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Abstract

Energy management within microgrids under the presence of large number of
renewables such as photovoltaics is complicated due to uncertainties involved.
Randomness in energy production and consumption make both the prediction
and optimality of exchanges challenging. In this paper, we evaluate the
impact of uncertainties on optimality of different robust energy exchange
strategies. To address the problem, we present AIROBE, a data-driven system
that uses machine-learning-based predictions of energy supply and demand
as input to calculate robust energy exchange schedules using a multiband
robust optimization approach to protect from deviations. AIROBE allows
the decision maker to tradeoff robustness with stability of the system and
energy costs. Our evaluation shows, how AIROBE can deal effectively with
asymmetric deviations and how better prediction methods can reduce both
the operational cost while at the same time may lead to increased operational
stability of the system.
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1. Introduction

The extensive use of fossil fuel-based energy, in order to meet the expo-
nential energy-demand, has led to the depletion of these resources and an
increase in greenhouse gas emissions. Towards neutral CO2 societies and the
achievement of the EU 2030 agenda, renewable energy sources (RES) and
energy storage systems (ESS) are increasingly deployed to cover the electri-
fication of the demand sector. Energy microgrids (MGs) of interconnected
loads and distributed energy resources (DERs), e.g. RES, ESS, and electric
vehicles, may connect to or disconnect from the upstream main grid aiming to
secure the energy supply [1]. The dispersed nature of DERs leads prosumers
to produce, store, consume, and exchange energy in a transactive operation
that relieves the main grid and improves its stability and security to supply
the demand [2, 3].

Microgrids (MGs) [4, 5] are small-scale power subsystems of the distribu-
tion grid that comprise generation capacities, storage devices, and controllable
loads, operating as a single controllable system with self-supply and islanding
capabilities [6]. In case of disturbances, the MGs can be isolated from the
upstream network and sustain the supply of local loads through optimal
management of the available resources, which are usually distributed. The
optimization of the MG operations is extremely important in order to cost-
efficiently manage its energy resources [7] and meet the demand. However,
the power resulting from distributed renewable energy resources such as solar
photovoltaic (PV) is stochastic and extremely reliant on the unpredictable and
instantaneous fluctuation of the weather and the solar radiation [8]. The MGs
optimization is also subject to the load uncertainty due the prosumer random
behavior [9], the dynamic energy prices [10], and the physical constraints
which impact the reliability and the the stability of the MG operation.

Several studies have suggested different mechanisms and solutions that
increase the reliability and the performance of the MGs. For example, com-
bining solar systems (or other RES) with energy storage systems (ESSs) such
as batteries can significantly enhance the reliability of the MGs by storing
the excess or covering the deficit [11, 12]. In such challenging environment,
developing optimization algorithms that account for the system instability
and cope with the different uncertainties is important [13, 14]. Similarly,
intelligent production and load forecast schemes [15, 16] help improve the
operational stability. Other methods to improve MGs operational efficiency
are designing end-to-end MG architectures based on intelligent decision mak-
ing [15] or deploying demand response based MGs [10, 17].
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Optimal control is extensively used to determine the MGs operations.
Contrary to deterministic optimization that assumes the different parameters
are precisely known when optimizing the system, a robust modelling solution
takes into account the above-mentioned uncertainties and constraints is needed
in order to achieve an acceptable level of supply security and guarantee the
MGs reliability [13]. In principle, stochastic programming (SO) and robust
optimization (RO) can be used to deal with the MGs uncertainties. SO
requires the knowledge of underlying probability distributions, which are
often not known and must be estimated. However, wrong estimates lead
to inaccurate solutions, and SO problems are typically computationally
challenging and hard to solve. The alternative, RO, which addresses better
the MG uncertainty settings, typically does not require information on the
distribution of the uncertain parameters. Rather, knowledge on an uncertainty
set is assumed. This includes all scenarios one wants to protect from, in
a trade-off setting between the level of uncertainty and its effect on the
objective function, the MGs cost in this case.

In order to address the issue of reliable and cost efficient scheduling, we
propose in this paper AIROBE, which is a data-driven optimization model
that protects against time-varying asymmetric deviations of predicted load
and PV power generation. The goal from this work is to use machine-learning
(ML)-based predictions as input to a less conservative robust optimization
approach that accounts for both good and bad deviations instead of the
absolute worst case, in opposition to the classical RO approaches. The
specific contributions of this paper are as follows:

• We propose a tractable and comprehensive robust model to solve the
optimal energy scheduling problem of a grid-connected mixed MG
(residential and non residential users). The robust model accounts for
the dynamicity of the energy prices and the uncertainties yielded from
the PV generation and users’ consumption profiles.

• We use variable uncertainty ranges for both the load and the PV
generation that are computed with ML based forecast, for each time
slot. The forecasting is based on pre-clustering method that clusters
the data into sunny, rainy, overcast, and partial overcast days. The
deviation ranges are strongly affected by this clustering, and impacts
the energy scheduling and optimization.

• We propose a refined robust optimization approach for MGs scheduling
under asymmetric load and PV generation uncertainties. In contrast to
classical robustness model, the proposed robust model allows to take into
account bad and good deviations over asymmetrical intervals, allowing
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to obtain less conservative solution without sacrificing protection against
uncertainty.

• The proposed solution is validated via simulations using real-world data
set and evaluated using the price of robustness and the probability
of the constraint violation in order to decide the trade-off between
the cost and the energy balance violation. We demonstrate that our
approach reduces the conservatism of the MG operation and decreases
the MGs cost without impacting the constraint violation probability in
comparison with the original budget-of-uncertainty model [18].

2. Motivation

To illustrate the uncertainties that may arise when using forecasts in
the day-ahead optimization of energy exchanges in smart MGs, we trained
different ML-based forecast models to predict PV production and energy
consumption. Our models use clustering and consider the weather character-
istics in order to increase model accuracy (more information in Section 4).
Fig. 1 shows the different distributions of the forecast error (we use the Mean
Absolute Percentage Error, MAPE) when predicting PV power generation
(Fig. 1(a,c)) and energy consumption (Fig. 1(b,d)). The histogram is divided
into over- (orange) and under-prediction (blue). Fig. 2 illustrates the vari-
ability of the deviation for the production and consumption prediction over
time with a confidence interval of 80%. We summarize our main findings as
follows:

• Different weather conditions result in different error character-
istics: the deviations of observed values from predicted ones in terms
of under- and over predictions behave differently for each of the weather
conditions (see Fig. 1). For example, when observing the prediction
error for PV production and consumption for the partly overcast days,
we notice a trend for larger negative deviation of the observed values
from the predicted values leading to higher under prediction. However,
for sunny days, there is a trend toward over prediction of both energy
supply and demand.

• Asymmetrical deviation: the deviation, i.e., the difference between
predicted value and observed value of the PV production and the
prosumer consumption is asymmetrical, i.e, the lower and the upper
bounds of the deviations are not equal as shown in Fig. 1.

• Uncertainty varies over different prediction horizons: Fig. 2)
plots deviations of predicted values from observed values for both PV
production and energy consumption of a single prosumer over a whole
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(a) Production - Partly Overcast Day (b) Consumption - Partly Overcast Day

(c) Production - Sunny Day (d) Consumption - Sunny Day

Figure 1: Distribution of over- and under prediction in terms of MAPE for one prosumer
PV power generation and energy consumption during 24 hours

day. As can be seen, the deviation range and asymmetry varies over
different timeslots.

Based on these observations, we conclude that the MGs operation may
be severely impacted by asymmetric time-varying deviations caused by the
uncertainties involved when predicting both the PV power generation and
the prosumers consumption. Given these uncertainties, the MGs scheduling
problem can be categorized as an optimization problem with resource un-
certainty, where the predicted consumption and production have uncertain
upper and lower bounds for each time slot. Due to these deviations, the worst-
case scenario happens when the realized PV power generation is lower than
expected, or alternatively, when the consumption is higher than predicted.
These deviations can be described as bad deviations for our system.

In fact, if the MGs scheduling is planned solely based on predicted values,
even small prediction errors and uncertainties associated with the demand
and the available power can make the planned power dispatch infeasible,
potentially lead to high operational costs (e.g., due to unplanned high demand
or low supply), and may lead to security and reliability issues in the power
system when using the predicted values for the MGs operation in real-time.
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(a) Asymmetrical Deviation - PV Power
Production (b) Asymmetrical Deviation - Energy Con-

sumption

Figure 2: Deviations for one prosumer PV power generation (a) and energy consumption
(b) during 24 hours

Alternatively, as shown in Fig. 1, the true available PV power may be
much higher than the predicted value (i.e., power underprediction case) and
the consumption can be lower than expected (i.e., overprediction case). These
deviations can be described as good deviations. In this case, using a worst-
case scenario based scheduling using predicted values means that the total
available power may never be entirely utilized by the MGs and that the
planned decisions are overly conservative and may also entail high costs.

Furthermore, Fig. 2 illustrates, that the deviation of a day-ahead predic-
tion is variable over time and is not constant or symmetrical. Hence, our
proposed approach must be able to optimize the MGs energy scheduling
under time-varying and asymmetric deviations. As a consequence, we need
to formulate our model so that it protects against the bad deviations and re-
moves the unnecessary protection by taking advantage of the good deviations
in an opportunistic less conservative manner.

3. Modelling the MG Energy Exchange Optimization Problem

We consider an MG made up of a cluster of prosumers and consumers that
are geographically close. Each prosumer is equipped with a battery, a PV
cell, and is associated with a power load. Each consumer is associated with
a power load. It is not equipped with a PV cell but may possess a battery
(e.g., for electric vehicles or load coverage). The prosumers and consumers
can exchange power (import/export, i.e., buy/sell) among each other, and
the MG can exchange power with the main grid to cover its demand or to
sell its surplus. The prices of power imports and exports are dynamic (i.e.,
they may vary over the time periods constituting the planning horizon that
we consider).

Given a time horizon decomposed into a set of time periods T and given
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an MG including a set C of users (prosumers or consumers), the optimal MG
exchange problem that we consider is that of choosing the charge/discharge
actions of each user and import/export actions of the MG in each time
period, satisfying the total MG load constraint while taking into account
the PV generation and the state-of-the-energy constraints, with the aim of
miminimizing the total cost of the MG over the horizon. In this work, we
assume that battery degradation and leakage effects are negligible.

3.1. Deterministic Optimization Model
We start by defining the deterministic model, which does not take into

account the uncertainty of users’ loads and PV generation. The model
involves the following decision variables:

• binary variables yimt ∈ {0, 1}, ∀t ∈ T , which are equal to 1 if power is
imported by the MG in period t and 0 otherwise;

• binary variables yext ∈ {0, 1}, ∀t ∈ T , which are equal to 1 if power is
exported by the MG in period t and 0 otherwise;

• continuous variables pimp
t ≥ 0, ∀t ∈ T that represent the amount of

power imported in each period t;

• continuous variables pexpt ≥ 0, ∀t ∈ T that represent the amount of
power exported in each period t;

• binary variables xchj,t ∈ {0, 1}, ∀j ∈ J, t ∈ T , which are equal to 1 if the
battery of user j is charged in period t and 0 otherwise;

• binary variables xdisj,t ∈ {0, 1}, ∀j ∈ J, t ∈ T , which are equal to 1 if the
battery of user j is discharged in period t and 0 otherwise;

• continuous variables bchj,t ≥ 0, ∀t ∈ T that represent the amount of
charge of user j’s battery in period t;

• continuous variables SoEj,t ≥ 0, ∀t ∈ T that represent the state of
energy of user j’s battery in period t.

These decision variables are employed in a number of constraints. First, we
must express the link between the charge (discharge) binary and continuous
variables, imposing that the continuous charge (discharge) variables of a user
j ∈ C in period t ∈ T cannot exceed an upper bound kchj (kdisj ) when a
charge (discharge) occurs in a period:

bchj,t ≤ kchj · xchj,t ∀j ∈ C, t ∈ T , (1)

bdisj,t ≤ kdisj · xdisj,t ∀j ∈ C, t ∈ T . (2)
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Furthermore, we must express that a user j can either charge or discharge
its battery in each period t, i.e.:

xchj,t + xdisj,t ≤ 1 ∀j ∈ C, t ∈ T . (3)

Similarly, we must express the variable upper bound Impt (Expt) on the
power that may be imported (exported) in each time period t ∈ T and the
condition of either importing or exporting in each period, i.e.:

pimt ≤ Impt · y
imp
t ∀t ∈ T , (4)

yimt ≤ Expt · yexpt ∀t ∈ T , (5)

yimt + yext ≤ 1 ∀t ∈ T . (6)

We also include constraints on the State of Energy (SoE), linking the value
of SoE variables to the energy variation occurring between consecutive time
periods (here ∆t is the duration of a time period) and imposing bounds
SoEmin

j , SoEmax
j on the minimum and maximum values that an SoE variable

may assume:

SoEj,t = SoEj,t−1 + (bchj,t−1 − bdisj,t−1) ·∆t ∀j ∈ C, t ∈ T , (7)

SoEmin
j ≤ SoEj,t ≤ SoEmax

j ∀j ∈ C, t ∈ T . (8)

Eventually, we define the load constraints imposing that, for each period
t ∈ T , the sum of the power pPV

j,t produced through PV by each user j ∈ J
plus the sum of the charge/discharge variation of batteries of all users and
the import/export variation with the main grid must be greater or equal
than the sum of the load pPC

j,t of the users, i.e.:∑
j∈C

[
pPV
j,t +

(
bdisj,t − bchj,t

)]
+
(
pimp
t − pexpt

)
≥

∑
j∈C

pPC
j,t ∀t ∈ T . (9)

The objective is to minimize the total cost of power import/export over the
entire time horizon, obtained by summing the difference between the cost of
importing (with price πim

t ) and the revenue of exporting (with price πex
t ):

min
∑
t∈T

(πim
t · pimt − πex

t · pext ) . (10)

3.2. Robust Optimization Model
The previous model is deterministic and neglects the fact that both the load
coefficients pPC

j,t and PV power generation coefficients pPV
j,t of constraints (9)
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are subject to uncertainty and their exact value is not known in advance. In
order to tackle such data uncertainty, which may lead to infeasibility and
severe suboptimality of solutions when neglected and not properly taken into
account in the model (see [19] for an exhaustive discussion), we propose to
adopt a Robust Optimization (RO) approach. RO is a methodology that
takes into account data uncertainty under the form of hard constraints that
are added to the model for considering only robust solutions, namely solutions
whose feasibility is preserved even when data deviations specified by an
uncertainty set occur.

We start by considering a classical RO model, so called Γ-Robustness [18]
for then proposing an improved RO model that allows to more accurately
represent data deviations. In a more formal way, in an RO approach: 1) the
actual value of an uncertain coefficient is supposed to equal the summation
of a reference value nominal value set by the decision maker and an unknown
deviation; 2) an uncertainty set is defined for specifying all possible deviations
for which protection is required; 3) it is defined a robust counterpart, namely
a modified version of the original deterministic optimization problem that
includes only robust solutions. Granting robustness comes at the so-called
price of robustness, which is a degradation in the optimal value caused by
excluding non-robust solutions from the feasible set. In general, increasing
robustness and thus adding protection against uncertainty leads to a higher
price of robustness.

In the optimization model presented in Subsection 3.1, the uncertainty
affects the load constraints (9): following the Γ-Robustness approach, we
assume that the actual value of each uncertain load coefficient pPC

j,t and of
each PV power generation coefficient pPV

j,t falls in the symmetric intervals:

pPV
j,t ∈ [p̄PV

j,t − δPV
j,t , p̄PV

j,t + δPV
j,t ]

pPC
j,t ∈ [p̄PC

j,t − δPC
j,t , p̄PC

j,t + δPC
j,t ] (11)

where p̄PV
j,t , p̄PC

j,t are the nominal values and δPV
j,t , δPC

j,t the corresponding
maximum deviation. Furthermore, the approach provides for introducing
parameters ΓPV

t ∈ {0, |J |}, ΓPC
t ∈ {0, |J |} denoting the number of load and

PV generation coefficient deviations for which protection is requested in each
period t ∈ T . These parameters represent a budget of uncertainty and allow
to control the level of protection against uncertainty and the corresponding
price of robustness: when Γt = 0 no protection is imposed and the price of
robustness is null; by increasing the value of Γt, the protection and the price
of robustness increase, until reaching full protection for Γt = |J |, which also
entails the highest price of robustness.

9



Using the theoretical results of Γ-Robustness presented in [18], we can
write the following robust counterpart of the constraints (9):

∑
j∈C

[
p̄PV
j,t +

(
bdisj,t − bchj,t

)]
−

ΓPV
t · vPV

t +
∑
j∈C

wPV
j,t

+
(
pimp
t − pexpt

)

≥
∑
j∈C

p̄PC
j,t +

ΓPC
t · vPC

t +
∑
j∈C

wPC
j,t

 ∀t ∈ T , (12)

vPV
t + wPV

j,t ≥ δPV
j,t ∀j ∈ C, t ∈ T , (13)

vPC
t + wPC

j,t ≥ δPC
j,t ∀j ∈ C, t ∈ T , (14)

vPV
t , vPC

t ≥ 0 ∀t ∈ T , (15)

wPV
j,t , wPC

j,t ≥ 0 ∀j ∈ C, t ∈ T . (16)

which is made up of: i) the robust constraint (12), which is a modified
version of (9) that refers to the nominal coefficient values p̄PV

j,t , p̄PC
j,t and

includes additional terms modelling the deviations of coefficients and the
Γ parameters controlling robustness; ii) auxiliary constraints (13), (14) and
auxiliary variables (15), (16) introduced by the procedure of [18] exploiting
duality theory of Linear Programming.

3.3. A refined robust model considering asymmetrical and "good" deviations
While Γ-Robustness constitutes the most successful method for Robust

Optimization and still represents a major reference that is widely used in a
vast number of real-world uncertain optimization problems (see e.g, [19]), it
offers opportunities for improvements. Here, we attempt at obtaining a more
refined representation of uncertainty, reducing the price of robustness without
sacrificing protection, by considering an asymmetrical range of deviation of
the coefficients and taking into account "good" deviations in the value of
coefficients. By "good" deviations, we intend favourable deviations in the
value of coefficients, like an increase in the PV power production pPV

j,t or a
reduction in the load pPC

j,t , which strengthen feasibility instead of leading
towards infeasibility: these deviations are indeed likely in reality, but are
completely neglected by Γ-Robustness, which considers only worst-case "bad"
deviations leading towards infeasibility.

As first step, we define the following modified deviation ranges:

pPV
j,t ∈ [p̄PV

j,t − δPV−
j,t , p̄PV

j,t + δPV+
j,t ]

pPC
j,t ∈ [p̄PC

j,t − δPC−
j,t , p̄PC

j,t + δPC+
j,t ] (17)

10



in which the range is asymmetrical and the value of the largest negative
deviations δPV−

j,t , δPC−
j,t and positive deviations δPV+

j,t δPC+
j,t do not have to

coincide, as common in real-world optimization under uncertainty [20].
The classical Γ-robust model is able to take into account only the "bad"

deviations δPV−
j,t (decrease in the PV generation) and δPC+

j,t (increase in
the load) and leads towards the infeasibility of the load constraint (9). If
we want to take into account the "good" deviations δPV+

j,t (increase in the
PV production) and δPC−

j,t (decrease in the load), it is necessary to extend
the Γ-robust model, in particular introducing an additional parameter Θt

specifying the minimum number of deviations that must be "good" and
suitable associated constraints.
When considering the "good" deviations together with the "bad" deviations,
we can prove the following results:

Proposition 1. For each time period t ∈ T , the robust counterpart of
constraint (9) when protection for ΓPV

t "bad" deviations and ΘPV
t "good"

deviations of PV generation coefficients and ΓPC
t "bad" deviations and ΘPC

t

"good" deviations of load coefficients are allowed in period t writes as:

∑
j∈C

[
p̄PV
j,t +

(
bdisj,t − bchj,t

)]
−

ΓPV
t · vPV−

t −ΘPV
t · vPV+

t +
∑
j∈C

wPV
j,t


+
(
pimp
t − pexpt

)
≥

∑
j∈C

p̄PC
j,t +

ΓPC
t · vPC+

t −ΘPC
t · vPC−

t +
∑
j∈C

wPC
j,t

 (18)

vPV−
t + wPV

j,t ≥ δPV−
j,t ∀j ∈ C (19)

− vPV+
t + wPV

j,t ≥ −δPV+
j,t ∀j ∈ C (20)

vPC+
t + wPC

j,t ≥ δPC+
j,t ∀j ∈ C (21)

− vPC−
t + wPC

j,t ≥ −δPC−
j,t ∀j ∈ C (22)

vPV+
t , vPV−

t ≥ 0 (23)

wPV
j,t ≥ 0 ∀j ∈ C (24)

vPC+
t , vPC−

t ≥ 0 (25)

wPC
j,t ≥ 0 ∀j ∈ C (26)

Proof. For the proof, we refer the reader to Appendix A.
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4. Prediction of PV Energy Supply and Demand

AIROBE requires as input the prediction of PV Energy Supply and
Demand as well as its deviation ranges for each forecast interval. We use
data-driven approaches for obtaining model input as described below.
Data pre-processing. AIROBE integrates data cleaning techniques to
improve data quality for making predictions of high quality. To detect
outliers and missing data we are using interquartile range (IQR) method.
Data points, which are not within a percentile of the mean are detected as
outliers and replaced by the average of previous/future values. For the solar
PV production, we also remove the night times, since they are not relevant
for the prediction of solar energy production [21].
Weather type clustering. Previous work in this field has shown, that four
clusters for the weather types (sunny, partly overcast, overcast and rainy)
perform the best [22]. We cluster the data using the weather features available
in the dataset (solar irradiation, temperature and humidity for the whole
year) using K-means clustering in combination with dynamic time warping
(DTW) to create the clusters. DTW has shown superior performance when
applied to time-series datasets, because it is able to detect similar patterns
even if they do not occur in the same time period [23].
Forecasting Models. We enrich the clustered datasets with the historical
information about the PV power production and energy consumption of the
prosumer in the system. For each of the four clusters we then generate an
individual machine learning forecast model. As a predictor we use LightGBM,
which is a gradient boosting decision tree (GBDT) algorithm [24]. LightGBM
is constructed differently than conventional GBDT algorithms, as it grows
leaf-wise to find a leaf with the largest split gain instead of iterating over
all previous leaves. To additionally speed up the training of the model it
uses advanced networking communication called parallel voting decision tree
algorithm, which enables parallel computation during the training process
[25, 26]. Since the LightGBM regressor only supports single-step forecasting,
we additionally wrapped an auto-regressive direct multi-step forecaster [27],
which generates the multi-step forecast in a sliding window manner. This
means, that the model predicts the next time slot and uses that prediction
as an additional input for the next step in an iterative manner.
Prediction Interval. Since the prediction of time-series data is probabilistic,
it is necessary to determine the possible deviation of the forecast. AIROBE
needs for each prediction interval the range of the deviation as input in order
to optimize the exchange of energy in the system for the next period. We
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use quantile regression (QR) to elaborate the prediction deviation [28]. QR
can be described as follows: Qy (q | Xt) = Xtβq. Qy(q|∗) is the conditional
qt quantile of the production or consumption distribution (yt). Xt are the
regressors for each quantile, while βq represents the vector of parameters for
the quantile q. Each of the two predictors for the quantiles use the pinball
loss function or quantile score (QS), present in (27).

φ (yt, ŷt,q, q) =


(
1− q

100

)
(ŷt,q − yt) yt < ŷt,q

q
100 (yt − ŷt,q) yt ≥ ŷt,q

(27)

ŷt,q is the qt quantile of the predicted load and consumption and yt is
the target value for each prediction. The QS is the mean of the pinball losses
across all target quantiles [29].

Error Metric. We used the Mean Absolute Percentage Error (MAPE)
to evaluate the prediction quality of the machine learning models:

MAPE =
1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ ∗ 100 (28)

where At represents the vector of the actual values, Ft the forecasted ones
and n is the number of predictions.

5. Evaluation

In this section we answer the following questions:

1. Prediction Interval : How accurate are our clustering-based ML-models
in predicting the PV power generation, the energy consumption and
what is the resulting deviation over time for different clusters?

2. Robustness: How do different parameters of AIROBE impact the ro-
bustness of the solution, the cost and the state of energy?

3. Price of Robustness: How can AIROBE reduce the Price of Robustness
(PoR) and what is the impact of the opportunistic model on constraint
violation probability?

5.1. Baselines
We use the following baselines for analysis and comparison with the

proposed AIROBE model: we use the partial knowledge based model as
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described in the subsection.3.2 as baseline which considers uncertainty in
both the load and the PV production sides. We call this conventional robust
approach which considers the absolute worst-case of PV production and
prosumer consumption under a budget of uncertainty.

5.2. Experimental Setup
5.2.1. Data set

In this study, we validate the effectiveness of the forecasting and scheduling
models on the city learn framework data set1. The data set contains n =
9 residential and non-residential users subscribing in the EMS. The load
represents the heating and the appliances demand. The data set contains the
hourly consumption and PV power generation for the different users and the
weather information during one year.

5.2.2. PV power generation and energy consumption prediction
The sub-datasets for the four different clusters were divided into a training

(75%) and testing (25%) dataset. A LightGBM model was trained for the
energy consumption and PV power production of each prosumer and weather
cluster, individually. The predictor takes 48 hours as input to forecast the next
24 hours. Additionally, we used grid-search to select the best hyperparameters
for each model. To estimate the deviations of the prediction we used the QR
and QS as described in section 4 using 0.90 for the upper boundary and 0.10
for the lower one to build a 80% confidence interval.

5.2.3. Optimization
In our case study, we schedule day-ahead energy exchange where each

time slot is equal to 1 hour; with time horizon of N = 24 hours i.e, the
decision is made by solving the optimization problem for the next N = 24h
with a time window from 0:00 to 23:59. Hourly import and export prices
were obtained from Nord Pool market data2. We use the ML predictions for
the PV production, the consumption and their deviations as the input to our
optimization models, i.e, the reference values. The model is implemented in
python and solved by Gurobi.

5.3. Prediction Quality
Table 1 shows the prediction quality of the produced PV energy for

prosumer nine. The table shows the average deviation for the under and

1https://github.com/intelligent-environments-lab/CityLearn
2https://www.nordpoolgroup.com
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Table 1: Production summary for prosumer nine

Average Deviation Overall Maxi-
mum Deviation

Overall Mini-
mum Deviation

MAPE

Cluster Over
Prediction

Under
Prediction

Rainy 12.97% 21.97% 23.35% 1.15% 5.63%
Partly Overcast 15.87% 11.46% 40.31% 1.24% 3.22%
Sunny 30.21% 4.16% 40.42% 1.32% 2.06%
Overcast 54.74% 0.17% 83.09% 0.53% 5.69%

Table 2: Consumption summary for prosumer nine

Average Deviation Overall Maxi-
mum Deviation

Overall Mini-
mum Deviation

MAPE

Cluster Over
Prediction

Under
Prediction

Rainy 18.72% 16.67% 39.28% 4.03% 6.60%
Partly Overcast 17.54% 26.68% 21.28% 4.19% 8.56%
Sunny 9.48% 3.93% 29.91% 1.61% 4.32%
Overcast 30.05% 18.79% 46.55% 3.15% 5.83%

over prediction, overall maximum and minimum deviation in percentage and
MAPE over the period of 90 days for the weather type clusters. It is visible
that the clusters behave differently. For example, the sunny cluster has a
stronger deviation towards the over prediction with an average deviation
of 30.21% while the average under prediction is 4.16%. This behaviour of
good deviations is also visible in the overcast weather cluster. The other
weather clusters average deviation for the under and over prediction express
a mostly even magnitude towards either bound. In terms of the prediction
quality, the sunny cluster has the lowest MAPE of 2.06%. The overcast
cluster presents the highest overall maximum deviation of 54.74%. The high
maximum deviation occurs when there is a sudden change in the power
production. This means, that the day is for example clustered as an overcast
day, but the production of the PV panel is higher than predicted due to
sudden weather changes (see Fig. 4 and Fig. 3).

Table 2 summarizes the prediction quality for the energy consumption.
In contrast to the prediction of the PV generation, the MAPE is higher in
every weather cluster. However, this is not visible in terms of deviations.
The sunny cluster for example, still shows a stronger magnitude in deviation
towards the over prediction with 9.48% but it is lower than the 30.21% in
table 1 for the production.
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Figure 3: Consumption prediction and deviation of prosumer nine for each weather cluster.

Figure 4: Production prediction and deviation of prosumer nine for each weather cluster.

5.4. Robustness
In order to study the impact of the proposed model AIROBE on the

objective value, i.e, the MG operational cost, we evaluate the cost under the
different types of budget of uncertainty namely: ΓPV

t , ΘPV
t , ΓPC

t , ΘPC
t . We

plot the MG aggregated cost in Fig.5. First, we optimize using the baseline
worst-case model under the PV production and consumption uncertainties
described in 3.2 and we plot the results in Fig.5.(c). We observe that the cost
value increases with the increase of the uncertainty budgets ΓPV

t and ΓPC
t .

The values (ΓPV
t ,ΓPC

t ) = (0, 0) corresponds to the deterministic baseline
described in 3.1 where we don’t have any protection. In this deterministic
case, we have the lowest cost 2399.89€/kWh, however, the future deviations
will cause the MG to import on the spot in order to cover the demand which
will cause an instability of the MG and yields higher expected cost in the
future. The values (ΓPV

t ,ΓPC
t ) = (9, 9) correspond to the most-conservative

case where we protect from all possible deviation to their lower bounds which
yields the highest possible cost 5007.48€/kWh. The high cost is explained
by the fact that when we protect from the worst case scenario, we expect to
produce less, alternatively consume more, which leads the users to import
more power and charge their batteries to cover the future demand.
In Fig.5.(a),(b). we optimise using the proposed model AIROBE described
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(a)
The MG cost distribution under PV
uncertainty budgets ΓPV

t and ΘPV
t

(b)
The MG cost distribution under PV
uncertainty budgets ΓPV

t and ΘPV
t

(c)
The MG cost distribution under PV
uncertainty budgets ΓPV

t and ΓPC
t

Figure 5: The MG cost distribution under different types of uncertainty.

in 3.3. In Fig.5.(a). we study the impact of the budgets related to the PV
generation uncertainty. We observe that the cost has the highest values when
ΘPV

t = 0 which represents the same values as in Fig.5.(c). for ΓPC
t = 0 and

corresponds to the baseline value where we don’t consider the favourable de-
viations. In Fig.5.(a)., the cost increases as we increase the budget ΓPV

t for a
fixed ΘPV

t . We notice that the cost value decreases as we increase the budget
ΘPV

t and hits the minimum value 2527.71€/kWh for (ΘPV
t ,ΓPV

t ) = (9, 0). In
fact, by introducing the budget ΘPV

t which reflects the favourable deviations,
the users tend to be more opportunistic and import less compared to the
worst-case scenario where they import more than their demand and charge
their batteries in order to protect from future worst deviations. However, in
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(a)
Overall State of Energy of seven users
for ΓPV

t = 0, 1, 2 and ΘPV
t = 0

(b)
Overall State of Energy of seven users
for ΓPV

t = 0, 1, 2 and ΘPV
t = 2

Figure 6: The impact of the different budgets of uncertainty on the overall State of Energy
(kWh) of the prosumers batteries.

a sunny day for example, the PV generated power is likely to deviate to its
upper bound as shown in 2. Taking those scenarios into account, makes the
scheduling less conservative and reduces the extensive import from the main
grid that appears in the worst-case scenario based scheduling.
Similarly, in Fig.5.(b). we plot the aggregated MG cost under the impact
of the budgets related to the users consumption uncertainty. The negative
values of the cost corresponds to a profit where the MG is expected to make a
profit. This scenario might appear when the MG has power generation excess
in comparison to the consumption, and the model takes into account these
favorable good deviations while (The users produce more than expected or
consume less than expected). We observe that the two budgets of uncertainty
have similar affect on the cost as in Fig.5.(a) where the cost decreases as
we increase the budget ΘPC

t . This is explained by the fact that the users
consumption might deviate to its lower bound, i.e, the user consume less
energy than the predicted value and taking that into account encourages
them to import less or charge their batteries less. We can conclude that
integrating the favourable deviations into the scheduling, yields lower cost
which implies lower power import from the main grid in general.

Fig.6. presents the aggregated state of the energy (SoE) of seven users,
and its variation under different budgets of uncertainty. In Fig.6.(a). we fix
ΘPV

t = 0 and optimize for three different budgets of uncertainty related to the
PV power generation ΓPV

t . We pick one sunny day in order to showcase the
effectiveness of the budget of uncertainty related to the favourable deviations.
We observe that the users batteries tend to have a higher SoE when we

18



increase the value of ΓPV
t in Fig.6.(a). In fact, in order to protect from the

worst-case scenario, i.e, the bad deviations, the users tend to charge their
batteries to replace the expected deficit. In Fig.6.(b). we want to assess
the impact of the favourable deviations on the battery behavior. We fix
ΘPV

t = 2, i.e, the model will take into account that two uncertain parameters
will deviate to their upper bound. We observe that the SoE has increased in
general. This is due to the fact that higher expected generated PV power
were taken into account in the optimization scheduling and the users charge
their batteries with that excess or provide it to the MG utilization which
means other users with deficit will tend to charge their batteries as well.

5.5. Price of Robustness
To show the impact of data uncertainty on the objective value, i.e, the

MG operational cost, and to demonstrate the effectiveness of the proposed
approach against it, we simulate 10000 scenarios of random yields for users
production and then we compare the robust solutions generated by varying
the level of the uncertainty budgets ΓPV

t and ΘPV
t . For simplification and

without loss of generality, we fix ΓPC and ΘPC
t to zero. We evaluate the

constraint violation probability and the Price of Robustness. We define
the PoR rate as the relative difference between the costs realized by the
robust solution and the nominal solution where we don’t protect against the
uncertainty. The PoR is used to quantify the extra MG cost required to cover
for the robust solution. We calculate the PoR as follow:

PoR = 100
CostΓ=0 − CostΓ>0

CostΓ = 0
(29)

Fig. 7.(a). shows the PoR rate variation as we increase the worst-case
scenario budget of uncertainty ΓPV

t for different fixed values of ΘPV
t . The case

where ΘPV
t = 0, which corresponds to the baseline model (approach 3), yields

the highest value of PoR, alternatively the highest cost. The value of PoR
increases as we increase the budget ΓPV

t since we are protecting more against
the worst-case scenario, where the higher ΓPV

t the more uncertain variables
deviate to their lower bound corresponding to less PV power production. In
Fig. 7.(a). we compute the PoR for different values of ΘPV

t which indicates
that some uncertain variables will deviate to their upper bound, i.e, the
PVs will generate more power then expected, which mostly corresponds to
sunny days. The PoR is reduced as we introduce the good deviations in our
scheduling. The objective value is reduced by 0.82% atmost for ΘPV

t = 4
compared to 1.92% PoR for the classical worst-case model, i.e, ΘPV

t = 0.
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(a)
Price of Robustness rate for different
values of good deviation budgets ΘPV

t
(b)

Probability of Constraint Violation for
different values of ΘPV

t

Figure 7: Evaluation of the AIROBE robustness performance in terms of the good and
bad deviations

Fig. 7.(b). illustrates the probability of constraint violation for different
levels of protection ΓPV

t . The probability of constraint violation decreases
when we increase the level of protection until it reaches the value 0. This is
explained by the fact that the more we protect against the uncertainty, the
more probable it is that we achieve energy balance and meet our demand. We
note that we compute the probability of constraint violation for the different
values of ΘPV

t , which remains unchangeable. We conclude that the proposed
model reduces the PoR and exhibit lower MG costs while conserving the
same level of protection.

6. Limitations and Next Steps

AIROBE took an initial step in formulating a robust MGs energy schedul-
ing model, that accounts for time-varying prediction uncertainties. Compared
to classical Γ-robustness models, we consider asymmetric uncertainty ranges
under bad and good deviations, which allows us to calculate more opportunis-
tic solutions. In this section, we describe limitations of the current model
and possible future directions.

AIROBE assumes that the battery capacity is constant and neglects the
degradation of the battery life over time because we evaluate our scheduling
over a short period of time. In real life, the battery is impacted by the charging
and discharging cycles and degrades over time which can impact both the cost
and the solver decisions. Adding such battery constraints, a battery-related
cost to the objective function and evaluating over a long period of time is a
possible next step in this work. While our current model assumes that the
different uncertain parameters are independent, the PV power generation
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and less so the load profiles maybe subject to geographical and temporal
correlation. AIROBE can be extended to consider the correlation of the
uncertain parameters and study its impact on the robustness and the budget
of uncertainty, in a multi-microgrids settings. Finally, an area of further
research is to extend AIROBE for other DERs such as wind power and
consider the curtailment cost.

7. Related Work

There are several related works in the area of optimization of MG opera-
tions [30, 31], under different modes; centralized [32] and decentralized [33],
using different modelling approaches for MG operations and management
systems. These approaches can be categorized into two types: model-driven
and data-driven based modelling solutions.

For the model-driven approaches, [34, 35] developed a mixed integer linear
programming solution (MILP), while the authors in [36, 37] proposed a mixed
integer non linear programming (MINLP) solution for operational planning
and optimal sizing of MGs. [38] used dynamic programming for optimal
energy management of a standalone MG. Metaheuristics and heuristics such
as memory-based Genetic Algorithms [39] and Tabu Search [40] have been
proposed to solve the power dispatch problem for MGs which provides faster
yet sub-optimal solution. In contrast to our work, those approaches assume
perfect knowledge about the future without protecting against uncertainties,
which may not be available in practice.

Examples of data-driven models apply e.g. stochastic programming (SO)
that assumes perfect knowledge on parameter distribution. For example, [41]
presented an energy scheduling strategy of the MG operation based on
the probabilistic forecasts of both the wind power and the user’s demand.
[42] proposed a stochastic optimization framework for smart home energy
management while considering the uncertainty associated with the RES
generation and the plug-in electric vehicle’s plug-state. The stochastic based
approaches often require high computational effort due to the significant
number of scenarios, which limits their performance.

Robust optimization (RO) has been extensively used, as an alternative
to SO as it has significantly better computational performance and simpler
uncertainty modelling [18]. RO method that considers the worst-case scenario
is utilized frequently in this context [43, 44, 45, 46]. In contrast to AIROBE,
this work is conservative as it protects against the uncertainty risk assuming
that all uncertain parameters may deviate to their worst value at the same
time, which may be very unlikely in practice. The authors in [47] investigated
the energy management in MGs in relation with the uncertainty derived
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from the energy price signals, which differs from our work that focuses on
the uncertainty on the PV generation and the load side, given a budget of
uncertainty. A robust optimization approach with adjustable robustness level
is adopted in [48], which does not consider uncertainties in RES generation
and price volatility.

In recent work of [49], the authors presented a quadratic min-max robust
solution under the cardinality-constrained uncertainty set based on the clas-
sical Gamma robustness theory [18] for energy management of a residential
MG under uncertainties on demand and renewable power generation. The pro-
posed solution protects against the worst-case scenario, based on symmetric
deviation ranges with fixed uncertainty. Similarly, in [50] the authors propose
robust energy scheduling solution for a smart building under PV generation
uncertainty. The authors also use the budget of uncertainty based model
and consider PV output forecasting as an input, and they assume that the
upper and lower bounds deviate 20% from the forecasted values. In contrast,
our work introduces favourable deviations and incorporates time-varying and
asymmetrical uncertainty ranges.

8. Conclusion

In this paper we presented AIROBE, a MGs energy management robust
optimization model that schedules the MGs operations under PV power
generation and consumption uncertainties, in an effective and opportunistic
manner. We use time-series prediction technique using clustering in order
to forecast PV power generation and energy demand that are needed for
the model input. We discussed the limitations of the classical worst-case
robust optimization based approach and motivated the need to integrate
more accurate uncertainty ranges, i,e, asymmetric and time-varying deviation
ranges. We proposed a less conservative robust approach that accounts for
the good deviations in a MG and demonstrated that AIROBE reduces the
Price of Robustness while maintaining the same level of protection.
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Appendix A. Proofs
We provide here the proof of Proposition 1.

Proposition. For each time period t ∈ T , the robust counterpart of constraint (9) when protection
for ΓPV

t "bad" deviations and ΘPV
t "good" deviations of PV generation coefficients and ΓPC

t
"bad" deviations and ΘPC

t "good" deviations of load coefficients are allowed in period t writes as:

∑
j∈C

[
p̄PV
j,t +

(
bdisj,t − bchj,t

)]
−

ΓPV
t · vPV −

t −ΘPV
t · vPV +

t +
∑
j∈C

wPV
j,t


+

(
pimp
t − pexpt

)
≥

∑
j∈C

p̄PC
j,t +

ΓPC
t · vPC+

t −ΘPC
t · vPC−

t +
∑
j∈C

wPC
j,t

 (A.1)

vPV −
t + wPV

j,t ≥ δPV −
j,t ∀j ∈ C (A.2)

− vPV +
t + wPV

j,t ≥ −δPV +
j,t ∀j ∈ C (A.3)

vPC+
t + wPC

j,t ≥ δPC+
j,t ∀j ∈ C (A.4)

− vPC−
t + wPC

j,t ≥ −δPC−
j,t ∀j ∈ C (A.5)

vPV +
t , vPV −

t ≥ 0 (A.6)

wPV
j,t ≥ 0 ∀j ∈ C (A.7)

vPC+
t , vPC−

t ≥ 0 (A.8)

wPC
j,t ≥ 0 ∀j ∈ C (A.9)

Proof. In order to prove this result, we first focus attention on a time period t ∈ T and define a
robust version of the constraint load satisfaction constraint (9) in which we include terms:

• −DEV (ΓPV
t ,ΘPV

t ) to represent the worst decrease that the left-hand-side of the constraint
may experience for ΓPV

t bad deviations and ΘPV
t good deviations of the PV coefficients;

• +DEV (ΓPC
t ,ΘPC

t ) to represent the worst increase that the right-hand-side of the constraint
may experience for ΓPC

t bad deviations and ΘPC
t good deviations of the load coefficients.

This constraint writes as:∑
j∈C

[
p̄PV
j,t +

(
bdisj,t − bchj,t

)]
−DEV (ΓPV

t ,ΘPV
t ) +

(
pimp
t − pexpt

)
≥

∑
j∈C

p̄PC
j,t (A.10)

The value DEV (ΓPV
t ,ΘPV

t ) corresponds to the optimal value of the following combinatorial
optimization problem:

DEV (ΘPV
t ,ΓPV

t ) = max
∑
j∈C

(
δPV −
j,t · z−j,t − δPV +

j,t · z+j,t
)

(A.11)

∑
j∈C

zPV −
j,t ≤ ΓPV

t (A.12)

∑
j∈C

zPV +
j,t ≥ ΘPV

t (A.13)

zPV −
j,t + zPV +

j,t ≤ 1 ∀j ∈ C (A.14)

zPV −
j,t ∈ {0, 1} ∀j ∈ C (A.15)

zPV +
j,t ∈ {0, 1} ∀j ∈ C (A.16)

in which:
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• a binary variable zPV −
j,t (A.15) is equal to 1 if coefficient p̄PV

j,t experiences the largest bad
deviation (decrease of PV generation) δPV −

j,t and to 0 otherwise;

• a binary variable zPV +
j,t (A.16) is equal to 1 if coefficient p̄PV

j,t experiences the largest good
deviation (increase of PV generation) δPV +

j,t and to 0 otherwise;

• the constraint (A.12) imposes that at most ΓPV
t bad deviations may occur;

• the constraint (A.13) imposes that at least ΘPV
t good deviations must occur;

• the constraints (A.14) impose that each coefficient may experience at most one kind of
deviation (either bad or good);

• the objective function (A.11) pursues the maximization of the worst reduction in value of
the left-hand-side of constraint due to the summation of bad and good deviations;

Let us now consider the linear relaxation of the previous combinatorial optimization problem, i.e.
the following problem in which the integrality requirement (A.15), (A.16) on the binary variables
is removed and they can assume any value between 0 and 1:

DEV (ΘPV
t ,ΓPV

t ) = max
∑
j∈C

(
δPV −
j,t · z−j,t − δPV +

j,t · z+j,t
)

(A.17)

∑
j∈C

zPV −
j,t ≤ ΓPV

t (A.18)

∑
j∈C

zPV +
j,t ≥ ΘPV

t (A.19)

zPV −
j,t + zPV +

j,t ≤ 1 ∀j ∈ C (A.20)

0 ≤ zPV −
j,t ≤ 1 ∀j ∈ C (A.21)

0 ≤ zPV +
j,t ≤ 1 ∀j ∈ C (A.22)

It can be noted that its bínary coefficient matrix is totally unimodular [20]. Consequently, the
optimal solution of the linear relaxation problem is integral and provides an optimal solution also
for the combinatorial optimization problem.
We can then define the dual problem of the linear relaxation:

DEV (ΘPV
t ,ΓPV

t ) = min ΓPV
t · vPV −

t −ΘPV
t · vPV +

t +
∑
j∈C

wPV
j,t (A.23)

vPV −
t + wPV

j,t ≥ δPV −
j,t ∀j ∈ C (A.24)

− vPV +
t + wPV

j,t ≥ −δPV +
j,t ∀j ∈ C (A.25)

vPV +
t , vPV −

t ≥ 0 (A.26)

wPV
j,t ≥ 0 ∀j ∈ C (A.27)

(A.28)

By duality theory, since the linear relaxation (A.17)-(A.22) is finite and optimal, also its dual
problem (A.23)-(A.27) is finite and optimal and the optimal values of the two problems coincide.
Consequently, we can use the dual problem to substitute the term DEV (ΓPV

t ,ΘPV
t ) in the robust

constraint (Appendix A), as specified in [20].
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We can proceed in the same way for dealing with the deviation term +DEV (ΓPC
t ,ΘPC

t )
appearing in the right-hand-side of the constraint (9). Specifically, the value DEV (ΓPC

t ,ΘPC
t )

corresponds to the optimal value of the following combinatorial optimization problem:

DEV (ΘPC
t ,ΓPC

t ) = max
∑
j∈C

(
δPC+
j,t · z+j,t − δPC−

j,t · z−j,t
)

(A.29)

∑
j∈C

zPC+
j,t ≤ ΓPC

t (A.30)

∑
j∈C

zPC−
j,t ≥ ΘPC

t (A.31)

zPC−
j,t + zPC+

j,t ≤ 1 ∀j ∈ C (A.32)

zPC−
j,t ∈ {0, 1} ∀j ∈ C (A.33)

zPC+
j,t ∈ {0, 1} ∀j ∈ C (A.34)

in which:

• a binary variable zPC−
j,t (A.33) is equal to 1 if coefficient p̄PC

j,t experiences the largest good
deviation (decrease of load) δPC−

j,t and to 0 otherwise;

• a binary variable zPC+
j,t (A.34) is equal to 1 if coefficient p̄PC

j,t experiences the largest bad
deviation (increase of load) δPV +

j,t and to 0 otherwise;

• the constraint (A.30) imposes that at most ΓPC
t bad deviations may occur;

• the constraint (A.31) imposes that at least ΘPC
t good deviations must occur;

• the constraints (A.32) impose that each coefficient may experience at most one kind of
deviation (either bad or good);

• the objective function (A.29) pursues the maximization of the worst increase in value of
the right-hand-side of constraint due to the summation of bad and good deviations;

Also for the previous combinatorial optimization problem, we can define its linear relaxation,
removing the integrality requirement on the binary variables:

DEV (ΘPC
t ,ΓPC

t ) = max
∑
j∈C

(
δPV +
j,t · z+j,t − δPV −

j,t · z−j,t
)

(A.35)

∑
j∈C

zPV +
j,t ≤ ΓPC

t (A.36)

∑
j∈C

zPC−
j,t ≥ ΘPC

t (A.37)

zPC−
j,t + zPC+

j,t ≤ 1 ∀j ∈ C (A.38)

0 ≤ zPC−
j,t ≤ 1 ∀j ∈ C (A.39)

0 ≤ zPC+
j,t ≤ 1 ∀j ∈ C (A.40)

In this case, the bínary coefficient matrix is also totally unimodular [20] and thus the optimal
solution of the linear relaxation problem is integral and provides an optimal solution also for the
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combinatorial optimization problem.
Therefore, we can define the dual problem of the linear relaxation:

DEV (ΘPC
t ,ΓPC

t ) = min ΓPC
t · vPC+

t −ΘPC
t · vPC−

t +
∑
j∈C

wPC
j,t (A.41)

vPC+
t + wPC

j,t ≥ δPC+
j,t ∀j ∈ C (A.42)

− vPC−
t + wPC

j,t ≥ −δPC−
j,t ∀j ∈ C (A.43)

vPC+
t , vPC−

t ≥ 0 (A.44)

wPC
j,t ≥ 0 ∀j ∈ C (A.45)

(A.46)

Finally, we can use the dual problems (A.23)-(A.27) and (A.41)-(A.45) to substitute the terms
DEV (ΓPV

t ,ΘPV
t ) and DEV (ΓPC

t ,ΘPC
t ) in, thus obtaining the robust optimization model (A.1)-

(A.9) and completing the proof.
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