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Abstract

Most theoretical studies on homogenized properties of polycrystals consider

infinite textureless media with orientations characterized by independent Eu-

ler angles. However, microstructural analyses of polycrystals reveal spatially

correlated orientations of grains whose sizes often follow lognormal distri-

butions. Moreover, experimental investigations show that the single-crystal

elastic constants (SEC) in the crystallite’s local coordinates could exhibit

variabilities. To the best of our knowledge, in the context of our study, these

have never been considered in the literature. In this paper, the crystal ori-

entations are simulated using random fields (RFs) with different correlation

parameters. A maximum entropy principle is used to simulate realizations of

the local stiffness matrices. Numerical results indicate that generating Eu-

ler angles using independent random variables is legitimate when correlation

lengths of orientations are close enough to the average grain size. Analytical

formulas are derived to estimate the statistical behavior of effective elastic

moduli and the phase velocities considering either unimodal or bimodal grain
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size distributions and fluctuations in local tensors for both two- and three-

dimensional polycrystals. The former highlight the important roles of the

coefficient of variations of the grain sizes and that of the elastic constants.

This work contributes to microstructural characterization research associated

with ultrasonic phase velocity measurements.

Keywords: Random polycrystals, Homogenization, Random fields, Phase

velocities, Grain size distribution

1. Introduction

Metals and their alloys are polycrystalline materials that are widely used

in industry. Polycrystals consist of discrete grains or crystallites whose

macroscopic properties are often of great importance. The latter depend on

the SEC, the morphological characteristics, and the crystallographic orienta-

tions of the grains. Over recent decades, numerous theoretical investigations

have been conducted to determine the effective elastic modulus of polycrys-

talline materials in infinitely large polycrystals having equally sized grains

with no preferred, spatially uncorrelated crystallographic orientations [1–3].

As such, the overall elastic modulus is isotropic and deterministic. Nonethe-

less, in practice, polycrystalline samples have a finite number of crystals, re-

sulting in a non-vanishing degree of anisotropy, which can be detected using

non-destructive evaluation (NDE) techniques, e.g., ultrasonic wave measure-

ments [4, 5]. Consequently, the effective elastic properties exhibit variations

between different samples as reported in theoretical and numerical studies [6–

11]. Experimental works also revealed the influence of medium size and num-

ber of grains on the mechanical properties such as effective stress and tensile
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strength [12–14].

Moreover, the single-crystal elasticity matrix in the crystallite’s local ref-

erence frame is considered deterministic in the literature. However, several

studies on the elastic moduli of alpha iron (α-Fe) monocrystals report dif-

ferent values. Table A.1 in Appendix A provides the values summarized

by Cantara et al. [15], along with the corresponding first- and second-order

statistics. For this particular case, it turns out that the component c12 has

the largest coefficient of variation (CV), i.e., 6%. Thus, it becomes impera-

tive to validate the prevalent assumption of deterministic local stiffness ten-

sors and investigate the impact of introducing fluctuations in these tensors

on the effective elastic properties and their statistical properties. Besides,

for simplicity purposes, the crystallographic orientations, represented by a

triplet of Euler angles (Θ1,Θ,Θ2), are often considered independent random

variables with particular marginal probability density functions (PDFs) re-

sulting in uniformly distributed rotations provoking a faster convergence to

an isotropic background [16]. However, many microstructural investigations

on polycrystals using the electron backscatter diffraction (EBSD) technique

have revealed that the neighboring grains can exhibit statistically closer ori-

entations, implying their inherent spatial correlations [17–21]. This phe-

nomenon can be attributed to various factors, including the manufacturing

techniques like rolling, which can induce the morphological texture and sub-

sequently contribute to the spatial correlation of the Euler angles [17, 18, 20].

Additionally, the spatial correlation could also stem from the grain growth

processes, such as the presence of twinning relationships observed in alloy

304 stainless steel [21]. Furthermore, experimental studies have reported the
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existence of large regions comprising equiaxed primary grains with similar

crystallographic orientations [22]. These regions, referred to as macrozones,

exhibit relatively long correlation lengths (up to 100 times the average grain

size) of the orientations [22]. Several numerical studies concerning simulat-

ing these spatially correlated orientations have been carried out [19, 23–25].

Here, a random field-based generation of the Euler angles is to be incorpo-

rated into our numerical model. Consequently, the influence of the spatially

correlated orientations on the statistical properties of homogenized elastic

modulus tensor needs to be investigated. Note that our study is centered

on synthetic polycrystals featuring equiaxed grains without morphological

texture. Furthermore, polycrystals composed of equiaxed grains commonly

exhibit lognormal grain size distributions [14, 26]. The distribution width

has a major effect on the mechanical properties, e.g., the tensile stress [27],

the yield stress [28], and the flow stress [29, 30]. Recently, there has been

considerable interest in bimodal grain size distributions in polycrystals. By

employing techniques such as powder metallurgy and spark plasma sinter-

ing, precise control over the grain size distributions and the volume frac-

tions can be achieved [31, 32]. These bimodal grain size distributions could

be highly influential on the mechanical properties such as the strength and

ductility [31, 32], along with the chemical properties such as the corrosion

behavior [33]. The effect of unimodal and bimodal grain size distributions

on ultrasonic wave propagation in polycrystals has been widely studied [34–

36], showing promise in measuring ultrasonic scattering-induced attenuation

to characterize the width of grain size distributions in polycrystalline sam-

ples. Other NDE applications based on phase velocity measurements include
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the estimation of average grain size [37], characterizing temperature-related

changes and levels of cold working [38], assessing annealing behavior, and

quantifying recrystallization levels [39]. However, most previous studies pre-

dominantly focused on the mean response (first-order statistics) of variables

of interest (VoI). Therefore, it is essential to investigate and quantify the in-

fluence of the grain size distribution on the second-order statistics of effective

elastic properties and, consequently, on those of ultrasonic phase velocities.

In this work, the open-source software NEPER [40] is used to generate

multiple realizations of synthetic polycrystals with unimodal and bimodal

grain size distributions with different widths. The crystallographic orienta-

tions of grains are simulated as spatially correlated RFs with different corre-

lation parameters. Besides, following Guilleminot and Soize [41], the uncer-

tainty on the SEC is taken into account via a maximum entropy principle.

Our investigation focuses on the influence of the aforementioned parameters,

including correlated orientations, grain size distributions, and single-crystal

elastic moduli fluctuations, on the statistical behavior of the homogenized

elastic moduli and the phase velocities. Explicit formulas for second-order

statistics of effective elastic moduli and phase velocities expressed in terms of

the width of the grain size distribution, number of grains, and elastic prop-

erties of the material are derived and validated via numerical simulations.

This paper is organized as follows: Sec. 2 presents the numerical model

construction, including the RF-based generation of crystallographic orienta-

tions and random single-crystal elasticity tensors, as well as the computa-

tional framework of the effective elastic properties and the phase velocities

in polycrystalline materials. Analytical and numerical results are shown in
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Sec. 3, with a discussion about the statistical characteristics of the effective

elastic moduli and the ultrasonic phase velocities concerning various input

random parameters.

2. Numerical model construction and computational framework

2.1. Generation of synthetic polycrystals

A large number of synthetic cubic polycrystals defined by Ω = {x =

(x, y, z) ∈ R3 | 0 ≤ x, y, z ≤ 1000µm}, composed of equiaxed grains have

been generated via the open-source software NEPER [42] to study the sta-

tistical properties of our VoI, i.e., the effective elastic moduli, and the phase

velocities. It is worth mentioning that NEPER uses the so-called Laguerre

(weighted Voronöı) tessellation and can create microstructures that are con-

sistent with experimental observations, for which the grain equivalent di-

ameters follow a lognormal distribution [42], as frequently reported in the

literature [14, 26]. Table 1 summarizes the samples generated via this ap-

proach, named PSD26-i, i ∈ {1, 2, ..., 8}, wherein the number of grains Ng

varies from 500 to 30000 and 26 means that the CV of the grain size dis-

tribution is about 26%. Since the lognormal distribution is often used to

model the equivalent diameter random variable D [14, 28, 29], the former

will be used in this work. As such, D ∼ Lognormal
(
D̄, σD

)
, where D̄, σD are

the mean and standard deviation of D, respectively. The latter, along with

the corresponding CV, denoted by δD, for each set, are reported in Table 1.

Note that the values of δD for these samples are relatively small compared to

some real samples, such as recrystallized aluminum (Al) polycrystals, where

it may even exceed 1 [26]. By reshuffling the seeds of the underlying distribu-
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tion, which implies changing the grains’ centroid locations, 200 realizations

have been generated for each set. Fig. 1(a) shows one realization of the set

PSD26-4, where grains are distinguished by different colors. The PDF of

the grain equivalent diameters and that of the grain volumes are depicted in

Figs. 1(b) and (c), respectively.

Table 1: Polycrystal samples and the corresponding statistical properties of D.

Set Ng D̄ [µm] σD [µm] δD [-]

PSD26-1 500 146.8 37.8 0.257

PSD26-2 1000 116.5 29.9 0.257

PSD26-3 5000 68.2 17.4 0.256

PSD26-4 10000 54.1 13.8 0.255

PSD26-5 15000 47.3 12.1 0.255

PSD26-6 20000 42.9 11.0 0.255

PSD26-7 25000 39.9 10.2 0.255

PSD26-8 30000 37.5 9.6 0.255

2.2. Simulation of crystallographic orientations

This section aims to simulate the crystallographic orientations of the

grains constituting the polycrystalline samples, characterized by a random

vector of Euler angles (Θ1,Θ,Θ2) described hereinafter by the RFs (Y1, Y2, Y3).

Two cases of uncorrelated and correlated Euler angles are to be distinguished.

The former is based on generating them via (2πX1, arccos(−1 + 2X2), 2πX3)

where Xi ∼ U[0, 1], i ∈ {1, 2, 3}, are independent uniform random vari-

ables [16]. Such distributions of the Euler angles provoke faster convergence
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(a) (b) (c)

Figure 1: (Color online) (a) A realization of the set PSD26-4, (b) the PDF of equivalent

diameters D, and (c) the PDF of grain volumes V .

towards the statistical isotropy. On the other hand, the simulation of the

spatially correlated orientations is based on the construction of non-Gaussian

RFs. For this purpose, independent Gaussian RFs Zi(x), i ∈ {1, 2, 3}, are

first generated using the Karhunen-Loève expansion (KLE) [43]. The trun-

cated series expansion of these RFs read:

Zi(x) ≈
Ng∑
j=1

√
λijω

i
jψ

i
j(x), (1)

where x ∈ Ω and
{
λij, ψ

i
j

}
are the eigenvalues with their corresponding

eigenfunctions of the target autocovariance function (ACF) of the RF Yi, i ∈

{1, 2, 3}, denoted by RYiYi
. The ACFs are assumed to depend on the distance

between two points, i.e., RYiYi
(xm,xn; lYi

) = σ2
Yi
R̂YiYi

(ξ = ∥xm − xn||/lYi
),

where (xm,xn) ∈ Ω×Ω and lYi
is the correlation distance or the typical size

of the heterogeneities. In Eq. (1), ωi
j, i ∈ {1, 2, 3}, is a vector of j independent

standard Gaussian random variables. The corresponding non-Gaussian RF

then writes Yi (x) = F−1
Yi

(Φ (Zi(x))), where FYi
(a) =

∫ a

−∞ pYi
(t)dt is the
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cumulative distribution function (CDF) of Yi with target PDF pYi
, and Φ(·)

is the CDF of the standard Gaussian distribution.

2.3. Simulation of random single-crystal elasticity tensors

For the materials with cubic symmetry, the fourth-order elasticity tensor

of a single crystal in the local reference is fully characterized by three indepen-

dent parameters and can be written as the linear combination C(cr) = λmE(m),

where the linearly independent fourth-order basis tensors E(m), m ∈ {1, 2, 3},

are given by Moakher and Norris [44]. Note that the Einstein summation

convention is implied whenever each index is repeated twice. Throughout

the paper, the superscript (cr) is used to indicate that the corresponding

elastic tensor (matrix) is considered in crystallite’s local reference, and it

corresponds to the global reference frame otherwise. A Voigt representation

of C(cr) as a 6 × 6 matrix C(cr) will be used for the sequel. This matrix has

three positive eigenvalues (λ1, λ2, λ3) = (c11 + 2c12, 2c44, c11 − c12) with the

corresponding multiplicity of 1, 3, and 2, respectively. Since in the framework

of this study, the only available information about the stiffness matrix is its

mean and fluctuation level, along with some physical constraints (positive-

definiteness and invertibility), a non-parametric probabilistic model using the

random matrix theory in conjunction with the maximum entropy principle

will be used to generate realizations of the matrix C(cr) [41, 45]. Follow-

ing Guilleminot and Soize [41], the random eigenvalues λm, m ∈ {1, 2, 3},

will be modeled as three independent gamma distributed random variables

G(km, sm), where (km, sm) are the corresponding shape and scale parameters

such that λ̄m = kmsm and σ2
λm

= kms
2
m. The PDFs of these eigenvalues
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write:

λ1 ∼ G

(
1 + 2ϵ2

3ϵ2
,
3
(
C̄11 + 2C̄12

)
ϵ2

1 + 2ϵ2

)
,

λ2 ∼ G

(
1

ϵ2
, 2C̄44ϵ

2

)
,

λ3 ∼ G

(
2 + ϵ2

3ϵ2
,
3
(
C̄11 − C̄12

)
ϵ2

2 + ϵ2

)
,

(2)

where ϵ ∈ R+ is defined as ϵ = δλ2 = δC44 . It is worth noting that ϵ controls

the global fluctuation level of the random matrix C(cr). Given the lack of

monocrystal elastic modulus data for different materials, we chose a range of

values for ϵ ∈ [0, 0.02] to account for a variety of plausible fluctuation levels

for the polycrystals of our interest. The upper bound has been chosen based

on the experimental values for alpha iron (α-Fe, Table A.1 in Appendix A).

2.4. Computational framework for effective elastic moduli

Homogenization techniques are used to calculate the effective properties

Ceff of polycrystals. Since our main objective is to estimate the variability of

Ceff , the latter should be calculated on different realizations using analytical

methods instead of computationally demanding numerical homogenization

techniques, allowing us to estimate Ceff faster. To this end, the classical

Voigt [1] and Reuss [2] averaging techniques provide upper and lower bounds

for Ceff . On the other hand, the self-consistent (SC) technique, originally

developed by Hershey [46], Eshelby [47], and Kröner [3], involves using the

equivalent inclusion method under the small deformation and linear elastic-

ity assumption. This technique considers that the strain of the embedded

inclusion ϵkl is related to the applied uniform far-field macroscopic strain ϵ∗kl

on the unbounded homogeneous isotropic background as ϵij = Bijklϵ
∗
kl, where
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Bijkl is the concentration tensor. The SC technique provides more accurate

estimates of Ceff compared to the Voigt and Reuss averaging approaches, as

confirmed by experimental results [48]. Lubarda [49] extended the SC method

by representing the crystallites inside the polycrystals as embedded spherical

inclusions with cubic symmetry inside the background. In this case, the SC

elastic modulus of the nth crystallite can be expressed as Csc,n
ijkl = C(cr)

ijmnBmnkl.

The effective elasticity tensor of a polycrystal with volume (area) V = |Ω|

based on the SC approach can then be estimated by volume averaging of

Csc,n
ijkl, i.e., Ceff,sc

ijkl =
∑Ng

n=1C
sc,n
ijklVn/V , where Vn is the volume (area) of each

grain [9, 49]. This SC approach-based effective elasticity tensor could be

further decomposed as the sum of isotropic and anisotropic tensors Ceff,sc
ijkl =

Ciso,sc
ijkl +Cani,sc

ijkl where Ciso,sc
ijkl (h) = [hc11+(1−h)c12]δijδkl+2(1+2h)c44Iijkl and

Cani,sc
ijkl (h) = νsc(h)

∑Ng

n=1An
ijklVn/V in which νsc is the SC anisotropy coeffi-

cient defined as νsc(h) = (c11−c12−2c44)(1−3h)−10hc44. In these equations,

δij is the Kronecker symbol (1 if i = j and 0 otherwise), I and A are the

fourth-order identity and rotation tensors, and h is a measure of the distance

between the concentration tensor B and the fourth-order identity tensor I.

Note that h is a function of the elastic constants (see Eq. (8) in Kube and

Turner [50]). Analogous equations hold for the Voigt and Reuss-averaged

estimates. In particular, for the Voigt method, it suffices to put h = 0 in

the SC formulas, i.e., Ceff,v
ijkl = Ciso,v

ijkl + Cani,v
ijkl where Ciso,v

ijkl = Ciso,sc
ijkl (h = 0) and

Cani,v
ijkl = νv

∑Ng

n=1An
ijklVn/V in which νv = νsc(h = 0) = c11 − c12 − 2c44 is

the anisotropy coefficient. It is worth mentioning that the Reuss averaging

will not be used in this paper since it yields the variabilities of the effective

compliance tensor that cannot be simply related to those of the effective
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modulus tensor. In Sec. 3.1, the statistical parameters of the components of

the tensor Ceff
ijkl will be investigated.

2.5. Computational framework for plane wave phase velocities

The plane P and S wave phase velocities v and their corresponding po-

larization directions w can be calculated by solving the following eigenvalue

problem known as the Christoffel equation [51]:(
Ceff

mnopk̂nk̂o − ρv2δmp

)
wp = 0, (3)

in which k̂ is the propagation direction, and ρ is the density of the ma-

terial considered deterministic constant. Defining the second-order tensor

Λmp(k̂) = Ceff
mnopk̂nk̂o, Eq. (3) can be written in the matrix form (Λ −

ρv2I3)w = 0 where I3 denotes the 3 × 3 identity matrix. The phase ve-

locities and polarization directions are then calculated by looking for the

eigenvalues and eigenvectors of the matrix Λ.

It is worth noting that the presence of anisotropic behavior is inherent

in our finite-sized polycrystals due to their finite volumes. The propagation

of ultrasonic waves within an anisotropic medium induces quasi-longitudinal

and quasi-shear waves whose polarization directions deviate from the propa-

gation direction k̂ [51]. In Sec. 3.2, the statistics of the P and S wave phase

velocities will be investigated.

3. Analytical and numerical results

Different cubic materials are used for our subsequent numerical inves-

tigations. Table 2 summarizes their average elastic constants along with

their anisotropy levels defined as Â = |1 − AZ | = |νv|/(c11 − c12), where

12



AZ = 2c44/(c11 − c12) is the classical Zener index [52]. These materials have

been chosen to cover a range of anisotropy levels. Note that when Â tends

to 0, the material tends to be elastically isotropic. The influence of the

correlated Euler angles, the random local stiffness tensor, along with the

distribution width of grain sizes on the statistical behavior of different com-

ponents of the effective elasticity matrix Ceff will be investigated in Sec. 3.1.

We mainly focus on the dominant components IJ ∈ {11, 12, 66} of Ceff . The

statistical properties of the phase velocities will be then studied in Sec. 3.2.

Table 2: Average SEC and the corresponding anisotropy levels for different cubic materials

[15, 53].

Name C̄11 [GPa] C̄12 [GPa] C̄44 [GPa] Â [-]

Al 108 62 28.3 0.23

α-Fe 231 135 115 1.40

Co 242 160 128 2.12

γ-Fe 154 122 77 3.81

Li 13.4 11.3 9.6 8.14

3.1. Influence on the statistical properties of effective elastic moduli

3.1.1. Influence of correlated crystallographic orientations

The investigations in [18, 19] based on EBSD data obtained from real

polycrystalline samples revealed exponential kernel functions as the most

suitable fitting function type for the ACFs of the Euler angles. An exponen-

tial ACF, even though it is the most frequent choice in the literature, has

shown its limitations in the description of the microstructure of some poly-

crystals [54]. Recently, a von Kármán ACF has been suggested to describe
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wave propagation in polycrystals [55]. This model covers a range of correla-

tions by varying the so-called Hurst number. In this study, because of the

lack of experimental data and following [56, 57], we compared different ACFs

summarized in Table 3. Note that extensive numerical investigations have

been conducted in our study using other ACF types that are not included

in this table. However, it was determined that the statistical properties of

the homogenized elastic moduli did not exhibit significant differences when

compared to the values presented in Table 3. As such, our subsequent inves-

tigations are based only on these models. Besides, as noted by Arwade and

Grigoriu [19], long-range correlations in orientations within various aluminum

alloy polycrystals have been identified [17]. Moreover, the existence of large

regions composed of equiaxed primary grains sharing similar crystallographic

orientations as macrozones has been reported [22]. Thus, in order to repre-

sent a range for the characteristic length of the heterogeneities, two different

cases are considered, where the ratio t = lYi
/D̄ is either 2 or 5. These cases

are specified by the superscripts s (short) and l (long), respectively. Note

that for simplicity purposes, the correlation lengths are considered the same

for different Euler angles, and the cross-correlations are not considered. As a

result, the Euler angles are considered independent, whose joint PDF yields

equally likely random rotations.

The statistical properties of the effective elastic moduli for 3D synthetic

polycrystals composed of different materials listed in Table 2 are investi-

gated via the SC approach. Note that achieving isotropic (non-preferential)

orientations for our finite-volume synthetic polycrystals is impossible. As a

result, multiple realizations have been generated for each polycrystal sample
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Table 3: Definition of different kernel functions [57].

ACF type R̂Y Y (ξ)

Exponential exp (−2ξ)

Low-pass white noise
3
(
sin
(
3π
2
ξ
)
− 3π

2
ξ cos

(
3π
2
ξ
))(

3π
2
ξ
)3

Power-law

(
1 +

π2ξ2

4

)−2

set. This approach ensures that our VoI, i.e., the statistical properties of

effective elastic moduli, remains unaffected by the homogenization method

employed for polycrystals with finite volumes. For instance, for the case of

PSD26-1 consisting of 500 grains of lithium (Li), which exhibits the highest

level of anisotropy at the scale of the single crystal (see Table 2), the first- and

second-order statistical properties of the effective elastic modulus Ceff
11 using

the SC approach are presented in Fig. 2. This figure clearly illustrates the

statistical convergence of this VoI, as the patterns observed in other elastic

components and materials.

The PDFs of the component Ceff
11 computed for the polycrystals of the

sets PSD26-1 and PSD26-8 having uncorrelated and correlated (exponen-

tial ACF with t = 5) Euler angles are depicted in Fig. 3 for the particular

case of aluminum (Al) grains. As expected, regardless of the details of the

spatial correlation of the heterogeneities (ACF and correlation length), the

variability (width of the PDFs) of Ceff
IJ is inversely proportional to the number

of grains Ng. Similar results could be obtained in 2D.

Following Norouzian and Turner [9] and with the aim of obtaining uni-

versal curves, i.e., independent of the material properties, the components of

15



Figure 2: (Color online) Mean C̄eff
11 (black solid line) and standard deviation σCeff

11
(blue

dashed line) of Ceff
11 for lithium (Li) in the sample set PSD26-1 in terms of the number

of samples.

the matrix Ceff are normalized by the corresponding anisotropy coefficients

ν. We thus define the random variable Ĉeff
IJ = Ceff

IJ /ν where ν is νv (resp.

νsc) for the Voigt (resp. SC) averaging techniques. The standard deviations

of Ĉeff
11 , estimated via the SC approach for different materials having deter-

ministic local stiffness matrix (ϵ = 0) with different correlation structures,

are displayed in a log scale in Fig. 4. Based on this figure, regardless of the

details of the correlation function, σĈeff
11

is a linearly decreasing function of

Ng on a log scale. Moreover, Fig. 4 reveals that the classical case [9], where

the Euler angles are uncorrelated, always leads to lower values of σĈeff
11

com-

pared to the correlated cases. As expected, the difference between the values

of σĈeff
11

for uncorrelated and relatively short-range correlated Euler angles

(t = 2) is negligible. This observation indicates that generating Euler an-

gles using independent random variables (RFunc) is legitimate for the specific

cases where they exhibit relatively short correlation lengths compared to the

average grain size. This allows for a drastic reduction in the simulation time
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Figure 3: (Color online) PDFs of Ceff
11 for aluminum (Al) in sample sets PSD26-1 (black),

and PSD26-8 (blue) with uncorrelated (dashed lines), and exponentially correlated Euler

angles with t = 5 (solid lines).

of the crystallographic orientations. Conversely, increasing the characteris-

tic size of heterogeneity in Euler angles results in a marked increase in σĈeff
11

regardless of the ACF type. Specifically, for Ng = 500 and Ng = 30000, dis-

crepancies of 39.8% to 73.2% and 44.5% to 215.2% are observed, respectively.

This occurs since certain grains aggregate into clusters with close values of

Euler angles as the correlation length increases (see Fig. 5, for one realization

of the sample set PSD26-4). These clusters can be imagined as behaving like

“effective grains” with larger effective grain sizes. Consequently, the number

of effective grains N eff
g in the polycrystal with a given size becomes smaller

compared to the case when Euler angles are uncorrelated. This leads to in-

creased variability in the components of Ceff , since the variability is inversely

proportional to the number of grains Ng.

Similar linear decreases are observed for the components Ceff
12 and Ceff

66 .

A power-type relationship between σĈeff
IJ

and the number of the grains Ng is
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Figure 4: (Color online) σĈeff
11

in terms of Ng for uncorrelated Euler angles RFunc (black

solid line), compared with the cases where the Euler angles have relatively short (resp.

large) correlation distances RFs
exp, RF

s
pl and RFs

lpw (resp. RFl
exp, RF

l
pl and RFl

lpw) in

dotted, dash-dotted and dashed blue lines (resp. red lines), respectively.

thus proposed (see Norouzian and Turner [9] for details):

σĈeff
IJ

= αIJN
βIJ
g , IJ ∈ {11, 12, 66}, (4)

wherein the coefficients (αIJ , βIJ) depend on the parameters of the corre-

lation structure and the dimension of the problem d. In this section, we

only consider 3D polycrystals, and we analytically extend the results to 2D

cases in the next section. The estimated values of the coefficients α11 and

β11 for different case studies are summarized in Table 4. Based on these

values, it can be inferred that the value of the index β11 increases as the

characteristic size of the heterogeneity of Euler angles grows. This trend

persists independent of the kernel function used as the ACF of the Euler an-

gles RFs. For the reference case, RFunc, we obtain (α11, β11) = (0.222, 0.497)

as opposed to (α11, β11) = (0.191, 0.5) reported in Norouzian and Turner’s

work [9]. The discrepancies are (13.9%, 0.6%). Besides, Böhlke et al. [8]
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studied the standard deviation of the Young’s modulus of polycrystalline mi-

crospecimens and report β11 as 0.438 and 0.470, obtained via numerical and

analytical approaches, respectively. Compared to our results (β11 = 0.497),

the discrepancies are 11.9% and 5.4%. It is worth mentioning that Bohlke

et al. [8] used models where Ng ≤ 1000. As such, the insufficient number

of grains could lead to an inaccurate estimation of (α11, β11). The differ-

ence could be related to different tessellation types used to generate the

microstructures (Voronöı tessellation in our study and voxel-based tessella-

tion in Norouzian and Turner’s work [9]) and different grain size statistics

(δD = 0.1 in Norouzian and Turner [9] as opposed to δD = 0.255 in this

work). As will be investigated analytically in the next subsection, the width

of the grain size distribution is shown to be influential on the values of αIJ .

Figure 5: (Color online) Exponentially correlated Euler angle θ1 with t = 5 in one real-

ization of random polycrystals PSD26-4.
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Table 4: Coefficients α11 and β11 in Eq. (4) for different numerical case studies.

Case α11 β11

RFunc 0.222 -0.497

RFs
exp 0.201 -0.483

RFl
exp 0.281 -0.481

RFs
lpw 0.217 -0.491

RFl
lpw 0.262 -0.437

RFs
pl 0.227 -0.495

RFl
pl 0.219 -0.443

3.1.2. Influence of the grain size distribution

In this section, we derive the analytical formulas to estimate σĈeff
IJ

in

terms of Ng and δD for both 2D and 3D cases. We consider a 3D (resp. 2D)

polycrystal composed of Ng grains having random volumes (resp. areas) and

orientations. Fig. 6 shows this construction schematically in 2D. Note that

the total volume (area) of this sample is also a random variable. As already

mentioned, each component of the matrix Ceff can be decomposed as the sum

of isotropic and anisotropic contributions:

Ĉeff
IJ = Ĉeff,iso

IJ (h) +

Ng∑
m=1

fIJm(Θ1,Θ,Θ2)Vm

Ng∑
m=1

Vm

, (5)

wherein Vm (measure of the domain occupied by the grain number m) and

fIJm, m ∈ {1, . . . Ng}, are Ng iid random variables. They are realizations of

the random variables V = πd/2Dd/(2dΓ(1+d/2)) and fIJ =
[

3∑
n=1

AinAjnAknAln

]kl→J

ij→I

,

respectively. In these equations, d ∈ {2, 3} is the dimension of the polycrys-
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tal, Γ is the gamma function, A is the 3 × 3 rotation matrix associated

with the fourth-order rotation tensor A, and the mapping ij → I (same for

kl → J) is defined as 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, and 12 →

6. In Eq. (5), if h ̸= 0, an SC homogenization method is implied, and the

normalization constant is thus νsc(h). However, for the Voigt averaging, one

needs to put h = 0, which implies a normalization by νv = νsc(0).

Figure 6: (Color online) Polycrystalline sample with Ng random grains.

First, we suppose that the local elastic moduli CIJ are perfectly known

and are thus homogeneous deterministic constants in the medium. The vari-

ability of Ceff
IJ will be solely related to that of the Euler angles (components

of the rotation matrix A) and of the grain volumes (areas). In 2D, only one

random Euler angle exists and is distributed as Θ1 ∼ U[0, 2π]. Besides, when

d = 3, since the Euler angles are independent, their joint PDF reads:

p(Θ1,Θ,Θ2)(θ1, θ, θ2) =
sin(θ)

8π2
1[0,2π](θ1)1[0,π](θ)1[0,2π](θ2), (6)

where 1D(x) denotes the indicator function that is equal to 1 if x ∈ D and

0 otherwise. Therefore, the ensemble (statistical) average of any function of
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the Euler angles, say the random variable F(Θ1,Θ,Θ2), writes:

F̄ =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

F(θ1, θ, θ2) sin(θ)dθ1dθdθ2. (7)

Similarly, the variance of fIJ is defined as Var(fIJ) = f 2
IJ − fIJ

2
. One can

simply show that when d = 3, the mean and variances of f11, f12 and f66

are respectively (3
5
, 16
525

), (1
5
, 3
175

), and (1
5
, 3
175

). On the other hand, these

values are (3
4
, 1
32

), (1
4
, 1
32

), and (1
4
, 1
32

) for the 2D case. For the 3D case,

as the random variables f12 and f66 have the same first and second-order

statistics, hereinafter, IJ is limited to 11 or 12. However, no difference will

be made between indices in 2D. Since the grain equivalent diameters and

the Euler angles are considered independent, the ensemble average and the

variance of the random variables fIJmVm are fIJ V and Var[fIJ ]Var[V ] +

Var[fIJ ]V
2

+ fIJ
2
Var[V ], respectively. Since the random variables Vm (resp.

fIJmVm) are iid, the variances of their sum are the sum of each individual

variance. We also note that if X and Y are two random variables, a first-

order Taylor expansion-based approximation for the variance of the random

variable Z = X
Y

writes:

Var(Z) ≈
(
X̄

Ȳ

)2(
δ2X − 2

Cov(X, Y )

X̄ Ȳ
+ δ2Y

)
. (8)

Therefore, the corresponding standard deviations of the normalized compo-

nents of the effective elastic modulus for a d-dimensional random polycrystal

read:

σĈeff
IJ

(d) ≈ α′
IJ(d)√
Ng

√
D2d

Dd
2 =

α′
IJ(d)√
Ng

(
1 + δ2D

) d2

2 , (9)

where α′
IJ(2) =

√
1/32 regardless of IJ , and α′

IJ(3) = (
√

16/525,
√

9/525)

for IJ = 11 and IJ = 12, respectively. Note that the right-hand side of
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Eq. (9) is for the particular case where the grain equivalent diameters follow

a lognormal distribution. For this case, Dn (n ∈ N) also follows a lognormal

distribution whose mean is Dn = D
n
(1 + δ2D)

n(n−1)
2 . It is worth pointing out

that for 3D polycrystals σĈeff
11

= σĈeff
22

= σĈeff
33

, σĈeff
12

= σĈeff
13

= σĈeff
23

= σĈeff
44

=

σĈeff
55

= σĈeff
66

, and σĈeff
11
/σĈeff

12
≈ 4/3 regardless the grain size distribution.

However, the standard deviations of all the components of Ceff are equal

for a 2D random polycrystal. Comparing Eq. (9) with Eq. (4), one can

get the theoretical values αIJ = α′
IJ(1 + δ2D) and βIJ = −0.5 for the case

where D follows a lognormal distribution. As such, even though the random

variables Ceff
IJ and thus their variances depend on the local elastic moduli,

their normalized counterparts Ĉeff
IJ , when ϵ = 0, have variances that are

independent of the material properties.

We now proceed to generate different sets of synthetic polycrystals with

varying widths for the grain size distributions, characterized by δD ≈ {0.11, 0.40}.

For the sake of brevity, only 3D samples are generated. The corresponding

values obtained from the numerical samples are provided in Table 5. Note

that for each set, 200 cubic realizations (1000µm × 1000µm × 1000µm) are

generated.

Fig. 7 illustrates the convergence of σĈeff
11

in terms of the number of real-

izations Nreal. As expected, more realizations are required by increasing the

dispersion level of the grain size δD in order to get statistical convergence of

σĈeff
IJ

. This figure reveals a close agreement between the analytical estima-

tions (Eq. (9)) and the ones obtained numerically using 200 realizations for

all the cases. The theoretical and numerical estimations for all the datasets

are compared in Fig. 8, from which it can be observed that the results ob-
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Table 5: Polycrystal sample sets with grain size distributions and their corresponding Ng

and δD.

Set Ng δD Set Ng δD

PSD11-1 586 0.106 PSD40-1 387 0.393

PSD11-2 1172 0.106 PSD40-2 772 0.394

PSD11-3 5844 0.106 PSD40-3 3857 0.393

PSD11-4 11707 0.107 PSD40-4 7680 0.396

PSD11-5 17517 0.107 PSD40-5 11562 0.394

PSD11-6 23478 0.107 PSD40-6 15497 0.395

PSD11-7 29182 0.107 PSD40-7 19262 0.394

PSD11-8 35151 0.107 PSD40-8 23202 0.395

tained from the analytical formula align closely with the numerical results.

3.1.3. Extension to bimodal grain size distributions

This section extends our previous analytical formulations to the case of

polycrystals with bimodal grain size distributions. The polycrystals com-

prise two subgroups of grains: small grains (sg) following one size distri-

bution and large grains (lg) following another. Thus, the equivalent grain

diameter random variable is distributed as D ∼ Nsg

Ng
Dsg +

Nlg

Ng
Dlg, where Nsg

and Nlg = Ng − Nsg are the numbers of small and large grains inside the

polycrystalline sample and Dsg and Dlg denote the corresponding equiva-

lent diameters random variables, respectively. In this case, Eq. (5) can be
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Figure 7: (Color online) Theoretical results (black lines) and numerical results (blue lines)

of σĈeff
11

for the case PSD11-8 (dashed lines), PSD26-8 (solid lines), and PSD40-8

(dash-dotted lines).

rewritten as:

Ĉeff
IJ = Ĉeff,iso

IJ (h) + ϕ1

Nsg∑
m=1

fIJmVm

Nsg∑
m=1

Vm

+ ϕ2

Nlg∑
n=1

fIJnVn

Nlg∑
n=1

Vn

, (10)

where ϕ1 and ϕ2 = 1 − ϕ1 are the volume fractions of the small and large

grains, respectively. Subsequently, Eq. (9) can be extended as:

σĈeff
IJ

≈ α′
IJ(d)

√√√√ ϕ2
1

Nsg

D2d
sg

Dd
sg

2 +
ϕ2
2

Nlg

D2d
lg

Dd
lg

2

= α′
IJ(d)

√
ϕ2
1

Nsg

(
1 + δ2Dsg

)d2
+

ϕ2
2

Nlg

(
1 + δ2Dlg

)d2
,

(11)

where α′
IJ(d) takes the same values as mentioned earlier.

The 3D polycrystal samples with bimodal grain size distributions were

subsequently generated using NEPER [40]. It is worth mentioning that gen-

erating samples with bimodal grain size distributions requires significantly
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Figure 8: (Color online) Numerical estimation of σĈeff
11

for the 3D polycrystal sample sets

PSD11 (δD ≈ 0.11, pentagram marker), PSD26 (δD ≈ 0.26, square marker), andPSD40

(δD ≈ 0.40, diamond marker), compared with the corresponding theoretical estimations

in black solid, black dashed, and black dashed-dotted lines, respectively.

more CPU time than those with unimodal distributions. Therefore, we only

consider two different sample sets for our numerical investigations, each con-

taining 200 distinct realizations. Detailed morphological information is re-

ported in Table 6. Fig. 9(a) shows one realization of the polycrystal sample

set PSB-2, where the green and red colors are used to distinguish small and

large grains, respectively. The PDF of the equivalent diameter D is depicted

in Fig. 9(b) where a bimodal distribution can be observed.

Table 6: Polycrystal sample sets with bimodal grain size distributions and their corre-

sponding morphological information.

Set Nlg D̄lg [µm] δDlg
Nsg D̄sg [µm] δDsg

PSB-1 753 225.7 0.11 4365 72.1 0.30

PSB-2 5584 223.6 0.14 13312 103.1 0.16

26



(a) (b)

Figure 9: (Color online) (a) A realization of the polycrystal sample set PSB-2, where

smaller (resp. larger) grains are depicted in green (resp. red), and (b) the PDF of its

grain equivalent diameter D.

Fig. 10 presents the numerical (blue) and analytical (black) estimations

of σĈeff
11

in terms of the number of realizations. It can be observed that the

numerical results slightly underestimate the analytical results for both cases.

This discrepancy may arise from an inadequate representation of the larger

grains (Nlg = 753) and an insufficient number of realizations, particularly

in the case of PSB-1. Although 200 realizations were employed to estimate

σĈeff
11

, as shown in Fig. 10, it is evident that the estimated value fails to con-

verge, yet approaches the analytical target more closely by increasing the

number of realizations. By incorporating a sufficient number of small and

large grains in the polycrystal models and increasing the number of real-

izations, we expect the numerical estimations to converge to the analytical

results.
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Figure 10: (Color online) Numerical estimation of σĈeff
11

for the polycrystal sample set

PSB-1 (resp. PSB-2) in blue solid line (resp. blue dashed line), compared with the

corresponding theoretical estimations in black solid (resp. black dashed line).

3.1.4. Influence of random local elasticity tensor

In this section, we aim to extend the aforementioned analytical formu-

las to the case where different polycrystalline samples have discrepancies in

the elastic constants of their grains expressed in the crystallite local axes,

i.e., C(cr). To this end, realizations of the random SEC are generated using

Eqs. (2) such that each value of the matrix C(cr) is assigned to all the grains of

each sample. The dispersion level ϵ characterizes the fluctuation level of the

component C44 between different samples of each set. For the particular case

of alpha iron (α-Fe) with ϵ = 0 (reference case) and ϵ = 0.02 (case based on

the experimental values), the distributions of the component C44 estimated

using 200 realizations are depicted in Fig. 11, where the vertical line corre-

sponds to the deterministic case ϵ = 0, or equivalently CIJ ∼ δ(x− C̄IJ), in

which δ is the Dirac delta distribution.

We first analytically study the impact of the dispersion level ϵ on the
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Figure 11: (Color online) Distributions of C44 estimated using 200 realizations of the set

PSD26-4 composed of alpha iron (α-Fe) grains, for different dispersion levels ϵ = 0 (black

solid line), and ϵ = 0.02 (histogram).

second-order statistics of Ceff . Here, the Euler angles are considered uncor-

related (case RFunc in Table 4). If ϵ ̸= 0, contrary to the previous cases,

both isotropic and anisotropic parts will contribute to the values of σĈeff
IJ

.

However, ϵ is influential only on the contribution of the isotropic part. Since

these two parts are uncorrelated, one can write:

σĈeff
IJ

=

√
Var

(
Ĉeff,iso

IJ

)
+ Var

(
Ĉeff,ani

IJ

)
. (12)

Recall that the normalization is defined as Ĉeff,iso
IJ (h, ϵ) = Ceff,iso

IJ (h)/νsc(h, ϵ)

for the general SC-based averaging. The particular case of Voigt averaging

occurs when h = 0. The second term at the RHS of this equation is inde-

pendent of the material properties and has been derived in Eq. (9). On the

contrary, the first term depends on the average elastic moduli (C̄11, C̄12, C̄44)

and the dispersion level ϵ. The former is independent of Ng and the grain size

statistics. Similar to our previous calculations, we use Eq. (8) to approxi-

mately calculate the variance of the isotropic part. The analytical expressions
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for the SC homogenization are complicated because of the highly nonlinear

dependence on the local elastic moduli random variables. In the sequel, we

only consider the Voigt averaging (h = 0). In this case, one can show that

the variance of the components of the isotropic part could be decomposed

as Var(Ĉeff,iso
IJ ) ≈ ϵ2G(1)

IJ G
(2)
IJ , where G(m)

IJ , (m ∈ {1, 2}) are given in Appendix

B, Eqs. (B.1). Subsequently, a numerical investigation based on the poly-

crystal sample sets PSD26 (Table 1) composed of different cubic materials

(Table 2) has been performed. Fig. 12 illustrates the comparison between

the numerical and analytical values of σĈeff
11

(d = 3). The agreement between

them is observed, especially for polycrystals having a larger number of grains.

Moreover, incorporating fluctuations of the local elastic properties into the

model leads to an increase in the values of σĈeff
IJ

, compared to the reference

case (ϵ = 0). It is worth noting that since Var(Ĉeff,iso
11 ) depends on the ma-

terial properties, it is no longer possible to obtain a master curve. Fig. 12

also shows that the contribution of the isotropic part that is independent

of Ng is dominant (compared to that of the anisotropic part) such that the

dependence of σĈeff
11

to Ng is negligible. The values of σĈeff
IJ

for materials with

lower average anisotropy levels, e.g., aluminum (Al), are significantly larger

than the ones with higher average anisotropy degrees, e.g., lithium (Li). To

further investigate that, we summarize in Table 7 and for different materi-

als, the contributions of the isotropic part to the variance, described by the

functions G(m)
IJ with m ∈ {1, 2} and IJ ∈ {11, 12, 66}. The values reveal that

by increasing the mean anisotropy level, both contributions are decreasing

such that the values of σĈeff
11

decrease as well.

In conclusion, our study shows the substantial influence of small fluctu-
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ations in local stiffness tensors on the statistical characteristics of effective

elastic moduli. One can predict that these variations not only influence the

overall elastic properties but also can have a significant impact on the plas-

tic behaviors of polycrystalline materials by introducing higher variability in

critical material properties, e.g., yield strain, yield stress, ultimate tensile

strength, and fracture toughness. Furthermore, in the context of two-phase

polycrystals, the local stiffness tensor may exhibit larger fluctuations, thereby

increasing the discrepancy in the mechanical response observed across various

realizations of polycrystal samples. In future numerical studies, considering

this stochastic local stiffness tensor is essential for the uncertainty quan-

tification and the comprehensive assessment of material structural integrity,

ductility, and safety margins.

Figure 12: (Color online) Comparison of numerical (big blue markers) and analytical

results (small black markers) of σĈeff
11

for five cubic materials when ϵ = 0.02. The reference

case ϵ = 0 is shown in black solid line.
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Table 7: Values of the functions G(m)
IJ (m ∈ {1, 2}, IJ ∈ {11, 12, 66}) for the materials

listed in Table 2.

Material Â G(1)
11 G(2)

11 G(1)
12 G(2)

12 G(1)
66 G(2)

66

Al 0.23 125.19 48.14 34.21 58.29 7.13 47.08

α-Fe 1.40 7.42 2.02 1.02 7.88 0.74 1.28

Co 2.12 5.72 1.40 0.85 6.41 0.54 0.56

γ-Fe 3.81 5.12 1.20 1.00 5.18 0.40 0.17

Li 8.14 3.18 0.71 0.44 4.65 0.32 0.04

3.2. Statistical properties of the phase velocities

In this section, the phase velocities are calculated by solving the Christof-

fel equation (Eq. (3)), and their statistical behaviors are subsequently exam-

ined. In the previous sections, the significance of the spatially correlated

crystallographic orientations, randomness in the local elastic matrix, and the

width of the grain size PDF on the standard deviations of different compo-

nents of the effective matrix Ceff have been highlighted. Given the depen-

dence of the phase velocities on the background elastic moduli Ceff , their

variability will be explored in this section.

Let the propagation direction be k̂ = [1 0 0]⊤, the phase velocities of

the modes i ∈ {qP, qS1, qS2} can be obtained via ρV2i = Ceff
IJ where IJ ∈

{11, 66, 55}, respectively. Recall that based on our analytical formulas we

have σĈeff
44

= σĈeff
55

= σĈeff
66

. As such, analytically, no difference will be made

between qS1 and qS2 modes. We further define the normalized phase velocity

of the mode i as V̂i = ρV2i /νsc(h). In the case of a random polycrystal having

uncorrelated Euler angles, using Eq. (9), one can calculate the variance of
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V̂i as Var(V̂i) = Var(Ĉeff
IJ ). For the particular case where ϵ = 0, we can

further use the following Taylor expansion-based approximation to link the

variances of the squared phase velocities to those of the phase velocities, i.e.,

Var(V̂i) ≈ 2ρ2Var(Vi)V̄i/ν
2
sc such that by introducing in Eq. (9) for d = 3 we

get the following estimation for the standard deviation of the phase velocities:

σVi ≈
α′
IJ(3)|νsc|
ρ
√

2NgV̄i

√
D6

D3
2 =

α′
IJ(3)|νsc|
ρ
√

2NgV̄i

(
1 + δ2D

)4.5
. (13)

Fig. 13 illustrates, for all previously defined 3D samples, the influence of

δD on the standard deviation of normalized phase velocities, i.e., σV̂i when

the orientations are uncorrelated and ϵ = 0. Similar to the effective elastic

moduli, increasing the CV of the grain diameters leads to higher variations in

the phase velocities for both P and S waves. Additionally, when δD takes on a

relatively small value, say δD ≈ 0.11, the difference between the values of σV̂S1

and σV̂S2
vanishes. However, as δD increases, a slight deviation between the

standard deviations of the S modes emerges, implying that the background

properties of the polycrystals are more anisotropic.

Based on Eq. (13), the standard deviation of P (or S) wave phase ve-

locities can be expressed as a function of several key parameters, including

the number of grains Ng, the CV of grain size distribution δD, the density

ρ, and the local elastic properties. This equation thus allows us to identify

the polycrystal morphology through phase velocity measurements. The NDE

techniques (e.g., based on the measurements of scattering-induced attenua-

tion) can be employed to measure the mean and standard deviation (and

thus δD) of the grain size random variable [34, 35]. Given the known volume

of the sample, a rough estimation for the number of grains Ng can be ob-
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tained via Ng ≈ Vtot/V̄ = Vtot/
(
π
6
D̄3(1 + δ2D)3

)
, where Vtot denotes the total

volume of the sample. According to the known estimations for δD, Ng, and

the mechanical properties of the material, the statistical properties of the

phase velocities can be calculated using Eq. (13). At this stage, by assum-

ing the statistical homogeneity of the phase velocities, one can estimate their

standard deviations based on measurements at different points of the sample.

By comparing the latter with the analytical standard deviations (based on

Eq. (13)), regions exhibiting significantly distinct morphological properties

compared to the entire sample can be identified. Specifically, in casting alloys

like steel, where grain sizes can vary significantly across different regions of

the samples [58] due to the manufacturing process, our measurements, which

rely on the assessment of phase velocity variations, serve as a valuable tool

for pinpointing areas with larger discrepancies in grain size distributions.

Besides, this approach also allows us to estimate the number of grains Ng,

provided that the experimental measures of the phase velocities are available

and that the values of δD and the mechanical properties are known. Fi-

nally, this approach also enables non-destructive identification of the CV for

grain sizes δD, using the rough estimator introduced for Ng and experimen-

tal measurements of the phase velocities. It should be noted that contrary

to this approach, using the EBSD technique entails sample destruction and

provides localized measurements that may not adequately capture the whole

properties of the samples.

Besides, for the case where ϵ ̸= 0 can be similarly dealt with using Eq. (12)

along with Eqs. (9) and (B.1). Fig. 14 presents the impact of ϵ on the σV̂P and

σV̂S1
. It is worth recalling the difference between σV̂S1

and σV̂S2
is negligible. As
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(a) (b)

Figure 13: (Color online) Estimation of (a) σV̂P , and (b) σV̂S1
(black thin lines), σV̂S2

(blue thick lines) for different materials in polycrystal sample sets PSD11 (dashed lines),

PSD26 (solid lines), and PSD40 (dashed-dotted lines) when ϵ = 0.

expected, a universal line is attained for all materials when ϵ = 0. Moreover,

for ϵ = 0.02, the variabilities of the P and S wave velocities experience a

significant increase. For the polycrystals of aluminum (Al) having 30000

grains and ϵ = 0.02, σV̂P and σV̂S1
are around 2818 and 1005 times (three

orders of magnitude) larger than the case where ϵ = 0, respectively. As such,

considering the dispersion level ϵ of the local stiffness tensor is necessary when

using ultrasonic phase velocity measurements to evaluate the microstructural

information of polycrystals, especially those with low anisotropy levels.

4. Conclusions

This study presents an investigation into the statistical properties of the

effective elastic moduli and phase velocities based on synthetic polycrystals
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(a) (b)

Figure 14: (Color online) Estimation of (a) σV̂P , and (b) σV̂S1
for different materials in

sample set PSD26 when ϵ = 0.02 (blue markers), and ϵ = 0 (black solid line).

composed of cubic materials. The influence of correlated crystallographic

orientations with varying correlation functions and correlation lengths has

been examined. The statistical behavior of homogenized elastic properties

remains almost unchanged compared to independent (uncorrelated) orienta-

tions when the Euler angles have a relatively short correlation length com-

pared to the typical grain size. Analytical formulas have been derived to

estimate the standard deviation of the effective elastic moduli for two- and

three-dimensional polycrystals having unimodal or bimodal grain size distri-

butions. The former showed excellent agreement with our numerical results.

Furthermore, the introduction of a relatively small fluctuation in the local

stiffness tensor between different realizations has led to a significant increase

in the variability of the homogenized elastic properties and phase velocities,

particularly for cubic materials with lower anisotropy levels. The impact of
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the fluctuation in the local stiffness tensor, as well as that of the grain size

distribution, on the statistical properties of ultrasonic phase velocities have

been investigated. Particularly, we have provided an explicit equation linking

the second-order statistics of phase velocities with some critical morpholog-

ical parameters in polycrystals, i.e., the number of grains Ng and, notably,

the width of the grain size distribution δD. Future experiments can refer to

Eq. (13) to utilize second-order phase velocity statistics to determine either

Ng or δD, as well as to assess the grain morphology uniformity across different

regions in polycrystalline samples. Our ongoing research includes extending

these results to cases involving elliptical grain shapes and two-phase poly-

crystalline materials.
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Appendix A.

We use the experimental results of elastic constants of alpha iron (α-Fe)

monocrystals summarized by Cantara et al. [15] (see Table A1 and references

therein).

Table A.1: The SEC of alpha iron (α-Fe) monocrystals, determined at room temperature

(∼300 K) and atmospheric pressure using either the ultrasonic pulse-echo technique or

resonant ultrasonic spectroscopy [15].

c11 [GPa] c12 [GPa] c44 [GPa]

1 236.88 140.63 116.01

2 241.50 146.63 111.73

3 228.09 133.48 110.86

4 209.36 113.66 111.36

5 242.00 146.50 112.00

6 237.00 141.00 116.00

7 233.10 135.44 117.83

8 228.00 132.00 116.50

9 223.00 127.00 115.00

10 231.40 134.70 116.40

11 230.10 134.60 116.60

12 226.00 140.00 116.00

13 232.20 135.60 117.00

14 231.50 135.00 116.00

15 230.37 134.07 115.87

C̄IJ 230.70 135.35 115.01

σCIJ
7.94 7.98 2.29

δCIJ
0.03 0.06 0.02
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Appendix B.

The explicit formulas for G(m)
IJ , (m ∈ {1, 2}) write:

G(1)
IJ =

(
C̄ iso

IJ /(k3s3 − k2s2)
)2
,

G(2)
11 =

k1s21
ϵ2

+
k3s23
ϵ2

+ 9k22s
2
2

(k1s1 − k3s3 + 3k2s2)2

+
2
(

k3s23
ϵ2

+ 3k22s
2
2

)
(k1s1 − k3s3 + 3k2s2)(k3s3 − k2s2)

+

k3s23
ϵ2

+ k22s
2
2

(k3s3 − k2s2)2
,

G(2)
12 =

k1s
2
1 + k3s

2
3

ϵ2(k1s1 − k3s3)2

+
2k3s

2
3

ϵ2(k1s1 − k3s3)(k3s3 − k2s2)
+

k3s23
ϵ2

+ k22s
2
2

(k3s3 − k2s2)2
,

G(2)
44 = 1 +

k2s2
k3s3 − k2s2

+

k3s23
ϵ2

+ k22s
2
2

(k3s3 − k2s2)2
,

(B.1)

in which kn and sn (n ∈ {1, 2, 3}) are the shape and scale parameters, re-

spectively, defined in Eqs. (2).
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