is always related to another one (or to itself). Additionally, each state has associated a set of atomic propositions which are true in such state. The main difference between the above mentioned structures lies in the definition of state; the Kripke Structure adopts the classical notion of state whereas in the tcc Structure, a state consists of a conjunction of constraints and intuitively it can be seen as a set of classical states (i.e. a set of assignments).

Before formally defining the tcc Structure, we require the definition of some concepts. First, we need to define what is the set of propositions AP of atomic propositions.

Definition 4.2. The set AP of atomic propositions is defined as the set of elements in the constraint system C.

In the rest of the document, we abuse of notation by using the term constraint as an equivalent concept to atomic proposition. Next we present the definition of state in the tcc Structure. Definition 4.3 (tcc State). Let AP be the atomic propositions in the tcc syntax and L be the set of all labels generated during the labeling process described above. We define the set of states as S ⊆ 2 AP × 2 L . Now we define the notion of equivalent states. For this, we need the classical notion of renaming of variables. Let y 1 , . . . , y n be n distinct variables, the substitution {x 1 /y 1 , . . . x n /y n } is a renaming whenever the sets y 1 , . . . , y n and x 1 , . . . , x n are disjoint. Definition 4.4 (Equivalent States). Given two tcc states s and s , we say that two states are equivalent if 1. the set of labels of s and s coincide, and 2. there exists a renaming γ of variables of the constraints in s which makes them syntactically identical to the set of constraints of s .

Finally, we define the tcc Structure. We consider internal and temporal labels to identify the agents that can be executed on the same or the next time unit, respectively. Definition 4.5 (tcc Structure). Let AP be a set of atomic propositions, we define a tcc Structure M over AP as a seven tuple M = (S, S 0 , T, R, C, L, LT ) where 1. S is a finite set of states.

2. S 0 ⊆ S is the set of initial states.

3. T = {i, t} is the set of possible type of transitions. i denotes an internal transition while t denotes a temporal transition.

4. R ⊆ S × S × T is a transition relation.

5. C : S → 2 AP is the function that returns the set of atomic propositions in a given state.

6. L : S → 2 L is the function that returns the set of internal labels in a given state.

7. LT : S → 2 L is the function that returns the set of temporal labels in a given state.

We assume that an internal transition in the graph represents a computation within the same time unit in the system, and a temporal transition represents an increment of one time unit. In Figure 4.2, we show the graphical representation of the transitions in our framework.

Intuitively, C labels a state with the set of constraints true in such state. In other words, this function represents the information that we know in a specific instant (current store). L labels a state with the set of labels associated to agents that must be executed within the same time instant (internal labels). LT labels a state with the set of labels associated to agents that must be executed in the following time instant (temporal labels). For better readability we graphically represent a tcc state with three spaces: current store, internal labels and temporal labels (see Figure 4.2).

Notice that the differences w.r.t a Kripke Structure (see Definition 2.8) are the definition of state (see Definition 4.3) and the three labeling functions C, L and LT which replace the labeling function L of the Kripke Structure.

When two states s and s are related by R(s, s , T ), it means that is possible to reach the state s from state s by executing the agents associated to the labels in L(s) (T = i, internal transition) or LT (s) (T = t, temporal transition) with the store C(s) deriving as a result (by applying the renaming γ) the store C(s ) and the point of execution L(s ) and LT (s ). 

Construction of the Model

In this section we explain in an intuitive way how to construct a tcc Structure from a tcc specification. A specification is composed by a set of declarations. Then, for each different declaration we construct a tcc Structure that is labeled with a unique name and it is used when a procedure call refers to the body of such declaration. Essentially, transitions are described according to the operational rules of each tcc process.

Each state is composed of labels associated with agents that can be executed in a step of the construction process. Each label can be active or disabled. A label is active when the conditions to execute the agent associated are satisfied, and disabled when the agent associated cannot be executed in that moment because the store does not entail the necessary conditions. The labels associated with temporal agents (i.e. next, now c else A , etc.) cannot be executed before all the labels associated with normal agents (i.e. agents that do not cause extension over time) are executed. This is because only after that we can be sure that no more information can be produced in the present time instant.

Our procedure consists in locating an active label and perform the actions associated with such agent. The process is performed while there are active labels. When we reach a state where there are no active labels (quiescent point) we have to pass to the next time unit, and then we continue with the procedure. We represent this passage in our graph as follows:

1. Introduce a new node s related with s by a temporal transition. The state s is a state where there is no active labels.

2. We introduce the temporal labels of s in the labels of s .

3. The store and the temporal labels of s are empty.

As mentioned above, each time an agent is analyzed some actions are executed. In the following description we show the actions performed by each agent in order to construct the graph structure. The created nodes in the following steps are connected by an internal transition with the predecessor node. We use the notation ∼ c to denote that the current store does not entail the constraint c.

Tell S ≡ {l tell k } tell c. The new information c is added to the store in the current time. We translate this behavior to our graph structure as follows:

1. Add a new node s related with the node s from which the agent is execute. 2. The store of s is defined as the store of s plus the constraint c (i.e. C(s ) = C(s) ∧ c). 3. The internal labels of s are obtained from those of s by removing {l tell k } (i.e. L(s ) = L(s)\{l tell k }). 4. The temporal labels of s are the same as s (i.e. LT (s ) = LT (s)).

Parallel S ≡ {l || k } (A l || B l ).
The agents A and B are executed in parallel. We translate this behavior to our graph structure as follows:

1. Introduce a new node s related with the node s from which the agent is execute. 2. The internal labels of s are obtained from those of s by adding A l and B l , and removing {l || k }. Notice that this corresponds to a concurrent semantics rather than an interleaving interpretation of the parallel operator. 3. The store and the temporal labels of s are the same as s.

Timed Positive Ask S ≡ {l nowp k } now c then A l . If the current store entails c then the agent A is executed or does nothing otherwise. Next we describe how to translate this agent to our graph.

1. Add two new nodes s 1 , s 2 related with the node s from which the agent is execute. This branch corresponds to the two possible behaviors. 2. The store of s 1 is defined as the union of the store of s and the constraint c. 3. The store of s 2 is defined as the store of s plus the absence of the constraint c (i.e. C(s 2 ) = C(s) ∧ ∼ c). 4. The internal labels of s 1 are obtained from those of s by adding A l and removing {l nowp k }. 5. The internal labels of s 2 are the same as s. 6. The temporal labels of s 1 and s 2 are the same as s.

Skip S ≡ {l skip k } skip. This agent does nothing at every time instant. We translate this agent to our graph as follows:

1. Construct a new node s related with the node s from which the agent is executed. 2. The internal labels of s are obtained from those of s by removing {l skip k }.

3. The store and the temporal labels of s are the same as s.

Procedure Call S ≡ {l p k } p(t 1 , . . . , t n ). This operator refers to another procedure which have different labels and variables. To translate this agent to our graph we create a new node and the label associated to the first agent of p is added to the internal labels of the node. Timed Negative Ask S ≡ {l nown k } now c else A l . If on the quiescent point the store does not entail c then the agent A is executed in the next time instant, or does nothing otherwise. We translate this behavior to our graph as follows:

1. Introduce two new nodes s 1 , s 2 related with the node s from which the agent is execute.

This branch corresponds to the two possible behaviors of the agent.

2. The store of s 1 is defined as the union of the store of s and the constraint c.

3. The store of s 2 is defined as the store of s plus the absence of the constraint c.

4. The internal labels of s 1 and s 2 are the same as s by removing {l nown k }.

5. The temporal labels of s 1 are the same as s.

6. The temporal labels of s 2 are obtained from those of s by adding A l .

Unit Delay S ≡ {l next k } next A l . The agent A is executed in the next time instant. We translate this agent to our graph as follows:

1. Construct a new node s related with the node s from which the agent is execute.

2. The internal labels of s are the same as s but removing {l next k }.

3. The temporal labels of s are obtained from those of s by adding A l .

4. The store of s is the same as s.

When we generate a new node we must check if there are two equivalent states (see Definition 4.4). If we find a node s 2 equivalent to the new node created s 1 , then we must relate the predecessor of s 1 with the node s 2 , and delete the node s 1 . Moreover, the construction following this branch will terminate. The previous step allows to avoid generating unnecessary states.

Simplification of the Model

This section is devoted to describing the simplification process of the tcc Structure. Our approach to construct the model generates a large number of states due to the operational semantics of tcc. Therefore, a reduction of states is necessary to decrease the state explosion problem of the model checking technique.

In Chapter 3, we presented the operational semantics of tcc. This semantics is defined in terms of internal and temporal transitions. The internal transitions describe evolutions within a time unit, and thus they are regarded as being unobservable. On the other hand, the temporal transitions describe evolutions across the times units, and thus they are regarded as being observable [START_REF] Nielsen | Notes on Timed CCP[END_REF]. A temporal transition is obtained by performing a sequence of internal transitions until no further internal evolution is possible. In this point (quiescent point) no more information can be added to the store. This store is defined as the output of the computation. Therefore, we are interested only in maintaining the nodes where there is no active labels, and also the temporal transitions.

Hence, we simplify the tcc Structure compacting nodes which contain active labels. This nodes generate internal transitions, thus the final structure will have only temporal transitions. We must ensure that the new tcc Structure models the same behavior as the original. Taking the previous observations into account, we describe the procedure to simplify the structure as follows:

1. If we find a sequence of internal transitions without branching, then we collapse all nodes and we keep the last node in the sequence (see Figure 4.3(a)).

2. If we find a node s 1 related with a node s 2 which has a branching, then we divide the node s 2 into two identical nodes. Each node follows only one branch of s 2 , and s 1 is related with them (see Figure 4.3(b)).

3. We repeat these steps until no more simplifications can be done. A more compelling application of our procedure of simplification is given in the next section where we show a complete example of the construction of a model.

Construction Example

In this section we shall illustrate the construction process of the tcc Structure and the simplification process. In Figure 4.4, we present the tcc Structure of the tcc program in Figure 3.3. For the sake of readability, we do not show the extension of the branch from the node 23.

Notice that the nodes 14 and 7 are equivalents, thus we delete node 14 and relate node 13 to node 7 through a temporal transition. We perform the same process with the nodes 18 and 22. To reduce the size of the graph, we execute all labels associated with the unit delay agent simultaneously (e.g. node 5). Moreover, the store in some nodes can satisfy the guard of the time negative ask agent, thus we construct only the corresponding branch and discard the other (e.g. node 4).

In Figure 4.5, we show the tcc Structure with the loops generated by the equivalent nodes. We use the simplification procedure described in the previous section in order to reduce the large number of nodes. First, we eliminate all the sequences of internal transitions (i.e. 1-3, 4-6, 7-10, 11-13, 15-17, 19-21, 22-25, 26-28 and 30-32). Figure 4.5 shows the graph after the first reduction. Then, we simplify the branches of the graph as shown in Figure 4.6. Finally, we delete the remaining sequences of internal transitions (i.e. 3-6, 10-13, 10-17, 3-21, 25-28, 25-32). Figure 4.7 shows the resulting graph after the simplification process. Notice the significant reduction in the number of states. Furthermore, we can observe that this graph maintains the behavior of the original graph and it contains only temporal transitions.

Summary

In this chapter we defined a structure which allows to model the behavior of a system specified in tcc. Furthermore, we defined in an intuitive way how to construct the model of the system from a tcc specification. Since a labeled version of the program is necessary for the construction of the model, we defined a labeling process.

We illustrate our approach by modeling a tcc specification, and showed that we can construct a finite graph from a reactive system that runs forever. This is possible thanks to the loops generated by some equivalent states. Moreover, we simplify the graph eliminating all the internal transitions in order to reduce the number of states to decrease the state explosion problem. Further simplifications can be done. For instance, if a given state has an active label associated with timed positive ask or timed negative ask agents, and the store only allows the agent to follow a branch. These reductions will be essential to our model checking algorithm defined in Chapter 6. 

A Logic for the Specification of Properties

In Chapter 3, we presented the tcc calculus. This formalism allows to specify complex reactive systems. Then, in Chapter 4 we presented an algorithm to construct a model of the system from the tcc specification. Now we need a temporal logic to reason about tcc systems and to express temporal properties of them. In this chapter we shall address the second phase of the model checking technique: to specify the property that we want to verify. We shall start by defining the linear-time temporal logic that we shall use to express temporal properties of tcc systems. This logic is based on sequences of constraints. Finally, we specify a property of a tcc program using the temporal logic presented in this chapter.

The ntcc Logic

In this section we present the linear temporal logic which we use to specify properties of tcc systems in our framework. We start by defining the syntax of the logic and then we give a semantic interpretation of it.

In [START_REF] Frank | Decidability of Infinite-State Timed CCP Processes and First-Order LTL[END_REF] Valencia presented a linear temporal logic (LTL) named CLTL. This logic expresses properties over sequences of constraints, and it is employed to reason about ntcc processes. The ntcc calculus is an extension of tcc which can represent timed concepts such as unit delays, unbounded finite delays, time-outs, pre-emption, synchrony and asynchrony [Val02]. We use this logic to reason about programs specified in tcc since it is a subcalculus of ntcc.

Before defining formally the above logic, we require the following notation on sequences of constraints.

Notation 5.1. Throughout this section C ω denotes the set of infinite (or ω) sequences of constraints in the underlying set of constraints C. We use α, α , . . . to range over C ω .

Temporal Logic Syntax

The syntax of CLTL is given by the following definition. 

:= c | ṫrue | ḟalse | F ∧ G | F ∨ G | ¬F | ∃x F | • F | F | ♦F
where c denotes a constraint representing a state formula c. The symbols ṫrue, ḟalse, ∧, ∨, ¬ and ∃ represent linear-temporal logic true, false, conjunction, disjunction, negation and existential quantification. As clarified later, these symbols are not be confused with the symbols true, false, ∧, ∨, ¬ and ∃ in the underlying constraint system. The symbol •, and ♦ denote the temporal operators next, always and sometime. We use F ⇒ G as an abbreviation of ¬F ∨ G.

Temporal Logic Semantics

The standard interpretation structures of linear temporal logic are infinite sequences of states [MP92]. Nevertheless, in CLTL the states are replaced by constraints, and it considers as interpretations the elements of C ω . Before defining the semantics of CLTL, let us introduce the notion of x-variant. But first we need the following notation.

Notation 5.2. Given a sequence α = c 1 .c 2 . . . , we use ∃ x α to denote the sequence ∃ x c 1 .∃ x c 2 . . . . We shall use α(i) to denote the i-th element of α.

Definition 5.2 (x-variant [MP92]). A constraint d is an x-variant of c iff ∃ x c = ∃ x d. Similarly α is an x-variant of α iff ∃ x α = ∃ x α
Intuitively, d and α are x-variants of α and c, respectively, if they are the same except for the information about x. For example, x = 1 ∧ y = 0 is an x-variant of x = 42 ∧ y = 0.

We can now define the semantics of CLTL.

Definition 5.3 (CLTL Semantics). We say that α ∈ C ω satisfies (or that it is a model of) F in CLTL, written α CLTL F , iff α, 1 CLTL F , where:

α, i CLTL ṫrue α, i CLTL ḟalse α, i CLTL c iff α(i) c α, i CLTL ¬F iff α, i CLTL F α, i CLTL F ∧ G iff α, i CLTL F and α, i CLTL G α, i CLTL F ∨ G iff α, i CLTL F or α, i CLTL G α, i CLTL •F iff α, i + 1 CLTL F α, i CLTL F iff for all j ≥ i α, j CLTL F α, i CLTL ♦F iff there is a j ≥ i s.t. α, j CLTL F α, i CLTL ∃x F iff there is an x-variant α of α s.t. α , i CLTL F Define F = {α | α CLTL F }. We say that F is CLTL valid iff F = C ω , and that F is CLTL satisfiable iff F = ∅.
Next we explain why the operators of the constraint system should not be confused with those of the temporal logic (i.e. the dotted notation). A temporal formula F expresses properties over sequences of constraints. As a state formula, c expresses a property which is satisfied only by those e.α such that e c holds. Therefore, the state formula false (and consequently false) has at least one sequence that satisfies it (e.g. false ω ). On the contrary, the temporal formula ḟalse has no models whatsoever. Something similar happens with the disjunction and negation operators. In contrast, the formula c ∧ d and the atomic proposition c ∧ d have the same models since e (c ∧ d) holds if and only if both e c and e d hold.

Specification Example

Now we shall illustrate how specify a property using the logic presented in this chapter. For this purpose we shall use as reference the tcc program in Figure 3.3. Remember that such program has a process which repeatedly checks if the information in=true is available. If the information is available in the current time unit, then the process tell that x=2 in the next time unit or x=1 otherwise. Therefore, we could check if it true that when the information in=true is available, then the information x=2 will be available in the next time unit. Formula 5.1 represents the above property.

ϕ = ((in = true) ⇒ • (x = 2))
(5.1)

Summary

In this chapter we presented a temporal logic which allows us to specify properties of tcc systems. In particular, this logic is based on sequences of constraints, and it is used to reason about ntcc processes which is an extension of tcc. Furthermore, we expressed a property of the program in Figure 3.3 which we shall verify in Chapter 6.

Chapter 6

The Model Checking Algorithm

In Chapter 4 we defined a structure called tcc Structure which allows us to model the behavior of a system specified in tcc. Furthermore, we defined a procedure to construct the model of the system from a tcc specification. Then, in Chapter 5 we studied a linear-temporal logic which permits to express temporal properties over constraints and to reason about tcc programs. In this chapter, we shall address with the third and last phase of the model checking technique which consists in defining an algorithm that checks if a given temporal formula is satisfied by the model. We shall start by defining how to construct the closure of a formula. Our definition is based on the ideas presented by Manna and Pnueli in [MP95]. This closure is reminiscent to the Fischer-Ladner's one [START_REF] Michael | Propositional Dynamic Logic of Regular Programs[END_REF]. We then define how to construct a graph structure called model checking graph which allows to verify if the property is satisfied or not by the system. This graph is built combining the nodes of a tcc Structure and the closure of a formula. Our algorithm is based on the classical tableau algorithm for the LTL model checking problem [LP85]. Hence, if we intent to prove that the model satisfies the formula φ, then we must construct the model checking graph with the closure of the negated formula (i.e. ¬φ). Finally, we describe the properties that the model checking graph must fulfill to decide if the model satisfies or not the property. Furthermore, we present two examples to show the two possible results of the algorithm.

9. if ♦ϕ 1 ∈ CL(ϕ), then ϕ 1 , •♦ϕ 1 ∈ CL(ϕ)
Note that in the case of ¬ • ϕ 1 it is necessary to introduce the formula • ¬ϕ 1 which cannot be generated by the other rules. To keep the closure finite, we assume that ¬ ¬ϕ = ϕ.

Closure Example

We now give an example illustrating the closure of the resulting formula from the negation of Formula 5.1. For convenience, we change the implication operator into a disjunction and we use the duality of the box operator:

ϕ = ((in = true) ⇒ • (x = 2)) = ( ¬(in = true) ∨ • (x = 2)) (6.1) ¬ϕ = ¬ ( ¬(in = true) ∨ • (x = 2)) = ♦((in = true) ∧ ¬ • (x = 2)) (6.2) 
Next we show the closure of Formula 6.2.

CL(¬ϕ) = {♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), (in = true) ∧ ¬ • (x = 2), ¬((in = true) ∧ ¬ • (x = 2)), ¬ • (x = 2), • ¬(x = 2),
• (x = 2), (x = 2), ¬(x = 2), (in = true), ¬(in = true) }

The Model-Checking Graph

In this section we define the structure called model checking graph which is essential to check if a model satisfies a formula. This structure is a directed graph derived from a temporal formula and the model of the system. To determine that a formula φ is satisfied by a model, we must construct the graph for the negation of the formula φ (i.e. ¬φ). If we prove that there is no computation of the system which satisfies the negated formula, then we are proving that the formula is satisfied for all the computations. This will be discussed in more detail in Section 6.3.

The following definition formalize the construction of the model checking graph. Definition 6.1 (Model-Checking Graph). Let ϕ be a formula, CL(ϕ) be the closure of ϕ as defined in Section 6.1 and Z the tcc Structure constructed following the algorithm described in Section 4.3. A node n of the model-checking graph is formed by a pair of the form (s n , Q n ) where s n is a state of Z and Q n is a subset of CL(ϕ) and the atomic propositions such that the following conditions are satisfied:

1. for every atomic proposition p, p

∈ Q n iff p ∈ C(s n ), 2. for every ∃x ϕ 1 ∈ CL(ϕ), ∃x ϕ 1 ∈ Q n iff ∃x ϕ 1 ∈ C(s n ), 3. for every ϕ 1 ∈ CL(ϕ), ϕ 1 ∈ Q n iff ¬ϕ 1 / ∈ Q n , 4. for every ϕ 1 ∧ϕ 2 ∈ CL(ϕ), ϕ 1 ∧ϕ 2 ∈ Q n iff ϕ 1 ∈ Q n and ϕ 2 ∈ Q n , 5. for every ϕ 1 ∨ϕ 2 ∈ CL(ϕ), ϕ 1 ∨ϕ 2 ∈ Q n iff ϕ 1 ∈ Q n or ϕ 2 ∈ Q n , 6. for every ¬ • ϕ 1 ∈ CL(ϕ), ¬ • ϕ 1 ∈ Q n iff • ¬ϕ 1 ∈ Q n , 7. for every ϕ 1 ∈ CL(ϕ), ϕ 1 ∈ Q n iff ϕ 1 ∈ Q n and • ϕ 1 ∈ Q n , 8. for every ♦ϕ 1 ∈ CL(ϕ), ♦ϕ 1 ∈ Q n iff ϕ 1 ∈ Q n or • ♦ϕ 1 ∈ Q n .
An edge in the graph is defined as follows: there will be an edge from one node n 1 = (s 1 , Q 1 ) to another node n 2 = (s 2 , Q 2 ) iff there is an arc from the node s 1 to the node s 2 in Z and for every formula

•ϕ 1 ∈ CL(ϕ), •ϕ 1 ∈ Q 1 iff ϕ 1 ∈ Q 2 .
This means that the next state s 2 must satisfy φ if s 1 satisfies •φ.

Intuitively, for each node of the model-checking graph, in Q we have the largest consistent set of formulas that is also consistent with the store (function C) of the states of the tcc Structure. Moreover, two nodes of the graph are related if the temporal formulas in their Q sets are consistent.

For each node s i of the tcc Structure many nodes are generated in the graph with a different consistent set of formulas derived from C(s i ) and the closure of the formula CL(φ). We exemplify this in the following section.

Model Checking Graph Example

We next illustrate the construction of the model checking graph. In the following example, we construct the graph which we shall use in the next section in order to determine if Formula 6.1 is satisfied by the model in Figure 4.7. Recall that such graph was generated from the specification in Figure 3.3.

Firstly, we take the tcc Structure shown in Figure 4.7 and the closure set of Formula 6.2 shown in the example of the previous section. Remind that if we want to prove that the formula φ is satisfied by the model, then we must generate the closure of the negated formula (i.e. ¬φ). After that, using the Definition 6.1 we generate all the possible nodes from the nodes of the tcc Structure and the formulas of the closure.

Next we show all the nodes generated.

n 1 = (s 1 , Q 1 )
where

Q ={in = true, x = 2, •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)) } n 2 = (s 1 , Q 2 )
where

Q 2 ={in = true, x = 2, •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)) } n 3 = (s 1 , Q 3 )
where

Q ={in = true, x = 2, • ¬(x = 2), ¬ • (x = 2), (in = true) ∧ ¬ • (x = 2), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 4 = (s 1 , Q 4 )
where

Q 4 ={in = true, x = 2, • ¬(x = 2), ¬ • (x = 2), (in = true) ∧ ¬ • (x = 2), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)) } n 5 = (s 1 , Q 5 )
where

Q ={in = true, ¬(x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)) } n 6 = (s 1 , Q 6 )
where

Q 6 ={in = true, ¬(x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)) } n 7 = (s 1 , Q 7 )
where

Q 7 ={in = true, ¬(x = 2), • ¬(x = 2), ¬ • (x = 2), (in = true) ∧ ¬ • (x = 2), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 8 = (s 1 , Q 8 )
where

Q 8 ={in = true, ¬(x = 2), • ¬(x = 2), ¬ • (x = 2), (in = true) ∧ ¬ • (x = 2), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)) } n 9 = (s 2 , Q 9 )
where

Q 9 ={in = true, (x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 10 = (s 2 , Q 10 )
where

Q 10 ={in = true, (x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)) } n 11 = (s 2 , Q 11 )
where

Q 11 ={in = true, (x = 2), ¬ • (x = 2), • ¬(x = 2), (in = true) ∧ ¬ • (x = 2), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 12 = (s 2 , Q 12 )
where

Q 12 ={in = true, (x = 2), ¬ • (x = 2), • ¬(x = 2), (in = true) ∧ ¬ • (x = 2), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)) } n = (s 3 , Q 13 )
where

Q 13 ={ ¬(in = true), (x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 14 = (s 3 , Q 14 )
where

Q 14 ={ ¬(in = true), (x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)) } n = (s 3 , Q 15 )
where

Q 15 ={ ¬(in = true), (x = 2), ¬ • (x = 2), • ¬(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 16 = (s 3 , Q 16 )
where

Q 16 ={ ¬(in = true), (x = 2), ¬ • (x = 2), • ¬(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)) } n = (s 4 , Q 17 )
where

Q 17 ={ ¬(in = true), (x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 1)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 18 = (s 4 , Q 18 )
where

Q 18 ={ ¬(in = true), (x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)), } n 19 = (s 4 , Q 19 )
where

Q 19 ={ ¬(in = true), (x = 2), • ¬(x = 2), ¬ • (x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 20 = (s 4 , Q 20 )
where

Q 20 ={ ¬(in = true), (x = 2), • ¬(x = 2), ¬ • (x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)), } n 21 = (s 4 , Q 21 )
where

Q 21 ={ ¬(in = true), ¬(x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 22 = (s 4 , Q 22 )
where

Q 22 ={ ¬(in = true), ¬(x = 2), •(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)), } n 23 = (s 4 , Q 23 )
where

Q 23 ={ ¬(in = true), ¬(x = 2), • ¬(x = 2), ¬ • (x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 24 = (s 4 , Q 24 )
where

Q 24 ={ ¬(in = true), ¬(x = 2), • ¬(x = 2), ¬ • (x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)), } n 31 = (s 6 , Q 31 )
where

Q 31 ={ ¬(in = true), (x = 1), ¬(x = 2), ¬ • (x = 2), • ¬(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ♦((in = true) ∧ ¬ • (x = 2)), ♦((in = true) ∧ ¬ • (x = 2)), } n 32 = (s 6 , Q 32 )
where

Q 32 ={ ¬(in = true), (x = 1), ¬(x = 2), ¬ • (x = 2), • ¬(x = 2), ¬((in = true) ∧ ¬ • (x = 2)), • ¬♦((in = true) ∧ ¬ • (x = 2)), ¬ • ♦((in = true) ∧ ¬ • (x = 2)), ¬♦((in = true) ∧ ¬ • (x = 2)) }
For instance, nodes n 31 and n 32 are generated from the state s 6 of the model, but n 31 satisfies ♦((in = true) ∧ ¬ • (x = 2)) while n 32 does not.

Then, we define the arcs of the graph following the definition of the model-checking graph. In Figure 6.1, we show the resulting model checking graph for the tcc Structure shown in Figure 4.7 and Formula 6.2.

The Searching Algorithm

In this section we define the algorithm that allows to determine if a model satisfies or not a formula. Our algorithm is based on the classical approach [CGP99, MP95, LP85]: to prove that a property is satisfied, it suffices to prove that there is no path in the model checking graph satisfying the negation of the formula. Before defining our algorithm, let us introduce some necessary definitions.

Firstly, we need to define what is a strongly connected component in a graph. Definition 6.2 (Strongly Connected Component [START_REF] Manna | Temporal Verification of Reactive Systems: Safety[END_REF]). Given a graph G, we define a Strongly Connected Component (SCC) S as a maximal subgraph of G such that for every two distinct nodes A, B ∈ S, there exists a path from A to B that passes through nodes of S.

We say that S is transient if it consists of a single node that is not connected to itself. Now we define a kind of SCC called Self-fulfilling SCC which satisfies some properties. The following definition is based on the idea of promising formulas presented in [START_REF] Manna | Temporal Verification of Reactive Systems: Safety[END_REF]. A formula of the form ♦φ can be viewed as a promise that φ will eventually hold. Definition 6.3 (Self-fulfilling SCC). Given a model-checking graph G, a self-fulfilling strongly connected component C is defined as a non-transient strongly connected component in G that satisfies that for every node n in C and for every ♦φ ∈ Q n there exists a node m in C such that φ ∈ Q m .

Notice that assuming that φ is in the same SCC is important. It could be the case that ♦φ holds but φ is satisfied "outside" the SCC. We say that a sequence is an eventually sequence if it is an infinite path in a model checking graph G such that if there exists a node n in the path with ♦φ ∈ Q n , then there exists another node m in the same path reachable from n along the path, such that φ ∈ Q m . Now we can define our model checking algorithm.

1. Construct the model checking graph using the negation of φ (¬φ) and the model of the system.

2. Look for a sequence such that starting from an initial node of the graph that satisfies the negation of φ, it reaches a self-fulfilling strongly connected component.

3. If we find a self-fulfilling SCC in the model-checking graph, then the system satisfies the property represented by the negated formula. Thus, we need to prove that such self-fulfilling SCC does not exist in order to prove that the original formula is satisfied by the model.

Having defined the model checking algorithm, we implemented a prototype of the algorithm.

This prototype is described in Chapter 7. We apply our implementation of the model checking algorithm on the examples of Subsection 6.3.1 and Section 6.4.

Searching Algorithm Example

The following example illustrates the model checking algorithm. We use the model checking graph shown in Figure 6.1 in order to prove that Formula 6.1 is satisfied by the model shown in Notice that the SCC in Figure 6.2(a) is not self-fulfilling because the node n 9 satisfies the formula •♦((in = true) ∧ ¬ • (x = 2) and any node in the SCC eventually holds the formula promised (i.e. ♦((in = true) ∧ ¬ • (x = 2))). Moreover, the SCC in Figure 6.2(b) has not an initial node satisfying the negated formula (i.e. ♦((in = true) ∧ ¬ • (x = 2))). Thus, the model does not satisfy the negated formula (i.e. the model satisfies the original formula ( ¬(in = true) ∨ • (x = 2))).

Model Checking Example

In this section we illustrate other application of our model checking algorithm. We shall prove that Formula 6.3 is not satisfied by the model shown in Figure 4.7. As in the previous example, here we change the implication operator into a disjunction and we use the duality of the box operator.

ϕ = ((in = true) ⇒ • (x = 1)) = ( ¬(in = true) ∨ • (x = 1)) (6.3)
We start by calculating the closure of the resulting formula from the negation of Formula 6.3.

¬ϕ = ¬ ( ¬(in = true) ∨ • (x = 1)) = ♦((in = true) ∧ ¬ • (x = 1)) (6.4) CL(¬ϕ) = {♦((in = true) ∧ ¬ • (x = 1)), ¬♦((in = true) ∧ ¬ • (x = 1)), • ♦((in = true) ∧ ¬ • (x = 1)), ¬ • ♦((in = true) ∧ ¬ • (x = 1)), • ¬♦((in = true) ∧ ¬ • (x = 1)), (in = true) ∧ ¬ • (x = 1), ¬((in = true) ∧ ¬ • (x = 1)), ¬ • (x = 1), • ¬(x = 1),
• (x = 1), (x = 1), ¬(x = 1), (in = true), ¬(in = true)

}

Then, we generate all the possible nodes of the model checking graph using Definition 6.1. We next show the nodes generated from the model of the system and the closure of Formula 6.4. n 13 = (s 3 , Q 13 ) where

Q 13 ={ ¬(in = true), x = 2, ¬(x = 1), •(x = 1), ¬((in = true) ∧ ¬ • (x = 1)), • ♦((in = true) ∧ ¬ • (x = 1)), ♦((in = true) ∧ ¬ • (x = 1)), } n 14 = (s 3 , Q 14 ) where Q 14 ={ ¬(in = true), x = 2, ¬(x = 1), •(x = 1), ¬((in = true) ∧ ¬ • (x = 1)), • ¬♦((in = true) ∧ ¬ • (x = 1)), ¬ • ♦((in = true) ∧ ¬ • (x = 1)), ¬♦((in = true) ∧ ¬ • (x = 1)) } n 15 = (s 3 , Q 15 ) where Q 15 ={ ¬(in = true), x = 2, ¬(x = 1), • ¬(x = 1), ¬ • (x = 1), ¬((in = true) ∧ ¬ • (x = 1)), • ♦((in = true) ∧ ¬ • (x = 1)), ♦((in = true) ∧ ¬ • (x = 1)), } n 16 = (s 3 , Q 16 )
where

Q 16 ={ ¬(in = true), x = 2, ¬(x = 1), • ¬(x = 1), ¬ • (x = 1), ¬((in = true) ∧ ¬ • (x = 1)), • ¬♦((in = true) ∧ ¬ • (x = 1)), ¬ • ♦((in = true) ∧ ¬ • (x = 1)), ¬♦((in = true) ∧ ¬ • (x = 1)) } n 17 = (s 4 , Q 17 )
where

Q 17 ={ ¬(in = true), (x = 1), •(x = 1), ¬((in = true) ∧ ¬ • (x = 1)), • ♦((in = true) ∧ ¬ • (x = 1)), ♦((in = true) ∧ ¬ • (x = 1)), } n 18 = (s 4 , Q 18 )
where

Q 18 ={ ¬(in = true), (x = 1), •(x = 1), ¬((in = true) ∧ ¬ • (x = 1)), • ¬♦((in = true) ∧ ¬ • (x = 1)), ¬ • ♦((in = true) ∧ ¬ • (x = 1)), ¬♦((in = true) ∧ ¬ • (x = 1)), } n 31 = (s 6 , Q 31 )
where

Q 31 ={ ¬(in = true), x = 1, • ¬(x = 1), ¬ • (x = 1), ¬((in = true) ∧ ¬ • (x = 1)), • ♦((in = true) ∧ ¬ • (x = 1)), ♦((in = true) ∧ ¬ • (x = 1)), } n 32 = (s 6 , Q 32 )
where

Q 32 ={ ¬(in = true), x = 1, • ¬(x = 1), ¬ • (x = 1), ¬((in = true) ∧ ¬ • (x = 1)), • ¬♦((in = true) ∧ ¬ • (x = 1)), ¬ • ♦((in = true) ∧ ¬ • (x = 1)), ¬♦((in = true) ∧ ¬ • (x = 1)),

}

Using the definition of the model checking graph, we define the arcs of the graph. In Figure 6.3, we show the resulting model checking graph for the tcc Structure shown in Figure 4.7 and Formula 6.4. Now we must look for a self-fulfilling SCC in the model checking graph generated above. In Figure 6.4, we show the only non-transient SCC of the graph. Notice that it is a self-fulfilling SCC because all the promised formulas in the subgraph are eventually satisfied. Moreover, it has an initial node which satisfies the negated formula (i.e. ♦((in = true) ∧ ¬ • (x = 1))). Thus, the model satisfies the negated formula (i.e. the model does not satisfy the original property ( ¬(in = true) ∨ • (x = 1))).

Summary

In this chapter, we defined the algorithm which allows to determine if a formula is satisfied or not by a model. This algorithm uses a structure called model checking graph which is constructed from a formula and the model of the system. We defined how to construct this graph and how to calculate the closure of a formula. The key idea of the algorithm is to construct the model checking graph using the negation of the formula and the model of the system, and then to look for a sequence such that starting from an initial node in the graph, it reaches a self-fulfilling strongly connected component. If we do not find the path, then we prove that the model does not satisfy the negated formula. This is equivalent to prove that the model satisfies the original formula. Furthermore, we presented two examples that exhibit the two possible outputs of the algorithm. Each example shows in detail the different steps of the algorithm. 

A Prototypical Tool

In the previous chapter we described the model checking algorithm which determines whether the model of the system constructed from a tcc specification satisfies a temporal formula. Now we focus on developing a tool to run the algorithm automatically. In this chapter, we shall describe a prototype tool that implements our model checking algorithm.

The algorithm takes as input the model of the system and the formula to be verified. Thus, we start by specifying the structures to define them. We then show the output of the algorithm and we describe the functions that calculate the closure of a formula, the model checking nodes, the model checking graph, and the strongly connected components. We use the Python programming language to implement the algorithm.

Inputs

The model checking algorithm receives as input the model of the system and the temporal formula to be verified. We then need a structure to represent a tcc Structure and a temporal formula using the proposed logic. Recall that the tcc Structure is formally defined in Chapter 4 and the syntax of the logic in Chapter 5.

Property

First of all, we define a structure to represent temporal formulas and constraints. We use the syntax presented in Definition 5.1.

Let us first introduce the encoding of the logical operators we use in our implementation. >>> phi = Formula ({ " <>" : { " ^" :{ " " : " in = true " ," ~" :{ " o " : " x =1 " }}}})

Figure 7.2: Example of a formula in Python

The Formula class implements some operations over a formula such as getting the main connector.

System Model

In the following we define a structure to represent a tcc node. Recall that a node has constraints (store), internal labels, temporal labels. Moreover, it is related to other nodes and it can be an initial node. In Figure 7.3, we show a schematic representation of the structure that describes a tcc node.

store:

(list of Formulas) internal: (list of strings) temporal: (list of strings) edges:

(list of integers) initial:

(boolean) tcc node >>> { " store " : [ Formula ({ " " : " in = true " }) ] , " internal " : [] , " temporal " : [ " tell4 " ," p9 " ] , " edges " : [2 ,3] , " initial " : True } >>> tcc_structure = { ... 1: { " store " : [ Formula ({ " " : " in = true " }) ] , " internal " : [] , " temporal " : [ " tell4 " ," p9 " ] , " edges " : [2 ,3] , " initial " : True } , ... 2: { " store " : [ Formula ({ " " : " x =2 " }) , Formula ({ " " : " in = true " }) ] , "

internal " : [] , " temporal " : [ " tell4 " ," p9 " ] , " edges " : [2 ,3] , " initial " : False } , ... 3: { " store " : [ Formula ({ " " : " x =2 " }) , Formula ({ " ~" : " in = true " }) ] , "

internal " : [ " nowp2 " ] , " temporal " : [ " tell7 " ," p9 " ] , " edges " : [5 ,6] , " initial " : False } , ... 4: { " store " : [ Formula ({ " ~" : " in = true " }) ] , " internal " : [ " nowp2 " ] , " temporal " : [ " tell7 " ," p9 " ] , " edges " : [5 ,6] , " initial " : True } , ... 5: { " store " : [ Formula ({ " " : " x =1 " }) , Formula ({ " " : " in = true " }) ] , "

internal " : [] , " temporal " : [ " tell4 " ," p9 " ] , " edges " : [2 ,3] , " initial " : False } , ... 6: { " store " : [ Formula ({ " " : " x =1 " }) , Formula ({ " ~" : " in = true " }) ] , " internal " : [ " nowp2 " ] , " temporal " : [ " tell7 " ," p9 " ] , " edges " : [5 ,6] , " initial " : False } ... } 

Model Checking Function

In this section we show the output of the main function (modelSaltisfiesProperty), and we describe the auxiliary functions. The main function takes as input a system model and the resulting formula from the negation of the formula to be verified.

In the following example we determine if the Formula 6.3 is satisfied by the model shown in Figure 4.7. Recall that we must enter the negated formula as input to the function. We assume that the variables phi and tcc_structure are the same as defined in the examples in the previous section.

>>> result = m o d e l S a t i s f i e s P r o p e r t y ( phi , tcc_structure ) is Self Fulfilling : True Initial Nodes Entail Formula : True >>> print " Model Satisfies Original Formula : " , not result Model Satisfies Formula : False 2). This is done by the tarjan and getModelCheckingSCCSubgraphs functions. Then, we check if the SCCs obtained are self-fulfilling SCC (see Definition 6.3) and they have an initial node that satisfies the formula. We implement the functions isSelfFulfilling and initialNodesEntailFormula to perform these tasks. In Figures 7.10, 7.11 and 7.12, we present the output of the functions listed above. Notice that the algorithm obtains a self-fulfilling SCC (see Figure 7.11) and it has an initial node that satisfies the formula (see Figure 7.12). For this reason, the output of the main function shown in Figure 7.6 is True, thus the model satisfies the formula. 

Summary

In this chapter we introduced a prototype tool which implements the model checking algorithm presented in Chapter 6. Recall that this algorithm determines if a formula is satisfied by a model. Since the algorithm receives as input the model of the system and the formula to be verified, we defined a structure to represent them. We also described the auxiliary functions that calculates the closure of a formula, the model checking nodes, the model checking graph and the strongly connected components (SCC).

Source code and documentation of the prototype can be found on http://escher.puj.edu.co/ ~jearias/files/tccModelChecking.zip.

can not be verified. An approach to handle this operator is to keep track of the "already used" (hidden) variables. Then, we require to augment the tcc structure with that set of variables.

Model Implementation. So far, the construction of the model is performed manually. This task takes a long time and it is prone to errors. For this reason, we believe that the development of a tool to perform this task automatically will make our technique more amenable for non-expert users. Furthermore, the phase of translation of the specification into the tcc Structure will be more reliable.

State Explosion Problem. The state explosion problem is inherent in the model checking technique. We attempted to mitigate this problem by reducing the number of states with our method. But even so, the number of states generated in the model checking graph is huge. An interesting work of research is to consider symbolic and abstract techniques in order to reduce the number of states of the system. ntcc Model Checking. The ntcc [Val02] calculus is an extension of tcc. This calculus is founded upon solid mathematical principles and it has attained a wide range of applications in emergent areas such as security, system biology and multimedia interaction. In spite of its modeling success, at present, ntcc does not provide tools for the automatic verification of system properties. We strongly believe that our algorithm can be extended to verify properties in ntcc. Fundamentally, the model of the system must be adapted to be able to represent the non-deterministic computation.

Prototype Improvement. The current prototype is very simple and it is not equipped to perform certain operations. For example, the implementation has a very simple constraint system, and then, we only can verify basic programs. Thus, we think that the implementation can be enhanced with an improved constraint engine. Moreover, a better support for formulas can be provided in order to, for instance, compute automatically the negated form of the formulas in the verification phase.
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 464 Figure 4.6: Second reduction of the tcc Structure
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Figure 7 . 3 :

 73 Figure 7.3: Representation of a tcc node
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 7 Figure 7.11: Output of isSelfFulfilling function

  >>> i n i t i a l N o d e s E n t a i l F o r m u l a ( sccGraphs [0] , initialNodes , model_checking_atoms , formula ) True
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 7 Figure 7.12: Output of initialNodesEntailFormula function

  Chapter 6[Model Checking Algorithm]. In this chapter we present the algorithm which allows us to determine if a formula is satisfied by the model. This algorithm is based on the classical tableau algorithm for the LTL model checking problem. Thus, we define the structure called model checking graph which is essential to the algorithm. At the end of the chapter, we illustrate our algorithm by showing two examples.
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Notice that we negate the outcome of the function. This is because we are verifying the negation of the formula that we want to prove. Furthermore, the model does not satisfy the original formula.

Let us now describe the functions that calculate the main components of the model checking algorithm. We shall introduce the functions following the execution flow of the algorithm.

Closure

First of all, the algorithm must calculate the closure of the formula. We implement the function that calculates the closure of a formula (getClosure) following the conditions presented in Section 6.1 in a recursive way. The following example shows the result of calculating the closure of the formula defined in Figure 7.2. 

Model Checking Nodes

Then, the algorithm must generate all the possible nodes of the model checking graph from the tcc Structure and the closure of the formula. We implement this function (getModelCheckingAtoms) based on Definition 6.1. We next show the nodes generated from the tcc Structure defined in Figure 7.5 and the closure calculated in Figure 7.7. To save space we show only two atoms of 32 possible atoms. 

Model Checking Graph

Having generated the nodes of the model checking graph, we are ready to construct the graph defining arcs between the nodes previously generated. We implement this function (getModelCheckingGraph) following Definition 6.1. The graph is represented by a dictionary structure which has a node as key and the list of its successors as value. In Figure 7.9, we present the model checking graph constructed from the nodes generated in Figure 7.8 and the tcc Structure defined in Figure 7.5.

Self-Fulfilling Strongly Connected Components

Finally, the algorithm must look for a path in the model checking graph that, starting from an initial node that satisfies the formula, it reaches a self-fulfilling strongly connected component (SCC). To implement this, we first obtain the SCCs of the graph using the Tarjan's algo-Chapter 8

Concluding Remarks

We conclude this document by stating the main results derived from this degree project and we also identify some directions for future work.

Overview

In this degree project we studied Model Checking as a formal method for the verification of tcc programs. To do this, we developed a model checking algorithm for tcc. The method proposed is based on the work by Falaschi and Villanueva [FV06].

We defined a structure called tcc Structure which is able to model the behavior of a tcc system. We also described a procedure to construct this structure from a tcc specification. Since the construction rules of the model follows the operational semantics of tcc, the resulting graph will consist of many node (state explosion problem). We addressed this problem by introducing a method to simplify the graph by removing its internal transitions. We illustrated the construction process and we obtained a finite-state model from a system that runs forever (Chapter 4).

We also studied a temporal logic that allows to specify properties of tcc systems (Chapter 5). We used this logic because it is based on sequences of constraints instead of classical states. In order to specify properties, we made use of the temporal logic proposed in [START_REF] Frank | Decidability of Infinite-State Timed CCP Processes and First-Order LTL[END_REF] to specify properties of ntcc. Since tcc is a subcalculus of ntcc, this logic worked for our purposes.

We introduced the algorithm that proves if the model of a system satisfies a formula (Chapter 6). Our algorithm is based on the classical algorithm of model checking for LTL. Thus, we presented a structure which combines the model of the system and the formula to be verified. Then, we specified the properties that must have this graph to determine if the formula is satisfied by the model.

Finally, we described a prototype of the model checking algorithm (Chapter 7). We illustrated its performance verifying a property of a simple system.

Future Work

The following are, in the author's opinion, some interesting directions for future work:

Local Operator. In chapter 4 we presented an algorithm to construct the model of a system from the tcc specification. However, the algorithm does not support the local operator. This restricts the model checking algorithm to certain types of programs and then, many interesting programs