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Abstract: We reexamine the question of quantum consistency of supergravities in eight
dimensions. Theories with both 32 and 16 supercharges suffer from the anomalies under the
action of their respective discrete modular groups. In maximal supergravity the anomaly
cancellation requires a surprising modification of the Chern-Simons couplings. In mini-
mally supersymmetric theory coupled to Yang-Mills multiples of rank l with the moduli
space given by SO(2, l)/(U(1)×SO(l)), the existence of a counterterm together with the re-
quirement that its poles and zeros correspond to the gauge symmetry enhancement imposes
nontrivial constraints on the lattice. The counterterms needed for anomaly cancellation for
all cases, that are believed to lead to consistent theories of quantum gravity (l = 2, 10, 18),
are discussed.
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1 Introduction and summary

Existence of an anomaly cancellation mechanism in (super)gravity theories serves as a good
guideline for selecting candidates for theories that can be consistent at the quantum level.

In minimally supersymmetric theories in ten dimensions, existence of Green-Schwarz
mechanism reduces the number of possible choices for the gauge groups in the YM sector
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to four [1]. From the other side, the existence of an anomaly inflow mechanism to two-
dimensional chiral strings coupled to the theory restricts this number to two by ruling out
the theories with abelian gauge factors [2, 3]. In six dimensions, there is an infinite number
of anomaly-free minimal supergravities [1]. Many, notably infinite families of (1, 0) theories,
are ruled out by a closer examination of the inflow mechanism and the anomaly cancellation
for two-dimensional (0, 4) strings coupled to the theory [3–5].

The focus of this paper is on eight-dimensional (mostly) minimal supergravities. Clas-
sically, the 8D N = 1 supergravity multiplet, made of a graviton, B-field, dilaton, two
vector fields as well as spin-32 and spin-12 Majorana fermions (gravitino and a dilatino), can
be coupled to any number of vector multiplets each comprising a vector field (photon), a
gauginio (spin-12 Majorana fermion) and 2 real scalars [6]. Supposing the number of vector
multiplets is l, the 2l real scalars contained in the matter sector parametrize the moduli
space given by a Kähler manifold

M =
SO(2, l)

U(1)× SO(l)
. (1.1)

These l vectors together with two vectors in the gravity multiplet form an (l+2)-dimensional
representation of SO(2, l).

The first restriction on admissible values of l once more comes from anomalies - theories
with odd numbers of Majorana fermions in 8D and 9D suffer form global anomalies [7], and
hence l has to be even [8]. There are further restrictions:

• In theories with 16 supercharges in D dimensions the number of vector multiples
consistently coupled to gravity is bound by 26−D in order to assure the unitarity of
strings couples to the theory [9]. Hence l ≤ 18.

• Considering 8D theories on particular backgrounds and using 6D anomaly cancellation
it has been argued that in fact the only admissible values of l are l = 2, l = 10 and
l = 18 [8].

• The symmetry enhancement (as well as the rank of of the YM algebra coupled to string
probes) as predicted by the consistency of the supergravity [10] is an agreement with
the landscape of 8D string constructions [11, 12].

• In the formulation of the theory with a four-form potential in the gravity multiplet,
constraints on the global structure of the gauge groups can be deduced from the the
absence of anomalies between large gauge transformations of B4 and 1-form symme-
tries [13, 14]1.

We would like to reexamine these results from the point of view of 8D anomaly cancellation.
Neither the N = 1 theory nor its N = 2 counterpart, where the scalars parametrize
the SL(2) × SL(3)/ (U(1)× SO(3)) coset, suffers from chiral anomalies. However, both

1Somewhat orthogonal to our discussion, global anomalies and topological analogues of Green-Schwarz
mechanism have been discussed in 8D with 16 supercharges [15] and in 10D type IIB theory [16]. In this
paper we are mostly concerned with the existence of local counterterms.
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theories, with 16 and 32 supercharges, have local anomalies under the composite U(1) in
the denominator of the coset.

The moduli space of supergravity theories with extended supersymmetry typically has
scalars parametrizing a coset G/H. The numerator of the coset, G, denotes the U-duality
group of the theory, and some discrete version of it gives rise to an exact symmetry after
quantization. Theory can be formulated in a way that G acts only on bosonic fields. The
denominator H, which is the maximal compact subgroup of G, is regarded as a gauge
symmetry of the theory. Indeed, the compact part of the Cartan-Maurer form of the coset
element transforms as a gauge field under the H transformations. The supersymmetry
variations of all fermionic fields, which are inert under G, involve this composite connection
corresponding to H. When H contains a U(1) factor, it may couple to fermions in a chiral
fashion, a priori giving rise to a composite chiral anomaly [17]. This is exactly what happens
in eight dimensions.

The physical content of the theory is usually identified by fixing the gauge, thereby
eliminating the redundant bosonic degrees of freedom associated to H. When the local sym-
metry is gauge fixed, the U-duality becomes non-linearly realized. Moreover, the fermionic
fields now transform under G. Part of this transformation may still be realized as a nontriv-
ial phase shift. Therefore, the gauge fixing translates the U(1) anomaly into an anomaly
under the surviving discrete part of G, making the theory ill-defined.

The existence of this anomaly implies that the symmetry group (SL(2;R) or SO(2, l;R)
in N = 2 and N = 1 theories respectively) may not be continuously maintained in the
quantum theory. For the theory to be consistent, a cancellation mechanism should be
figured out, in the process deciding to what extend the symmetry survives. The question is
if it can be done by the addition of a local counterterm with appropriate modular properties
under the transformation of the discrete version of G. Originally such counterterm was
discussed in the context of ten-dimensional IIB string theory [18], but the formalism is
adapted to 8D theories as well [18, 19]. An (in)ability of finding such a counterterm is the
reason why the value of l and the lattice structure of the gauge group in 8D get restricted.2

Let us outline the anomaly cancellation mechanism, up to a point trying to keep the
discussion general and applicable to both N = 1 and N = 2 theories. Denoting the
anomalous composite U(1) connection by Q and its curvature by FQ, the anomaly is given
by the descent formula from the ten-form anomaly polynomial

I10 =
FQ

2π
∧X8 , (1.2)

where X8 = X8(R) is an eight-form polynomial in curvature two-form R for the N = 2

theory (whose precise form will be very important in our discussion) and X8 = X8(R,F) a
polynomial in R and the non-abelian gauge field strength F for N = 1 case (the exact form
of the polynomial in this case on the contrary is not going to play any role in our discussion).
The resulting anomalous phase variation in the partition function ∆ = −

∫
ΣX8 can locally

2The construction of the counterterms naturally introduces modular forms. A review of modular forms
and their important applications in physics can be found in [20].
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be cancelled by adding a term to the action

Sϕ =

∫
ϕX8 , (1.3)

where ϕ is a scalar degree of freedom transforming under U(1): ϕ → ϕ + Σ. This ϕ can
be set to zero by gauge fixing (think of the third scalar in SL(2;R)), but since δMϕ ̸= 0

under the G-valued transformation M , the local counterterm is not G-invariant. As shown
explicitly for SL(2,R) in [18] and will be extended to SO(2, l;R) here, one can design a
counterterm S such that under the G-valued transformation M

δMS = −δMSϕ + argχ(M)

∫
X8 , (1.4)

where χ(M) is a phase factor and δMSϕ =
∫
ΣX8. If this phase factor χ(M) ≡ 1 for any

M ∈ G there will be a complete anomaly cancellation but that does not always happen.
Note that in general it should suffice that the partition function is well-defined, and hence
δM of the entire action integrates to an integer (times 2π).

At this point, the situation becomes drastically different for N = 1 and N = 2 cases.

• For N = 2, i.e. G = SL(2,R) it is shown in [18] that χ(M) cannot be equal to 1.
However (1.4) is not the only part of the action that is not invariant under δM . It
might appear somewhat counter-intuitive but the reduction of the higher dimensional
Chern-Simons terms also yields a non-invariant term. The result is that there are no
particular intergrality condition imposed on

∫
X8 in generic backgrounds. Instead,

turning non-trivial four-form fluxes is required.

• For N = 1, there are no extra non-invariant terms. Thus, the value of χ(M) depends
on l and on the details of the lattice of signature (2, l), which will naturally appear
during the construction of counterterms. So at the first glance this presents a dilemma:
either one should be imposing case-by-case integrality conditions on

∫
X8(R,F) or, as

we shall argue, opt for a universal consistency condition and require that χ(M) = 1

for every N = 1 theory.

Regardless of philosophy, let us turn to the details of how (1.4) works. The first important
point is the precise form of δMϕ. For instance, in 10D Type IIB supergravity or in N = 2

theory in 8D, the coset element of SL(2)/U(1) is parametrized by the modular parameter
τ and the compensating U(1) transformation under the SL(2;R) takes the form

e−iΣ(M,τ) =

(
cτ + d

cτ̄ + d

) 1
2

, M ∈

(
a b

c d

)
, M ∈ SL(2,R) , τ ∈ H . (1.5)

The second crucial point is that there exists a function of τ , the Dedekind eta function
η(τ), that under SL(2,Z) transformation picks a factor ∼ (cτ + d)1/2. As a consequence, a
ratio of η(τ) and its complex conjugate can be used in constructing the counterterm [18].
As mentioned there can be a phase factor χ(M), and the consequences of for N = 2 theory,
where it is necessarily nontrivial, will be discussed in section 2.
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In this paper we are mainly interested in the eight-dimensional supergravity with 16

supercharges, and the moduli space of the theory is given by M (1.1). The moduli space
M is a realization of the hermitian symmetric space. Moreover, the tube domain, called
the generalized upper-half plane Hl, can be realized in this space [21, 22]. We find that
the generalized upper-half plane Hl provides the correct framework to describe the gauge
transformations. By introducing Calabi-Vesentini coordinates [23], we explicitly compute
the U(1) gauge potential and its field strength, and show how the U(1) compensating
transformation generalizes equation (1.5). It is formed by the so called automorphy factor
j(M,Z) (where M is an SO(2, l;R) transformation, and Z denotes the coordinates on the
generalized upper half plane):

e−iΣ(M,Z) =
j(M,Z)

|j(M,Z)|
. (1.6)

Equivalently we have −Σ = arg j(M,Z) = Arg j(M,Z) + 2kπ for k ∈ Z and Arg denotes
the principal branch of the argument taking the value from [−π, π). Finding a function
Ψ(Z) such that

Ψ(M⟨Z⟩) = χ(M)j(M,Z)rΨ(Z) (1.7)

would allow to construct the counterterm S as

S =
1

r

∫
argΨ(Z)X8 . (1.8)

Indeed such functions, or more precisely meromorphic modular forms on the orthogonal
group O(2, l) of weight r and multiplier system χ, can be found by using the Borcherds
products [24]. The original discovery that the automorphic forms on O+(2, s+2) (l = s+2)
can be written as infinite products was made in the context of unimodular latices. Following
the use of theta correspondence, which gave an alternative approach to these results [25],
the generalisation of the constructions of modular forms to non-unimodular lattices was
provided [26].

The case l = 2 case requires special treatment. Strictly speaking, the Borcherds product
does not apply and an alternative derivation of the counterterms is needed.

As we shall see, the requirement that the modular form Ψ(Z) has a trivial χ(M) ≡ 1,
ensuring the complete anomaly cancellation, is not particularly restrictive. However there
is an additional consideration: the local counterterms constructed from the meromorphic
Ψ(Z) are not well defined at its zeros or poles. On any Borcherds product these points
lie on the so-called rational quadratic divisors (RQD). In fact some of these divisors have
physical interpretation and correspond to the symmetry enhancement points in the moduli
space [25].3 For these, the theory will continue being consistent even if the counterterm
is not well-defined. Moreover the gauge symmetry enhancement should be in agreement
with the symmetries of the lattice. We will show that these physical constrains lead to the

3Note that this observation was first made in the context of threshold corrections 4D N = 2 theories,
and the functions involved are required to be automorphic. Here we need anomaly cancelling counterterms,
which require modular forms of non-trivial weights. We shall return to the comparison of the 4D and 8D
in section 7.
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requirement that the lattice is reflective (defined in section 5). The number of reflective
lattices is finite and their rank is bounded by l = 26. These bounds are less stringent than
those imposed by swampland.

The organisation of this paper is as follows. In section 2, we discuss the anomaly
cancellation in eight-dimensional theory with 32 supercharges and the constraints imposed
on consistent backgrounds. Other than brief comments in the last section of the paper,
this is the only part concerned with the maximally supersymmetric theory. The bulk of the
paper is about the theories with 16 supercharges. In section 3 we spell out the anomaly that
needs to be cancelled, and introduce the necessary mathematical preliminaries needed for
the construction of the counterterms (with further details collected in appendix B). Section 4
is devoted to the derivation of the compensating U(1) transformation (equation 1.6). The
construction of counterterms is presented in section 5. In this section we also consider
the implications of zeros and poles of the modular forms and the ensuing constraints on
admissible lattices. This discussion is suitable only if l ≥ 3. The l = 2 case requires a
separate discussion that is presented in section 6. A brief summary and discussion of some
open questions are presented in section 7.

2 Anomaly cancellation in maximal supergravity

We first discuss the mechanism in N = 2 and the implications of χ(M) ̸= 1. The moduli
space of the theory is

SL(2,R)
U(1)

× SL(3,R)
SO(3)

, (2.1)

and the first factor (the only one relevant for the anomaly) is parametrized by τ . The theory
was originally obtained by reducing the 11D supergravity [27]. The conversion into an SL(2)
covariant formalism requires taking τ = −2C8910 + iVT 3 . Alternatively, the reduction on
T 2 of Type IIB theory can be considered, and there τ is identified as the complex structure
of the torus.

The counterterm derivation would follow closely the discussion of [18] for 10D type IIB
theory, and details of the 8D can be found in [19], so we will be brief.

The field content of this 8D theory is given by a single supermultiplet which contains one
graviton, two gravitini (doublet under Spin(3) = SU(2)), six vectors, six dilatini (doublet
+ quadruplet under Spin(3) = SU(2)), seven real scalars, three two-forms and one three-
form. The U(1) charges of the gravitini, of the doublet of dilatini and of the quadruplet
of dilatini are respectively (they are all positive chiral): 1

2 ,
3
2 and −1

2 . Finally, the 4-form
field strength can be split in self-dual and anti-self-dual part, carrying charges 1 and −1

respectively under U(1). Hence, the 10-form anomaly polynomial is given by

I10 =
FQ

2π
∧
[
2× 1

2
Id=8
3/2 − 4× 1

2
I1/2 + 2× 3

2
I1/2 + 2× ISD

]
8−form

, (2.2)

where, FQ is the composite field strength built out of τ : F = dQ = dτ∧dτ̄
4iτ22

. The anomalous
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phase variation of the path integral is given by [19, 28]

∆ = −12

∫
Σ X8(R) = −12

∫
Σ

192(2π)4

(
trR4 − 1

4
(trR2)2

)
. (2.3)

As discussed, gauge fixing translates the U(1) anomaly into an SL(2,Z) anomaly.

Maximal eight-dimensional supergravity has a 1-loop UV divergence which breaks local
non-linear supersymmetry. This is in agreement with the local U(1) composite anomaly
since the commutator of two local non-linear supersymmetries contains this local U(1) [29].4

The form of the the compensating U(1) transformation is given in (1.5), and −δMϕ =

arg(cτ + d) and in the notation of (1.7), j(M, τ) = cτ + d. Hence ideally one would require
a well-defined modular form f(τ) satisfying

f(Mτ) = (cτ + d)rf(τ) , Mτ =
aτ + b

cτ + d
, (2.4)

for arbitrary transformation M ∈ SL(2,Z) in order to cancel the anomaly. In addition,
we also require the counterterm built from f(τ) to have correct decompactification limit.
This condition, as we shall see momentarily, is satisfied if and only if the function f is a
cusp form. As already discussed, the counterterm can be constructed from the well-known
Dedekind eta function η(τ), which is the weight 1

2 cusp form. However, the Dedekind eta
function has non-trivial multiplier system (see appendix A), which can be given in terms
of the standard T and S generators, χη(T ) = e

πi
12 and χη(S) = e−

πi
4 .

To recap, a counterterm built solely from η(τ) and curvatures;

12

∫
arg(η2(τ))X8 , (2.5)

will not cancel the SL(2,Z) anomaly unless
∫
X8 ∈ Z. It is not hard to come up with ex-

amples of consistent supersymmetry-preserving string backgrounds where such a condition
does not hold. We propose that the correct, much milder, requirement is∫ [

X8 +
1

2
G ∧G

]
∈ Z . (2.6)

As the first step towards justifying this claim let us recall that at the large volume limit,
i.e. when Im τ → ∞, the cusp form η(τ) has limit

lim
Im τ→∞

arg
(
η2(τ)

)
=
πτ1
6

(2.7)

Recalling that there is a term ∼ τ among the couplings of the classical 8D supergravity,
obtained from the reduction of the 11D Chern-Simons term, the large volume limit of the

4We thank Renata Kallosh for bringing this to our attention.
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anomalous couplings (2.5) becomes:

lim
Im τ→∞

S = 2π

∫
τ1

[
X8 +

1

2
G ∧G

]
. (2.8)

Further decompactification to nine dimensions yields

2π

∫
A1 ∧

[
X8 +

1

2
G ∧G

]
. (2.9)

For type IIA A1 = Bµ9dx
µ, and further lift recovers the full set of 10D Chern-Simons

couplings [30, 31]. Note that the two term combination - with an importantly fixed relative
coefficient - is needed for the simultaneous cancellation of failure of the diffeomorphism
invariance and C3 → C3 + dΛ2 transformation in the presence of fivebranes. For IIB,
A1 = (α′/R2

9) gµ9dx
µ, where R is the radius of the circle, and the coupling is suppressed

in the IIB ten-dimensional limit. The origin of the two terms is respectively the winding
mode one-loop contribution and the self-duality of the IIB five-form field-strength [32, 33].

One may also note that (2.6) is the condition that appears in the tadpole cancellation in
M-theory compactifications to 3D and lower. It would be natural that when considering M-
theory on backgrounds that involve a product of 3D and 8D spaces, the integrality condition
that is imposed on 8D part involves the same players regardless of 8D space being compact
or not (up to possibly boundary modifications).

Should one try to think of (2.8) as a large volume limit not only for the first term,
but also the second? Indeed, having G ∧G multiplied by a nontrivial modular function of
τ of weight zero (that does not pick up a j(M, τ)r factor) with the same phase factor as
η2(τ) would result in a complete cancellation of the SL(2,Z) anomaly without imposing
any ad hoc conditions on the 8D space-time. Given that the coupling τ1G∧G is not SL(2)
invariant (the existing 8D supergravity action constructed from reduction of 11D theory has
only explicit SL(3) symmetry), such a modification would appear not unwelcome. From
other side, if the eight-dimensional spacetime has an isometry it should be possible to
recast the maximally supersymmetric theory in an explicitly SL(5) invariant form. Note
that upon reduction the four-form G gives rise to a pair of fields with 3-form field strength
which together with three 8D 3-forms will form a quintet of SL(5), and the Chern-Simons
coupling becomes part of kinetic term for this quintet. A nontrivial function in τ will
obstruct promoting SL(2) × SL(3) to SL(5). At the same time, existence on an isometry
would render the 8-form on 8D manifold X8(R) trivial, and its integral will vanish. Putting
all these considerations together, we arrive a modification∫

τ1
1

2
G ∧G 7→

∫
[τ1 + x(6 arg(g(τ))− τ1)]

1

2
G ∧G , (2.10)

where x can take only two values, x = 0 for trivial X8 and x = 1 otherwise.5 To obtain

5Note that X8 being nontrivial necessarily means that only a fraction of supersymmetry is preserved.
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(2.6) while agreeing with (2.8), we should require that

g(Mτ) = χ2
η(M)g(τ) . (2.11)

and has the same large volume limit as arg
(
η2(τ)

)
(2.7).

A natural way for finding g(τ), is to use the quotient η2(τ) by the well-defined modular
form of weight 1 that does not have an extra phase (and goes to 1 in Im τ → ∞ limit).
The theta function θ(τ) transforms under the congruence subgroup Γ0(4) as shown in
equation (A.12) and has the limit θ2(τ) → 1 under Im τ → ∞. Γ0(4) has three generators

−1 =

(
−1 0

0 −1

)
, T =

(
1 1

0 1

)
, W =

(
1 0

4 1

)
. (2.12)

Only under the −1,
(−1

d

)
= −1. In other words, if we consider the physical symmetry

PΓ0(4) = Γ0(4)/{±1}, θ2(τ) acts as weight 1 modular form with trivial character. With
these considerations, we see that restricting the symmetry group to Γ0(4) the function

g(τ) =
η2(τ)

θ2(τ)
(2.13)

satisfies all necessary requirements. Hence for

S(x = 1) = 12

∫ [
arg(η2(τ))X8 + arg

(
η2(τ)

θ2(τ)

)
1

2
G ∧G

]
, (2.14)

under the transformation M ∈ PΓ0(4),

δMS + δMSϕ = 12 arg
(
χ2
η(M)

) ∫ (
X8 +

1

2
G ∧G

)
. (2.15)

The multiplier system (or character) χ2
η(M) is of order 12 with respect to the group SL(2,Z)

(or Γ0(4)), and imposing the integrality condition (2.6) on
[
X8 +

1
2G ∧G

]
(rather than on

X8(R)) leaves the partition function invariant and is sufficient for the anomaly cancellation.
While the counterterm (2.14) works only for M ∈ PΓ0(4), this does not signify the

breaking of actual symmetry of the theory but rather a problem of supergravity action,
which we recall once more displays SL(2) symmetry only at the level of equations of motion.

It would be interesting to verify the coupling (2.14) directly by string theory calculation,
which for x = 1 has to be done in a nontrivial gravitational background.

3 Minimal supergravity and lattices of (2, l) signature

We can now turn to the minimal supergravity in 8D and its possible anomaly counterterms.
Generically such theory comprises a single gravity multiplet and l vector multiplets. The
field content of N = 1, D = 8 supergravity is given by(

e m
µ , ψµ, χ,Bµν , A

i
µ , σ

)
, i = 1, 2, (3.1)
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where e m
µ is the graviton, ψµ is the gravitino, χ is dilatino, Bµν is the antisymmetric tensor

(background field), σ is the dilaton. Both ψµ and χ are pseudo-Majorana spinors. A i
µ and

the scalar σ are real. Coupling l vector multiplets of the form (λ,Aµ, ϕ
i) and combining

the field content together we obtain(
e m
µ , ψµ, χ,Bµν , A

I
µ , ϕα, σ

)
, (3.2)

where I = 0, . . . , l + 1, α = 1, . . . , 2l. Here we adopt the metric convention

ηAB = ηIJ = (+1,+1,−1, . . . ,−1) . (3.3)

The 2l real scalars ϕα parameterize the moduli space

M =
SO(2, l)

SO(2)× SO(l)
∼=

SO(2, l)

U(1)× SO(l)
. (3.4)

The fermions of the theory have chiral couplings to one of the composite U(1) in the
denominators of the coset [6]. The U(1) charges of the gravitino (positive chirality), the
dilatino (negative chirality) and the gaugini (positive chirality) are all 1

2 .
6 Hence, the

anomaly polynomial is
I8D = I3/2 − Idilatino

1/2 + Igaugini
1/2 . (3.5)

If the gauge group is given by G (rank(G) = l), the gaugini couple both to G (the fields
strength of the gauge field will be denoted by F) and the composite U(1) (whose field
strength is again denoted by FQ = dQ). The resulting polynomial is of the form (1.2) with
(see [19] for details)

X8(R,F) =

1

32(2π)3

[
(248 + dimG)

[
trR4

360
+

(trR2)2

288

]
− (trR2)2 +

1

6
trR2TrF2 +

2

3
TrF4

]
,

(3.6)

and given the variation δQ = dΣ the anomalous phase is

∆G = −
∫

ΣX8(R,F) , (3.7)

The precise form of X8(R,F) in (3.7) is not important for our discussion. The idea is
to constrain the admissible theories and their lattices rather than try to cancel (3.7) by
imposing case by case conditions on the integrality properties of X8(R,F). In addition, the
counterterm can be changed by adding massive states and integrating them out. While the
role of the massive completions presents interesting questions, here we are concerned by
the possibility of writing a counterterm that will lead to an anomaly cancellation for any
(discrete) SO(2, l) transformation.

The construction of the counterterm will be following the discussion of the N = 2 case

6Notice that the same charge assignment is valid in dual formulation of the theory where the two-form
B is replaced by a four-from [34], and the discussion of the counterterms applies to both.
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in Sec. 2, but now we will be interested in modular forms for orthogonal group SO(2, l).
We will have to construct the compensating U(1) with respect to this group (see Sec. 4)
and find the modular forms with right properties to serve as counterterms (1.8).

In the rest of this section we will discuss some of the necessary background and set
up the notation. In order to make the presentation self-contained, we will include some of
the basic definitions. Further details can be found in Appendix B, where the presentation
follows closely [21, 22].

3.1 Lattices of (2, l) signature and generalized upper half plane

A typical lattice L in Rb has the form L :=
{∑b

i=1 aivi|ai ∈ Z
}

, where {v1, . . . vb} is the
basis set. Usually the lattice is equipped with a quadratic form q : L → R, which defines
the norm of the vector x in the lattice as q(x) and naturally induces a symmetric bilinear
form (·, ·) : Λ× Λ → R

(x, y) := q(x+ y)− q(x)− q(y) , for x, y ∈ L . (3.8)

It is easy to see that q(x) = 1
2(x, x) since q is a quadratic bilinear form. The lattice is called

even if q(x) ∈ Z for arbitrary x ∈ L. The dual lattice L′ is defined as

L′ := {y ∈ L⊗ Q| (y, x) ∈ Z for ∀x ∈ L} . (3.9)

A lattice L is called self-dual or unimodular if it is equal to its dual L = L′. The quadratic
form q has signature, denoted by (b+, b−) and b+ + b− = b, where b+ (b−) denotes the
number of the + (−) signs. An important theorem states that there are no indefinite even
unimodular lattices unless b+ − b− ≡ 0 mod 8.

Let us denote the lattice and its quadratic form by a pair (L, q). Suppose (L, q) is a
lattice that has a signature (2, l). Consider the Grassmannian of 2-dimensional subspaces
of V = L⊗ R on which the quadratic form is positive definite

Gr2(V ) := {v ⊂ V |dim v = 2 and q|v > 0} , (3.10)

where q|v > 0 means that for every element x ∈ v, q(x) > 07. We define the orthogonal
group and the special orthogonal group as

O (V ;R) := {σ ∈ Aut(V )|σ is an isometry of V } , SO (V ;R) := {σ ∈ O(V ;R)|detσ = 1} .

Since V is a usual linear space on Rl+2, one can think of these two as matrix groups. If
two spaces V1, V2 have the same signature, it can be proved that the orthogonal groups
are isomorphic, i.e. O(V1;R) ∼= O(V2;R). Thus we can denote the (special) orthogonal
group by using the signature like O(2, l;R) (SO(2, l;R)). One can prove that O(2, l;R)
acts transitively on Gr2(V ). If v0 ∈ Gr2(V ) is fixed, the stabilizer K of v0 is a maximal

7We have defined q on the lattice L, i.e. q(vi) has a clear definition for 1 ≤ i ≤ l + 2. With the help of
the induced bilinear form (x, y) = q(x + y) − q(x) − q(y), we can safely extend the quadratic form to the
space V = L⊗ R.
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compact subgroup of O(2, l;R) and K ∼= O(2) × O(l). This constructs an isomorphism
Gr2(V ) ∼= O(2, l;R)/K, which is a realization of the hermitian symmetric space.

To see the complex structure, we consider the complexification V (C) = V ⊗ C of V .
Since V is has negative signatures, there exists non-trivial isotropic vector x, which satisfies
q(x) = 0 and x ̸= 0. The isotropic subspace (or called the zero quadric) is

I := {ZL ∈ V (C)\{0}| (ZL, ZL) = 0} . (3.11)

We consider the projective space PI := I/ ∼, where the equivalence relation is ZL ∼ tZL

for arbitrary t ∈ C, t ̸= 0. The equivalence class can be denoted as [ZL]. Consider the
subset

K :=
{
[ZL] ∈ PI| (ZL, ZL) = 0, (ZL, ZL) > 0

}
, (3.12)

K is a complex manifold of dimension l consisting of two connected components. The
subgroup O+(2, l;R) of elements whose spinor norm equals the determinant preserves the
components of K, whereas O(2, l;R)\O+(2, l;R) interchanges them. We can denote the
components K+ and K− respectively.

For arbitrary ZL ∈ V (C), we can write ZL = XL + iYL, XL, YL ∈ V , and construct a
map between K+ and Gr2(V )

[ZL] 7−→ v(ZL) = {aXL + bYL| a, b ∈ R} . (3.13)

This map is an analytic isomorphism. Thus, the set K+ and the map indeed provide a
complex structure on Gr2(V ). We refer the reader to [22] for detailed proof.

As mentioned, for the N = 1 theory with a duality group SO(2, l;R) we shall try to
replicate the discussion of N = 2 case with the duality group SL(2;R). The moduli space
is much more complicated however, and some generalisations are not straightforward. An
important concept, useful for us, is that of the generalized upper-half plane corresponding
to the SO(2, l;R) transformation. We will first describe the formal way of constructing the
generalized upper-half plane Hl [22]. A specific method for achieving the generalization
[35, 36], which is more appropriate for our discussion, will be discussed later.

Suppose z ∈ L is a primitive norm zero vector, i.e. q(z) = 0 and Qz ∩ L = Zz. Let
z′ ∈ L′ be another vector which satisfies (z, z′) = 1. We define the sub-lattice K

K := L ∩ z⊥ ∩ z′⊥ , (3.14)

where z⊥ denotes the orthogonal subspace of z, such that that all vectors x in this subspace
satisfy (x, z) = 0. Then K is Lorentzian, i.e. of the signature is (1, l− 1). The space V can
be decomposed into

V = Rz ⊕ (K ⊗ R)⊕ Rz′ , V (C) = Cz ⊕ (K ⊗ C)⊕ Cz′ . (3.15)

For arbitrary vector ZL ∈ V (C), there exists a unique combination (a, Z, b) such that
ZL = az + Z + bz′, Z ∈ K ⊗ C, a, b ∈ C, which means that we can use the combination

– 12 –



(a, Z, b) to represent a vector. We define a set H̃l

H̃l = {Z = X + iY ∈ K ⊗ C|X,Y ∈ K ⊗ R, q(Y ) > 0} . (3.16)

Since the lattice K has signature (1, l− 1), the set of positive-norm vectors in K ⊗R splits
into two connected components, K±. We define the map f

f : H̃n −→ K
Z 7−→ f(Z) =

[(
−q(Z)− q(z′), Z, 1

)]
,

(3.17)

where (−q(Z)− q(z′), Z, 1) is an l + 2 dimensional vector is space V (C). As the refer-
ences [21, 22] show, f is a biholomorphic map. Under the map f , two connected compo-
nents of H̃l map into the two connected components K± of K separately. We choose Hl to
be the component of H̃l that maps K+. This realization of K+ as a tube domain can be
viewed as generalized upper-half plane Rl + iΩl, where Ωl is the positive-norm cone.

3.2 Action of O(2, l) on generalized upper-half plane

To construct the generalized upper-half we will split the lattice (L, q) into (L, q) = (L0, q0)⊕
Π1,1 where (L0, q0) is a lattice of signature (1, l − 1), equipped with the quadratic form q0
and Π1,1 is the unimodular lattice with signature (1, 1) equipped with the quadratic form
q((a, b)) = ab. The generalized upper-half plane can be defined in the following way

Hl = {Z = X + iY ∈ L0 ⊗ C|X,Y ∈ L0 ⊗ R, Y ∈ P} , (3.18)

where P denotes the future light cone of the Minkowski space L0 ⊗ R.
We set l = s+ 2 and take s ≥ 0 and even throughout the discussion. Suppose Ŝ is an

s × s symmetric positive definite real matrix (when s = 0, Ŝ collapses, but the discussion
bellow still applies) and define

S0 =

 1

−Ŝ
1

 ∈ Sym (s+ 2;R) ,

S =

 1

S0
1

 ∈ Sym (s+ 4;R) ,

(3.19)

where Sym(s+2;R) denotes the set of (s+2)×(s+2) symmetric real matrix. We then define
for ZL ∈ L (or L ⊗ C), q(ZL) =

1
2Z

T
LSZL and for Z ∈ L0 (or L0 ⊗ C), q0(Z) = 1

2Z
TS0Z.

Here the superscript T means the transpose operation.
In the following we will frequently use the notation L(N) for a positive integer N (Some

references use the notation
√
NL). L(N) indicates the lattice with the same basis as L but

equipped with the scaled quadratic form NS (or vectors scaled by factor
√
N equivalently).

We consider explicitly only the lattices L = Π1,1(1)⊕ Π1,1(1)⊕ L̂ with lattice L̂ equipped
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with the quadratic form Ŝ. The discussion can be extended to L = Π1,1(N1)⊕Π1,1(N2)⊕ L̂
for arbitrary positive integer N1,2 and the results still apply.

With the help of these quadratic forms, by setting z = (1, 0, . . . , 0)T ∈ L and z′ =

(0, . . . , 0, 1)T ∈ L′, the map f (3.17) can be written as

f : Hl −→ K+

Z 7−→ [ZL] =
[
(−q0(Z), Z, 1)T

]
.

(3.20)

The (special) orthogonal transformation O(2, l;R) (SO(2, l;R))8 now is

O(2, l;R) =
{
M ∈ Mat(l + 4;R)|MTSM = S

}
,

SO(2, l;R) =
{
M ∈ SL(l + 4;R)|MTSM = S

}
.

(3.21)

Since K+ and Hl are isomorphic, the action of O+(2, l;R) on the set K+ naturally induces
the action on the generalized upper-half plane Hl. If M ∈ O+(2, l;R), the action on K+ is
defined as

M : K+ −→ K+

[ZL] 7−→ [MZL] ,
(3.22)

where MZL is the usual linear transformation of a vector in Cl+2. Because the real or-
thogonal transformation will not change the the norm (ZL, ZL) and (ZL, ZL), the element
[MZL] still stays in the set K+. Then we can define the action of M on the generalized
upper-half plane Hl, Z 7→M⟨Z⟩, such that the following diagram commutes

K+ K+
[ZL] 7→ [MZL]

Hl Hl

f

Z 7→M⟨Z⟩

f
. (3.23)

In the equation form we have

[Mf(Z)] = [f (M⟨Z⟩)] . (3.24)

For convenience, we decompose the matrix M in the following way

M =

α aT β

b P c

γ dT δ

 ∈ O+(2, l;R) ,


α, β, γ, δ ∈ R,

a, b, c, d ∈ Rl,

P ∈ Mat (l;R) .

(3.25)

8The definition here, while using a different metric, is isomorphic to the definition using η =
(+1,+1,−1, . . . ,−1).

– 14 –



Expanding the equation (3.24), we haveα aT β

b P c

γ dT δ


−q0(Z)

Z

1

 =

−αq0(Z) + aTZ + β

−bq0(Z) + PZ + c

−γq0(Z) + dTZ + δ

 = j(M,Z)

−q0(W )

W

1

 , (3.26)

where W = M⟨Z⟩, j(M,Z) ∈ C. From this equation we extract the definition the action
of (special) orthogonal group on the generalized upper-half plane Hl directly

W =M⟨Z⟩ := (−bq0(Z) + PZ + c)
(
−γq0(Z) + dTZ + δ

)−1
,

j(M,Z) := −γq0(Z) + dTZ + δ .
(3.27)

With such definition, the equality (3.26) clearly holds for last two components. The first
components of the vector on two sides of (3.26) are equal due to the norm-zero condition.

3.3 Modular forms on generalized upper-half plane

As proposed in the section 1, a specific function transforming in the particular way under
the modular group (1.7) will play a central role in the construction of the counterterm. We
turn now to the modular forms on generalized upper-half plane, commonly referred to as
orthogonal modular forms. We will restrict for now to l ≥ 3, where the application of the
results of Borcherds [24, 26] apply. The case l = 2 will be considered in section 6.

The pivotal observation is that the group SL(2;R) and O(2, l;R) form a dual reductive
pair. To construct the modular forms of orthogonal group O(2, l), the modular forms on
SL(2,Z) can be lifted by integrating against the Siegel theta function Θ(τ, Z) [25, 26].
A brief review of the relevant background, following the presentation of [21] is given in
appendix B.

Suppose O(L) is the orthogonal group of a even lattice L with signature (2, l) defined
by

O(L) := {M ∈ O(2, l;R)|ML = L} . (3.28)

The orthogonal group of the discriminant group D(L) := L′/L can be defined similarly and
will be denoted as O(L′/L). We then denote by Od(L) the discriminant kernel of O(L),
which is the subgroup of finite index of O(L) consisting of all elements which act trivially
on the discriminant group L′/L, i.e.

Od(L) := Ker
(
O(L) → O(L′/L)

)
. (3.29)

We define the intersection with O+(V ), V = L⊗ R as the modular group

Γ(L) := O+(V ) ∩ Od(L) . (3.30)

Recalling the definition of j(M,Z), we can rewrite it as j(M,Z) = (MZL, z) with l + 2-
dimensional vectors z = (1, 0, . . . , 0)T and ZL = (−q0(Z), Z, 1)T . Following Theorem 13.3
in [26] (Theorem B.1), we can lift a nearly holomorphic modular form f(τ) =

∑
γ∈L′/L fγeγ :
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H → C[L′/L] (see Definition B.3) of weight 1− l/2 with Fourier expansion

f(τ) =
∑

γ∈L′/L

∑
n∈Z+q(γ)

c(γ, n)eγ(nτ) , (3.31)

to the meromorphic function Ψ(Z) : Hl → C with the following transformation property

Ψ(M⟨Z⟩) = χ(M)j(M,Z)c(0,0)/2Ψ(Z) , M ∈ Γ(L) . (3.32)

χ(M) is called the multiplier system (see Definition B.4) and Ψ(Z) is a modular form
on generalized upper-half plane (also called Borcherds product) of weight c(0, 0)/2 with
the multiplier system (or character if the weight is integer) χ and modular group Γ(L).
This modular group contains some elements that do not preserve orientation. Since our
symmetry group is SO(2, l;R), the modular group we use is actually SΓ(L) := Γ(L)∩SO(L).
We will be interested in the logarithm (the argument) of such modular forms. Hence we
also need the information of its poles and zeros, where the argument at these points is not
well defined. Remarkably, the positions of zeros and poles are totally determined by the
principal part, consisting of all the terms with n (in equation (3.31)) negative∑

β∈L′/L

∑
n∈Z+q(β)

n<0

c(β, n)eβ(nτ) .
(3.33)

By Theorem 13.3 in [26] (Theorem B.2), zeros and poles of Ψ(Z) lie in the divisor (Ψ),
which is the linear combinations of rational quadratic divisors H(β,m) (Heegner divisors).
The rational quadratic divisors H(β,m) are unions of orthogonal subspaces Hλ with respect
to the vector λ ∈ β + L, for β ∈ L′/L and rational negative norm m,

Hλ =
{
[ZL] ∈ K+| (ZL, λ) = 0

}
. (3.34)

A rational quadratic divisor H(β,m) is defined as

H(β,m) =
∑

λ∈β+L
q(λ)=m

Hλ .
(3.35)

The zeros and poles of Ψ(Z) are contained in the divisor (Ψ) which is given by

(Ψ) =
1

2

∑
β∈L′/L

∑
m∈Z+q(β)

m<0

c(β,m)H(β,m) .
(3.36)

These rational quadratic divisors are closely related to the gauge symmetry enhancement
[25]. We will return to this in section 5.
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4 Composite U(1) in minimal supergravity

We can now turn to computing the compensating U(1) transformation. As the first step a
suitable parametrization of the coset space

M =
SO(2, l)

SO(2)× SO(l)
∼=

SO(2, l)

U(1)× SO(l)
(4.1)

is needed. The coset construction in [6] provides a good starting point. At the level of Lie
algebra the representative of the coset so(2, l)/ (so(2)⊕ so(l)) can be written as a matrix(

02×2 H2×l

(HT )l×2 0l×l

)
, H ∈ Mat(2× l,R) . (4.2)

Here the 2l real scalars ϕα in N = 1 vector multiplets (see (3.2)) are packaged in H, and
Mat(2 × l,R) is the set of the real 2 × l matrices. An element Λ ∈ M, ΛT ηΛ = η, can be
represented as

Λ = exp

(
0 H

HT 0

)
=

(√
1 + qqT q

qT
√
1 + qT q

)
, (4.3)

where q ∈M(2× l,R) is given by

q = H

(
sinhHTH

HTH

) 1
2

. (4.4)

By direct matrix multiplication we can see that√
1 + qqT = cosh

(
HHT

)1/2
,
√
1 + qT q = cosh

(
HTH

)1/2
. (4.5)

The matrices
√

1 + qqT and
√

1 + qT q satisfy the relation√
1 + qT q = 1 + qT

(√
1 + qqT − 1

)
(qqT )−1q , (4.6)

which can be checked by squaring the expression on the both sides. The negative power of
the matrix in this expression should be considered in the sense of Taylor expansion since
the matrix HTH might not be invertible. Based on this parametrization, we can further
simplify the expression by introducing the so called Calabi-Vesentini coordinates [23, 37].

The matrix elements can be labeled by Λ A
I , with I being the row index and A represents

the column index. All the capital Latin indices take integer value from 0 to l + 1 (I, A =

0, 1, . . . , l + 1), and the metric-preserving property can be written in components as

ΛI
AΛ B

J ηAB = ηIJ . (4.7)

The inverse matrix element of Λ−1 is denoted as ΛI
A and satisfies

Λ A
I ΛI

B = δAB , ΛI
A = ηIJηABΛ

B
J . (4.8)
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We can now define
ΦA =

1√
2

(
Λ A
0 + iΛ A

1

)
, (4.9)

which can be verified to satisfy

Φ̄AΦBηAB =
1

2

(
Λ A
0 − iΛ A

1

) (
Λ B
0 + iΛ B

1

)
ηAB =

1

2
(η00 + η11) = 1 ,

ΦAΦBηAB =
1

2

(
Λ A
0 + iΛ A

1

) (
Λ B
0 + iΛ B

1

)
ηAB =

1

2
(η00 − η11) = 0 .

(4.10)

A natural Ansatz for ΦA satisfying these constraints takes the form

ΦA =
XA√

X
A
XBηAB

. (4.11)

where XA are components of a l + 2 dimensional complex vector X⃗ such that X⃗T ηX⃗ = 0.
In terms of XA the matrix (4.3) can be written as

Λ =
1√

2X
A
XBηAB


X0 + X̄0 −i(X0 − X̄0) . . .

X1 + X̄1 −i(X1 − X̄1) . . .
...

... ∗
X l+1 + X̄ l+1 −i(X l+1 − X̄ l+1)

 . (4.12)

Notice that −i(X0 − X̄0) = X1 + X̄1, Λ is a symmetric real matrix.

One way to parametrize XA in terms of of l independent complex scalars is

XA =

(
1 + y2

2
,
i

2
(1− y2), yi

)
, i = 1, . . . , l , (4.13)

where yi is a complex scalar and y2 := yiyi. Here, and in the rest of the discussion, a
summation over all repeated indices is implied. In addition, yi should satisfy [23]

X
A
XBηAB > 0 ⇒ 1− 2ȳiȳi + y2ȳ2 > 0, ȳiyi < 1 , (4.14)

which is the bounded choice of the region for yi, known as Calabi-Vesentini coordinates. In
terms of yi

Λ =
1√

1− 2ȳkyk + y2ȳ2


1 + 1

2

(
y2 + ȳ2

)
− i

2(y
2 − ȳ2) . . .

− i
2(y

2 − ȳ2) 1− 1
2(y

2 + ȳ2) . . .

y1 + ȳ1 −i(y1 − ȳ1)
...

... ∗
yl + ȳl −i(yl − ȳl)

 . (4.15)

Under the parametrization (4.12), it is easy to see that X⃗ is equivalent with tX⃗ if t ∈ R.
Also, recall that Λ is a coset representative, i.e. Λ ∼ ΛU where U is a SO(2) × SO(l)
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transformation parametrized by a real θ:

Λ ∼ ΛU =

√
2√

X⃗†ηX⃗

(
Re
(
X⃗
)
Im
(
X⃗
)
∗
)cos θ − sin θ

sin θ cos θ

USO(l)


=

√
2√

X⃗†ηX⃗

(
Re
(
X⃗e−iθ

)
Im
(
X⃗e−iθ

)
∗
)
,

(4.16)

which means that X⃗ ∼ X⃗e−iθ. Combined with the scaling transformation, this leads to
a conclusion that X⃗ lives in the projective space and X⃗ ∼ αX⃗ for an arbitrary non-zero
complex number α.

4.1 U(1) connection, gauge transformations and gauge fixing

We are now ready to construct explicitly the composite connection associated with the local
U(1) gauge symmetry. It can be expressed in terms of the Maurer-Cartan form [6] as

Q =
(
Λ−1dΛ

) 1

0
, Qµ =

(
Λ−1∂µΛ

) 1

0
, (4.17)

where d is the exterior derivative defined on the spacetime manifold and ∂µ is the partial
derivative with respect to the µ spacetime coordinates. Using the expression of Λ of q (4.3),
we have

(Λ−1∂µΛ)2×2 =
√

1 + qqT∂µ
√
1 + qqT − q∂µq

T , (4.18)

where the subscript indicates the 2×2 upper left corner of the matrix Λ−1∂µΛ. Since yi are
unconstrained variables, expressing Q in terms of these avoids ambiguities and we have:

Qµ = 2i
ȳi − ȳ2yi

1− 2ȳkyk + y2ȳ2
∂µyi −

i

2
∂µ ln

(
1− 2ȳkyk + y2ȳ2

)
. (4.19)

Notice that
1

2

(
1− 2ȳkyk + y2ȳ2

)
= X̄AXBηAB = X⃗†ηX⃗ , (4.20)

the denominator is naturally invariant under the transformation X⃗ → X⃗e−iΣ. Besides,

X⃗†η∂µX⃗ =

(
1 + ȳ2

2
,− i

2
(1− ȳ2), y⃗†

)(
1 0

0 −1

) yi∂µyi
−iyi∂µyi
∂µy⃗


= ȳ2yi∂µyi − y⃗†∂µy⃗

(4.21)

allows to write Qµ compactly in terms of X⃗,

Qµ = −iX⃗
†η∂µX⃗

X⃗†ηX⃗
− i

2
∂µ ln

(
2X⃗†ηX⃗

)
. (4.22)
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Under the U(1) gauge transformation X⃗ → X⃗ ′ = X⃗e−iΣ we have

δQµ = Q′
µ −Qµ = −iX⃗

′†η∂µX⃗ ′

X⃗ ′†ηX⃗ ′
+ i

X⃗†η∂µX⃗

X⃗†ηX⃗
= −∂µΣ , (4.23)

as expected (Q′
µ here denotes the U(1) transformed connection).

Notice that in the expression for the coset element Λ (4.3) we have chosen the gauge
ϕ = 0, where ϕ represents the variable parametrizing local U(1) gauge symmetry. In order
to maintain the gauge (ϕ = 0), a left action on Λ ∈ M by an SO(2, l) transformation should
be compensated by a right action of a SO(2)× SO(l) transformation, i.e.

Λ → Λ′ = RΛU−1, U ∈ SO(2)× SO(l) , (4.24)

which leads to

1√
X⃗†ηX⃗

R
(
Re
(
X⃗
)
Im
(
X⃗
))

=
1√
Y⃗ †ηY⃗

(
Re
(
Y⃗
)
Im
(
Y⃗
))(cosΣ − sinΣ

sinΣ cosΣ

)

=
1√
Y⃗ †ηY⃗

(
Re
(
Y⃗ e−iΣ

)
Im
(
Y⃗ e−iΣ

))
,

(4.25)

where the complex vector Y⃗ parametrizes the new coset representative Λ′. The equation is
obviously equivalent to

1√
X⃗†ηX⃗

RX⃗ =
1√
Y⃗ †ηY⃗

Y⃗ e−iΣ . (4.26)

In the next subsection we will proceed to formally solving this equation and obtaining an
analytic expression of Σ = Σ(R, X⃗). Before doing so we should recall that in the familiar
case of SL(2,R)/U(1), the compensating U(1) transformation (the phase factor) is given by
(1.5) in terms of the modular variable τ which lives in the complex upper-half plane H. As
we shall see, the relation between the U(1) anomaly and modular variables is universal.

4.2 Compensating U(1) transformation

We start by recalling that the vector X⃗, which lives in the projective space, satisfies the
constraints

X⃗T ηX⃗ = 0, X⃗†ηX⃗ > 0 . (4.27)

This matches the condition (3.12) on the generalized upper-half plane for the group O+(2, l;R)
(see section 3.2). The Calabi-Vesentini coordinates (4.13) are not very convenient for solv-
ing the equation (4.26) and determining Σ(R, X⃗). Instead, we should rotate to the reference
frame with basis already discussed in section 3, and notably use matrices M ∈ O+(2, l;R)S .
The subscript here emphasizes that the orthogonal group is defined with respect to a metric
S. This definition applies throughout our discussion, and we shall often omit the subscript.

Since Ŝ, defining the metric S, introduced in (3.19) is a symmetric positive-definite
real matrix, there must exist a orthogonal matrix P̂ such that P̂ ŜP̂ T = V̂ , where V̂ is
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the diagonal matrix with positive diagonal elements. One can define the square root of the
inverse

√
V̂ −1 such that

1 = Q̂ŜQ̂T , Q̂ =
√
V̂ −1P̂ . (4.28)

There exists a orthogonal matrix U such that USUT = η, explicitly we have

U =


1√
2
J 1√

2
12

Q̂

− 1√
2
J 1√

2
12

 , J =

(
0 1

1 0

)
, UUT =

12

V̂

12

 . (4.29)

Inserting U into the equation (4.26) we have

1√
Z⃗†SZ⃗

MZ⃗ =
1√

W⃗ †SW⃗
W⃗e−iΣ, Z⃗ = UT X⃗, W⃗ = UT Y⃗ M = UTR(UT )−1 . (4.30)

It is not difficult to verity that M ∈ O+(2, l;R)S . To further demonstrate that such a choice
of coordinates would be realized as the generalized upper-half plane, we explicitly expand
the equation and derive the constraints satisfied by Z⃗ [38]. After the rotation we have

Z⃗ = UT X⃗ =



i
2
√
2
(1− y2)− 1√

2
ys+2

1
2
√
2
(1 + y2)− 1√

2
ys+1

Q̂T y⃗s
1

2
√
2
(1 + y2) + 1√

2
ys+1

i
2
√
2
(1− y2) + 1√

2
ys+2

 =


β0

β1
...

βs+2

βs+3

 , (4.31)

satisfying the constraint{
Z⃗TSZ⃗ = 0 ⇒ 2β0β1 + 2βs+2βs+3 − β⃗Ts Ŝβ⃗s = 0,

Z⃗†S1Z⃗ > 0 ⇒ β0β1 + β1β0 − β⃗†sŜβ⃗s + βs+2βs+3 + βs+2βs+3 > 0 ,
(4.32)

where β⃗s is the vector with components (β2, β3, . . . , βs+1). First, let us verify that βs+3 ̸= 0.
Indeed, assuming βs+3 = 0, would yield{

2β0β1 − β⃗Ts Ŝβ⃗s = 0,

β0β1 + β1β0 − β⃗†sŜβ⃗s > 0.
(4.33)

However, by absolute inequality, we have

|2β0β1| = |β⃗Ts Ŝβ⃗s| ≤ β⃗†sŜβ⃗s < β0β1 + β1β0 . (4.34)

Since both sides of the equation have positive signs, we can square without changing the
direction of the inequality:

4β0β0β1β1 <
(
β0β1

)2
+
(
β1β0

)2
+ 2β0β0β1β1 ⇐⇒

(
Imβ0β1

)2
< 0 , (4.35)
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leading to contradiction. Thus βs+3 ̸= 0 and we can safely normalize the vector Z⃗ by
dividing the final component,

Z⃗ = α(z)

−q0(Z)
Z

1

 = α(Z)ZL, α(Z) = βs+3, Z ∈ Cs+2, Zj =
βj
βs+3

, j = 1, . . . , s+ 2.

(4.36)
Here q0(Z) = ZTS0Z/2 as defined in section 3.2. With the definition of the quadratic form
q(ZL) =

1
2Z

T
LSZL and (A,B) = q(A+B)−q(A)−q(B), we can rewrite the constraints (4.32)

of ZL as
(ZL, ZL) = 0 ,

(
ZL, ZL

)
> 0 , (4.37)

so we conclude that ZL ∈ K defined by equation (3.12). Without loss of generality we
assume that ZL ∈ K+, and can check that the only constraint on th erange of Z is given by
q0 (Im(Z)) > 0. If we assume Im(Z) lives in the future light cone of the Minkowski space,
Z indeed lives in the generalized upper-half plane Hl. With these setting we can rewrite
the equation (4.30) as

eiϕ̂(Z)√
Z†
LSZL

MZL =
eiϕ̂(W )√
W †

LSWL

WLe
−iΣ, (4.38)

where ZL = (−q0(Z), Z, 1)T , WL = (−q0(W ),W, 1)T , and

eiϕ̂(Z) =
α(Z)

|α(Z)|
, eiϕ̂(W )= α(W )

|α(W )|
. (4.39)

Recalling the discussion of the action of the orthogonal group on generalized upper-half
plane (equation (3.25) and (3.26)), we conclude that W =M⟨z⟩ and

e−iΣ(M,Z) = eiϕ̂(Z)−iϕ̂(W )

√
W †

LSWL√
Z†
LSZL

(
−γq0(Z) + dTZ + δ

)
. (4.40)

Recall that

MZL =

−αq0(Z) + aTZ + β

−bq0(Z) + PZ + c

−γq0(Z) + dTZ + δ

 =
(
−γq0(Z) + dTZ + δ

)
WL , (4.41)

with the property that the real orthogonal transformation doesn’t change the norm, i.e.√
Z†
LSZL =

√
(MZL)

† S (MZL), we conclude that

e−iΣ(M,Z) = eiϕ̂(Z)−iϕ̂(W ) −γq0(Z) + dTZ + δ

|−γq0(Z) + dTZ + δ|
= eiϕ̂(Z)−iϕ̂(W ) j(M,Z)

|j(M,Z)|
. (4.42)
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By choosing the specific gauge, the compensating U(1) transformation is given by

e−iΣ(M,Z) =
j(M,Z)

|j(M,Z)|
. (4.43)

This is the direct generalization of the compensating U(1) transformation for SL(2,R)/U(1)

given in (1.5) to the generalized upper-half plane Hl.

5 Constructing the counterterm

In this section we shall examine the anomaly cancellation for l ≥ 3, while leaving the
treatment of l = 2 to section 6. As already discussed in the beginning of section 3, eight-
dimensional N = 1 theories suffer from a composite U(1) anomaly. The anomalous phase
raised in the local U(1) gauge transformation (ϕ→ ϕ+Σ) is

∆G = −
∫

ΣX8(R,F) . (5.1)

A direct way to cancel the anomalous phase is to add the local counterterm

Sϕ =

∫
ϕX8(R,F) , (5.2)

where ϕ parametrizes the local U(1) gauge symmetry. When we apply the U(1) gauge
transformation ϕ→ ϕ+Σ, δSϕ can cancel the anomalous phase above. But the drawback
is that the local counterterm is not invariant under SO(2, l;R) symmetry transformations,
as shown in the equation (4.43)

δMϕ = − arg (j(M,Z)) . (5.3)

Here δM indicates an SO(2, l;R) gauge transformation with respect to the element M .
Since the compensating U(1) transformation is the argument of the automorphy factor, it
is natural to construct the counterterm by using modular forms on generalized upper-half
plane and it is of the form

S =
1

r

∫
arg(Ψ(Z))X8(R,F) , (5.4)

where Ψ(Z) satisfies the modular property (1.7). We have already seen that the continuous
symmetry group should be discretized since no suitable functions that can maintain the
continuous symmetry. As mentioned in section 3.3 the analogue of SL(2;Z) in N = 2 case
is the discrete modular group SΓ(L) with respect to the lattice L of signature (2, l). Such
a discrete lattice L will be the root lattice of the gauge group G (or contain the sublattices
which are the root lattices of the gauge group G). Hence the anomaly cancellation may
lead to nontrivial restrictions on the lattices L (on the gauge groups G).

As discussed in section 3, the Borcherds products provide necessary tools for con-
structing Ψ(Z) with requisite properties to cancel the anomaly (5.1). As long as a nearly
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holomorphic modular form of weight 1− l/2 with respect to the lattice L can be found, one
can obtain the modular form Ψ(Z) on generalized upper-half plane of weight r = c(0, 0)/2.
However the counterterms needs to satisfy some natural physical conditions leading to con-
straints that will be outlined bellow.9

• The character of the lattice L (the modular group SΓ(L))

Since the modular form Ψ(Z) satisfies the modular property (3.32), where the weight r =
c(0, 0)/2, the counterterm is transformed under the SΓ(L) transformation as

δMS = −δMSϕ + argχ(M)

∫
X8(R,F) . (5.5)

In order to completely cancel the anomaly without imposing extra conditions on the back-
ground manifold, such as integrality of

∫
X8(R,F), χ(M) ≡ 1 for arbitrary M ∈ SΓ(L)

is required. To the best of our knowledge, the necessary and sufficient condition for the
character to be trivial is not known.10 A sufficient condition is known (Theorem B.4).
Moreover, it cannot be weakened too much (see the counter example (Example 1.4) in
[39]). More details are in the appendix B. Notably any lattice that contains A2 sublattice
has χ(M) ≡ 1.

• Rational quadratic divisor (RQD)

The counterterm is obviously ill-defined at the zeroes or poles of Ψ(Z). Fortunately, through
Borcherds product (Theorem B.2) we know that all the zeroes and poles lie in the rational
quadratic divisors (Definition B.6). To circumvent this issue, one could have required the
Borcherds product Ψ(Z) to be well-defined and have no zeroes on the entire generalized
upper-half plane, which is equivalent to requiring c(β,m) ≡ 0 if m < 0 for all m ∈ Z+ q(β)

and β ∈ L′/L. This would in turn mean that the principal of the nearly holomorphic
modular form f(τ) has zero principal part, so f(τ) is actually a holomorphic modular
form of SL(2,Z). However, no nonzero holomorphic modular form of non positive weight
(1 − l/2 ≤ 0 for l ≥ 2) exists and thus the counterterm will always have ill-defined points
in moduli space.

As originally explained in the context of 4D N = 2 theories [25], these points in moduli
space, corresponding to symmetry enhancements, are contained in the rational quadratic
divisors. This is the set of the orthogonal subspaces determined by the negative-norm
vectors ℓ ∈ L′, such that the reflections orthogonal to them are symmetries of the lattice.
Viewing a general even lattice L as the momentum lattice, it would exclude some rational
quadratic divisors. The reason is that ℓ might not be in L. This means that in the general
expansion of the divisors in terms of RQDs (3.36), we should take c(β,m) = 0 if β ̸= 0

(β ∈ L′/L).11 By using shorthand notation H(m) = 1
2H(0,m) (having suppressed the

9Here we recall another time that throughout this discussion we have taken the lattice L to be even.
10In general χ(M) is called the multiplier system and is different from character if the weight of the

Borcherds product is not integral. Through suitable normalization we can always obtain the Borcherds
product of integral weights so we will not consider the cases of rational weights.

11This is automatic for all unimodular lattices.
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vector index), the divisor of modular form Ψ(Z) can be written as

(Ψ) =
∑

m∈Z,m<0

c(m)H(m) . (5.6)

Since the Borcherds product comes from the lifting of the nearly holomorphic modular form
f(τ), such f(τ) exists if and only if it satisfies the Theorem B.3, i.e. the coefficients in the
principal part (3.33) need to satisfy∑

m∈Z,m<0

c(m)a(−m) = 0 . (5.7)

Here a(−m) = a0,−m is the functional that maps the cusp form g ∈ Sκ,L into its (0,−m)

Fourier coefficient and Sκ,L is the space of the cusp forms of weight κ = 1+ l/2 for the dual
Weil representation (more details can be found in the discussion of Theorem B.3).

The simplest solution to this condition is when the cusp form space Sκ,L is trivial
(there exists no nonzero cusp form of weight 1 + l/2 of dual Weil representation). Lattices
with such property exist and are called simple lattices. As shown in [40], there are only
15 simple even lattices of signature (2, l), l ≥ 4, of square free level12 up to isomorphisms
(see the Theorem 2 in [40]). For signature (2, 18), only the even unimodular lattice Π2,18

∼=
Π1,1 ⊕Π1,1 ⊕E8(−1)⊕E8(−1) is simple, and for (2, 10) only the even unimodular Π2,10

∼=
Π1,1 ⊕Π1,1 ⊕ E8(−1) and Π1,1 ⊕Π1,1(2)⊕ E8(−1) are simple.

• Reflective lattices

Requiring that the (2, l) lattice L is reflective is sufficient for finding a solution of (5.7).
This condition will be discussed in detail in the next subsection. At this point, we only
mention that the reflective symmetries of the lattice are directly linked to the enhancement
of the gauge symmetry. There is a finite number of such lattices, and their rank is bounded
by l = 26. There is a complete classification of reflective lattices of prime level. All these
lattices are of even rank and hence should be considered. A complete classification for
any level is available for a particular subclass, the 2-reflective lattices that have norm −2

roots.13 Here we find lattices of odd rank, which should be discarded due to the global
anomalies.

Recall that in ten dimensions, anomaly cancellation allows for not only rank 16 theories
(with a unimodular lattice E8 ⊕ E8), but also of theories with gauge group E8 × U(1)248

and U(1)496. Simple reduction of these theories would produce 8D theories with l = 258

and l = 498 respectively. The fact that the condition of reflectivity bounds the rank of the
lattice to be equal or less than 24 tells us that for these no suitable 8D counterpart can be

12The level of the lattice L is a positive integer p such that p = min{n ∈ N|nq(γ) ∈ Z for all γ ∈ L′}.
13A bibliographical note: In [41] all strongly reflective modular forms of singular weight on lattices of

prime level were classified. A proof that there are only finitely many even lattices with l ≥ 7 which admit
2-reflective modular forms and the highest rank such lattice is the the even unimodular lattice Π2,26 is given
by [42]. These were subsequently classified in [43]. In [44], all possible reflective lattices of prime level were
classified. In our discussion of reflective modular forms (see subsection 5.1), we will adopt the conventions
of [44].
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found (even if they admit 10D Green-Schwartz term). So it seems these theories can be
ruled out purely based on anomaly cancellation, and without swampland considerations.

• Counterterms as obstructions to ten-dimensional lifts

Given the form of a reflective lattice (5.10) it is natural to ask about possible decompact-
ifications to ten dimensions. If such decompactification is possible , i.e. a good “large
volume limit” exists, the 8d theory can be considered consistent only if a lifting to the
ten-dimensional E8 ⊕ E8 lattice exists.14

We have not done an exhaustive check on which reflective lattices can or cannot be
lifted to an E8 ⊕ E8 lattice in 10D. Any lattice with l > 18 clearly does not have such
lifting. The rank 8 self-dual lattice Π1,1 ⊕ Π1,1 ⊕ E8(−1) also does not have such lifting.
For such lattices the anomaly cancellation can be validated only if they are “intrinsically
eight-dimensional”, i.e. if their counterterm obstructs the decompactification to 10D. As we
shall see in section 6, we find such example in l = 2 case, where the two complex scalars
parametrizing the coset cannot be identified with the moduli of a two-torus.15

5.1 Reflective modular forms and reflective lattices

Let L be an even lattice of signature (2, l) and its dual is L′. The level of L is the smallest
positive integer N such that N(x, x) ∈ 2Z for all x ∈ L′. The discriminant of L denoted
L′/L can be decomposed by Jordan components and we denote this decomposition by DL.
The genus of L is the set of lattices which have the same signature and the same discriminant
form (up to isomorphism) as L. A holomorphic modular form for the modular group Γ(L)

is called reflective if its zeroes are contained in the union of rational quadratic divisors ℓ⊥

associated to roots of L, namely the reflection

σℓ : α 7−→ α− 2(α, ℓ)

(ℓ, ℓ)
ℓ , α ∈ L (5.8)

belongs to O+(L). A lattice is called reflective if it has a reflective modular form. A modular
form is called symmetric if it is modular for O+(L) and it is known that L is reflective if
and only if L has symmetric reflective modular form. Recall the definition of the modular
group Γ(L)

Γ(L) = O+(L⊗ R) ∩ Ker
(
O(L) → O(L′/L)

)
, (5.9)

Γ(L) = O+(L) (SΓ(L) = Γ(L) ∩ SO(L)) is the largest modular symmetry group. It is
reasonable to require the local counterterms are constructed by symmetric modular form
since we want to maintain the discrete symmetry maximally.

14For L ∼= Π1,1⊕Π1,1⊕
∑

i L̂i, there always exists a straightforward lift in ten dimensions with L(10D) =∑
i L̂i. Other than for the Narain lattice, all these lifts can be discarded. The CHL lattice Π1,1 ⊕ Π1,1 ⊕

D8(−1) ∼= Π1,1 ⊕ Π1,1(2) ⊕ E8(−1) also allows for a lift to E8 ⊕ E8. Very loosely, all lattices that would
allow to have central charge cL = 18 can be potentially liftable to ten dimensions

15Similarly, the function F het
1 that appears in the one-loop gravitational couplings in the N = 2 heterotic

compactification with two vector multiplets also does not allow such identification [45].
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We consider the lattices of the same genus Π2,l(p
ϵplp), where l ≥ 3,16 p is a prime

number, ϵp = − or+, 1 ≤ lp ≤ l/2 + 1 and ϵp is completely determined by l, p and lp. If
two lattices of signature (2, l) and prime level p have the same determinant then they are
isomorphic. We refer the readers to [41] for more details. Let L be such a lattice. By [46],
L can be represented as17

Π1,1 ⊕Π1,1(p)⊕ L̂(−1) or Π1,1 ⊕Π1,1 ⊕ L̂(−1) , (5.10)

where Π1,1 is a hyperbolic plane as we defined above and L̂ is a positive definite lattice. A
primitive vector v ∈ L is reflective if and only if (v, v) = −2 or (v, v) = −2p and v/p ∈ L′.
By [47] and Eichler criterion (see e.g. [48]) all the vectors of norm −2 in L are in the same
O+(L)-orbit, and all reflective vectors of norm −2p in L are also in the same O+(L)-orbit.
Therefore, for a symmetry reflective modular form, all 2-reflective divisors (the rational
quadratic divisors defined by the vector v of norm −2) have the same multiplicity, which
is denoted by c1. All 2p-reflective divisors (the rational quadratic divisors defined by the
vector v of norm −2p and v/p ∈ L′) have the same multiplicity denoted by cp. A symmetric
reflective modular form is called 2-reflective (resp. 2p-reflective) if cp = 0 (resp. c1 = 0). A
lattice L is called 2-reflective (resp. 2p-reflective) if it has a 2-reflective (resp. 2p-reflective)
modular form.

The positions of the zeroes and poles of the modular form Ψ(Z), where the counterterm
(5.4) is ill-defined, should be interpreted as the symmetry enhancement points. These
points corresponds to the rational quadratic divisors, which are defined as the orthogonal
subspace with respect to some negative norm vectors (roots of the lattices). The symmetry
is enhanced due to the reflective symmetry of the lattice. Requiring that Ψ(Z) is symmetric
reflective modular form, and thus the corresponding lattice L should be reflective, ensures
that the theory is well-defined and anomaly-free throughout the moduli space. This is
a strong constraint for the lattice. As shown in [44], only 55 possible types of reflective
lattices of genus Π2,l(p

ϵplp) with 1 ≤ lp ≤ 1+ l/2 exist for prime level p > 1. And only three
even unimodular lattices (p = 1) Π2,10, Π2,18 and Π2,26 are reflective. Among these lattices,
only those with trivial character (a big majority) can provide suitable counterterms (5.4)
and hence lead to theories that are anomaly-free. Further restrictions may be imposed by
the consistency of the large volume limits. Since only the Narain and the CHL lattice pass
the tests of full quantum consistency, all other lattices which lead to anomaly-free theories
constitute the finite swampland of the eight-dimensional minimal supergravity.

5.2 Examples of counterterms

Before turning to specific examples of counterterms, we point out that if we choose the
divisor of Ψ(Z) to be a linear combination of some rational quadratic divisors, Ψ(Z) must
be the same function up to normalization as we construct from Borcherds product. More
precisely (see Theorem 1.2 in [49]), assuming that L ∼= Π1,1 ⊕ Π1,1(N) ⊕ L̂(−1) for some

16As we shall see in section 6, the condition of reflectivity is required for the l = 2 case as well.
17For some lattices, such as CHL, both representations are possible. Of course the last factor in two

different ways of representing the lattice will also be different.
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positive integer N and l ≥ 3, every meromorphic modular form F (Z) with respect to
Γ(L) whose divisor is a linear combination of special divisors H(β,m) is (up to a non-zero
constant factor) the Borcherds product Ψ(Z) of some f ∈M !

1−l/2.
We can now discuss examples, which include two fully consistent 8D N = 1 supergrav-

ities with l = 18 and l = 10.

• Signature (2, 18)

As already mentioned reflectivity imposes an upper bound l = 26 on the rank of the gauge
group. Moreover, for l > 18 there are very few reflective lattices with l even: the self-dual
lattice Π2,26 and two lattices at level 2 and 3, Π2,22(2) and Π2,20(3) respectively. If these
allow a decompactification limit, they can be ruled out.

The l = 18 case, in addition to the self-dual (Narain) lattice, includes five different level
2 reflective lattices. These five will necessarily have enhancement points corresponding to
norm −4 root vectors. Their modular forms cannot be decomposed into products of 2-
reflective and 4-reflective forms, and they have no string theory realization.

For the theory obtained via compactification of 10D heterotic string on a two-torus
[50], the momentum lattice structure is given by the Narain lattice

L = Π1,1 ⊕Π1,1 ⊕ E8(−1)⊕ E8(−1) , (5.11)

while the symmetry enhancement appears when p2 = −2.18 The symmetry enhancement
points are given by the rational quadratic divisor

H(−1) =
⋃

(v,v)=−2, v∈L

v⊥ , (5.12)

requiring that the lattice admits a 2-reflective modular form (the lattice L is 2-reflective).
This is the case for the even unimodular lattice Π2,18.

A weight 132 modular form Ψ(2,18)(Z) can be obtained by applying the Borcherds
product to the nearly holomorphic modular form [54]

f(τ) =
1728E4

E3
4 − E2

6

(τ) =
1

q
+ 264 + 8244q + 139520q2 + . . . , (5.13)

where q = e2πiτ and E4, E6 are Eisenstein series with the constant term normalized to 1

E4 = 1 + 240

∞∑
n=1

n3qn

1− qn
= 1 + 240q + 2160q2 + . . . ,

E6 = 1− 504
∞∑
n=1

n5qn

1− qn
= 1− 504q − 6632q2 + . . . .

(5.14)

18The full list of the allowed enhancements with the corresponding gauge algebras is worked out in [11, 51]
with the help of the results of elliptic K3 fibrations [52, 53].
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From Theorem B.2 we know that the modular form Ψ(2,18)(Z) is holomorphic (all the
coefficient in the principal part is positive) and only has zeroes at the rational quadratic
divisor H(−1). Moreover, since the lattice L is even unimodular now, the character for the
group SO+(L) must be trivial.

• Signature (2, 10)

For l = 10, if the level of the lattice is prime, there are ten types of reflective lattices.
The simplest of these is the self-dual lattice L = Π1,1⊕Π1,1⊕E8, which is 2-reflective.

Requiring that the zeroes of Ψ(Z) are contained in the rational quadratic divisors defined
by (v, v) = −2, we should look for a nearly holomorphic modular form of weight −4 as an
input into the Borcherds product. Such a function exists

f(τ) =
1

q
+ 504 + 16404q + . . . , q = e2πiτ , (5.15)

and the corresponding Borcherds product Ψ(Z) is of weight 252. Due to the unimodularity,
the character for this lattice is, as required, trivial. Comparison of the possible gauge
symmetry enhancements allowed by this lattice to [10] would exclude this lattice.

Since all other lattices are at level p > 1, the enhancement points will correspond
not only to short roots (vectors with norm −2) as for even unimodular lattices. Indeed, for
reflective lattices roots are not only vectors with norm −2 but also vectors v with norm −2p

satisfying (v, u) = 0 mod 2 for all vectors u ∈ L. In fact, the last condition is equivalent
to saying that v/p is in the dual lattice L′.

The most interesting class is for p = 2. It contains three lattices, all of which have
reflective vectors of norm −2 and −4 (p = 2). The CHL lattice [55] of the form

L = Π1,1 ⊕Π1,1(2)⊕ E8(−1) ∼= Π1,1 ⊕Π1,1 ⊕D8(−1) (5.16)

is among these three. The full list of enhancements and the allowed gauge algebras in the
8D CHL theories [56, 57] is worked out in [12, 58]. By the Theorem 4.1 and Theorem 4.2
in [43], L admits a 2-reflective modular form Ψ1 of weight 124 and a 4-reflective modular
form Ψ2 of weight 4. These two modular forms are both holomorphic and only have zeros
respectively on

(Ψ1) = H(−1) =
⋃

(v,v)=−2, v∈L

v⊥ and (Ψ2) =
⋃

(v,v)=−4, v/2∈L′

v⊥ (5.17)

The lattice satisfies the condition in Theorem B.4 thus the character of the modular group
is trivial. Hence an anomaly-cancelling counterterm can be constructed by direct multi-
plication of these functions Ψ(2,10)(Z) = Ψ1(Z)Ψ2(Z). These modular forms are closely
related to many interesting results about Enriques surfaces [59–62]. We define the lattice
LE = Π1,1 ⊕Π1,1(2)⊕ E8(−2). Notice that

L′
E(2)

∼= Π1,1 ⊕Π1,1(2)⊕ E8(−1) ∼= L , (5.18)
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the orthogonal group has the following relation

O+(LE) ∼= O+(L′
E)

∼= O+(L′
E(2))

∼= O+(L) . (5.19)

Hence the (reflective) modular forms with respect to the group O+(L) correspond to that of
the group O+(LE). Note that the reflective vectors defined above are in the lattice L. For a
modular form with respect to the group O+(LE) (lattice LE), we should check the relation
of the reflective vectors and RQDs to those for the lattice L. Under the transformation
L′
E → L′

E(2) (one can think that each vector is scaled by
√
2), the 2 reflective vectors of LE

and 4 reflective vectors (vE ∈ LE , vE/2 ∈ L′
E) transform to the 4-reflective vectors and the

2-reflective vectors of L respectively. This correspondence can be summarized as follows:

Ψ1(Z) : 2-reflective for lattice L −→ 4-reflective for lattice LE ,

Ψ2(Z) : 4-reflective for lattice L −→ 2-reflective for lattice LE .

Ψ2(Z) is called Borcherds-Enriques modular form Φ4, first found in [59] and reconstructed
as an example in [26] (see Example 13.7). The lattice L′

E/LE
∼= Z2 ×Z2 so we can use two

bits to label the element in L′
E/LE . There exists a nearly holomorphic modular form of

weight −4, written as f(τ) =
∑

γ eγfγ and the components fγ are

f00(τ) = −f10(τ) = −f01(τ) = 8η8(2τ)/η16(τ) = 8 + 128q + 1152q2 + . . . ,

f11(τ) = 8η8(2τ)/η16(τ) + η8(τ/2)/η16(τ) = q−1/2 + 36q−1/2 + 402q3/2 + . . . .
(5.20)

By Borcherds product (Theorem B.1), the weight of Ψ2(Z) is 4 (c(0, 0) = 8) and it is
holomorphic (the coefficient in the principal part is positive). There is only one term in the
principal part (q−1/2) so the RQD is exactly the set of 2-reflective vectors v2E = −2. Hence
Ψ2 is a 4-reflective modular form of weight 4 with respect to the lattice L as we expected.
Another equivalent way to construct Ψ2(Z) is to use Jacobi lifting [60]. Construction of the
weight 124 2-reflective modular form Ψ1(Z) is more complicated, and we refer to Lemma
5.4 in [62] for more detailed explanations.

For the two other lattices in this class (p = 2), D8 factor of the CHL lattice in (5.16)
is replaced by respectively D4 ⊕ D4 and D′

8.19 The counterterms can again be obtained
by a direct multiplication of two different modular forms.20 In these cases, the 2-reflective
modular forms are of weight 60 and 28 respectively, and the 4-reflective modular forms are
of weight 12 and 28 respectively.

19Notice that further reduction of the CHL strings to seven and six dimensions yields Π1,1⊕Π1,1⊕Π1,1⊕
D4 ⊕D4(−1) and Π1,1 ⊕Π1,1 ⊕Π1,1 ⊕Π1,1 ⊕D′

8(−2) lattices respectively [55].
20For any other prime p the lattices of signature (2, 10) do not admit modular forms that can be decom-

posed into a product of 2-reflective and 2p-reflective modular forms (Theorem 4.3 in [43]). Note that there
are four l = 10 lattices which are 2-reflective and have non-prime level p [44]. Only the CHL lattice yields
the gauge symmetry enhancement consistent with the swampland considerations.
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6 Anomaly cancellation for l = 2

In the previous discussion we mainly focused on the case l ≥ 3. This restriction allowed us
to obtain the modular forms, suitable for building counterterms, using the lattice decom-
position as L = Π1,1 ⊕ Π1,1 ⊕ L̂(−1) and the Theorem B.1 to ensure the triviality of the
character. The case l = 2, where the Borcherds product does not apply generally, needs
special considerations.

For l = 2 case. we can take advantage of the two to one group homomorphism from
SL(2,R)× SL(2,R) to SO(2, 2;R), and consider21

Ml=2 =
SO(2, 2)

SO(2)× SO(2)
∼=

PSL(2,R)× PSL(2,R)
U(1)× U(1)

, (6.1)

which can be parametrized by a pair of complex scalars Z1 and Z2 with modular-invariant
kinetic terms 22

Lscalars =
1

2

(
∂µZ1∂

µZ1

| ImZ1|2
+
∂µZ2∂

µZ2

| ImZ2|2

)
. (6.2)

We can once more use the canonical way to obtain the generalized upper-half plane devel-
oped in section 3.2. When l = 2, the matrix Ŝ collapses. The discretized structure has not
yet emerged so we can arbitrarily choose a quadratic form of signature (2, 2) since every
positive definite symmetric bilinear form of the same signature is equivalent in the vector
space V = L⊗ R. A convenient choice is

S0 =

(
0 1

1 0

)
, S =

 1

S0
1

 , (6.3)

with the quadratic forms q0 and q defined with respect to S0 and S respectively. Recalling
the definition of Hl (3.18), with l = 2 we have

Hl=2 = {Z = X + iY ∈ L0 ⊗ C|X,Y ∈ L0 ⊗ R, Y ∈ P} , (6.4)

where P denotes the future light cone of the Minkowski space L0 ⊗R with signature (1, 1).
Denoting Z = (Z1, Z2)

T , we have q0(Y ) = Im (Z1) Im (Z2) > 0. P then picks the connected
component that Im(Z1) > 0 and Im(Z2) > 0, i.e. the generalized upper-half plane is exactly
the direct product of the usual upper-half planes, Hl=2

∼= H × H.

21Notice that only one SO(2) factor is anomalous, and this identification requires rotation of the two
factors in the denominator

22Notice that in (6.1) only one SO(2) factor is anomalous, and this identification requires rotation of the
two factors in the denominator. As we shall see the moduli Z1 and Z2 cannot be identified as moduli of a
two-torus.
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6.1 The kinetic term

We will start the discussion of the kinetic terms (6.2) recalling the relation between (Z1, Z2)

and (y1, y2) (4.31) and (4.36),(
Z1

Z2

)
=

(
1+y2−2y1

i(1−y2)+2y2
1+y2+2y1

i(1−y2)+2y2

)
=

(
iy1−iy2−1
y1−iy2+1

iy1+iy2+1
y1+iy2−1

)
. (6.5)

A specific form of Λ should be considered first. A benefit in l = 2 case is that q in the
element Λ (4.3) is a square matrix. We further assume that q is invertible, i.e.23

det q =
4

1− 2ȳkyk + y2ȳ2
[Re(y1) Im(y2)− Re(y2) Im(y1)] ̸= 0 . (6.6)

This is equivalent to requiring that y2 ̸= ay1 for any real number a. Using the formula (4.6)
to express the block

√
1 + qT q in terms of yi and the invertibility of q, we have√

1 + qT q = 1 + qT
(√

1 + qqT − 1
)
(qqT )−1q

= 1 + qT
(√

1 + qqT − 1
)
(qT )−1 = qT

√
1 + qqT (qT )−1 ,

(6.7)

where

(qT )−1 =

√
1− 2ȳkyk + y2ȳ2

2 [Re(y1) Im(y2)− Im(y1)Re(y2)]

(
Im(y2) − Im(y1)

−Re(y2) Re(y1)

)
. (6.8)

Direct manipulations yield

√
1 + qT q = S

(
1 + y1ȳ1 − y2ȳ2 ȳ1y2 + y1ȳ2
ȳ1y2 + y1ȳ2 1 + y2ȳ2 − y1ȳ1

)
, S =

1√
1− 2ȳkyk + y2ȳ2

, (6.9)

and expression for Λ in terms yi:

Λ(y1, y2) = S


1 + 1

2(y
2 + ȳ2) − i

2(y
2 − ȳ2) y1 + ȳ1 y2 + ȳ2

− i
2(y

2 − ȳ2) 1− 1
2(y

2 + ȳ2) −i(y1 − ȳ1) −i(y2 − ȳ2)

y1 + ȳ1 −i(y1 − ȳ1) 1 + y1ȳ1 − y2ȳ2 ȳ1y2 + y1ȳ2
y2 + ȳ2 −i(y2 − ȳ2) ȳ1y2 + y1ȳ2 1 + y2ȳ2 − y1ȳ1

 . (6.10)

The Maurer-Cartan form has decomposition

Λ−1∂µΛ = Q̃µ + P̃µ , Q̃µ ∈ so(2)⊕ so(l) , P̃µ ∈ p , (6.11)

23Later we will see that the determinant of q in the denominator cancels out. Hence the result derived
under this assumption can be analytically continued to the set of points in the domain where det q = 0.
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where p is the complement of so(2) ⊕ so(l) (g = so(2, l) = (so(2) ⊕ so(l)) ⊥ p). We can
directly obtain P̃µ through block decomposition (following [6]).

Λ−1∂µΛ =

(
Q

SO(2)
µ Pµ

P T
µ Q

SO(l)
µ

)
=

(
Q

SO(2)
µ

Q
SO(l)
µ

)
+

(
Pµ

P T
µ

)
, (6.12)

which leads to the scalar Lagrangian

Lscalars =
1

2
Tr
(
P̃µP̃

µ
)
= Tr

(
P T
µ P

µ
)
, (6.13)

with the trace taken over the matrix with Λ. For l = 2 we can use the explicit form of Λ
(equation 6.10) to compute the Pµ block by the formula:

Pµ =
√

1 + qqT∂µq − q∂µ
√

1 + qT q

= S2

[
Y1(∂µy1 + ∂µȳ1) + Y2 (∂µy2 − ∂µȳ2) Y1(∂µy2 + ∂µȳ2)− Y2(∂µy1 − ∂µȳ1)

iY1(−∂µy1 + ∂µȳ1)− iY2(∂µy2 + ∂µȳ2) iY1(−∂µy2 + ∂µȳ2) + iY2(∂µy1 + ∂µȳ1)

]
,

(6.14)
where Y1 = 1− ykȳk and Y2 = y1ȳ2 − ȳ1y2. The Lagrangian is given by

Tr
(
P T
µ P

µ
)
=

4(Y2
1 − Y2

2 ) (∂µy1∂
µȳ1 + ∂µy2∂

µȳ2) + 8Y2Y1 (∂µȳ1∂
µy2 − ∂µy1∂

µȳ2)

(Y2
1 + Y2

2 )
2

.

(6.15)
Here we have used that

S4 =
1

(1− 2ȳkyk + y2ȳ2)2
=

1(
Y2
1 + Y2

2

)2 . (6.16)

Regrouping two complex scalars y1, y2 into

ξ = y1 + iy2 , φ = y1 − iy2 , (6.17)

the kinetic term further simplifies to

Tr
(
P T
µ P

µ
)
=

2∂µξ∂
µξ̄

(1− ξξ̄)2
+

2∂µφ∂
µφ̄

(1− φφ̄)2
. (6.18)

Recall that the range of yi is constrained (see (4.14))

1− 2ȳiȳi + y2ȳ2 > 0 , ȳiyi < 1 . (6.19)

This translates into requirements that |ξ| < 1 and |φ| < 1. Thus the two separate terms
in (6.18) are naturally given by two Poincaré metric tensors on a unit disk. Finally, recalling
the equation (6.5)

ξ =
Z2 + i

Z2 − i
, φ =

Z1 + i

i− Z1
, (6.20)
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we arrive at the canonical kinetic term

Lscalar = Tr
(
P T
µ P

µ
)
=

1

2

(
∂µZ1∂

µZ1

| ImZ1|2
+
∂µZ2∂

µZ2

| ImZ2|2

)
. (6.21)

It is worth noting that the Z2 symmetry exchanging Z1 ↔ Z2 is not present in the 8

dimensional supergravity. Such a symmetry would be complemented by the matrix

R =


1

0 1

1 0

1

 , (6.22)

which has determinant −1, and thus it is not in SO(2, 2;R).

6.2 The counterterm

The next step towards constructing a counterterm is to calculate the explicit form of the
compensating U(1) transformation (4.43), namely arg [j(M,Z1, Z2)] for M ∈ SO(2, 2;R)
and Z1, Z2 ∈ H. The fact that the generalized upper-half plane is isomorphic to the direct
product of the usual complex upper-half plane suggests it should be described in terms of
the automorphy factor of SL(2,Z). The action of SO(2, 2;R) on the generalized upper-half
plane is (see (3.27) )

W =M⟨Z⟩ := (−bq0(Z) + PZ + c)
(
−γq0(Z) + dTZ + δ

)−1
,

j(M,Z) := −γq0(Z) + dTZ + δ ,
(6.23)

for M ∈ SO(2, 2;R) decomposed in the form (3.25). From the other side, for two SL(2;R)
matrices,

A =

(
α1 β1
γ1 δ1

)
, α1δ1 − β1γ1 = 1, B =

(
α2 β2
γ2 δ2

)
, α2δ2 − β2γ2 = 1 , (6.24)

we can define the map from SL(2;R)× SL(2;R) to SO+(2, 2;R) by [36, 63]

Ω(A,B) =

(
α1FBF β1FB

γ1BF δ1B

)
, F =

(
−1 0

0 1

)
. (6.25)

It is easy to verify that this is a surjective group homomorphism. Moreover, the action of
Ω(A,B) is

Ω(A,B)

〈(
Z1

Z2

)〉
=

(
α1Z1+β1

γ1Z1+δ1
α2Z2+β2

γ2Z2+δ2

)
, j(M,Z) = (γ1Z1 + δ1)(γ2Z2 + δ2) . (6.26)

By Theorem 3 in [36], the modular group Γ = SO+(2, 2;Z) is formed by the element
Ω(A,B) where A,B ∈ SL(2,Z). The factorization of the automorphy factor j(M,Z) allows
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to express the counterterm in terms of SL(2,Z) modular forms. Notice that two factors
(γ1Z1 + δ1) and (γ2Z2 + δ2) appear symmetrically, the counterterm must be of the form

S =
1

r

∫
arg (Ψ1(Z1)Ψ2(Z2))X8 , (6.27)

where Ψ1,2 are the SL(2,Z) modular forms of the same non-trivial weight r. Demand-
ing once more that the zeros and poles of the function Ψ1(Z1)Ψ1(Z2) correspond to the
symmetry enhancement points in the moduli space leads to

Ψ1,2(Z1,2) = E4(Z1,2) , (6.28)

where E4 is the weight 4 Eisenstein series defined in equation (5.14). E4 has only one simple
zero at i within the fundamental domain, thus at these points (its modular image under
SL(2,Z)) the symmetry is enhanced. The maximal symmetry enhancement SU(2)× SU(2)

appears when Z1 = Z2 = i.
Few comments are in order. The choice (6.28) reflects the knowledge of the moduli

spaces of l = 2 theories, which notably do not have SU(3) enhancement points.
It is worth noting that the Eisenstein function E4 → 1 in (6.28) for large Im(Z1) or

Im(Z2) and we do not have suitable ten-dimensional decompactification limit. Hence Z1

and Z2 cannot be identified as moduli of a two-torus. This is indeed the case for the known
l = 2 8D theories, none of which comes from compactifications of 10D heterotic string
[64–67]. At least for the theory obtained via perturbative IIB construction [64] may hope
to compute this counterterm (6.27) explicitly.

Unlike the cases with l ≥ 3, this construction is not tied to any particular lattice
structure and should apply to both known l = 2 theories.

An alternative construction using Hilbert modular forms may be considered. In fact
it leads to an anomaly-cancelling counterterm for l = 2 case. There exists a function
f ∈ A+

0 (5, χ5) (see Appendix C)

f(τ) = q−1 + 5 + 11q − 54q4 +O(q5) , q = e2πiτ , (6.29)

yielding the Hilbert modular form Ψ(Z) of weight 5 with trivial multiplier system. However
this function may allow symmetry enhancements, such as SU(3), which should not appear
in the 8D (2, 2) theories [10], and hence is not physical. We discuss the details of this
construction outside of the main text in Appendix C.

7 Discussion

The moduli space of the eight-dimensional minimal supergravities coupled to l Yang-Mills
multiplets is given by

M =
SO(2, l)

U(1)× SO(l)
.

The composite U(1) connection, under which the fermions of the theory are chirally charged,
is anomalous. The gauge fixing translates this anomaly into an anomaly under the discrete
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part of the coset denominator, which can be shown to coincide with the discrete modu-
lar group of the corresponding lattice. The consistency of the theory requires a suitable
counterterm to cancel this discrete anomaly.

The counterterms can be constructed with the use of the Borcherds product of the
modular forms on the orthogonal group, Ψ(Z):

S =
1

r

∫
arg(Ψ(Z))X8(R,F) , (7.1)

where X8(R,F) is the anomaly polynomial and r is the weight of the modular form sat-
isfying some conditions required by the anomaly cancellation. These conditions can be
summarized as

• The character for the modular group Γ(L) (or the lattice L) must be trivial.

• The zeros and poles of Ψ(Z) lie on the rational quadratic divisors. If these points
can be interpreted as the symmetry enhancement points, it requires Ψ(Z) should be
reflective modular form and L is the reflective lattice.

For the l = 2 case, the homomorphism between SL(2;R)×SL(2;R) to SO+(2, 2;R) can
be used in order to construct the local counterterm from the usual SL(2;Z) modular forms.
An alternative way to cancel the anomaly by using Hilbert modular forms at the cost of
shrinking the symmetry exists. However it would allow for enhanced gauge symmetry that
is not consistent with the string-theoretic constructions.

We will conclude by outlining some open questions and directions for further research.

Relation to the Swampland It is not surprising that we find a larger set of theories
with a mechanism for anomaly cancellation than what is allowed by swampland consider-
ations. It is however curious, that there are finite number of admissible lattices and they
are bounded by 26. In fact, the only two lattices for l > 2 that are believed to lead to
consistent theories of quantum gravity [66] are even more special and admit 2-reflective
modular forms. It would be of great interest to find out if there exist physical requirements
that lead to further constraints on the lattice structure.

Notice that we always assume the lattice to be even. This condition enters crucially in
the construction of the modular forms on the orthogonal groups, and it is hard to see how
a counterterm can be constructed otherwise. We do not know a more direct supergravity
(swampland?) argument in support of this condition that arises very naturally in string
theory.

Counterterms and massive sectors In our N = 1 discussion the precise form of
the anomaly polynomial played no role. In fact (3.7) is computed only by knowing the
massless spectrum. On the other hand, the string amplitudes receive contributions from
massive states. For a very recent interesting discussion of importance of these see [67].
At the supergravity level one could generate corrections to the counterterm to (3.7) by
adding massive states and integrating them out. It is hard to believe that the choices of
massive sector are arbitrary, and as discussed in [19] one expects that reduction on P1 to
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six-dimensional (1, 0) would impose strong constraints on the possible massive sectors. The
question of whether and when a theory admits different consistent massive completions is
certainly of great interest.

K3 reductions and 4D physics It is also of interest to explore the implications of the
8D counterterms discussed here for compactifications, particularly 4D couplings. There are
very direct parallels between 8D maximally and minimally supersymmetric theories and 4D
N = 4 and N = 2 respectively.

4D N = 4 supergravity (coupled to YM) also has composite anomalies, recently dis-
cussed in e.g. [68–70]. The moduli space is given by SL(2)/U(1) × SO(6, nV )/SO(6) ×
SO(nV ). As in maximally supersymmetric 8D theory and consistently with the super-
symmetry algebra, the U(1) composite anomaly is also an anomaly of a nonlinear local
supersymmetry [70]. Putting the maximally supersymmetric theory 8D on K3 yields 4D
theory coupled to 22 vector multiplets.24 It is not hard to see that the SL(2)/U(1) factor
directly descents from 8D. It can be checked the K3 reduction of the counterterm (2.14) in
the large volume limit agrees with the one computed in [69] for nV = 22. The reduction
closely follows that of type IIA Chern-Simons couplings to six dimensions [30, 31]. In fact
a generic 4D N = 2 supergravity coupled to arbitrary number of vectors, provided nV ≥ 2

can be seen as coming from a torus reduction of 6D (1, 1) theory, with a relation between
the 6D CS couplings and 4D counterterms identical to that between their 10D and 8D
counterparts as discussed in section 2.

The K3 reduction of 8D theory with 16 supercharges to a 4D N = 2 theory parallels
the reduction of 10D heterotic strings on K3. There, a separate integration of the Bianchi
identity (with the constraints that the instanton numbers should sum up to 24) and of the
Green-Schwarz term yield two different four-forms that agree with those obtained in the
factorised anomaly polynomial in the resulting 6D (1, 0) theory (see e.g. [72]). So one could
wonder about similar reduction of the counterterm in 8D.

Choosing an instanton in group H ⊂ G (rank(G) = l) breaks the gauge group to G0

stabilised by H in G. The Bianchi identity can be written in general as (following the
notation of [10])

dH3 = κ trR2 + ℓ · trF2

where κ can take values 1 or 0 (only for l = 2), and ℓ is the level of the current algebra
(for a product gauge group, summation over different gauge factors is implied), and hence
ℓ · c2(H) = 24κ.25 Denoting rank(H) = h,

SO(2, l) −→ SO(2, l − h) .

But in 4D, nV = l − h + 1, and the extra multiplet comprises one of the vectors in 8D
gravity multiplet, and the dilaton-axion. Notice that while in 8D the counterterm must have
nontrivial modular properties, the 4D threshold corrections ∼ trR2 involve automorphic

24For other constructions of 4D N = 4 theories from Type II strings see e.g. [71]
25For κ = 0, there cannot be nontrivial gauge configurations over K3. The reduction yields a 4D N = 2

theory with three vector multiplets and 20 neutral hypermultiplets.
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functions on SO(2, nV ). The addition of the extra scalar (“conformal compensator” in
vector moduli space) should be responsible for this change. It would be of some interest to
understand how this works in more detail.

It has been argued that the K3 reduction of N = 1 theories in 8D provides a good
framework for studying 4D N = 2 compactifications since it encompasses not only the
K3 × T 2 but also the heterotic flux backgrounds [73]. Considering the space of all 8D
SO(2, l) for l = 2, 10, 18 would enlarge this space and hopefully cover all N = 2 theories
of heterotic type, i.e. those for which the dilaton is in the vector multiplets. This raises
an interesting possibility that all threshold corrections in these theories would in some
way be governed and be derivable from the special SO(2, l) modular forms from which the
counterterms (7.1) are built.
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A Dedekind eta function its multiplier system and theta function

In this appendix we collect some relevant facts about the Dedekind eta function η(τ) and
the theta function θ(τ), used in section 2. Under the modular transformation, both will
pick a square root of cτ + d, and the branch of the square root needs to be specified. In
the main text we have already defined the argument of z ∈ C as Arg z ∈ [−π, π). Thus the
square root for z ∈ C is

z
1
2 =

√
|z|e

i
2
Arg z , (A.1)

and this convention will be used throughout the discussion.
The Dedekind eta function can be written in the form of infinite products,

η(τ) = q1/24
∞∏
n=1

(1− qn) . (A.2)

Since two SL(2,Z)-matrices generate the whole group, its modular properties can be cap-
tured by

η(Tτ) = η(τ + 1) = e
πi
12 η(τ) , η(Sτ) = η

(
−1

τ

)
=

√
−iτη(τ) , (A.3)

where

T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
. (A.4)
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More generally, the modular properties of η(τ) under SL(2,Z) can be written as [74]

η(Mτ) = χη(M)(cτ + d)1/2η(τ) (A.5)

with a nontrivial multiplier system χη(M). Let c and d be integers such that gcd(c, d) = 1,
d is odd and c ̸= 0. Let sgn(x) = x

|x| be the sign of a real number x ̸= 0. Then

( c
d

)∗
=

(
c

|d|

)
, and

( c
d

)
∗
=

(
c

|d|

)
· (−1)

1
4
(sgn(c)−1)(sgn(d)−1) , (A.6)

where
(
c
d

)
is the Legendre symbol and we set(

0

1

)∗
=

(
0

−1

)∗
= 1 ,

(
0

1

)
∗
= 1 ,

(
0

−1

)
∗
= −1 . (A.7)

For arbitrary element in M =
(
a b
c d

)
∈ SL(2;Z), the multiplier system of the Dedekind eta

function is given by

χη(M) =

(
d

c

)∗
q

(
1

24

[
(a+ d)c− bd(c2 − 1)− 3c

])
if c is odd,

χη(M) =
( c
d

)
∗
q

(
1

24

[
(a+ d)c− bd(c2 − 1) + 3d− 3− 3cd

])
if c is even,

(A.8)

where q(z) = e2πiz. It should be noted that χη(M) cannot form the homomorphism from
SL(2;Z) to U(1). Since the S =

(
0 −1
1 0

)
transformation satisfy S2 = −1, we have

η(τ) = η((−1)τ) = χη(−1)(−1)1/2η(τ) = χη(−1)(−i)η(τ)
⇒ χη(−1) = i ̸= χη(S)

2 = −i ,
(A.9)

In the main text, the congruence subgroup Γ0(4) of SL(2;Z) was introduced:

Γ0(N) =

{(
a b

c d

)
∈ SL(2,Z)

∣∣∣∣∣ c ≡ 0 mod N

}
(A.10)

for any positive integer N . Within the congruence subgroup Γ0(4) the weight 1/2 modular
form is well-defined [75, 76]. For element M ∈ Γ0(4), the transformation of the square of
the theta function, given as

θ(τ) =
∑
n∈Z

qn
2
= 1 + 2q2 + 2q4 + . . . , (A.11)

takes the form
θ2(Mτ) =

(
−1

d

)
(cτ + d)θ2(τ) , (A.12)

where
(−1

d

)
denotes the Legendre symbol,

(−1
d

)
= (−1)

d−1
2 .
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B Orthogonal modular forms

Some necessary properties of orthogonal modular forms were reviewed in subsection 3.3. In
order to make the paper more self-contained, more background material is collected in this
Appendix. Definitions and theorems are given without proofs. Our presentation follows
closely [21], which can be consulted for detailed explanations.

Throughout this section, as in the main text, we denote by L an even lattice of signature
(2, l) and assume l ≥ 3.

B.1 The Weil representation

We denote the complex upper-half plane H = {τ ∈ C; Im τ > 0}. τ is the standard variable
on H and we use x and y for its real and imaginary parts respectively (τ = x + iy). For
z ∈ C we define e(z) = e2πiz and denote by

√
z = z1/2 the principal branch of the square

root. For arbitrary b ∈ C, we define zb = ebLn z where Ln z denotes the principal branch
of the logarithm. We denote by Mp(2;R) the metapletic group, i.e. the double cover of
group SL(2;R), realized by the two choices of holomorphic square roots of τ → cτ + d for
arbitrary element M ∈ SL(2;R),

M =

(
a b

c d

)
, a, b, c, d ∈ R, detM = ad− bc = 1 . (B.1)

Any element in Mp(2;R) can be written as (M,ϕ(τ)) where M ∈ SL(2,R) and ϕ(τ)2 =

cτ + d. The multiplication in the group Mp(2;R) is defined as

(M1, ϕ1(τ)) (M2, ϕ2(τ)) = (M1M2, ϕ1(M2τ)ϕ2(τ)) , (B.2)

where Mτ = (aτ + b)/(cτ + d) denotes the usual action of SL(2;R). By fixing the choice
ϕ(τ) =

√
cτ + d, we actually define a locally isomorphic embedding SL(2;R) ↪−→ Mp(2;R)

M 7→ M̃ =
(
M,

√
cτ + d

)
. (B.3)

Mp(2;Z) is generated by two elements T, S

T =

((
1 1

0 1

)
, 1

)
, S =

((
0 −1

1 0

)
,
√
τ

)
. (B.4)

One has the relation S2 = (ST )3 = Z, where

Z =

((
−1 0

0 −1

)
, i

)
(B.5)
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is the standard generator of the center of Mp(2;Z). For convenience we define Γ1 =

SL(2;Z),

Γ∞ =

{(
1 n

0 1

)
; n ∈ Z

}
≤ Γ1 ,

Γ̃∞ = ⟨T ⟩ =

{((
1 n

0 1

)
, 1

)
; n ∈ Z

}
,

(B.6)

where ⟨T ⟩ denotes the group generated by T .
Suppose L is an even lattice equipped with a symmetric Z-valued bilinear form (z1, z2)

for z1, z2 ∈ L and the associated quadratic form q(z) = (z, z)/2 is integer for arbitrary
z ∈ L. We denote by L′ the dual lattice. The quotient L′/L is a finite Abelian group,
the so-called discriminant group. Since the quadratic form can be extended to the dual
lattice, we can define the quadratic form on L′/L, which takes values in Q/Z. There is a
unitary representation ϱ of Mp(2;Z) on the algebra C[L′/L]. If we denote the standard
basis of C[L′/L] by {eγ |γ ∈ L′/L}, then ϱ can be defined by the action of the generators
S, T ∈ Mp(2;Z) as follows

ϱ(T )eγ = e(q(γ)) ,

ϱ(S)eγ =

√
i
b−−b+√
|L′/L|

∑
δ∈L′/L

e(−(γ, δ))eδ .
(B.7)

This is the so-called Weil representation. Based on the relation S2 = Z, we have

ϱ(Z)eγ =
ib

−−b+

|L′/L|
∑

δ,λ∈L′/L

e(−(γ, δ))e(−(δ, λ))eλ

= ib
−−b+e−γ .

(B.8)

We denote by ⟨·, ·⟩ the standard product of C[L′/L], i.e.〈 ∑
γ∈L′/L

λγeγ ,
∑

γ∈L′/L

µγeγ

〉
=

∑
γ∈L′/L

λγµ̄γ . (B.9)

For γ, δ ∈ L′/L, we can define the representation matrix element ϱγδ(M,ϕ) = ⟨ϱ(M,ϕ)eδ, eγ⟩.

B.2 Vector-valued modular forms

Definition B.1 (Petersson slash operator) Let κ ∈ 1
2Z and f be a C[L′/L]-valued function

on H. For (M,ϕ) ∈ Mp(2;Z) we define the Petersson slash operator |κ(M,ϕ) by

(f |κ(M,ϕ)) (τ) = ϕ(τ)−2κϱ(M,ϕ)−1f(Mτ) . (B.10)

We denote by ϱ∗ the dual representation of ϱ. If we think of ϱ(M,ϕ) as a matrix with entries
in C, then ϱ∗(M,ϕ) is simply the complex conjugate of ϱ(M,ϕ). The "dual operation" of
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Mp(2;Z) on functions f : H → C[L′/L] is given by

(f |∗κ(M,ϕ)) (τ) = ϕ(τ)−2κϱ∗(M,ϕ)−1f(Mτ) . (B.11)

If we assume that the function f : H → C[L′/L] is a holomorphic function which is invariant
under the |∗κ operation of T ∈ Mp(2;Z). Since f can be expanded by the basis eγ of L′/L,
we have f =

∑
γ fγeγ. The invariance is satisfied if and only if

fγ(τ) = fγ |∗κT (τ) = e∗(q(γ))−1fγ(τ + 1)

⇔ e(q(γ)τ)fγ(τ) = e (q(γ)(τ + 1)) fγ(τ + 1) ,
(B.12)

which means the invariance of f under T implies that the function e(q(γ)τ)fγ(τ) is periodic
with period 1. We can directly Fourier expand f by

f(τ)e(q(γ)τ) =
∑

γ∈L′/L

∑
n∈Z

c(γ, n)e(nτ)eγ . (B.13)

To have a compact expression, we define eγ(nτ) = e(nτ)eγ and write

f(τ) =
∑

γ∈L′/L

∑
n∈Z−q(γ)

c(γ, n)eγ(nτ) , (B.14)

with Fourier coefficients

c(γ, n) =

∫ 1

0
⟨f(τ), eγ(nτ̄)⟩dx . (B.15)

Definition B.2 (holomorphic modular form of dual Weil representation) Let κ ∈ 1
2Z. A

function f : H → C[L] is called a modular form of weight κ with respect to ϱ∗ and Mp(2;Z)
if

i) f |∗κ(M,ϕ) = f for all (M,ϕ) ∈ Mp(2;Z),

ii) f is holomorphic on H,

iii) f is holomorphic at the cusp ∞. If c(γ, 0) ≡ 0, f is called a cusp form.

The condition (iii) requires f has a Fourier expansion of the form

f(τ) =
∑

γ∈L′/L

∑
n∈Z−q(γ)

n≥0

c(γ, n)eγ(nτ) .
(B.16)

The C-vector space of modular forms of weight κ with respect to ϱ∗ and Mp(2;Z) is denoted
by Mκ,L and the subspace of cusp forms is denoted by Sκ,L . Similar to the usual complex
valued modular form of SL(2;Z), the linear space Mκ,L is finite dimensional.

B.3 Nearly holomorphic modular forms

Definition B.3 (nearly holomorphic modular form) A function f : H → C[L] is called a
nearly holomorphic modular form of weight k (with respect to ϱ and Mp(2;Z)), if
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i) f |k(M,ϕ) = f for all (M,ϕ) ∈ Mp(2;Z),

ii) f is holomorphic on H,

iii) f has a pole in ∞, i.e. f has a Fourier expansion of the form

f(τ) =
∑

γ∈L′/L

∑
n∈Z+q(γ)
n≫−∞

c(γ, n)eγ(nτ) .
(B.17)

The space of these nearly holomorphic modular forms is denoted by M !
k,L. The summation

n≫ −∞ indicates that there exists a finite negative number n0 such that all n ≥ n0. This
condition implies that the pole at the cusp (∞) has finite order. The Fourier polynomial∑

γ∈L′/L

∑
n∈Z+q(γ)

n<0

c(γ, n)eγ(nτ)
(B.18)

is called the principal part of f .

As shown in [21], the space of nearly holomorphic modular form is generated by the Poincaré
series, thus is finite dimensional. The principal part should satisfy the Theorem B.3.

B.4 Modular forms on generalized upper-half plane

The orthogonal modular forms and Borcherds product were introduced in the main text.
Recall the definition of j(M,Z) in (3.27)). More generally we can rewrite it as

j(M,Z) = (MZL, z) , (B.19)

where z = (1, 0, . . . , 0)T is the l + 2 vector and ZL = (−q0(Z), Z, 1)T . Suppose L is an
even lattice of signature (2, l) and V = L⊗ R. The function j(M,Z) on O+(V )× Hl is an
automorphy factor for O+(V ), i.e. it satisfies the cocycle relation

j(M1M2, Z) = j(M1,M2⟨Z⟩)j(M2, Z) . (B.20)

For an arbitrary a ∈ C, we have already specified Arg a ∈ [−π, π), which is the principal
value of argument of a. We denote by Ln the logarithm of the principal branch, which
is defined as Ln a = ln |a| + iArg a. For an arbitrary a, b ∈ C, we define ab = ebLn a. Let
r ∈ Q, if M ∈ O+(V ) and Z ∈ Hl, then j(M,Z)r = erLn j(M,Z). There exists a map wr

from O+(V )×O+(V ) to the set of roots of unity (of order bounded by the denominator of
r) such that

j(M1M2, Z)
r = wr(M1,M2)j(M1,M2⟨Z⟩)rj(M2, Z)

r . (B.21)

Definition B.4 (multiplier system) Let Γ ≤ O+(V ) be a subgroup and r ∈ Q as above. By
a multiplier system of weight r we mean a map

χ : Γ −→ S1 = {t ∈ C| |t| = 1} (B.22)

– 43 –



satisfying
χ(M1M2) = wr(M1,M2)χ(M1)χ(M2) , M1,M2 ∈ Γ . (B.23)

If r ∈ Z, then χ is actually a character of Γ, then χ(M)j(M,Z)r is a cocycle of Γ.

Definition B.5 (modular form on generalized upper-half plane) Let Γ ≤ Γ(L) be a subgroup
of finite index and χ a multiplier system for Γ of weight r ∈ Q. A meromorphic function
F on Hl is called a meromorphic modular from of weight r and multiplier system χ with
respect to Γ, if

Ψ(M⟨Z⟩) = χ(M)j(M,Z)rΨ(Z) (B.24)

for all M ∈ Γ. If Ψ is even holomorphic on Hl then it is called a holomorphic modular
form.

The Borcherds product can lift a nearly holomorphic modular form f(τ) =
∑

γ∈L′/L fγeγ :

H → C[L′/L] (see Definition B.3) of weight 1− l/2 with Fourier expansion

f(τ) =
∑

γ∈L′/L

∑
n∈Z+q(γ)

c(γ, n)eγ(nτ) , (B.25)

to the meromorphic function Ψ(Z) : H → C of weight c(0, 0)/2. The precise theorem is
stated as follows.

Theorem B.1 (Theorem 13.3 (1) in [26] or Theorem 3.22 (i) in [21]) Let L be an even
lattice of signature (2, l) with l ≥ 3, and z ∈ L a primitive isotropic vector. Let z′ ∈ L′ and
K = L ∩ z⊥ ∩ z′⊥. Moreover, assume that K also contains an isotropic vector. Let f be a
nearly holomorphic modular form of weight k = 1 − l/2 whose Fourier coefficients c(γ, n)
are integral for n < 0. Then

Ψ(Z) =
∏

β∈L′/L

∏
m∈Z+q(β)

m<0

Ψβ,m(Z)c(β,m)/2

(B.26)

is a meromorphic function on Hl of (rational) weight c(0, 0)/2 for the modular group Γ(L)

with some multiplier systems χ of finite order. If c(0, 0) ∈ 2Z, then χ is the character of
group Γ(L).

For functions Ψβ,m(Z) see Definition 3.14 in [21].
We can turn to the zeros and poles of Ψ(Z). A nowhere-vanishing holomorphic modular

forms Ψ(Z) obtained through Borcherds product cannot exist since there is no input nonzero
holomorphic modular form f(τ) of negative weight 1−l/2. Before determining the positions
of poles and zeroes, it is necessary to explain the concept of rational quadratic divisors
(Heegner divisors).

Let z ∈ L be a primitive norm 0 vector, z′ ∈ L′ with (z, z′) = 1. Let N be unique
positive integer with such that (z, L) = NZ. Then we have z/N ∈ L′. Denote by K the
lattice

K = L ∩ z⊥ ∩ z′⊥ . (B.27)
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K has signature (b+ − 1, b− − 1) = (1, l − 1). For an arbitrary vector n ∈ V = L ⊗ R, nK
denotes the orthogonal projection n to K ⊗ R and

nK = n− (n, z)z′ + (n, z)(z′, z′)z − (n, z′)z . (B.28)

If n ∈ L′, then nK lies in the dual lattice K ′ of K. Let ζ ∈ L be a lattice vector with
(ζ, z) = N . Let n ∈ L, then the vector

ñ = n− (n, z/N)ζ − (n, z′)z + (n, z/N)(ζ, z′)z (B.29)

lies in L and easy to verify that ñ ⊥ z and ñ ⊥ z′. Hence ñ ∈ K and each element n ∈ L

can be uniquely decomposed in this way, or equivalently, L = K⊕Zζ⊕Zz. Now let λ ∈ L′

be a vector of negative norm, i.e. q(λ) < 0. Then the orthogonal complement λ⊥ ⊂ L⊗R is
a rational quadratic space of type (2, l− 1). With these settings we can define the rational
quadratic divisors

Definition B.6 (rational quadratic divisor or Heegner divisor) Let λ ∈ L′ be a vector of
negative norm m, we set

Hλ =
{
[ZL] ∈ K+| (ZL, λ) = 0

}
. (B.30)

Moreover, due to the decomposition ZL = (−q(Z) − q(z′))z + Z + z′ (recall the equa-
tion (3.17)) and λ = bz + λK + az′, expanding the inner product (ZL, λ) yields

Hλ
∼=
{
Z ∈ Hl| aq(Z)− (Z, λK)− aq(z′)− b = 0

}
(B.31)

in coordinates on Hl. This set defines a prime divisor on Hl. Suppose β ∈ L′/L and m is
a negative rational number; the sum

H(β,m) =
∑

λ∈β+L
q(λ)=m

Hλ
(B.32)

is called the rational quadratic divisor (or Heegner divisor) of discriminant (β,m), which is
a Γ(L)-invariant divisor on Hl. When β = 0, we usually denote H(m) = 1

2H(0,m).

This definition is suitable for lattices of signature (2, l) with arbitrary Gram matrix. If we
specify the Gram matrix of L = Π1,1 ⊕ L0 as defined in the equation (3.19) and the vector
z, z′, equivalently we have

Hλ = {Z ∈ Hl| aq0(Z)− (Z, λK)0 − b = 0} , (B.33)

where the subscript emphasizes that the inner product is associated with the quadratic
form S0. With this definition we can describe the position of the zeros and poles by the
following theorem.

Theorem B.2 (Theorem 13.3 (2) in [26] or Theorem 3.22 (ii) in [21]) The zeros and poles
of Ψ(Z) lies on the divisor of Ψ(Z) on Hl, which is the linear combinations of Heegner
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divisors determined by the principal part of the nearly holomorphic modular form f

(Ψ) =
1

2

∑
β∈L′/L

∑
m∈Z+q(β)

m<0

c(β,m)H(β,m) .
(B.34)

The multiplicities of H(β,m) are 2, if 2β = 0 in L′/L, and 1, if 2β ̸= 0 in L′/L.

As we saw from the above theorems, the properties of the Borcherds product Ψ(Z) are
completely captured by the nearly holomorphic modular form f(τ), in particular by the
principal part of f(τ): ∑

γ∈L′/L

∑
n∈Z+q(γ)

n<0

c(γ, n)eγ(nτ) .
(B.35)

Pairing the form f(τ) with a vector valued cusp form of weight 1 + l/2 for the dual Weil
representation (see Definition B.2) gives a meromorphic elliptic modular form of weight
2 for SL(2;Z), hence its constant term must vanish by the residue theorem (no nonzero
SL(2;Z) modular form of weight 2) and this gives the conditions on the principal part on
f , stated as the following theorem. By setting κ = 1 + l/2 and denoting the space of the
vector valued modular cusp form of weight κ with respect to lattice L as Sκ,L, we have

Theorem B.3 (Theorem 1.17 in [21]) There exists a nearly holomorphic modular form
f ∈M !

k,L with prescribed principal part∑
β∈L′/L

∑
m∈Z+q1(β)

m<0

c(β,m)eβ(mτ)
(B.36)

(c(β,m) ∈ C with c(β,m) = c(−β,m)), if and only if the functional∑
β∈L′/L

∑
m∈Z+q1(β)

m<0

c(β,m)aβ,−m,
(B.37)

equals zero in S∗
κ,L. For γ ∈ D(L) and n ∈ Z− q(γ) with n > 0, aγ,n : Sκ,L → C denote the

functional in the dual space S∗
κ,L of Sκ,L which maps a cusp form f to its (γ, n)-th Fourier

coefficient aγ,n(f).

Obviously this imposes non-trivial condition on the principal part of the nearly holomorphic
modular form f .

B.5 Character of the lattice

If the weight of the modular form is integer, which is the case of interest, the multiplier
system is actually the character of the modular group Γ(L), or the character of the lattice
L. This forms a homomorphism from the modular group to U(1). From the well-known
Pontryagin duality, the abelianisation Gab = G/[G,G] of the group G is isomorphic to
the character group Hom(G,C×). Thus to obtain the character we need to consider the

– 46 –



abelianisation of the modular group Γ(L). As discussed in section 5, the anomaly cancel-
lation imposes the triviality of the character for the admissible lattices. To the best of our
knowledge, the sufficient and necessary conditions for a lattice of signature (2, l) to have
trivial characters are not known. A sufficient condition is known:

Theorem B.4 (Theorem 1.7 in [39]) Let L be an even integral lattice containing at least
two hyperbolic planes (Π1,1), such that rank3(L) ≥ 526 and rank2(L) ≥ 6, then the Γ(L)ab ∼=
Z/2Z and SΓ(L)ab is trivial, where SΓ(L) is the modular group intersect with the special
orthogonal group of lattice L, i.e. SΓ(L) := Γ(L) ∩ SO(L).

An immediate corollary is that if L = Π1,1⊕Π1,1⊕L̂ and L̂ contains a sublattice isomorphic
to A2, it satisfies the so-called Kneser conditions [39, 77] and the character for group SΓ(L)
is trivial. Notably, if the lattice L = Π1,1 ⊕ Π1,1 ⊕ L̂ is an even unimodular lattice of rank
at least 6, we have the same conclusion that the Γ(L)ab ∼= Z/2Z and SΓ(L)ab is trivial.

C Alternative l = 2 counterterm from Hilbert modular forms

In this appendix, we will provide a brief overview of the alternative construction for the
case l = 2 mentioned at the end of section 6, which follows a similar path to the procedure
for l ≥ 3 cases. For this we need to introduce Hilbert modular forms, following closely to
these good references [22, 78, 79].

Let K = Q(
√
p), p ∈ N, p > 1 squarefree, be a real quadratic number field with the ring

of integers and discriminant

OK = Z + ZωK, ωK =

{
(1 +

√
p)/2 ,

√
p ,

dK =

{
p, p ≡ 1mod 4 ,

4p, else .
(C.1)

The non-trivial automorphism K → K is given by

α = α0 + α1
√
p 7−→ α∗ = α0 − α1

√
p , α0, α1 ∈ Q. (C.2)

The Hilbert modular group is given by ΓK = SL(2;OK). With respect to this group, we can
define the Hilbert modular form

Definition C.1 (Hilbert modular form) Let µ : SL(2;OK) → C be a map of finite order
(multiplier system). A Hilbert (Blumenthal) modular form for K of weight r = (r1, r2) ∈ Q2

with multiplier system µ is a holomorphic function f : H2 → C with the properties

i) f(Mτ) = µ(M)(cτ + d)r1(c∗τ2 + d∗)r2f(τ) for all τ ∈ H2,M ∈ SL(2;OK), where

Mτ :=

(
aτ1 + b

cτ1 + d
,
a∗τ2 + b∗

c∗τ2 + d∗

)
, τ = (τ1, τ2) , M =

(
a b

c d

)
. (C.3)

26For any prime p the p-rank of L, denoted by rankp(L), is the maximal rank of the sublattices M such
that det(M) is coprime to p.
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ii) f is regular at cusps of SL(2;OK).

If f vanishes at all cusps, we call f a cusp form. If f has homogeneous weight r = (k, k) ∈
Q2 we will also say that f has weight k ∈ Q.

If we want to use such Hilbert modular forms to cancel the anomaly, several things need
to be clarified. First, the action of Hilbert modular group ΓK on the generalized upper-half
plane H2 is obtained through the homomorphism Ω in (6.25). For arbitrary M ∈ SL(2;K)
(or ΓK),

Ω(M,M∗)⟨Z⟩ =
(
αZ1 + β

γZ1 + δ
,
α∗Z2 + β∗

γ∗Z2 + δ∗

)T

, M =

(
α β

γ δ

)
,

j(M,Z) = (γZ1 + δ)(γ∗Z2 + δ∗) .

(C.4)

In other words, the symmetry group now is the Hilbert modular group ΓK, different with the
previous SL(2,Z)× SL(2,Z). Theorem 2 of [63] proves the group ΓK is actually isomorphic
to the discriminant kernel of the orthogonal group, so the symmetry further shrinks to ΓK.

Furthermore, non-trivial lattice structure emerges. The modular group ΓK is the spin
group Spin(L) of lattice L (section 2.7 of Chapter 2 in [22]), where L can be written as
L = Z ⊕ Z ⊕ OK with quadratic form q((a, ν, b)) = ab − νν∗ for a, b ∈ Z and ν ∈ OK. For
example, suppose p ≡ 1 mod 4, and we write the lattice explicitly in terms of matrices

L =

{(
a ν

ν∗ b

)∣∣∣∣∣ a, b ∈ Z, ν ∈ OK

}
, q(X) = det(X) for X ∈ L . (C.5)

The basis of this lattice is easily written in terms of the matrices

e1 =

(
1 0

0 0

)
, e2 =

(
0 1

1 0

)
, e3 =

(
0

1+
√
p

2
1−√

p
2 0

)
, e4 =

(
0 0

0 1

)
. (C.6)

One can easily obtain the Gram matrix in terms of these basis, i.e. Sij = (ei, ej) =

q(ei + ej)− q(ei)− q(ej), then (we use the symbol S as defined in the previous sections)

S =


1

−2 −1

−1 p−1
2

1

 . (C.7)

Though S contains a Π1,1 as usual, the rest presents a non-trivial lattice structure, not
realized by known string-theoretic constructions.

The next step is to construct the suitable Hilbert modular forms of non-trivial weight.
The conditions in section 5 still need to be satisfied, namely:

• The character µ of the group ΓK (of the lattice L) must be trivial.

• The zeros and poles of the Hilbert modular form correspond to the symmetry en-
hancement point of the theory.
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The first condition can be assured by an appropriate choice of the value of p. However,
identifying the rational quadratic divisor in this case is not straightforward. Necessary
details can be found in references [22, 78, 79]. It can be verified (see section 1.3 in [79])
that the generalized upper-half plane H2 (isomorphic to K+ defined in (3.12)) is exactly of
the form of

H2 =

{
δ

(
Z1Z2 Z1

Z2 1

)∣∣∣∣∣ Im(Z1) > 0, Im(Z2) > 0, δ ∈ C∗

}
. (C.8)

Since we are working within the projective space, usually the factor δ is ignored. It is also
obvious that we can use (Z1, Z2) to label the element in H2. In the previous sections we
used rational quadratic divisors to describe the position of zeroes and poles of the Borcherds
product. The corresponding object here is called Hirzebruch-Zagier divisor [80].

Definition C.2 (Hirzebruch-Zagier divisor) For (a, h, b) ∈ L and Z ∈ H × H, we have the
innerproduct ((

Z1Z2 Z1

Z2 1

)
,

(
a h

h∗ b

))
= bZ1Z2 − h∗Z1 − hZ2 + a . (C.9)

The zero locus of the right hand side defines an analytic divisor on H × H. For a positive
number m, in the space H × H we define the set

T (m) =
⋃

(a,b,h)∈L′/{±1}
q(a,b,h)=ab−h∗h=−m/p

{
(Z1, Z2) ∈ H2| aZ1Z2 + hZ1 + h∗Z2 + b = 0

}
.

(C.10)

T (m) is called Hirzebruch-Zagier divisor of discriminant m.

Before we extend the Borcherds product (Theorem B.1) to this case, we set up some basic
notations. In section 2 the congruence subgroup Γ0(p) is defined. Corresponding modular
forms may be defined as well.

Definition C.3 (Modular forms for congruence subgroups) Let µ be an abelian character
Γ0(p) → C∗ and k ∈ N0 a non negative integer. A holomorphic map f : H → C with the
transformation law

f(Mτ) = µ(M)(cτ + d)kf(τ) for all M ∈ Γ0(p) , (C.11)

for which f(∞) := limIm(z)→∞ f(z) and f(0) := limz→0 z
kf(z) exist in C ∪ {∞} (it has

finite order at the infinity) is called nearly holomorphic modular form for Γ0(p) of weight
k with character µ. If f(∞) and f(0) are complex numbers, then f is called a holomorphic
modular from for Γ0(p) of weight k with character µ. If f(∞) = f(0) = 0, then f is called
a cusp form.
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We define the spaces

Ak(p, µ) nearly holomorphic modular forms for Γ0(p) of weight k with character µ ,

Mk(p, µ) holomorphic modular forms for Γ0(p) of weight k with character µ ,

Sk(p, µ) = {f ∈Mk(p, µ)| f cusp form} ,

A±
k (p, χp) =

{
f(z) =

∑
n∈Z

a(n)e2πinz ∈ Ak(p, χp)

∣∣∣∣∣ a(n) = 0 for χp(n) = ∓1

}
,

S±
k (p, χp) = A±

k (p, χp) ∩ Sk(p, χp) .

One can show that Ak(p, χ)p) = A+
k (p, χp)⊕ A−

k (p, χp). If f =
∑

n∈Z a(n)q
n is a modular

form in Aϵ
k(p, χp), then we call

∑
n<0 a(n)q

n the principal part of f (at τ → ∞). For all
integers n we define

s(n) = 1 +

p−1∑
j=0

e2πinj/p

p
= 2−

(
n

p

)2

=

{
2, if n ≡ 0 mod p

1, if n ̸≡ 0 mod p
. (C.12)

Similar to the Theorem B.3, the principal part of f has non trivial restrictions (Theorem
6 in [78]). There exists a nearly holomorphic modular form f ∈ A+

k (p, χp) with prescribed
principal part

∑
n<0 a(n)q

n (where a(0) = 0 if χp(n) = −1), if and only if∑
n<0

s(n)a(n)b(−n) = 0 (C.13)

for every cusp form g =
∑

m>0 b(m)qm in S+
κ (p, χp), where κ = 2 − k. The case k = 0

and κ = 2 is of particular interest for us. For prime number p ≡ 1 mod 4, the dimension
of S2(p, χp) is 2

[
p−5
24

]
. Thus the space is empty for p = 5 case. Hence for p = 5, for all

m ∈ N there is a nearly holomorphic modular form f ∈ A+
0 (p, χp) with prescribed principal

part
∑

n<0 a(n)q
n if and only if a(n) = 0 for all n ∈ N with χp(n) = −1. Such nearly

holomorphic modular form is unique [79], and up to the normalization is the function f

given in (6.29).

Theorem C.1 (Borcherds product for Hilbert modular forms, Theorem 9 in [78]) Let f =∑
n∈Z a(n)q

n ∈ A+
0 (p, χp) and assume that s(n)a(n) ∈ Z for all n < 0. Then there is a

meromorphic function Ψ on H × H with the following properties:

i) Ψ is a meromorphic modular form for ΓK (the Hilbert modular group defined in sec-
tion 6) with some multiplier system of finite order. The weight of Ψ is equal to the
constant coefficient a(0) of f .

ii) The divisor of Ψ is determined by the principal part of f . It equals∑
n<0

s(n)a(n)T (−n) . (C.14)
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We can now verify the two required properties. The first is satisfied for p = 5, since the
multiplier system of Hilbert modular form for ΓK is trivial (Corollary 5.2.1 in [79]). The
second condition necessitates a confirmation that the positions of poles and zeros of the
Hilbert modular form correspond to the symmetry enhancements. The explicit relationship
between these points and the Hirzebruch-Zagier divisor is not yet known. Naively, requiring
that the symmetry enhancement appears at the diagonal set (Z1, Z2) = {(τ, τ)|τ ∈ H}
similarly to the choices in [25], corresponds to the Hirzebruch-Zagier divisor T (1). There
exists a weight 0 modular form f ∈ A+

0 (5, χ5)

f(τ) = q−1 + 5 + 11q − 54q4 +O(q5) , q = e2πiτ , (C.15)

that has only one term (q−1) in the principal part. By Theorem C.1, we arrive at a
holomorphic Hilbert modular form of weight 5 vanishing at T (1). However, as pointed
out in the main text, unexpected symmetry enhancements appear. For example, the point
Z1 = Z2 =

1
2+

√
3
2 imay lead to SU(3) symmetry, which does not appear in 8D (2,2) theories.

Therefore, Hilbert modular forms do not appear in the counterterms for the N = 1 theories
with l = 2.
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