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Abstract. This paper introduces three classes of similarity measures for
fuzzy description profiles, defined through the d-Choquet integral. Such
classes of similarity measures are parameterized by the choice of a ca-
pacity and a restricted dissimilarity function, and generalize the classical
Jaccard index for binary profiles. Semantics is added to such similarity
measures on three different levels: (i) how common and different parts of
profiles are aggregated (via the choice of the similarity functional form);
(ii) how interactions among attributes are weighted (via the choice of the
capacity); (iii) how pointwise dissimilarities are evaluated (via the choice
of the restricted dissimilarity function).

Keywords: Fuzzy similarity measure · capacity · restricted dissimilarity
function · d-Choquet integral.

1 Introduction

The recent trend of eXplainable AI (XAI) is based on decision models whose
results can be interpreted by human agents, especially when high stake decisions
are involved [27]. At the same time, similarity measures play a more and more
prominent role in machine learning and decision support systems, since they
capture the intuitive idea of “proximity”.

As is well-known, the most naive way to model similarity is to map object
description profiles to elements of a metric space, and then rely on the underling
distance function. This approach is deeply tied to the nature of the available data
and is often inconsistent with human reasoning, as acknowledged by Tversky, in
his seminal work [29]. Therefore, during the last years, many similarity measures
have been proposed (see, e.g., [23]), mainly focusing on the particular nature of
data and on the properties required to a similarity measure [3, 11].

With XAI in view, the concept of similarity demands for a deeper seman-
tics and understanding. In turn, this requires an investigation of the ordering
structure induced by a particular similarity measure together with more complex
functional forms, able to embody semantic concepts like attribute interactions.
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Concerning the first issue, a series of papers (see, e.g., [2, 7–9]) coped with the
understanding of the comparative nature of similarity (and dissimilarity) mea-
sures on fuzzy description profiles. On the other hand, the issue of modeling
interactions has been considered in [1] for binary data, and then generalized in
[10] for fuzzy data (see also [28]).

In this paper we extend the three classes of similarity measures introduced
in [1, 10] by relying on the notion of d-Choquet integral [5]. The goal of our
extension is to obtain a three-level semantics ruling: (i) aggregation of common
and different parts of profiles; (ii) interactions among attributes; (iii) evaluation
of pointwise dissimilarities. Hence, we get three classes of similarity measures
parameterized by a capacity ν and by a restricted dissimilarity function δ.

Since the most difficult part for obtaining an operative similarity measure
belonging to such classes is the elicitation of ν, we face the learning of ν, by
relying on the Particle Swarm Optimization (PSO) technique [21]. We also in-
vestigate the tuning of a parametric version of δ. This part of the paper provides
some preliminary results inserting in the literature of similarity learning (see,
e.g., [14, 26]).

Choosing ν, δ and one of the proposed functional forms of similarity measure
that maximize accuracy in a classification problem, we can obtain an interpre-
tation in terms of the three levels of semantics recalled above. In particular, the
Möbius inverse of the learned ν can be seen as a witness of attribute interactions
that can be, in principle, either positive or negative, since ν is a capacity.

The paper is structured as follows. Section 2 recalls the necessary material
on the d-Choquet integral. Section 3 introduces the three families of similarity
measures based on the d-Choquet integral, and investigates their properties. Sec-
tion 4 addresses the problem of similarity learning through the PSO technique.
Finally, Section 5 collects our conclusions and future perspectives.

2 Preliminaries

Following [5], a function δ : [0, 1]2 → [0, 1] is called a restricted dissimilarity
function if it satisfies, for all x, y, z ∈ [0, 1], the following conditions:

1. δ(x, y) = δ(y, x);
2. δ(x, y) = 1 if and only if {x, y} = {0, 1};
3. δ(x, y) = 0 if and only if x = y;
4. if x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤ δ(x, z).

The prototypical example of a restricted dissimilarity function is

δ1,1(x, y) = |x− y|, (1)

and other functions of this type can be generated via [0, 1]-automorphisms. We
recall that a function ϕ : [0, 1]→ [0, 1] is a [0, 1]-automorphism if it is continuous,
strictly increasing and such that ϕ(0) = 0 and ϕ(1) = 1.

Given two (possibly distinct) [0, 1]-automorphisms ϕ1, ϕ2, then the function

δϕ1,ϕ2
(x, y) = ϕ−11 (|ϕ2(x)− ϕ2(y)|), (2)
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is a restricted dissimilarity function [5]. In particular, in what follows we will
restrict to the case ϕ1(x) = xq and ϕ2(x) = xp, for p, q ∈ (0,+∞), in which case
(2) reduces to

δp,q(x, y) = |xp − yp|
1
q , (3)

that has (1) as particular case for p = q = 1. In this work, due to space limita-
tions, we will analyze only the cases δp,p, δ1,p, δp,1, parameterized by p ∈ (0,+∞).

Let N = {1, . . . , n} be endowed with the power set 2N . As is well-known (see,
e.g., [16]), a (normalized) capacity is a set function ν : 2N → [0, 1] satisfying:

(i) ν(∅) = 0 and ν(N) = 1;
(ii) ν(A) ≤ ν(B) when A ⊆ B, for all A,B ∈ 2N .

Moreover, every capacity ν is associated with a set function µ : 2N → R
called Möbius inverse such that, for all A ∈ 2N , it holds that

µ(A) =
∑
B⊆A

(−1)|A\B|ν(B) and ν(A) =
∑
B⊆A

µ(B).

As shown in [6], a function µ : 2N → R is the Möbius inverse of a capacity ν, if
and only if it satisfies:

(i) µ(∅) = 0;
(ii)

∑
B∈2N µ(B) = 1;

(iii)
∑
{i}⊆B⊆A µ(B) ≥ 0, for all A ∈ 2N and all i ∈ A.

The above properties imply that µ({i}) ≥ 0, for all i ∈ N . Moreover, if µ(B) ≥ 0,
for all B ∈ 2N , then the corresponding ν is a completely monotone capacity [16].

A capacity ν is then called k-additive (with 1 ≤ k ≤ n) if µ(A) = 0, for all
A ∈ 2N with |A| > k, and there exists A ∈ 2N with |A| = k such that µ(A) 6= 0
[15]. In particular, a 1-additive capacity reduces to a probability measure. In what
follows, we denote by νu the uniform probability measure such that νu({i}) = 1

n ,
for all i ∈ N , whose Möbius inverse is µu({i}) = 1

n , for all i ∈ N , and 0 otherwise.
In the context of similarity measures, ν can be seen as a non-additive weight-

ing function related to a set of fuzzy attributes indexed by N . Under this in-
terpretation, the Möbius inverse µ is the actual weight attached to every set of
attributes, allowing for modeling (positive or negative) interactions among fuzzy
attributes. With this meaning in view, in [1, 10] µ has been called a significance
assessment.

We recall the notion of d-Choquet integral introduced in [5].

Definition 1. Let ν : 2N → [0, 1] be a capacity and δ : [0, 1]2 → [0, 1] be a
restricted dissimilarity function. The d-Choquet integral with respect to ν
and δ is the functional Cν,δ : [0, 1]N → [0, n] defined, for all X ∈ [0, 1]N , as

Cν,δ(X) =

n∑
i=1

δ (X(σ(i)), X(σ(i− 1))) ν({σ(i), . . . , σ(n)}),

where σ is a permutation of N such that X(σ(1)) ≤ · · · ≤ X(σ(n)) and X(σ(0)) :=
0. In particular, if X ∈ {0, 1}N , then X reduces to the indicator 1A of a subset
A of N , and so Cν,δ(1A) = ν(A).
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Though Cν,δ(1∅) = 0 and Cν,δ(1N ) = 1, for any choice of ν and δ, we have
that for some choices of δ, Cν,δ can take values greater than 1. Nevertheless,
taking δp,p with 0 < p ≤ 1, Cν,δp,p ranges in [0, 1] for any choice of ν [5]. In
particular, for p = 1, Cν,δ1,1 reduces to the classical Choquet integral.

The following proposition investigates when Cν,δ is null, assuming a strictly
positive ν on 2N \ {∅}, i.e., satisfying the property:
(P) ν(A) > 0, for all A ∈ 2N \ {∅}.
Proposition 1. If ν satisfies (P), then Cν,δ(X) = 0 if and only if X = 1∅.

Proof. By Definition 1 we have that Cν,δ(X) is a weighted sum where all weights
ν({σ(i), . . . , σ(n)})’s are strictly positive and all terms δ (X(σ(i)), X(σ(i− 1)))’s
are non-negative. Thus, Cν,δ(X) = 0 if and only if δ (X(σ(i)), X(σ(i− 1))) = 0,
for i = 1, . . . , n. Finally, by property 3 of restricted dissimilarity functions, we
get that δ (X(σ(i)), X(σ(i− 1))) = 0 if and only if X(σ(i)) = X(σ(i − 1)), for
i = 1, . . . , n, and since X(σ(0)) := 0, this is equivalent to X = 1∅. �

Let us notice that Cν,δ is generally not monotone on [0, 1]N endowed with the
partial order ≤ such that X ≤ Y if and only if X(i) ≤ Y (i), for all i ∈ N , with
X,Y ∈ [0, 1]N . Theorem 4.8 in [5] states that monotonicity of Cν,δ is equivalent
to the following condition for δ:
(M) δ(0, x1)+δ(x1, x2)+ . . . δ(xm−1, xm) ≤ δ(0, y1)+δ(y1, y2)+ . . . δ(ym−1, ym)

for all 1 ≤ m ≤ n and x1, . . . , xm, y1, . . . , ym ∈ [0, 1] where xi ≤ xj , yi ≤ yj ,
xi ≤ yi, with 1 ≤ i ≤ j ≤ m.

The following example, that will be developed in the following section, shows
that taking δ = δp,p or δ = δ1,p, Cν,δ may fail monotonicity, even in the case
ν is a probability measure. We point out that the lack of monotonicity of the
d-Choquet integral is already discussed in Example 4.13 in [5].
Example 1. Let N = {1, 2, 3}. Take the uniform probability measure νu, and
X,Y,X ′, Y ′ ∈ [0, 1]N such that

N 1 2 3
X 0 0.6 0.8
Y 0.2 0.8 1

and
N 1 2 3
X ′ 0 0.1 0.9
Y ′ 0.1 0.6 1

For δ = δ 1
2 ,

1
2
we have that X ≤ Y but

Cνu,δ 1
2
, 1
2

(X) =
0.6 + (

√
0.8−

√
0.6)2

3

>
0.2 + (

√
0.8−

√
0.2)2 + (1−

√
0.8)2

3
= Cνu,δ 1

2
, 1
2

(Y ),

while for δ = δ1, 12 we have that X ′ ≤ Y ′ but

Cνu,δ1, 1
2

(X ′) =
0.12 + 0.82

3
>

0.12 + 0.52 + 0.42

3
= Cνu,δ1, 1

2

(Y ′).

�

On the other hand, taking δ = δp,1, Cν,δ is always monotone (see [5]), as δp,1
satisfies (M).
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3 Fuzzy d-Choquet Similarity Measures

We assume that every object is described by a set of attributes indexed by the
finite set N = {1, . . . , n}, and that each one can be present with a different
degree of membership: any object description is thus regarded as a fuzzy subset
of N [30]. In order to avoid cumbersome notation, every fuzzy subset X of N
is identified with its membership function, so, we simply denote it as a function
X : N → [0, 1]. Denote by F = [0, 1]N the set of all possible fuzzy object
descriptions and by C = {0, 1}N the subset of crisp object descriptions.

We consider a t-norm T together with its dual t-conorm S and the comple-
ment (·)c = 1− (·) to perform fuzzy set-theoretic operations. As usual (see [22]),
we denote the main t-norms and t-conorms, for every x, y ∈ [0, 1], as

TM (x, y) = min{x, y},
TP (x, y) = x · y,
TL(x, y) = max{x+ y − 1, 0},

SM (x, y) = max{x, y},
SP (x, y) = x+ y − x · y,
SL(x, y) = min{x+ y, 1}.

For every X,Y ∈ F , we define X ∩ Y = T (X,Y ), X \ Y = T (X,Y c),
Y \ X = T (Y,Xc), X∆Y = S(X \ Y, Y \ X) and X ∪ Y = S(X,Y ), where
all operations are intended pointwise on the elements of N . All t-norms and
t-conorms extend uniquely to k-ary operations, for k ≥ 2, due to associativity
[22], and so do the corresponding fuzzy set-theoretic operations.

Different definitions of similarities have been given for fuzzy subsets [2, 12,
13] essentially based on the “common” and the “different” parts of the compared
fuzzy subsets.

We introduce three classes of similarity measures Sν,δi : F2 → [0,+∞), for
i = 1, 2, 3, each parameterized by a capacity ν and by a restricted dissimilarity
function δ, defined, for every X,Y ∈ F , as:

Sν,δ1 (X,Y ) =
Cν,δ(X ∩ Y )

Cν,δ(X \ Y ) + Cν,δ(Y \X) + Cν,δ(X ∩ Y )
, (4)

Sν,δ2 (X,Y ) =
Cν,δ(X ∩ Y )

Cν,δ(X∆Y ) + Cν,δ(X ∩ Y )
, (5)

Sν,δ3 (X,Y ) =
Cν,δ(X ∩ Y )

Cν,δ(X ∪ Y )
. (6)

Taking ν = νu and δ = δ1,1, the restrictions of S
ν,δ
i (X,Y ) on C, for i = 1, 2, 3,

reduce to the classical Jaccard’s index [18]. More generally, for a probability
measure ν and δ = δ1,1 we get a weighted version of the Jaccard’s index [1].

The similarity measures Sν,δi (X,Y ), for i = 1, 2, 3, embody three levels of
semantics:

(i) The choice of the functional form Sν,δi implies how common and different
parts of fuzzy profiles are aggregated: in the particular case Sν,δ1 , we get a
symmetric fuzzy version of Tversky’s contrast model [29].
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(ii) The choice of the capacity ν expresses how interactions among attributes
are weighted: the corresponding Möbius inverse µ acts as a significance as-
sessment that allows for positive or negative interactions.

(iii) The choice of the restricted dissimilarity function δ encodes how point-
wise dissimilarities are evaluated: choosing one of the parametric forms
δp,p, δ1,p, δp,1, a tuning on sample similarity comparisons can be performed.

The following proposition shows that, assuming a capacity ν which satisfies
(P) and T = TM , the ratios in (4)–(6) are always well-defined, except for the
case X = Y = 1∅. In this limit case, we set Sν,δi (1∅,1∅) := 1, for i = 1, 2, 3.

Proposition 2. Let ν satisfying (P), δ an arbitrary restricted dissimilarity
function, and T = TM . Then, the denominator of Sν,δi , for i = 1, 2, 3, is 0
if and only if X = Y = 1∅.

Proof. If X = Y = 1∅, then we immediately get that all denominators are 0. We
prove the converse implication for each similarity measure.

(Measure Sν,δ1 ). By Proposition 1, Cν,δ(X\Y )+Cν,δ(Y \X)+Cν,δ(X∩Y ) = 0
if and only if X \ Y = Y \X = X ∩ Y = 1∅. This is equivalent, for all i ∈ N ,
to TM (X(i), 1− Y (i)) = TM (Y (i), 1−X(i)) = TM (X(i), Y (i)) = 0, that implies
X(i) = Y (i) = 0.

(Measure Sν,δ2 ). By Proposition 1, Cν,δ(X∆Y )+Cν,δ(X ∩Y ) = 0 if and only
if X∆Y = X ∩ Y = 1∅. This is equivalent, for all i ∈ N , to SM (TM (X(i), 1 −
Y (i)), TM (Y (i), 1−X(i))) = TM (X(i), Y (i)) = 0, that implies X(i) = Y (i) = 0.

(Measure Sν,δ3 ). By Proposition 1, Cν,δ(X∪Y ) = 0 if and only if X∪Y = 1∅.
This is equivalent, for all i ∈ N , to SM (X(i), Y (i)) = 0, that implies X(i) =
Y (i) = 0. �

In light of Proposition 2, we will assume that ν satisfies (P) throughout the
paper. In turn, this implies that the Möbius inverse of ν is such that µ({i}) > 0,
for all i ∈ N , which has a semantic interpretation. Indeed, this last requirement
can be justified by interpreting µ as a significance assessment: all attributes
included in a description profile should be “significant”, i.e., µ should attach to
them a positive weight.

Proposition 3. Let ν satisfying (P), δ ∈ {δp,p, δ1,p, δp,1}, and T = TM . Then,
the following properties hold for all X,Y ∈ F :

(i) Sν,δi (X,Y ) ≤ 1, for i = 1, 2;
(ii) Sν,δ3 (X,Y ) ≤ 1, if δ = δp,1;
(iii) Sν,δ3 (X,X) = 1;
(iv) Sν,δi (X,Y ) = 0 if and only if X ∩ Y = 1∅ 6= X ∪ Y , for i = 1, 2, 3;
(v) Sν,δi (X,Y ) = Sν,δi (Y,X), for i = 1, 2, 3.

Proof. The proof immediately follows by (4)–(6), and Propositions 1 and 2. �

The following example shows that Sν,δ3 (X,Y ) can take values greater than 1
for δ = δp,p or δ = δ1,p.
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Example 2. Let N , X, Y , X ′, Y ′, νu, and δ 1
2 ,

1
2
, δ1, 12 be as in Example 1. Since

X ≤ Y and X ′ ≤ Y ′, taking T = TM , we get that X ∩ Y = X, X ∪ Y = Y ,
X ′ ∩ Y ′ = X ′, and X ′ ∪ Y ′ = Y ′ thus

S
ν,δ 1

2
, 1
2

3 (X,Y ) =
0.6 + (

√
0.8−

√
0.6)2

0.2 + (
√
0.8−

√
0.2)2 + (1−

√
0.8)2

> 1,

S
ν,δ

1, 1
2

3 (X ′, Y ′) =
0.12 + 0.82

0.12 + 0.52 + 0.42
> 1.

�

We notice that, the restrictions of Sν,δi to C, for i = 1, 2, 3, coincide with
the similarity measures defined in [1], for any choice of δ and a completely
monotone ν. On the other hand, if we take δ = δ1,1, then S

ν,δ1,1
i , for i = 1, 2, 3,

coincide with the similarity measures defined in [10]. This implies that, in general,
Sν,δi (X,X) < 1, for i = 1, 2. In the particular case δ = δ1,1 and ν is a probability
measure, Sν,δ3 is a special case of the similarity measure introduced in [28].

As a by-product, taking δ = δ1,1, by [10] we derive that Sν,δi , for i = 1, 2, 3,
do not generally satisfy T ′-transitivity, where T ′ is a t-norm possibly different
from the t-norm T used in the fuzzy set-theoretic operations, i.e., the property:

(T) Sν,δi (X,Z) ≥ T ′(Sν,δi (X,Y ),Sν,δi (Y,Z)), for all X,Y, Z ∈ F .

We notice that for δ = δp,p or δ = δ1,p property (T) does not make sense for
Sν,δ3 , since it may take values greater than 1.

In the case δ = δ1,1 and ν is a probability measure, in [10, 28] it is shown
that Sν,δ3 is TL-transitive. The following proposition shows that TL-transitivity
holds also when δ = δp,1

Proposition 4. If ν satisfies (P) and is additive, T = TM and δ = δp,1, then
the similarity measure Sν,δ3 satisfies (T) with T ′ = TL.

Proof. The proof is an immediate modification of the proof of Proposition 1 in
[10] (see also [28]). We first notice that Cν,δp,1 is monotone and, for all X ∈
F , denoting by Xp the element of F such that Xp(i) = (X(i))p, for all i ∈
N , it holds that Cν,δp,1(X) =

n∑
i=1

(X(i))pν({i}) = Cν,δ1,1(Xp). Moreover, since

ϕ2(x) = xp is strictly increasing, and ∩ and ∪ refer to TM and SM , respectively,
it holds that Xp ∩ Y p = (X ∩ Y )p ans Xp ∪ Y p = (X ∪ Y )p.

For all X,Y, Z ∈ F , it is sufficient to show that

S
ν,δp,1
3 (X,Z) + 1 ≥ S

ν,δp,1
3 (X,Y ) + S

ν,δp,1
3 (Y,Z).

Setting c = Cν,δp,1(X ∪ Y ∪ Z)− Cν,δp,1(X ∪ Y ) and c′ = Cν,δp,1(X ∪ Y ∪ Z)−
Cν,δp,1(Y ∪ Z) we get that

S
ν,δp,1
3 (X,Y ) ≤

Cν,δp,1(X ∩ Y ) + c

Cν,δp,1(X ∪ Y ) + c
and S

ν,δp,1
3 (Y,Z) ≤

Cν,δp,1(Y ∩ Z) + c′

Cν,δp,1(Y ∪ Z) + c′
.
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Therefore, we obtain

S
ν,δp,1
3 (X,Y ) + S

ν,δp,1
3 (Y, Z) ≤

Cν,δp,1(X ∩ Y ) + c

Cν,δp,1(X ∪ Y ) + c
+

Cν,δp,1(Y ∩ Z) + c′

Cν,δp,1(Y ∪ Z) + c′

=
Cν,δp,1(X ∩ Y ) + c+ Cν,δp,1(Y ∩ Z) + c′

Cν,δp,1(X ∪ Y ∪ Z)

≤
Cν,δp,1(X ∩ Y ) + c+ Cν,δp,1(Y ∩ Z) + c′

Cν,δp,1(X ∪ Z)

≤
Cν,δp,1(X ∪ Z) + Cν,δp,1(X ∩ Z)

Cν,δp,1(X ∪ Z)

= 1 + S
ν,δp,1
3 (X,Z),

where the last inequality follows since, for all i ∈ N , we have

TM (Xp(i), Y p(i))− SM (Xp(i), Y p(i))

+ TM (Y p(i), Zp(i))− SM (Y p(i), Zp(i))

+ 2SM (Xp(i), Y p(i), Zp(i)) ≤ SM (Xp(i), Zp(i)) + TM (Xp(i), Zp(i)),

that holds for all the possible orderings of Xp(i), Y p(i), Zp(i). Indeed, if Xp(i) ≥
Zp(i) ≥ Y p(i), then we get Xp(i)+Y p(i)− (Zp(i)−Y p(i)) ≤ Xp(i)+Zp(i) and
if Zp(i) ≥ Xp(i) ≥ Y p(i), then we get Y p(i)− (Xp(i)−Y p(i))+Zp(i) ≤ Xp(i)+
Zp(i). While, in all the remaining cases we get Xp(i) + Zp(i) ≤ Xp(i) + Zp(i).
�

The study of similarity measures appears to be of particular importance
since it helps to improve predictions by providing a transparent understanding
of the reasoning behind a forecast and helps to make interpretable decisions and
implement XAI.

4 Similarity Learning

The three similarity measures Sν,δi , for i = 1, 2, 3, essentially rely on the choice of
ν and δ ∈ {δp,p, δp,1, δ1,p}, for a suitable p ∈ (0,+∞). Surely, the most difficult
part in getting an operative Sν,δi is the elicitation of ν, due to its exponential
size.

From a XAI point of view, learning ν is important since its Möbius inverse µ
singles out the interactions between attributes which is, according to each choice
of δ and functional form Sν,δi , tied to the choice of p. In the more general case of
a capacity ν, negative interactions between groups of attributes are possible but
the learning task is complicated by the set of constraints (i)–(iii) in Section 2,
that restrict the feasible µ’s.

By learning the combination of δ, ν and Sδ,νi that maximizes accuracy in
a classification problem, we get a model that gives us three levels of explana-
tions: the chosen Sδ,νi tells us how common and different parts of profiles are
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aggregated; the Möbius inverse µ of ν singles out interactions on the groups of
attributes where it is different from zero; δ tells us how pointwise dissimilari-
ties are evaluated and to which degree p. For a fixed functional form Sδ,νi , the
large number of parameters naturally raises the problem of identifiability, that
has been recently addressed in learning Choquet functionals [4, 20]. The issue
of identifiability is particularly relevant if the Möbius inverse µ of ν is taken as
an indicator of interactions, therefore, a thorough investigation is planned for
future research.

In this section we address the problem of learning the capacity ν and tuning
the parameter p ∈ (0,+∞) for each Sν,δi , by relying on a set of labeled fuzzy
description profiles. Due to the identifiability issue, we focus on the learning of
the significance assessment µ corresponding to ν, by restricting to the case of a
k-additive and completely monotone ν that satisfies (P), and taking T = TM .
All the learning and calibration procedure is carried out in Python 3.10.

Due to space limitations, and since our aim is only to highlight the whole
process, we refer to the Iris dataset, which is available in the Kaggle platform
[19]. The dataset has been pre-processed, by normalizing attribute ranges in
[0, 1]. The processed dataset has 4 attributes and a class label taking 3 possible
values, with 150 rows.

Proceeding in analogy to [1], we perform a learning task executing a strat-
ified 4-fold cross validation that splits the dataset in 4 balanced parts, namely
T1, T2, T3, T4. For h = 1, 2, 3, 4, Th is taken as test set, while the union of the
remaining three parts Dh =

⋃
k 6=h Tk is taken as training set. For h = 1, 2, 3, 4,

we have that Dh = {(X1, y1), . . . , (XNh
, yNh

)}, where Xj ∈ F = [0, 1]4 is a fuzzy
description profile, while yj is the corresponding class.

For a fixed similarity Sν,δi , for i = 1, 2, 3, where δ ∈ {δp,p, δp,1, δ1,p}, we define
a Nearest-Neighborhood (NN) classifier: each fuzzy description profile Xj ∈ Dh
is assigned to the class y∗j solving the problem

(X∗j , y
∗
j ) = argmax

(Xm,ym)∈Dh\{(Xj ,yj)}
Sν,δi (Xj , Xm).

Our aim is to find the significance assessment µ that maximises the Leave-One-
Out (LOO) objective function

NLOO(µ) = |{yj : yj = y∗j , (Xj , yj) ∈ Dh}|,

which counts the number of correctly classified instances.
The maximization of NLOO(µ) in the space of non-negative Möbius inverses

gives rise to a continuous optimization problem with a non-continuous objective
function, thus classical optimization techniques cannot be used. Here, in analogy
to [1], we adopt the Particle Swarm Optimization (PSO) technique, which is a
stochastic incomplete method operating on a fixed number of candidate µ’s [21].
For the PSO implementation we refer to the PySwarms library [24] version 1.3.0.
Since the search space is very large, we restrict to at most k-additive Möbius
inverses, for k = 1, 2, and the optimization is carried on for 20 epochs. We further
consider an initial set of 20 particles built as a 1-additive neighborhood of µu,
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obtained perturbing µu({i}) = 1
n with (−1)i−1 · εi, where εi ∼ Unif

(
0, 1

n

)
, for

all i ∈ N .
Once the optimal µ∗h for the training set Dh has been selected, accuracy is

measured by computing NLOO(µ∗h) on Th and passing to percentages. We finally
compute the average accuracy in the 4-folds, by referring to the four learned
µ∗1, µ

∗
2, µ
∗
3, µ
∗
4.

To justify the choice of νu as a reference, Figures 1a, 1c, and 1e show the
average accuracy of a NN classifier, performed on the four folds T1, T2, T3, T4,
using Sνu,δi , for i = 1, 2, 3 and δ ∈ {δp,p, δp,1, δ1,p}. To favor a comparison, we
also report results for the Euclidean and the cosine similarity measures:

SE(X,Y ) = 1− 1

n

n∑
i=1

(X(i)− Y (i))2,

SC(X,Y ) =

∑n
i=1X(i)Y (i)√∑n

i=1X(i)2
√∑n

i=1 Y (i)2
.

We have that Sνu,δ1,1i , for i = 2, 3, behaves better than SC , and better than
SE , for i = 3, while Sνu,δ1 is always below SC , for all δ’s. The best performance
is achieved by S

νu,δp,1
3 , for p ≥ 1, which always dominates all other similarity

measures (see Figure 1c), resulting in an average accuracy of more than 95%. In
view of XAI, this suggests that the Iris dataset does not show strong interac-
tions among the attributes that further seem to be equally significant, when the
similarity is of the form S

νu,δp,1
3 , i.e., when the d-Choquet integral of the fuzzy

union of the two compared profiles is taken in the denominator. In a sense, this
also partially justifies the good behavior of SE in this dataset due to its metric
properties, in which uniform weighting and no interactions are considered.

Results obtained with Sνu,δi , for i = 1, 2, 3 and δ ∈ {δp,p, δp,1, δ1,p}, serve
as a benchmark, since the PSO learning procedure starts with νu in the initial
set of particles. Figures 1b, 1d and 1f show the mean accuracy of the capacities
obtained through PSO: solid lines refer to 1-additive capacities and dashed lines
to at most 2-additive capacities. For a sake of robustness, due to the stochastic
nature of PSO, Figures 1b, 1d and 1f report average values on 4 runs. The most
evident effect of the learning procedure is for δp,p and δ1,p, while for δp,1 we have
a light improvement for S

ν,δp,1
1 and for S

ν,δp,1
2 , while S

ν,δp,1
3 shows some slight

worsening for some values of p.
It is important to notice that PSO is an incomplete stochastic method thus,

though νu is in the initial set of particles, the procedure could converge to sub-
optimal solutions in the training test Dh, that behave worse than νu on the
test set Th. We also notice that, since we start from an initial population of
1-additive capacities, the optimal capacity in the at most 2-additive case could
still be 1-additive, due to the slow rate of convergence of PSO and the large
search space.

The analysis carried out in Figure 1 can be considered as a preliminary task
used to choose the most suitable δ, p and Sν,δi . In view of this, for the Iris
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(a) Iris dataset: νu and δp,p (b) Iris dataset: PSO and δp,p

(c) Iris dataset: νu and δp,1 (d) Iris dataset: PSO and δp,1

(e) Iris dataset: νu and δ1,p (f) Iris dataset: PSO and δ1,p

Fig. 1: Mean accuracy (%) seen as a function of p, for δ ∈ {δp,p, δp,1, δ1,p}: Sν,δ1

in green; Sν,δ2 in red; Sν,δ3 in blue; SE in magenta; SC in orange. Capacity ν = νu
in (a), (c), (e); average values on 4 runs for the capacity found through PSO in
(b), (d), (f): 1-additive in solid line; at most 2-additive in dashed line.
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dataset, an optimal choice is δ = δp,1, p = 3.5 and Sν,δ3 . With this particu-
lar choice we can perform the PSO technique for a larger number of epochs or
particles, so as to achieve better optimization results. Next, for the sake of in-
terpretability, once µ∗1, µ∗2, µ∗3, µ∗4 have been found for Sν,δ3,13 , we can look for the
(not necessarily unique) µ∗h that maximizes the average accuracy over all the
test sets Tk’s. Table 1 reports the optimal µ∗1 found in fold 1, still working with
20 particles in the at most 2-additive case, but considering 100 epochs. Such µ∗1
turns out to maximize the average accuracy over all the test sets Th’s, reaching
95.95%, so it has a good behavior on the whole dataset.

Attributes {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
µ∗
1 0.021 0.106 0.165 0.106 0.034 0.065 0.034 0.256 0.198 0.015

Table 1: Optimal Möbius inverse µ∗1 maximizing the average accuracy over all
the test sets (3 decimals rounding).

5 Conclusion

We introduced three classes of similarity measures for fuzzy description profiles,
based on the d-Choquet integral, the latter extending the Choquet integral by
means of a dissimilarity function. The proposed similarities are parameterized
by a capacity ν and a restricted dissimilarity function δ, conveying semantics on
three different levels. In order to get an operative similarity measure belonging
to one of such classes, the choice of ν and δ can be faced as a similarity learning
problem. Due to the exponential size of ν, restrictions on its representation need
to be considered, while a parametric version of δ translates in an ensuing tuning
problem.

Here, we formulated the learning and tuning tasks relying on the PSO tech-
nique, and showed some preliminary results on a reference dataset. Our experi-
mental analysis revealed the slow convergence rate of PSO joined by a very large
search space. Future research will be devoted to a systematic experimental study
involving several real and artificial datasets. Still in the experimental setting, the
comparison with other incomplete stochastic methods, such as Differential Evo-
lution (DE) [25], should be carried out so as evaluate rate of convergence and
quality of the found solutions.

Concerning the learning of the classical Choquet integral, recent works devel-
oped deep learning techniques [4] and dedicated optimization techniques to face
sparsity [17]. Though the quoted results are not directly applicable to the present
learning task, their adaptation seems an interesting line of future research.
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