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Abstract. The homogenized elastic properties of polycrystals depend on the grain morphology and crystal-
lographic orientations. For simplification purposes, the orientations of the grains are usually considered three
independent Euler angles. However, experimental investigations reveal spatial correlations in these angles.
The Karhunen–Loève expansion is used to generate random fields of Euler angles having exponential kernel
functions with varying correlation lengths. The effective elastic moduli for numerically generated statistically
equiaxed cubic polycrystals are estimated via the classical Eshelby–Kröner Self-Consistent homogenization
model. The influence of the correlation lengths of the orientations’ random fields on the statistical properties
of the effective elastic moduli has been investigated. Our results show that spatially correlated Euler angles
could increase the variability of the homogenized elastic properties compared to the ones having uncorre-
lated Euler angles. Nevertheless, using independent random variables for Euler angles remains valid when
correlation lengths are close to the average grain size.
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1 Introduction

Polycrystalline materials are widely used and play a key
role in many engineering applications for which effec-
tive mechanical properties are often of great concern.
The former are discrete crystallites or grains with dif-
ferent morphological and crystallographic characteristics.
Numerous investigations have focused on how these char-
acteristics ultimately influence the effective mechanical
properties at the macroscopic scale.

In most previous numerical works, the crystallographic
orientations of the grains in polycrystals are represented
by introducing the randomness on a triplet of Euler angles
(Θ1,Θ,Θ2), that are usually considered as statistically
independent random variables [1–3]. This assumption sim-
plifies the numerical generation process of the Euler angles
in the polycrystalline samples. However, in real polycrys-
tals, the crystallographic orientations may be spatially
correlated due to the grain nucleation and growth mecha-
nisms. For instance, grains with similar orientations tend
to form low-energy boundaries between them, facilitat-
ing cooperative growth along specific directions. This
grain-to-grain interaction leads to spatially correlated ori-
entations within the polycrystal. Besides, experimental
investigations also report the spatial correlation of the
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grain orientations [4–6]. In addition, in order to get the
aimed performance, some special metalworking processes
like extrusion and drawing are widely used when manu-
facturing polycrystalline materials. These processes may
induce a strong crystallographic and morphological tex-
ture, referring to a particular spatial arrangement of
grains with strongly correlated crystallographic orienta-
tions in the polycrystal. A common way to represent these
spatial correlations is by constructing random fields of the
Euler angles [6].

The impact of the parameters of the Euler angles’ ran-
dom fields on the effective mechanical properties has not
been investigated yet. In the present study, we consider
an exponential kernel function, frequently used in the lit-
erature, and two different correlation lengths to cover a
range of the size of inhomogeneities in the numerically
simulated Euler angles’ random fields.

In this paper, the numerical simulation of the ran-
dom fields of orientations, along with the polycrystal
models, will be introduced in Sections 2.1 and 2.2. The
classical Eshelby–Kröner Self-Consistent model explained
in Section 2.3, is used in the present work to estimate
the effective elastic moduli of the simulated polycrystals.
The influence of the correlation length of the random
fields of Euler angles on the statistical properties of
the effective elastic moduli is presented and discussed
in Section 3.
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Table 1. Basic information of synthetic polycrystal sample sets.

Name Poly-1 Poly-2 Poly-3 Poly-4 Poly-5 Poly-6
Ng 50 100 500 1000 5000 10000
D̄eq [µm] 305.4 240.0 139.3 110.6 64.6 51.3
σDeq [µm] 100.3 82.0 48.8 38.7 22.7 18.0
δDeq [–] 0.33 0.34 0.35 0.35 0.35 0.35

Figure 1. A realization of a polycrystal having 10000 grains (left), the PDF of its grain volumes (middle),
and the PDF of its grain sizes Deq (histogram, right) compared with the target one (black solid line, right).

to the morphological characteristics of the real grains [11-12]. Figure 1 (left) shows one of the realizations

having 10000 grains, in which the grains are distinguished with different colors. The histogram of the

volumes of the grains that also follows a lognormal distribution is depicted in the same figure (middle).

Moreover, the histogram of Deq for this realization closely matches the target PDF (black solid line), shown

in Figure 1 (right).

Table 1. Basic information of synthetic polycrystal sample sets.

Name Poly-1 Poly-2 Poly-3 Poly-4 Poly-5 Poly-6
Ng 50 100 500 1000 5000 10000

D̄eq [µm] 305.4 240.0 139.3 110.6 64.6 51.3
σDeq [µm] 100.3 82.0 48.8 38.7 22.7 18.0

δDeq [-] 0.33 0.34 0.35 0.35 0.35 0.35

2.2 Random fields of Euler angles

Based on the numerically generated polycrystal models, we subsequently aimed to simulate the crystal-

lographic orientations of the grains. For comparison purposes, these Euler angles are considered either

uncorrelated (Θuc
1 , Θuc, Θuc

2 ), or spatially correlated (Θ1, Θ, Θ2). For the case Uncorrelated in Table 2,

the Euler angles are assumed to be statistically independent random variables, yielding uniform random

rotations and a textureless random polycrystal. More specifically, Θuc
1 and Θuc

2 are uniformly distributed

random variables between [0, 2π], while Θuc is a random variable following Gilbert’s sine distribution in

[0, π] to achieve statistical isotropy in the polycrystal. These random Euler angles can be easily simulated

as follows [13]:

Θuc
1 = 2πX1, Θuc = arccos(−1+2X2), Θuc

2 = 2πX3, (1)
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Fig. 1. A realization of a polycrystal having 10000 grains (left), the PDF of its grain volumes (middle), and the PDF of its grain
sizes Deq (histogram, right) compared with the target one (black solid line, right).

2 Numerical model construction and
computational framework

2.1 Numerical cubic polycrystal model

Using the open-source software NEPER [7], multiple
synthetic polycrystals containing different numbers of
grains are generated. These grains exhibit a statistically
equiaxed morphology, with statistically equal dimensions
in all three spatial directions (x, y, and z), without any
prominent elongation or flattening on the grain shapes.
Moreover, the values of the probability density function
(PDF) of the aspect ratio should be peaked around 1 and
should have a small coefficient of variation. Each polycrys-
tal is a cube of side 1000µm. The number of grains Ng, as
well as the first- and second-order statistics of the grain
size, e.g., the mean (D̄eq), the standard deviation (σDeq

),
and the coefficient of variation (δDeq) of the grain equiv-
alent diameters Deq of different sample sets, are given in
Table 1. It should be noted that the equivalent diameter of
each grain is defined as the diameter of a sphere having the
same volume as the grain. Besides, the grain sizes follow a
lognormal distribution, as reported in experimental inves-
tigations [8–10]. The values of δDeq

are set around 0.35 for
all sample sets, considerably smaller than those observed
in real polycrystalline samples, which can exceed 1 [8].
For each sample set, 200 realizations are generated (1200
samples in total). It should be mentioned that the size
and the centroid location of the grains in the polycrystals
vary between different realizations. Raster tessellation is
used to generate microstructures in order to get closer to
the morphological characteristics of the real grains [11,12].
Figure 1 (left) shows one of the realizations having 10000
grains, in which the grains are distinguished with differ-
ent colors. The histogram of the volumes of the grains

Table 2. Parameters of numerically simulated Euler
angles.

Name Kernel function Correlation length
Uncorrelated / /
C-S Exponential lsX = D̄eq

C-L Exponential llX = 10D̄eq

that also follows a lognormal distribution is depicted in
the same figure (middle). Moreover, the histogram of Deq

for this realization closely matches the target PDF (black
solid line), shown in Figure 1 (right).

2.2 Random fields of Euler angles

Based on the numerically generated polycrystal models,
we subsequently aimed to simulate the crystallographic
orientations of the grains. For comparison purposes, these
Euler angles are considered either uncorrelated (Θuc

1 , Θuc,
Θuc

2 ), or spatially correlated (Θ1, Θ, Θ2). For the case
Uncorrelated in Table 2, the Euler angles are assumed
to be statistically independent random variables, yield-
ing uniform random rotations and a textureless random
polycrystal. More specifically, Θuc

1 and Θuc
2 are uniformly

distributed random variables between [0, 2π], while Θuc

is a random variable following Gilbert’s sine distribution
in [0, π] to achieve statistical isotropy in the polycrys-
tal. These random Euler angles can be easily simulated as
follows [13]:

Θuc
1 = 2πX1, Θuc = arccos(−1 + 2X2), Θuc

2 = 2πX3,
(1)
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Figure 2. PDFs of numerically simulated and target uncorrelated Euler angles with statistical isotropy in
200 realizations of Poly-6 model (left), and their measured normalized relative entropy, as a function of
the number of realizations (right).

in which Xi ∈ U(0,1) (i ∈ {1,2,3}) are three independent uniform random variables. The PDFs of nu-

merically simulated uncorrelated Euler angles, based on 200 realizations of Poly-6 model, are presented

in Figure 2, and compared with the target distributions. The relative entropy DKL (Kullback–Leibler diver-

gence) [14-15] has been used as the measure to evaluate the distance between the PDFs of the numerically

generated Euler angles P1(x) and the target ones P2(x). The former is defined as:

DKL (P1 ∥ P2) =
∫ +∞

−∞
P1(x) log

(
P1(x)
P2(x)

)
dx. (2)

Considering the normalization through a nonlinear transformation D̂KL = 1−exp(−DKL), the plot of the

normalized relative entropy D̂KL, as a function of the number of realizations, is shown in Figure 2 (right).

The small values of relative entropy after 200 realizations indicate that the PDFs of simulated Euler angles

are close to the target ones.

Table 2. Parameters of numerically simulated Euler angles.

Name Kernel function Correlation length
Uncorrelated / /

C-S Exponential ls
X = D̄eq

C-L Exponential ll
X = 10D̄eq

The spatially correlated crystallographic orientations of the grains can be represented by constructing

correlated non-Gaussian random fields of Euler angles. We first generated a vector containing three Gaus-

sian random fields Z(p) = [Z1(p),Z2(p),Z3(p)], where p is the spatial centroid position of each grain,

4

Fig. 2. PDFs of numerically simulated and target uncorrelated Euler angles with statistical isotropy in 200 realizations of Poly-6
model (left), and their measured normalized relative entropy, as a function of the number of realizations (right).

in which Xi ∈ U(0, 1) (i ∈ {1, 2, 3}) are three independent
uniform random variables. The PDFs of numerically simu-
lated uncorrelated Euler angles, based on 200 realizations
of Poly-6 model, are presented in Figure 2, and com-
pared with the target distributions. The relative entropy
DKL (Kullback–Leibler divergence) [14,15] has been used
as the measure to evaluate the distance between the PDFs
of the numerically generated Euler angles P1(x) and the
target ones P2(x). The former is defined as:

DKL (P1 ‖ P2) =

∫ +∞

−∞
P1(x) log

(
P1(x)

P2(x)

)
dx. (2)

Considering the normalization through a nonlinear
transformation D̂KL = 1 − exp (−DKL), the plot of the
normalized relative entropy D̂KL, as a function of the
number of realizations, is shown in Figure 2 (right). The
small values of relative entropy after 200 realizations indi-
cate that the PDFs of simulated Euler angles are close to
the target ones.

The spatially correlated crystallographic orientations
of the grains can be represented by constructing corre-
lated non-Gaussian random fields of Euler angles. We
first generated a vector containing three Gaussian random
fields Z(p) = [Z1(p), Z2(p), Z3(p)], where p is the spatial
centroid position of each grain, having the given target
auto-covariance functions (ACFs) via the Karhunen–
Loève expansion [16,17]. The target ACFs of Θ1, Θ and
Θ2 are supposed to be isotropic so that they only depend
on the distance between the centroid positions of the
grains. In this paper, we consider an exponential ACF
based on [18]:

CXX (pm,pn) = exp

(
−2
‖pm − pn‖

lX

)
, (3)

in which pm and pn (m,n ∈ {1, ..., Ng}) are the cen-
troid positions of any two grains in the polycrystal and lX

(X ∈ (Θ1,Θ,Θ2)) is the correlation length of the random
field. In our numerical study, the case C-S, with a rela-
tively short correlation length lsX and the case C-L, with
a relatively long correlation length llX are considered as
shown in Table 2. The correlation lengths lsX and llX were
defined as a multiple of the mathematical expectation of
the grain equivalent diameter D̄eq in each realization as:

lsX =
(
lsΘ1

, lsΘ, l
s
Θ2

)
=
(
D̄eq, D̄eq, D̄eq

)
,

llX =
(
llΘ1

, llΘ, l
l
Θ2

)
= 10

(
D̄eq, D̄eq, D̄eq

)
.

(4)

It should be noted that the Uncorrelated case may be
imagined as the scenario where the ratio between the cor-
relation length and average grain diameter is 1/2. The
KLE is a series expansion method based on the spectral
decomposition of the ACF of the random field. In prac-
tice, the KLE can be approximated by truncating at a
finite number of terms in order to numerically simulate
the Gaussian random fields Zi (p):

Zi (p) ≈
Ng∑

k=1

√
λikγ

i
kψ

i
k(p), i ∈ {1, 2, 3} , (5)

where
{
λik, ψ

i
k

}
are the eigenvalues with their correspond-

ing eigenfunctions of the target ACF, and γik is a vector
of independent standard Gaussian random variables.
The memoryless transforms of the standard Gaussian
processes are used to simulate non-Gaussian processes
[19,20]. Based on the known marginal cumulative dis-
tribution functions (CDFs), the simulation of the target
non-Gaussian random fields could be performed by the
so-called non-Gaussian translation processes [21]:

Z̃i (p) = F−1

Z̃i
(Φ (Zi (p))) , i ∈ {1, 2, 3} , (6)
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t =

[− cos (Θ) sin (Θ1) sin (Θ2) + cos (Θ1) cos (Θ2) − cos (Θ) cos (Θ2) sin (Θ1)− cos (Θ1) sin (Θ2) sin (Θ1) sin (Θ)
cos (Θ) cos (Θ1) sin (Θ2) + cos (Θ2) sin (Θ1) cos (Θ) cos (Θ1) cos (Θ2)− sin (Θ1) sin (Θ2) − cos (Θ1) sin (Θ)

sin (Θ2) sin (Θ) cos (Θ2) sin (Θ) cos (Θ)

]
.

(9)

rameters C-S are shown in Figure 3, for 200 realizations of Poly-6. According to this figure, the PDFs of

the numerically simulated correlated Euler angles appropriately match the target PDFs. Furthermore, it

is expected that augmenting the number of realizations will lead to a more accurate convergence with the

target PDFs.

Figure 3. The non-Gaussian random fields of Euler angles
(
Θ1,Θ,Θ2

)
having C-S parameters compared

with the target PDFs in 200 realizations for the model Poly-6.

Statistical convergence has been investigated on the numerically generated Euler angles by calculating the

relative errors of the relevant statistical quantities over 200 realizations for each model shown in Figure 4.

Here, the relative errors were defined as the normalized gradient of the cumulative mean and the cumulative

coefficient of variation. The convergence criterion was set as the relative error being less than 2%. Figure 4

illustrates the statistical convergence of the generated Euler angles with the parameters C-L for Poly-1 up

to 200 realizations. The results highlight a good convergence of the first- and second-order statistics of the

random fields using 200 realizations. For all other cases, similar observations have been made.

Figure 4. Relative errors (normalized gradient) of the cumulative mean (left), and of the cumulative coeffi-
cient of variation (right) of the generated Euler angles with parameters C-L for Poly-1 over 200 realizations.
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Fig. 3. The non-Gaussian random fields of Euler angles(
Θ1,Θ,Θ2

)
having C-S parameters compared with the target

PDFs in 200 realizations for the model Poly-6.

in which FZ̃i
(x) =

∫ x
−∞ pZ̃i

(y)dy is the CDF of Z̃i with
target PDF pZ̃i

, and Φ(·) is the target CDF of the
standard Gaussian distribution. We subsequently used
this method to simulate the correlated Euler angles with
different parameters for each grain in each realization
of different polycrystal models listed in Table 1. The
PDFs of the non-Gaussian random fields of the Euler
angles

(
Θ1,Θ,Θ2

)
=
(
Z̃1, Z̃2, Z̃3

)
with the parameters

C-S are shown in Figure 3, for 200 realizations of Poly-6.
According to this figure, the PDFs of the numerically sim-
ulated correlated Euler angles appropriately match the
target PDFs. Furthermore, it is expected that augment-
ing the number of realizations will lead to a more accurate
convergence with the target PDFs.

Statistical convergence has been investigated on the
numerically generated Euler angles by calculating the rel-
ative errors of the relevant statistical quantities over 200
realizations for each model shown in Figure 4. Here, the
relative errors were defined as the normalized gradient
of the cumulative mean and the cumulative coefficient of
variation. The convergence criterion was set as the relative
error being less than 2%. Figure 4 illustrates the statistical
convergence of the generated Euler angles with the param-
eters C-L for Poly-1 up to 200 realizations. The results
highlight a good convergence of the first- and second-order
statistics of the random fields using 200 realizations. For
all other cases, similar observations have been made.

2.3 Computational framework for effective elastic
moduli

The classical Eshelby–Kröner Self-Consistent (SC) model
will be subsequently used to estimate the effective

elasticity tensor of polycrystals. Eshelby [22] has shown
that according to the equivalent inclusion method, under
the assumption of linear elasticity and small deformation,
in an unbounded homogeneous isotropic medium submit-
ted to an applied uniform macroscopic strain εkl in the far
field, the strain in the embedded ellipsoid is also uniform
with εinc

ij = Aijklεkl, where Aijkl is the so-called localiza-
tion tensor, and εinc

ij and εkl are the uniform strains inside
the ellipsoid and in the far field, respectively. Based on
Eshelby’s theory, Kröner [23] introduced the SC method
to estimate the elastic moduli of polycrystals from single
crystal elastic constants of cubic symmetry. Lubarda [24]
proposed the method to estimate the effective elastic mod-
uli for the isotropic polycrystals with cubic crystals, which
is an extension of the SC method. He showed that if a
single cubic crystal with a spherical shape is surrounded
by an effective isotropic polycrystalline aggregate, the
concentration tensor has the form:

Aijkl = Iijkl + a (δijδkl + 2Iijkl − 5Tijkl) , (7)

in which Iijkl = 1
2 (δikδjl + δilδjk) is the fourth-order iden-

tity tensor, δij (i, j ∈ {1, 2, 3}) is the Kronecker delta,
being 1 when i = j, and 0 otherwise. The explicit formula
of a writes:

a =
(c11 + 2c12 + 6b)(c11 − c12 − 2b)

3
[
8b2 + 9c11b+ (c11 − c12)(c11 + 2c12)

] ,

8b3 + (5c11 + 4c12) b2 − c44 (7c11 − 4c12) b

− c44 (c11 − c12) (c11 + 2c12) = 0,

(8)

where cIJ (IJ ∈ {11, 12, 44}) are the components of elas-
tic constants in the crystallite’s local reference, and b is
the positive real root of the given cubic polynomial [23].

In equation (7), Tijkl is the rotation tensor and can

be expressed in the form Tijkl =
3∑

m=1
timtjmtkmtlm

({i, j, k, l} ∈ {1, 2, 3}). The corresponding rotation matrix
t is defined as [13]:

see equation 9 above

Based on the theory proposed by Eshelby and equa-
tion (7), Lubarda [24] derived the elastic modulus of nth

crystallite with spherical geometry as:

Csc,n
ijkl = Cnijkl + a

[
(c11 − c12)δijδkl + 4c44Iijkl

−
[
3 (c11 − c12) + 4c44

]
Tnijkl

]
,

(10)
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Fig. 4. Relative errors (normalized gradient) of the cumulative mean (left), and of the cumulative coefficient of variation (right) of
the generated Euler angles with parameters C-L for Poly-1 over 200 realizations.

Table 3. Single crystal elastic constants and their anisotropy factors of eleven cubic materials [26].

Name Al Cr Ta Pt Fe Ni Au Co Cu K Li
c11 108 348 264 347 230 247 191 242 169 3.71 13.4
c12 62 67 158 251 135 153 162 160 122 3.15 11.3
c44 28.3 100 82.6 76.5 117 122 42.2 128 75.3 1.88 9.6
A 0.23 0.29 0.56 0.59 1.46 1.60 1.91 2.12 2.20 5.71 8.14

where the elasticity tensor Cnijkl of nth cubic crystallite in
the laboratory reference frame reads:

Cnijkl = c12 (δijδkl) + c44 (δikδjl + δilδjk) + νTnijkl, (11)

in which ν is the anisotropy coefficient of the single crys-
tal, defined as ν = c11− c12− 2c44. The effective elasticity
tensor of each polycrystal with total volume V and Ng
grains can then be calculated using the volume average:

〈Ceff
ijkl〉 =

1

V

∫

Ω

Csc,n
ijkl (x)dx =

1

V

Ng∑

n=1

Csc,n
ijkl Vn, (12)

where the integration domain Ω is the whole volume of
the polycrystal, V =

∫
Ω

dx, and Vn is the volume of nth

grain in polycrystal.

3 Results and discussion

The statistical properties of effective elastic moduli have
been investigated on different cubic materials, listed in
Table 3. The normalized single crystal anisotropy factor
is defined as A = |1−AZ |, where AZ = 2c44/(c11 − c12)
is the so-called Zener anisotropy factor [25]. For the par-
ticular case of isotropy, AZ equals 1 and thus A vanishes.
Based on the values of A presented in Table 3, aluminum
(Al) has the lowest normalized anisotropy factor, while
lithium (Li) has the largest one.

The effective elastic moduli of the synthetic polycrys-
tals are estimated using the aforementioned SC approach.
Figure 5 presents the PDFs of the effective elasticity ten-
sor component Ceff

11. These PDFs are estimated for iron
(Fe) using 200 realizations of each polycrystal sample set
Poly-2, Poly-4, and Poly-6, considering the Euler angles
as uncorrelated (case Uncorrelated) and correlated with
a relatively long correlation (case C-L). It clearly shows
that increasing the number of grains (Ng) decreases the
variance of the corresponding distributions of the effective
elastic moduli, regardless of the microstructural details of
the random polycrystals.

The standard deviations of the effective elastic moduli
are subsequently calculated for better investigating the
influence of correlated and uncorrelated Euler angles for
the case Uncorrelated, C-S and C-L on the statistical
properties:

Ȳ =
1

Nr

Nr∑

i=1

yi, σY =

√√√√ 1

Nr − 1

Nr∑

i=1

(yi − Ȳ )2, (13)

wherein Nr is the number of the realizations of each poly-
crystal model, being Nr = 200 in this study. Y is the
quantity of interest, and Ȳ and σY are its expectation
and standard deviation, respectively. Here, the random
variable of interest is the component Ceff

11 of the effective
macroscopic elasticity tensor.
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Figure 5. PDFs of the component Ceff
11 of effective elasticity tensor of iron (Fe) using 200 realizations

of Poly-2 (100 grains per realization), Poly-4 (1000 grains per realization) and Poly-6 (10000 grains per
realization) with Uncorrelated (left), and C-L (right) types of Euler angles.

the influence of correlated and uncorrelated Euler angles for the case Uncorrelated, C-S and C-L on the

statistical properties:

Ȳ =
1
Nr

Nr

∑
i=1

yi, σY =

√√√√ 1
Nr −1

Nr

∑
i=1

(yi − Ȳ )2, (13)

wherein Nr is the number of the realizations of each polycrystal model, being Nr = 200 in this study. Y

is the quantity of interest, and Ȳ and σY are its expectation and standard deviation, respectively. Here, the

random variable of interest is the component Ceff
11 of the effective macroscopic elasticity tensor.

Following [3], in order to obtain a master curve for all materials, the standard deviations of Ceff
11 (σCeff

11
) are

normalized by the absolute value of the anisotropy coefficient of the SC approach νsc, which is defined as

νsc = ν(1−3a)−10ac44, for all the cases in our study. It is obvious that σCeff
11

is linearly proportional to νsc.

As shown in Figure 6, regardless of the parameters of Euler angles, the normalized standard deviations of

Ceff
11 for all materials with different Ng are dominated by three main linear curves in a log-scale. Furthermore,

an inverse relationship was observed between the normalized σCeff
11

and Ng. The main curves, denoted as f1,

f2 and f3 in the legends of Figure 6, can be expressed as a function linking σCeff
11

to Ng, each with different

coefficients α and β corresponding to different cases:

σCeff
11

|νsc|
= α ×Nβ

g . (14)

In Table 4, the estimated values of coefficients α and β for different cases are summarized. It is worth

mentioning that the normalized variabilities of the effective elastic moduli for other components, e.g.,

Ceff
12 and Ceff

44 , have similar trends as those observed for the component Ceff
11 . However, the values of the

parameters α and β are different.
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Fig. 5. PDFs of the component Ceff
11 of effective elasticity tensor of iron (Fe) using 200 realizations of Poly-2 (100 grains per

realization), Poly-4 (1000 grains per realization) and Poly-6 (10000 grains per realization) with Uncorrelated (left), and C-L
(right) types of Euler angles.

Following [3], in order to obtain a master curve for
all materials, the standard deviations of Ceff

11 (σCeff
11

) are
normalized by the absolute value of the anisotropy coef-
ficient of the SC approach νsc, which is defined as νsc =
ν(1−3a)−10a c44, for all the cases in our study. It is obvi-
ous that σCeff

11
is linearly proportional to νsc. As shown in

Figure 6, regardless of the parameters of Euler angles,
the normalized standard deviations of Ceff

11 for all materi-
als with different Ng are dominated by three main linear
curves in a log-scale. Furthermore, an inverse relationship
was observed between the normalized σCeff

11
and Ng. The

main curves, denoted as f1, f2 and f3 in the legends of
Figure 6, can be expressed as a function linking σCeff

11
to

Ng, each with different coefficients α and β corresponding
to different cases:

σCeff
11

|νsc|
= α×Nβ

g . (14)

In Table 4, the estimated values of coefficients α and
β for different cases are summarized. It is worth men-
tioning that the normalized variabilities of the effective
elastic moduli for other components, e.g., Ceff

12 and Ceff
44 ,

have similar trends as those observed for the component
Ceff

11 . However, the values of the parameters α and β are
different.

The effect of correlated Euler angles, with varying cor-
relation length parameters, on the normalized standard
deviations of effective elastic moduli Ceff

11 , is compared
to the uncorrelated case and presented in Figure 7.
As expected, the polycrystals with uncorrelated Euler
angles have the lowest standard deviation of effective
elastic moduli, compared with the polycrystals whose
Euler angles are correlated. This could be explained as
the uncorrelated Euler angles of the grains in one real-
ization of polycrystal could have more variabilities than
the correlated ones. As a result, more variabilities of the
Euler angles reduce the statistical anisotropy level of the

polycrystal, hence the normalized standard deviation of
effective elastic moduli decreases. If the polycrystals are
close to theoretical isotropy, then the standard deviations
of effective elastic moduli between each realization will
tend towards 0.

On the contrary, adding correlations to the Euler angles
could reduce their variabilities in each realization and
thus increase their anisotropy levels. As such, the stan-
dard deviations of effective elastic moduli will have a
higher value. This conclusion is shown in Figure 7, where
the values of the normalized σCeff

11
for the polycrystals

whose Euler angles have a longer correlation length (C-L)
are larger than those having a shorter correlation length
(C-S). In fact, a relatively long correlation length implies
an increase in the characteristic size of heterogeneity. Con-
sidering this heterogeneity as an “effective grain” with
similar Euler angles and a larger size than the ones in
C-S and Uncorrelated cases, the “effective number of
grains” is reduced, leading to increased variability of effec-
tive elastic moduli among the realizations of sample sets.
Nevertheless, when comparing the C-S case with the
Uncorrelated one, the difference is minimal, particu-
larly for polycrystals with a sufficient number of grains.
Therefore, for polycrystals with Euler angles exhibiting
relatively short correlation lengths comparable to the
grain size, it is acceptable to simulate crystallographic ori-
entations as uncorrelated to simplify the numerical model
in order to expedite simulation speed.

In general, our study shows that spatially correlated
Euler angles with correlation lengths relatively longer
than the grain size can exert a non-negligible impact on
the statistical properties of effective elastic moduli in poly-
crystalline materials. Studying spatially correlated Euler
angles of polycrystals holds significant implications for
future simulation and experimental studies. By incorpo-
rating spatial correlation in simulations, a more realistic
representation of polycrystal microstructure is achieved,
leading to improved accuracy in predicting macroscopic
behavior and mechanical properties. In experimental
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Figure 6. Normalized standard deviations of Ceff
11 , in terms of the number of grains, for Euler angles with

parameters Uncorrelated (top), C-S (bottom left), and C-L (bottom right).

tions, a more realistic representation of polycrystal microstructure is achieved, leading to improved accuracy

in predicting macroscopic behavior and mechanical properties. In experimental studies, using the EBSD

technique to measure the spatial correlation enables better characterization of polycrystal microstructure,

which is crucial for understanding material properties, deformation mechanisms, and failure behaviors.

Additionally, including spatial correlation in crystallographic orientations ensures robust predictions, re-

ducing uncertainties in simulations and experimental results. This enhances confidence in the reliability of

study outcomes, which is essential for designing and developing materials for critical applications.

4 Conclusion

The influence of the spatially correlated Euler angles on the statistical properties of effective elastic moduli

has been investigated in this article based on the synthetic polycrystals of a variety of cubic materials having

11

Fig. 6. Normalized standard deviations of Ceff
11, in terms of the number of grains, for Euler angles with parameters Uncorrelated

(top), C-S (bottom left), and C-L (bottom right).

Table 4. Coefficients α and β in equation (14), obtained
from numerical results, with three different parameters of
Euler angles.

Parameters of Euler angles α β

Uncorrelated 0.2287 –0.47
C-S 0.2693 –0.49
C-L 0.2087 –0.38

studies, using the EBSD technique to measure the spatial
correlation enables better characterization of polycrys-
tal microstructure, which is crucial for understanding
material properties, deformation mechanisms, and failure
behaviors. Additionally, including spatial correlation in
crystallographic orientations ensures robust predictions,
reducing uncertainties in simulations and experimental
results. This enhances confidence in the reliability of study
outcomes, which is essential for designing and developing
materials for critical applications.

Figure 7. Main curves of the relation between normalized standard deviations of Ceff
11 and number of grains

for Euler angles with Uncorrelated, C-S, and C-L parameters.

different anisotropy factors. The random fields of the Euler angles, with an exponential kernel function with

two different correlation lengths, are numerically simulated based on the Karhunen-Loève expansion. The

effective elasticity tensors of the polycrystals are then estimated by using the classical Eshelby-Kröner Self-

Consistent approach. The normalized standard deviations of the effective elastic moduli Ceff
11 are calculated

to investigate the statistical properties of the homogenized medium. Results show that apart from the

inversely proportional relationship between the normalized standard deviations of Ceff
11 and the number

of grains, the spatially correlated Euler angles also influence the statistical properties of effective elastic

moduli. The correlation of the Euler angles will increase the standard deviations of the effective elastic

properties compared with uncorrelated ones, especially when the correlation lengths exceed the mean grain

size. These results highlight the necessity of considering spatially correlated Euler angles in the numerical

models based on real polycrystals to enhance the reliability of future numerical investigations. Additionally,

the influence of spatially correlated Euler angles on the statistical behaviors of ultrasonic phase velocities

as well as the scattering-induced attenuation, is currently under study.
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Fig. 7. Main curves of the relation between normalized standard
deviations of Ceff

11 and number of grains for Euler angles with
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4 Conclusion

The influence of the spatially correlated Euler angles
on the statistical properties of effective elastic moduli
has been investigated in this article based on the syn-
thetic polycrystals of a variety of cubic materials having
different anisotropy factors. The random fields of the
Euler angles, with an exponential kernel function with
two different correlation lengths, are numerically sim-
ulated based on the Karhunen–Loève expansion. The
effective elasticity tensors of the polycrystals are then
estimated by using the classical Eshelby–Kröner Self-
Consistent approach. The normalized standard deviations
of the effective elastic moduli Ceff

11 are calculated to
investigate the statistical properties of the homogenized
medium. Results show that apart from the inversely pro-
portional relationship between the normalized standard
deviations of Ceff

11 and the number of grains, the spa-
tially correlated Euler angles also influence the statistical
properties of effective elastic moduli. The correlation of
the Euler angles will increase the standard deviations of
the effective elastic properties compared with uncorre-
lated ones, especially when the correlation lengths exceed
the mean grain size. These results highlight the neces-
sity of considering spatially correlated Euler angles in the
numerical models based on real polycrystals to enhance
the reliability of future numerical investigations. Addi-
tionally, the influence of spatially correlated Euler angles
on the statistical behaviors of ultrasonic phase velocities
as well as the scattering-induced attenuation, is currently
under study.
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