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Retrosynthesis is a tool initially developed to simplify planning the synthesis of organic molecules using a symbolic strategy 

involving disconnections to synthons. It can perform better when the initial strategy is supported by computer-assisted 

methods both in its strategy and tactic parts. With the progress of chemical knowledge management assisted by computer 

technologies, retrosynthesis got an opportunity to involve database mining, reaction prediction, machine learning (ML), 

and other data science tools, which allows for covering inorganic compounds and nanoparticles, for which strategy, e.g., 

the design of reaction conditions, is a critical issue. Retrosynthesis is also essential for green and sustainable chemistry. 

From one side, synthon representation makes it possible to select the green type processes and reactants among many 

possible, while recent computer technologies involving ML-based methods give a chance to more precise control of the 

green and sustainable metrics at the early stage of its design (before synthesis). A variety of such metrics were described 

in the literature. Many of them are intuitive heuristics, especially for sustainability evaluation. Green methods are among 

natural retrosynthesis goals since chemists searching for simplifications always preferred safer and cleaner methods than 

hazardous ones. Chemical intuition is more important than rigorous quantification in traditional approaches. With the 

growing availability of novel retrosynthetic tools controlled by green and sustainable metrics, we can hope to observe the 

significant development of predictive green and sustainability. As predictive greenness and sustainability engage broad 

chemical areas and contemporary software tends to be a black-box-like architecture, we designed this tutorial to provide 

an easily understandable background for the chemical and materials science audience involved in drug and material design 

and discovery.

Introduction 

Improving chemical procedures to meet the needs of green 

and sustainable chemistry is a complex problem. Despite many 

efforts in this area in the last two decades, the results are 

below expectations. We still often lack information on the 

toxicity of chemicals to humans and the environment, their 

degradability, and recycling or reusing potential or life cycle 

analyses (LCA) which are essential to meet the supply 

limitations of chemicals or energy sources but has not attained 

yet a sufficient level of specialization to green and sustainable 

chemistry concepts.
1
  

Chemical synthesis is a severe challenge in this field. The 

structural abundance of synthesized compounds complicates 

their toxicity evaluation or prediction. Chemical compounds 

can be obtained from different reactants by many different 

procedures in the presence of different solvents. In recent 

years, various catalytic and biocatalytic methods have been 

developed as critical innovations, reducing the toxicity and 

environmental nuisance of the procedures. The concept of 

green chemistry has been outlined clearly, focusing on toxicity, 

safety, energy preservation, preference of mild reaction 

conditions, suitable solvents, catalysts, etc. Green chemistry 

can concentrate on a single reaction, laboratory, country, or 

industry type. Sustainability is a much more complex 

conception because we should extend the analysis beyond a 

single system, preferentially to the global scale. Therefore, the 

precise evaluation of sustainable materials creates problems.  

An essential dimension of improving chemical synthesis's 

green or sustainability dimension is to design and evaluate a 

library of potential synthetic routes targeting a certain 

chemical compound. Planning syntheses requires associating 

three domains: macroscopic, sub-microscopic and symbolic.
2,3

 

Retrosynthesis is a tool starting from a human chemist's by-

hand symbolic transformations (transforms, disconnections) of 

the targeted molecule (target molecule) into smaller 

fragments, synthons (retrons). Corey defines a transformation 

as the exact reverse of a synthetic reaction (transforms), a 

retron – as the structural subunit for that transform must be 

present in the target molecule. He used a term synthon as the 

synonym of molecular fragment.
4
 Disconnecting or reforming 

atomic bonds in molecules in the search of transforms has 

evolved into the sophisticated computer-aided synthesis 

design (CASD) system.  It is not but recently that machine 

learning approaches significantly improved the CASD method. 

Notable, retrosynthesis and CASD, originating from the organic 

domain, tend to be extended to cover inorganic matter
5
 and 

nano materials
6
. With the new CASD software, we could better 

assist green chemistry needs of a comprehensive evaluation of 



 

 

the methods engaged in chemical substance preparation. The 

hazardous reagents, solvents, or auxiliaries could be avoided, 

while catalytic or biocatalytic processes should be preferred. 

Can we further upgrade the CASD to a method focusing 

directly on greenness and sustainability, which are critical 

issues for contemporary chemistry?  

Various indexes were recently designed to measure the 

chemical efficiency of the process, minimizing waste and 

optimizing resource and energy use. Numerical values of the 

indexes enable us to sort reactions according to, for example, 

safety, environmental friendliness, or recyclability. We should 

optimize green or sustainable CASDs based on these indexes. 

Can recent learning machine approaches improve our 

understanding of green and sustainability issues? Despite the 

potential in this area, only a few examples appeared in the 

literature.
7,8

 One of the obstacles can be a significant distance 

between the concerns of synthetic vs. computational 

chemistry. Retrosynthesis is still an autonomous outskirt of 

organic or inorganic chemistry rather than its central core. The 

software available is still not widespread enough among bench 

chemists, who still must care much more about the availability 

of the methods, lab potential, and staff experience to perform 

the reaction efficiently than about sustainability. Green 

aspects are often defeated by this complexity, especially when 

the synthetic scale is low. A focus on green and sustainability 

issues increases with the growing process scale. At the same 

time, sophisticated software engaging machine learning tends 

to form black box-like architectures of which we have little 

understanding. We present this review as a tutorial illustrating 

the retrosynthetic concept and its application in finding 

greener and more sustainable chemistry solutions. 

Retrosynthesis: a method for diversifying and evaluating synthetic 

solutions 

The core of retrosynthesis is the recognition of smaller 

fragments within the target molecule for which assembly is 

possible by known or predictable-plausible reactions. 

Originally, Corey designated these fragments as synthons.
9
 

Figures 1-4 and Table 1 explain the idea and basic lexicon of 

organic retrosynthesis. An informative introduction into the 

extended synthon concept and nomenclature is available in 

the reference.
10

  

Table 1 Basic lexicon of retrosynthesis 

  Definition 

Target molecule (TM) A molecule under design. 

Synthon (S)  

Any group of atoms indicated within the target molecule that converts the reagent (R) representing this synthon in 

vitro to a target molecule in the known or expected reaction(s). A heterolytic disconnection of the bonding within the 

target molecule forms either an electrophilic or nucleophilic center, an acceptor (a) or a donor (d) synthon in the 

lexicon of retrosynthesis. Homolytic disconnections controlling radical chemistry are not shown in Figure 3. A formal 

nomenclature of synthons involves functional group (heteroatom) identification which defines the location of the a or 

d center vs. this heteroatom. The aalkyl or dalkyl designate the synthons derived from the fragments that do not have 

functional groups.  Synthons are virtual units needing conversion to reagents for in vitro operations (S R ).   

Functional group (FG) 

An essential element controlling chemical reactivity. “Proximity of reactive functional groups is of major importance in 

synthesis”; Corey identifies potential FG operations as FG introduction, FG modification: removal, 

interconversion.4,9,10 The reactivity type at certain atoms, or the synthon type (d or a) in the retrosynthesis lexicon, 

essentially depends on FG neighborhood. A direct relation of the d and a synthons to FGs allows for mapping the 

reactivity of FGs. A compact and consistent introduction to FG chemistry can be ref.10  

Transform(ation) 
The exact reverse of a synthetic reaction (transforms) to identify a retron – a structural subunit needed for a certain 

transform to be present in the target molecule. Often retrons and synthons are treated as synonyms. 

Disconnection 

Disconnection is a virtual breaking of one or more bonds in TM to form synthons. A wavy line indicates disconnection. 

The arrows showing transparently the (d) or (a) synthon polarity should guide heterolytic disconnections in a way 

analogous to the arrows marking electrophilic or nucleophilic reagents’ behavior in chemical reactions.  

Synthon chemistry Connecting synthons d and a forms a chemical bond.  

Reagent 

A real chemical substance that represents corresponding synthon reactivity in vitro. A single synthon can be 

represented by a number of reagents showing its reactivity type. Sometimes, oxidation state of a given synthon can 

be modulated to help identifying the relevant reagent and associated chemistry. 

Operations on synthons 

Functional group interconversion 

(FGI) 

Individual FG stamps neighboring carbon atoms in synthon with the (d) or (a) polarity type. It also fine-tunes reactivity 

in the reagents corresponding to these synthons. FGIs are conversions of FG to FG1 planned in such a way that we 

know simple reactions transforming FG1 to FG for the reagents representing these synthons in vitro. 

Functional group addition (FGA) 
FG can be mounted on the unfunctionalized carbon atom of a synthon. If the TM should not contain the added FG, 

then, a chemistry should be known to remove this FG in the reaction(s) of reagents representing synthons in vitro.  



 

 

 

Synthon identification should provide a scheme of structural 

transformations designing synthesis strategy and not strict 

laboratory manipulations. We arranged retrosynthesis scheme 

in a vertical format to jointly map the disconnections, 

synthons, reactivity, and reagents (Figure 1). 

 
Figure 1. The idea of retrosynthesis. Target molecule (TM) transformed by bond 

disconnecting or reforming into fragments (synthons) in virtual operations (on paper or 

in silico). Converting (S -> R) into actual reagents which can be reacted in vitro to TM. 

Retrosynthesis initially focused on TM's symbolic disconnection strategies to synthons 

(left side). With the development of machine learning, the prediction of synthesis 

tactics, i.e., chemical context and operating conditions for the synthetic path from 

reagent to TM could be more predictive. This part is essential for extending 

retrosynthesis beyond the organic domain into inorganic compounds and nanoparticles 

and designing green and sustainable synthetic paths. 

This scheme divides the synthon strategy (left) from reagent 

tactics (right) after synthon to reagent conversion. In other 

words, on the left side, we map transforms (retro-reactions), 

while on the right side, we note the current knowledge, which 

is represented, first of all, by the facts cataloged in databases 

and literature but also designed by analogy to them. The left 

side projects disconnections to predict optimal or promising 

reactions shown on the right side. Having a large reaction 

library (right factual side), we can also try to predict the 

nonfactual reaction outcomes for nonfactual reaction 

conditions, which is a fundamental goal of modern CASD 

systems.  

Figure 2 outlines synthon nomenclature in which heteroatom X 

controls reactivity type and locants to indicate carbon atom 

positions. Alcohols are a common compounds type used in 

synthetic procedures. Figure 3 shows an example how we can 

illustrate a disconnection of a target molecule (TM) having an 

alcohol functional group (FG) to synthons S1 (d
alkyl

) and S2 (a1).  

 

 
Figure 2. Functional group (FG) with heteroatom (X) labels the carbon chain atoms with 

locants.  

Synthon to reagent conversion S1R1 and S2R2 gives; 1-

hexyl magnesium bromide and pentanal, which will react in 

Grignard reaction. Heterolytic bond disconnection, an essential 

operation, defines the acceptor or donor synthons 

corresponding to the electrophilic or nucleophilic reactivity 

types. Radical disconnections were also broadly explored.
11

 In 

vertical disconnections’ flow we could realize how much 

information we need to support molecular symbols (left) to 

make them real in vitro chemistry (right). Retrosynthetic 

representation allows us to understand complex chemical 

reactivity problems. The retrosynthetic tree is a graph showing 

several (or all) possible routes to TM. Figure 4 compares a 

fuzzy chemical view with the strictly algorithmic 

representation of such a tree. 

Retrosynthesis beyond the organic domain 

Originally, retrosynthesis and CASD systems developed for 

organic synthesis extended into inorganic materials and 

nanostructures.
4,5

 A short history decides that these domains 

are much less explored; however, expectations here are high. 

The exceptional particularity of organic molecules is that 

carbons and hydrogens are their two main components. 

Carbon catenation, i.e., the ability to form long chains, is 

another unique feature. Due to catenation, organic 

retrosynthetic trees have many deep branches. Usually, we 

need several reactions to create a long chain or a complex ring. 

These reactions can penetrate different areas of chemical 

space. However, on molecular level, substances of the defined 

structure synthesized as designed by different reactions are 

the same.  

Synthon to reagent conversion (S 

R) 

A virtual operation in which a synthon is transformed to a molecule. This usually needs adding to the synthon some 

fragment(s) with the opposed polarity which can be a simple stable ending fragment (Figure 3).  

Synthon activation or blocking 

S R conversion could result in the reagents of the different reactivity levels involving these completely unreactive 

(blocked). Activation and blocking could take place selectively at different positions. Not favored in green or 

sustainable chemistry since it adds synthetic operations. 

Umpolung 

The (d) synthon is converted to the (a) synthon and vice versa (a) to (d). This operation results in the alteration of the 

reagent types and chemistry needed for in vitro reactions. In the reagent domain, umpolung converts electrophiles to 

nucleophiles and vice versa nucleophiles to electrophiles.   



 

 

 

Figure 3. A vertical scheme illustrating disconnections and synthons (left), the synthon 

to reagent (S→R) conversion and reacting reagents (right) for an exemplary molecule. 

TM can be disconnected to S1 (dalkyl) and S2 (a1). S1→R1 and and S2→R2 conversion 

gives 1-bromohexane and pentanal. The S→R conversion reveals the reagents needed 

for in vitro reaction are pentyl bromide and pentanal TM1. TM1, after FGI conversion 

to alcohol, disconnects (left side) to synthons S3 [a1] and S4 [dalkyl]. The S→R provides 

the respective reagents R3 and R4. 

 

Figure 4. Synthetic tree addressing chemical (a) or informatics (b) representations.56 

Copyright © 2022 American Chemical Society and Division of Chemical Education, Inc. 

(a) and 2022 XXXX 

Thus, that can be concluded that the resulting organic 

structure does not critically depend on the reaction path or 

reaction conditions used. Therefore, classical organic 

retrosynthesis, first of all, does not focus on reaction 

conditions but a chain or ring disconnections strategy. After 

finding the disconnection strategy, we decide tactics by 

choosing individual reactions, reactants and fine-tuning 

reaction conditions. In contrast, the structures in the inorganic 

or nanodomains can be more complex, having no restrictions 

on the types of atoms engaged. For example, in nanomaterials, 

the critical structural features deciding material functionality 

are agreed in the nanoscale, i.e., at a much larger size than the 

single-molecule level. Reaction conditions usually substantially 

influence such structures. Hence, to obtain the desired 

structural or functional properties, we focus much more on 

predicting reaction conditions. Practically, retrosynthesis of 

inorganic- or nano materials are computational approaches 

where we predict the influence of different reaction 

parameters for the structures yielded. Reproducibility and data 

quality
12

 in these areas is much more problematic than in the 

organic domain, e.g., a small amount of dopants can critically 

influence a structure or function. The other factor hindering 

exploratory inorganic synthesis are anthropogenic biases in 

chemical reaction data.
13

 

Since beyond organic domain we predict mainly in tactics, high 

throughput experimentation (HTE)
12 

is one approach to the 

problem. An example can be the HTS screening of bimetallic 

catalysts targeting rational control of the geometry and 

composition of an active site for efficient chemical 

transformations.
14

 The abundance of potential structures 

decides that novel machine learning methods are 

indispensable in inorganic or nano retrosynthesis. However, 

previously extensively explored methods, for example, QSAR in 

its predictive and robust
15,16

 versions can contribute, e.g., by 

suggesting reasonable meaningful descriptors or indirectly 

predicting reaction conditions yielding targeted chemical 

compounds or chemical systems. 

The representative example of nano-CASD is an autonomous 

retrosynthesis of gold nanoparticles via shape matching. The 

nanostructures were designed using the Bayesian optimization 

targeted at a specific nano-assembly structure, shape, and 

size. The reagents needed to be selected a priori while 

computations were formulated as the shape-matching 

minimizing the shape discrepancy. The highly computational 

analysis demonstrated that we are still at the beginning of this 

direction [6]. Could we expect disconnections in 

nanostructures similar to classical retrosynthesis needing to 

develop nanostructure representations?  

Ab initio electronic structure methods in retrosynthesis  

The main goal of the transform is a structural simplification of 

a target molecule to synthon representation. In turn, 

conversing synthons to synthon equivalents (reactans), we 

replace them with real in vitro reagents. How close do these 

equivalents resemble synthons, and how reliable could 

synthon-to-reagent transformation be?  We recently pointed 

out that some synthons may be electronically, kinetically, and 

thermodynamically stable systems. In other words, we can 

nearly use them directly in the syntheses.
17

 The representative 

examples of such stable synthons are, for example, borata-

alkene anions. The borata-alkene anions (H2C=BR2)– are 

carbanionic synthons formally representing stabilized 

α-monoboryl carbanions.
18,19

 We described the structures of 

the isolated negatively charged (H2C=BR2)– (R=H, CH3, C6H5, 

C6F5, Mes) systems (Mes = 2,4,6-trimethylphenyl) and 

characterized their electronic and thermodynamic stability
17

 

basing on theoretical ab initio models (the QCISD/aug-cc-pVTZ 

and MP2/aug-cc-pVDZ). The structurally smallest (H2C=BH2)– 

synthon adopts a planar C2v-symmetry equilibrium structure 

with the double-bond connecting the carbon and boron 



 

 

atoms. Positively charged synthons are even more promising 

candidates for such systems because, in their case, the 

electronic stability would not be an issue (whereas the stability 

of the anions is always potentially jeopardized by the 

possibility of the excess electron auto detachment). Of course, 

even such stable synthons are ionic species; therefore, for the 

S → R conversion, we need a counterion to neutralize their 

negative or positive charge. The anionic borata-alkene synthon 

supported with sodium cation is an illustrative example.   

In the more general context, currently, quantum chemistry 

probes reaction mechanisms efficiently; therefore, its 

application to retrosynthesis seems natural. Once standard 

retrosynthesis provides us with the retrosynthetic tree, we can 

determine by quantum methods the kinetic barriers involved 

in each reaction pathway and, thus, the corresponding 

reaction rates to choose the most efficient (i.e., Gibbs free 

energy-wise) synthetic route. Quantum chemistry methods, 

e.g., post-Hartree-Fock methods such as configuration 

interaction (CI)
20–22

, Møller-Plesset perturbation theory (MP2, 

MP4)
23–25

, coupled cluster (CC)
26–28

, composite methods (G2, 

G4)
29,30

 or the methods based on the density functional theory 

(DFT, e.g., B3LYP, CAM-B3LYP or wB97XD functionals)
31–34

, 

together with the basis sets of double- or triple-zeta quality 

(e.g., 6-31++G(d,p), aug-cc-pVDZ, 6-311++G(d,p), aug-cc-

pVTZ)
35–38

 not only enables the evaluation of the overall 

reaction rate but also provides an insight into each elementary 

step of a chemical process at the molecular level. In order to 

gain such insight, the geometric structures of all stationary 

points (corresponding to the isolated substrates, initial 

reactant complex, intermediate products, transition states, 

and final products) involved in each reaction step must be 

obtained. In addition, the structure of each transition state 

(whose determination is often the most difficult part of the 

whole investigation) must be verified (usually by following the 

intrinsic reaction coordinate) to assure its relevance (i.e., to 

confirm that it connects the substrates and products of a given 

elementary step). Once such a comprehensive theoretical 

study is completed, the exact mechanism of a studied chemical 

reaction is revealed, applying to studying any chemical 

reaction, including those planned via retrosynthetic analysis. 

Data and their processing by machine learning in 
retrosynthesis 

Chemical descriptors or properties represent chemical 

compounds.
39,40

 While descriptors can be calculated from 

molecular representations, properties need experiments to be 

measured. Alternatively, having a large library of the 

properties measured, we can attempt property predictions for 

novel structures. Among thousands of molecular descriptors 

available, SMILES are probably the most popular in recent 

computations for coding molecular structures.
41

 First, the 

SMILES system is relatively easy to understand and interpret 

by computers and humans. Second, the SMILES system, in 

particular canonical SMILES, can be an unambiguous molecular 

representation, i.e., each SMILES represents a unique 

compound, and a unique SMILES code can represent each 

compound.  

Coding molecular connectivity SMILES can efficiently generate 

novel molecules beyond factual space. However, novel 

descriptors still appear, e.g., for materials description.
41,42 

For 

example, we can use fragment-related representations
43

 or 

simplex codes
44

 to code chemical data in the inorganic domain, 

while DeepSMILES
45

 or SELFIES
46

 are novel descriptors 

developed especially for novel structure generation avoiding 

vacant code to structure mapping. An example of the recent 

application of atomic descriptors coding atomic environments 

to retrosynthesis can be found in the reference.
47

 A variety of 

other barriers in computer-assisted material design, e.g., data 

sharing in catalyst design, is discussed in the reviews.
48,49

 

The increasing number of engaged molecular structures is 

typical for the current molecular design. Machine learning and 

deep learning involving neural networks are new methods 

needed to support computational approaches in these areas. 

Although drug design pioneered a number of in silico 

algorithms, recently, it is CASD that has significantly improved 

its efficiency. The lexicon of the current data science, 

especially for neural network approaches, is buzzily interfering 

in many areas. Usually, we identify three main learning 

architectures: unsupervised, supervised, or reinforcement 

learning. Figure 5 briefly illustrates these methods. In 

supervised learning, we support the molecular input data with 

the labels that the network should learn during the 

optimization. The unsupervised architecture is optimized by 

evaluating the similarity of the input signals; therefore, we 

need not show the labels. This is especially important when we 

do not know the label value, e.g., for a series of chemical 

compounds, we know their structures but do not know their 

reactivity or biological activity data. While supervised and 

unsupervised learning treats the data statically, reinforcement 

learning is a dynamic method investigating the interaction with 

the environment. The idea originated from the game theory, 

which searches for the best move. Therefore, in the language 

of this method, if the data (agent) moved randomly, 

interacting with the environment, a critique estimates an 

error. A low error value rewards a novel state, sitting better 

position as a result.
50

  

 
Figure 5. The unsupervised, supervised and reinforcement learning architectures. 

Details in text. 

Each network is optimized on the known chemical data library 

to be used for predictions. Since we want to explore unknown 

areas of chemical space, generating novel chemical structures 

is a fundamental problem in molecular design. We need to 

create novel molecules and let the network simulate the 

output for them.   The solution to this problem can be the so-



 

 

called generative approaches, e.g., generative adversarial 

network (GAN), in which the network maps the molecular 

representation of the known outputs by the discriminating 

block in the network. The random generator provides novel 

structures of the unknown output to be co-mapped to the 

discriminator, which gets experience in predicting. In Figure 6 

we illustrated the idea of the GAN network, according to the 

reference.
41 

 
Figure 6. A complex learning architecture crossing the random generator of new 

structures in which chemical connectivity is coded by SMILES or related descriptor 

types. Reproduced after. Copyright © 2022 Springer Nature
 

Feature engineering and feature learning are two options for 

modeling and predicting (chemical) data.
51

 The term feature 

follows the lexicon of informatics more than that of chemistry. 

Its meaning is between a (physical or chemical) property or 

descriptor and a variable. The feature can be, for example, a 

component-type representation resulting from principal 

component analysis, which does not have any particular 

chemical interpretation. When contrasting engineering vs. 

learning, we focus on the autonomic capabilities of a computer 

algorithm. In feature engineering, we need human 

intervention to design variables that algorithms analyze. In 

turn, computers should be fully autonomous in the feature 

learning mode, which means that the algorithm selects the 

features from among the raw data. In the chemical context, 

feature engineering asks humans how to construct a molecular 

representation. Which data should represent chemical 

compounds in a model? We can say that feature learning is an 

algorithm capable of autonomous feature engineering by a 

computer, enabling the molecular representation suitable for 

the individual computation to be determined. 

Deep learning is the next term often used in chemical data 

science. Deep learning is a fully feature learning architecture 

using neural networks, usually the supervised back-

propagation method. We get more and more experience in 

back-propagation routines; however, unsupervised 

architectures could be even more efficient.
52

 

Beyond synthesis design, drug discovery is another area of 

molecular design widely explored by machine learning.
39,40

 The 

extensive up-to-date review of the machine learning for 

molecular and material sciences the reader can find in the 

reference.
41

 Early neural network applications can be 

illustrative examples for a better understanding of these 

methods
53,54

,
 

in particular comparing supervised vs. 

unsupervised architectures in deep chemistry is discussed in 

the reference.
52

 

Computer-aided synthesis design 

Retrosynthesis is a tool for splitting a target molecule into a 

synthon representation organized into a tree-like form. The 

synthon representation provides easy access to various 

reagents with the same reactivity type but having a spectrum 

of other chemical or physical properties. Accordingly, we can 

select the reagents with the lowest environmental impacts. 

Second, even more important, the number of possible 

synthetic routes (a strategy) under design by retrosynthesis is 

snowballing. The increase of potential transforms can be 

illustrated by the number of transformations per step, that can 

be as high as 80 to several thousands
55

, extensively exploring 

chemical space and allowing the chance to avoid the adverse 

environmental impacts of specific paths and find green and 

sustainable options. The retrosynthetic tree (Figure 4) 

supports decision-making. A simple interpretation can be 

found in the reference.
56

 One significant challenge is the 

availability of the algorithms allowing for extensive chemical 

space exploration needed for in silico CASD.
55,57,58 

 
Figure 7. A reaction template (reaction rules) noted for an exemplary reaction. The 

template is programmed manually on factual data from databases. Data are carefully 

curated, and expert human knowledge is critical for the high efficiency of the feature-

engineered CASD systems.  Colors codes different molecules, yellow - target molecule, 

red – buyable, green – recorded in literature, violet – not recorded in the literature. 59 

Copyright © 2022 Wiley Online Library  

Corey developed the first software (LHASA, Harvard, 

Cambridge, MA, USA) to get computer assistance in CASD. 

Until recently, computers defeated the competition in this 

field, especially in finding the critical disconnections within 

complex natural products. However, machine learning is more 

and more competent here. Recent human-machine 

cooperation appeared especially successful in this 

competition.
59–61

 In the recent study by the Grzybowski group, 

the Turing test cannot tell the difference between the human 

and machine-performed disconnections of the complex 

organic molecules.
62

 Grzybowski also developed a highly 

efficient software in this field, Chematica (currently Synthia), 

which provides a full mode of synthesis design to arbitrary 

targets.
63

 Notable, this is a feature-engineered architecture 

based on high-quality reaction data manually interpreted and 

programmed by chemists. The Grzybowski group started the 



 

 

many-year efforts for efficient retrosynthesis by arranging 

organic chemistry into the network architecture. The nods 

represent reagents, while their connections correspond to 

organic reactions. They analyzed all available structures from 

the Beilstein (currently Reaxys) database as the library of 

chemical compounds as the knowledge database. This 

approach allowed them to define the rules of organic 

chemistry and its developments throughout history. More 

recently, they identified the similarity between natural 

language and chemical structures, formulating the reaction 

rules or so-called templates, and programming their use in the 

CASD software.
59

 Figure 7 shows an example of such a 

template. Interestingly, fully autonomous deep-learned CASD 

systems appeared much less successful, despite many 

efforts.
55,64–66

 However, a fully data-driven neural architecture, 

biosynthesis navigator (BioNavi-NP), was designed recently for 

computer-aided bio-retrosynthesis.
67

 

The reader can find an extensive up-to-date review of CASD for 

chemical synthesis in reference
12

 broadly reviewing the 

problems of data curation, descriptor, and algorithm selection, 

retrosynthesis extension to automated synthesis, and high-

throughput automated synthesis systems or autonomous 

systems for chemical synthesis, risk and safety assessment, as 

well as reaction selectivity, yield, conditions and 

miniaturization in the CASD context. Modular automatic 

robotic system application in chemical synthesis is another 

trend that can significantly contribute to the safety and 

performance of modern chemistry, also improving 

reproducibly and data quality.
12

  

A formal computer-oriented definition of the retrosynthetic 

components, e.g., reaction representations and operations, is 

available in the thorough review [Artificial Intelligence for 

Retrosynthesis Prediction, 

https://doi.org/10.1016/j.eng.2022.04.021]. In the same 

publication, the authors briefly described how retrosynthetic 

elements and operations are mounted into the individual 

machine learning (ML) methods available, indicating in 

particular, (i) the sequence-to-sequence models, (ii) graph 

neural networks, (iii) search algorithms and (iv) deep 

reinforcement learning. 

Reaction prediction is a related problem of substantial 

importance for the CASD systems, especially in its tactics part. 

The reference
12

 correlates retrosynthesis to the reaction 

prediction area, and an extensive review of machine learning 

for chemical reactions is available in the reference.
68

 Popular 

interpretations and common understanding of the current 

state of the CASD method can be found in commentaries.
69,70

 

CASD Software is still not broadly available, but several options 

exist. Synthia, developed from Chematica, is commercial 

retrosynthetic software from Sigma Aldrich, currently a branch 

of MERCK. The retrosynthetic option is available as a part of 

the Reaxys database.
71

 Another package, the ASKCOS - 

software tools for organic synthesis, is a freeware option for 

retrosynthesis available from MIT, which enables one-step 

retrosynthesis, enabling drawing and searching within buyable 

compounds catalog. This package can be used directly at the 

internet site in the interactive mode.
8
 

The first CASD for the inorganic domain, involving knowledge 

and prediction base, was a system integrating databases for 

the properties of inorganic substances and materials with data 

analysis having learning ability. The idea was published already 

in 2011.
72,73

  The CASD for inorganic solids synthesis has been 

extensively explored recently.
74–80

  More recently, rational 

solid-state synthesis routes for inorganic materials were 

designed using catalytic nucleation on crystalline reactants 

analysis with the reaction and interfacial energies to the 

nucleation barriers approximated from high-throughput 

thermochemical data and structural and interfacial features of 

crystals.
5
  Bimetallic catalyst synthesis is another example 

using feature-engineered fingerprints with DFT calculated sp-

states and localized d-states of adsorption sit, guiding machine 

learning HTS screening.
14

 Recent examples in catalyst CASD 

can be found in the references.
76,81–84

 The reader can compare 

the reference
85

 for the extensive review of machine learning in 

predictive catalyst CASDs. The reference
86

 discusses 

perspectives for machine learning in heterogeneous catalysis. 

A broad review of computational and machine learning 

methods assisting nanoparticle synthesis is reviewed in 

reference.
87

 The extension of retrosynthesis to the nano-

domain has been developed recently to design the particles of 

desired shapes or sizes.
6
 QSAR is a related method that, in its 

predictive versions, could construct the CASD systems. QSAR 

can involve machine learning for modeling various materials' 

properties.
88

 Table 2 gives illustrative examples of the 

descriptors for predictive CASDs. 

Table 2 Descriptors for predictive CASDs.  

Entry Descriptorsa Domain Material Method References 

1 Binding energy 

inorganic Bimetallic catalysts ML 
 14, 89, 90 

 

2 Filling of a d-band 

3 Center of a d-band 

4 Width of a d-band 

5 Skewness of a d-band 

6 Kurtosis of a d-band 

7 Work function 

8 Local Pauling Electronegativity 

9 Ionization Potential 

10 Electron Affinity 

11 Pauling electronegativity 

12 Atomic Radius 

https://doi.org/10.1021/acs.jpclett.5b01660https:/doi.org/10.1039/C7TA01812F
https://doi.org/10.1021/acs.jpclett.5b01660https:/doi.org/10.1039/C7TA01812F


 

 

a/ The parameters that we listed in Tables 2, 3, and 5 operate in the forward mode evaluating individual molecules or reaction s mode rather than molecular 

disconnections in the forward mode. For more details, the reader should compare the section (Retrosynthesis beyond TM); descriptors or (calculated/predicted) 

13 Orbital Radius 

14 mean_d, σ_d 

inorganic Zeolites Random Forest 
91 
92 

15 mean_iV, σ_iV 

16 mean_T, σ_T  

17 mean_ d2, σ_ d2 

18 mean_iV2, σ_iV2 

19 mean_T2, σ_T2   

20 Ionization Energy 

inorganic Calalysts ML 93 

21 Group  

22 Electronegativity 

23 Enthalpy fusion 

24 Surface Energy 

25 Melting point 

26 Atomic Radius 

27 Density 

28 Period 

29 Atomic Number 

30 Atomic Weight 

31 Vacancy formation Energy 

inorganic heterogeneous catalysts ML 94 

32 Oxide formation Enthalpy 

33 Oxidation Energy 

34 Metal Atom 

35 Support 

36 HOMO 

37 LUMO 

38 Number of Valence Electrons 

39 Reaction Temperature 

inorganic heterogeneous catalysts ML 95 40 Contact Time 

41 Pressure 

42 Slater-type orbitals 

inorganic bimetallic catalysts 
CASD  

(OPLS model) 
96 

43 Nuclear charge 

44 Shielding constant 

45 Effective quantum number 

46 Madelung potentials 

inorganic catalytic metal oxides QSAR  97 

47 M-O bond length 

48 eg electrons  

49 d electrons 

50 Charge transfer energy 

51 Molecular size 

organic organocatalysts 
Quantitative analysis of ligand 

effects (QALE) 
98 

52 Bond lengths 

53 Interaction energies 

54 Proton Affinity 

55 Tolman cone angle 

56 Solid angle 

57 Buried volume 

58 Ligand repulsive energy 

59 Molecular electrostatic potential 

61 
Electronic parameters computed with semi-

empirical methods 

62 Net donor parameters 

63 Infrared frequencies 

64 Free ligand HOMO  

65 
Free energy between competing transition 

states leading todifferent enantiomers 
organic homogeneous catalysis ML 99 

66 Hammett parameters 

organic organometallic catalysts QSAR 100 67 Temperature 

68 Reaction time 

69 Cartesian coordinates 

organic organometallic catalysts ML 101 70 SMILES 

71 Reaction free energy 

https://doi.org/10.1007/978-3-642-01973-9_18
https://doi.org/10.1007/978-3-642-01973-9_18


 

 

properties. Mean_d, σ_d, mean_iV, σ_iV, mean_T, σ_T are six topological descriptors based on the first Delaunay shell. Group is the Periodic Table group of the 

element. eg electrons is the nominal number of transition-metal electrons based on its formal oxidation state and spin state.  SMILES is a line notation for entering and 

representing molecules and reactions.  

Evaluating environmental nuisance of syntheses  

While retrosynthesis alone provides insight into available 

synthesis options, it usually gives no systematic information on 

the greenness or sustainability of the processes or toxicity of 

reagents and solvents. With the increasing role of green 

chemistry, we needed an algorithmic method to evaluate the 

environmental benignness of chemistry. The E factor was 

designed as the first efficiency metric illustrating a fit to green 

chemistry criteria in the form of numerical value.  

                               

Accordingly, the E-factor controls resource efficiency and 

waste minimization. Sheldon, who developed the concept of 

the E-factor discussed its history and perspectives in one of his 

recent publications.
102

 We can observe that a massive 

production needs better E-factor optimization. For example, in 

the pharmaceutical industry, having a production of 10 —10
3
 

tons per year E factor takes a value between 25 and 100 kg 

waste/kg product, while in oil refining, yielding 10
6
—10

8
 tons 

per year, the E factor remains below 0. Fine chemicals and bulk 

chemicals of the production between the above-mentioned 

values also have E factors between the E factors for 

pharmaceuticals and oil refining.
103

 

In particular, in Table 3 we specified several exemplary E 

factors calculated for individual syntheses, as reported in the 

literature. 

Table 3 Examples of E factors values reported in literature for individual reaction 

 

A variety of efficiency metrics for green chemistry are available 

currently. Illustrative examples are shown in Table 4. To realize 

the complexity of chemical problems, we can analyze such a 

simple metric as yield (Table 4, entry 1). In precise calculations, 

we involve the recovered starting material and the purity of 

the product. Typically, 95% spectroscopic purity is a level 

determining the isolated yield.
103

 For a broader discussion of 

the metrics available, the reader should compare ref.
109

Table 4 Quantitative indexes for GC-CASD   

 Process/Reaction E-factor (kg waste/kg product) References 

Atropine synthesis 24 104 
Diazepam synthesis  9 

Sonogashira cross-coupling 8 — 20 105 

Ullman-type cross-coupling 9.70 106 

Copper-catalyzed azide-alkyne cycloaddition 4.30 107 

Suzuki reaction in azeotropic EtOH  3.5 — 3.9 107 

Catalytic Cracking of Heavy Crude Oil 0.1 108 

Index Function First publication 

Yield  The ratio of the quantity of moles of a product formed to the limiting reactant consumed   

Conversion The ratio of the quantity of moles of the limiting reactant consumed to its starting value   

Selectivity The ratio of the quantity of moles of a desired product formed to the limiting reactant consumed   

Commercial availability  Reactant availability   

Atom Economy (AE) The ratio of the atoms forming the product to all atoms in reagents 1991110 

Atom Utilization (AU) The ratio of the mass of product (kg) to the mass of all products (kg) 1992111 

Environmental Impact Factor  

(E-factor) 
The ratio of the total mass (kg) of all wastes to the mass of product (kg) 1992112 

Mass Intensity (MI) The total amount of mass required to produce a unit of product 2001113 

Process Mass Intensity (PMI) 
The ratio of the total materials used in a process (kg), with the exception of water, to the final 

product (kg) 
2011114 

Effective Mass Yield (EMY) The ratio of the mass of products (kg) to the mass of non-benign reagents (kg) 1999115 

Carbon Efficiency (CE) The ratio of the carbon atoms in the product to all carbon atoms in substrates 2001113 

Reaction Mass Efficiency (RME) 
The ratio of the mass of isolated product (kg) to the total mass of reactants used in the reaction 

(kg) 
2001113 

Optimum Efficiency (OE) The ratio of the Observed Reaction Mass Efficiency to theoretical Atom Economy 2015116 

simple E-factor (sEF) 
The ratio of the total mass of all raw materials and reagents (kg) excluded the final product to the 

mass of the product (kg) 
2015109 

complete E-Factor (cEF) 
The ratio of the total mass of all raw materials and reagents (kg) excluded the final product, 

solvents, and water to the mass of the product (kg) 
2015109 

Solvent Intensity (SE) The ratio of the total mass of solvents used (kg) to the mass of the product (kg) 2001113 

Wastewater Intensity (WWI) The ratio of the total mass of the process water (kg) to the mass of the product (kg) 2001113 



 

 

 

 

Green chemistry CASD (GC-CASD) 

A natural goal of retrosynthesis is to simplify the synthetic 

availability of the targeted compound, making synthesis 

cheaper, less hazardous, and easier. Therefore, retrosynthesis 

naturally favors green solutions. For example, the Synthia 

application allowed to improve synthesis providing higher 

yields in shorter paths giving higher purity and decreasing the 

number of chromatography steps needed for product 

purification.
119

  

To prioritize green chemistry in CASD, we should not only 

design a suitable synthetic path but also need to predict the 

chemical context of the reaction and operating conditions. 

Catalysts, reagents, solvents (chemical context), temperature, 

and pressure (operating conditions) are examples of the 

parameters critically important. The problem of the predictive 

design of reaction conditions is still not well explored; 

however, this issue has gained special interest recently.
120–124

 

Machine learning was used to predict suitable parameters for 

organic reactions to improve the accuracy and specificity of 

reaction outcome predictions.
125,126

 In the context of green 

chemistry, efficient predictions would guide the search for 

green solutions, e.g., green solvents. Gao et al. designed a 

neural network model to predict up to one catalyst, two 

solvents, two reagents, and the temperature for a given 

organic reaction.
127

 They trained the model on 10 million 

reactions extracted from the Reaxys to test it on 1 million 

reactions outside the training set. The prediction accuracy for 

combining chemical context with the catalyst and at least one 

solvent and reagent was ca. 69.6%. 

CASD programs still prioritize synthetic success and chemical 

diversity of the pathways. Consideration of green chemistry 

rules is only scarce; for example, early examples in the 

references.
128,129

 One reason for this is the complication of 

CASD itself. For example, the best first searches (BFS) or depth-

first searches (DFS) synthesis tree search algorithms used in 

CASD needed manually formulated heuristics, which did not 

lead to sufficient CASD efficiency.
57,65

 Therefore, making CASD 

more efficient needs more efficient algorithms with 

reasonable evaluation metrics. Trimming retrosynthetic tree 

complexity is an important objective being here a bottleneck. 

Segler applied the Monte Carlo Tree Search (MCTS) algorithm 

with symbolic architecture to reduce the complexity of the 

synthesis tree processing.
55

 For the discussion of the technical 

problems of the MCTS method, the reader should see the 

reference.
130

 Schreck et al. used similar method in their CASD 

system.
131,132

 They recognized the CASD as a game performed 

by a chemist or a computer. The game rules to obtain the 

target molecule limits the use of chemicals for buyable 

compounds, i.e., these available at the market. The selection 

of the individual reaction depends upon the learning 

algorithm, i.e., the strategy an agent uses to pursue goals, or 

the so-called policy defined by the user. The user specifies the 

cost of performing a reaction, and this value is added to a 

running total, ultimately determining the overall synthesis 

cost. If the reactants identified are not buyable, we should 

plan their synthesis to count the total running cost. The 

authors used deep reinforcement learning to 

determine policies for the optimal reaction choices according 

to a user-defined cost metric in CASD.
131

 A focus on buyable 

reactants optimizes economic cost but can also be a measure 

of green chemistry, for example, on a single laboratory scale.  

  
Figure 8. The MCTS architecture for CASD finding short paths with green solvents.58 

Copyright © 2022 Royal Society of Chemistry 

We will refer to the CASD considering green chemistry as GC-

CASD. Wang et al. adopted MCTS to design the GC-CASD 

architecture.
58

 Unlike in classical CASD, a fundamental 

problem of GC-CASD is the rapid assessment of the 

environmental nuisance of reactants, solvents, catalysts, and 

so on. At the same time, since retrosynthesis often explores 

new synthetic pathways, it is necessary to predict the 

properties of compounds in specific chemical environments. 

We can refer to such operations as predictive green chemistry. 

Green Aspiration Level (GAL) Transformation GAL times complexity 2015109 

transformation GAL (tGAL) The ratio of the sEF (or cEF) to average complexity 2015109 

Relative Process Greenness (RPG) The ratio of the GAL to actual sEF 2015109 

Renewable Intensity (RI) 
The ratio of the total mass of all renewable derivable materials used to the mass of the final 

product 
2015116 

Renewable Percentage (RP) The ratio of the Renewable Intensity to a Reaction Mass Intensity 2015116 

Innovative GAL (iGAL) 34.4% of the molecular weight of the salt-free form of the desired drug/product 2018117 

Scale Risk Index (SRI) 
Total scores for the human health, environmental and physical hazards times total mass of all 

substances and time for performing the synthesis 
2017118 



 

 

Solvents are usually simple chemicals, but optimization of their 

use is a complex multidimensional problem. An example is 

their design so that they have the potential to increase 

reagents’ reactivity. Struebing et al. use quantum methods to 

select appropriate solvents.
133

 Predictive catalyst design would 

be even more complicated. For example, could we extend a 

simple drug design heuristics of privilege structures
134

 to 

privilege metal combinations
135

, designing catalysts for 

environmental nanocatalysis?
136

 Marcou et al. developed the 

system for the predictive design of catalysts for Micheal 

reaction.
137

 Biocatalytic CASD is another problem explored in 

recent years.
67

 

Technically, Wang's GC-CASD system uses the MCTS variant 

with reinforcement learning.
58

 This CASD operates on reaction 

rules, or the so-called templates
57,138,139

, and is limited to 

buyable chemicals, similar to other CASD 

algorithms.
55,131,140

 The availability at the market estimates 

the easiness of synthesis. The catalog is a collection o ca. 100 

000 low-price (under $100 per gram) compounds from Sigma 

Aldrich or eMolecules. The solvents were registered in the 

database to be represented by different scores depending 

upon their biosafety and flammability. Score values were 

defined after the solvent selection guides, as discussed by 

Byrne et al.
141

 Green solvents such as water and ethanol 

obtained a score of 1, mediocre (poor), such as methyl isobutyl 

ketone or toluene, a score of 0, and non-green ones got -1. 

Figure 8 illustrates a neural network method used by authors 

to predict suitable solvents with a probability distribution 

given for a target reaction. The MCTS variant suggested 

shorter pathways with greener solvents than those reported 

earlier. Authors claim that the method could predict milder 

reaction temperatures and more economical catalysts. A 

similar procedure was designed by Gao et al.
126

 In Table 4, we 

listed indicators that can be used to evaluate green chemistry 

aspects. Only some of them were used in the published CASD 

systems. 

From green to sustainable CASD (S-CASD) 
We need a global transformation of the chemical industry to 

sustainable routines. However, we still do not have generally 

efficient methods for predictive sustainability. Chemical 

intuition, manual data processing, and experience are still 

dominating practices. Weber et al. indicated the bottlenecks 

for automated predictive discovery in this area as (i) data, (ii) 

evaluation metrics, and (iii) decision-making.
142 

 
Figure 9. Sustainability needs the extension of the analysis beyond a single system. The 

circularity between the systems should influence the final analysis results. For example, 

the output flows (e.g., wastes) from outside could be used as the input to the system, 

potentially decreasing overall waste production. 142 Copyright © 2022 Royal Society of 

Chemistry 

Not all GC-CASDs are sustainable. An example could be a 

search guided by buyable reactants. Although buying reagents, 

vs. their synthesizing, improves green chemistry locally for a 

specific lab, this is not necessarily true globally. The shift from 

green to sustainable systems means we should not care for a 

simple system. However, we should involve in an analysis a 

complex environment beyond the system boundary
143,144

, as 

illustrated in Figure 9. Therefore, sustainability is much more 

complicated to predict than greenness. Weber et al. suggested 

using a reaction network (network of organic chemistry - NOC) 

for route selection and identifying strategic molecules for 

sustainable supply chains.
145–147

 Notable, the NOC is a close 

analog to the network designed by Fialkowski et al. to discover 

the architecture of organic chemistry.
57,62,148–151

 We should 

remember that this approach provided efficient knowledge for 

CASD design, resulting in the Chematica and Synthia.
7
 

The new possibilities offered by the increasing computer 

power allowed for more efficient data mining and knowledge 

extraction from databases. For example, Voll and Marquardt 

designed Flux Analysis (RNFA) to identify optimal pathways for 

bio renewables on the literature extracted data.
152

 An 

extensive review of this type of sustainable data exploration is 

given in the reference.
142

  

Predictive sustainability is currently explored only slightly. 

Weber et al. indicated the criteria needed to evaluate the 

sustainability of the reaction network routes: (i) twelve 

principles of green chemistry, (ii) productivity scheme, (iii) 

extension of productivity scheme towards green engineering, 

(iv) improvement scheme.
142

 Sustainability prediction should 

stimulate demand/supply outside the NOC boundaries. It 

should be automated. Jacob et al. predicting synthesis routes 

for converting a bio-waste feedstock, limonene, to a bulk 

intermediate, benzoic acid, developed a methodology for 

chemical route development and evaluation based on data 

mining.
145

 They based these multi-criteria environmental 

sustainability evaluation on multiple indicators, including 

exergy, E-factor, solvent score, reaction reliability, and route 

redox efficiency.  Thermodynamics-based metrics for 

ecological systems are discussed thoroughly in the 

book.
153

 Exergy is an illustrative sustainability metric 

facilitating the second thermodynamics law in an ecological 

context.
153

 Although theoretically, such metrics allow us to 

define better sustainability, we use much simpler practical 

measures for practical S-CASD evaluation. Exemplary heuristic 

rules for large-scale screening, can include carbon counts, 

catalysts, fragments, publication year, number of reaction 

records, reaction type, reagents, similarity, solvents, and yield. 

A function of these heuristics is to select the best possible 

solutions with the highest probability, e.g., remove old 

reactions, remove undesired solvents, remove undesired 

catalysts, remove reactions with yields lower than the 

threshold, etc.
142
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Table 5 Indexes for S-CASD 

Metrics Type Effect Reference 

Total net primary energy usage rate (GJ/y) Predictive negative 154 

Total net primary energy sourced from renewables (% ) Predictive positive 154 

Total net primary energy usage per kg product (kJ/kg) Predictive negative 154 

Total net primary energy usage per unit value added (kJ/$) Predictive negative 154 

Total weight of raw materials used per 1 kg of a product (kg/kg) Predictive negative 154 

Total raw materials used per unit value added Predictive negative 154 

Fraction of raw materials recycled Predictive positive 154 

Hazardous raw material per kg product Predictive negative 154 

Net water consumed per unit mass of product (kg/kg) Predictive negative 154 

Net water consumed per unit value added Predictive negative 154 

Waste reduction Predictive positive 154 

Safety index Predictive positive 154 

LCA – ozone layer depletion Predictive negative 154 

LCA – photochemical oxidation Predictive negative 154 

LCA – acidification Predictive negative 154 

LCA – eutrophication Predictive negative 154 

Carbon footprint – raw materials Predictive negative 154 

Number of Records Factual positive 142 

Publication Year Factual positive 142 

Reaction Type Factual positive 142 

Similarity Predictive positive 142 

Yield Predictive positive 142 

Number of hazardous materials input Predictive negative 155 

Mass of hazardous materials input Predictive negative 155 

Chemical exposure index Predictive negative 156 

Health hazard, irritation factor Predictive negative 157,158 

Health hazard, chronic toxicity factor Predictive negative 157,158 

Safety hazard, fire/explosion Predictive negative 157,158 

Safety hazard, reaction /decomposition Predictive negative 157,158 

Safety hazard, acute toxicity Predictive negative 157,158 

Fault tree assessment Predictive negative 159 

Toxic release intensity Predictive negative 160 

Environmental quotient Predictive negative 161 

Environmental hazard, persistency of organic substances Predictive negative 157,158 

Environmental hazard, air hazard Predictive negative 157,158 

Environmental hazard, water hazard Predictive negative 157,158 

Environmental hazard, solid waste Predictive negative 157,158 

Environmental hazard, bioaccumulation Predictive negative 157,158 

Global warming potential Predictive negative 162 

Global warming intensity Predictive negative 155 

Emergy to yield ratio Predictive positive 163 

Emergy sustainability index Predictive positive 164 

Renewability index Predictive positive 164 

Total solid waste mass Predictive negative 155 

Recycling mass fraction Predictive positive 155 

Disposal mass fraction Predictive negative 155 

Hazardous solid waste mass fraction Predictive negative 155 

Total volume of liquid waste Predictive negative 155 



 

 

 

A practical example of the extension of the green concept to 

sustainability is an application of the green aspiration level 

index iGAL 2.0 to reduce global API (active pharmaceutical 

ingredient) manufacturing wastes. Roschangar et al. developed 

iGAL for sustainability evaluation. The iGAL 2.0 extends the API 

(active pharmaceutical ingredient, drug substance) process 

waste, process mass intensity (PMI), and the complete E factor 

(cEF) metrics. They also showed how to adapt the yield (YD) 

and the convergence (CV) as sustainability 

measures.
165

 Syntheses of similar yields arranged convergently 

provide better yields than those assembled linearly. Let us say 

that we have the reactions of the same yield value. Because 

the reaction yield is always a number lower than 100% (<1), 

the power function giving the total yield of linearly arranged 

syntheses decreases rapidly with an increasing power value. 

For the given number of starting materials (SM), the lower sum 

of subprocess steps (SSS) means a higher CV. Roschangar et al. 

modified simple CV metrics of SSS used previously by 

Hendrickson by using its relative value, SSavg, amounting to 

SSS/SM. 

Yield is a measure of step productivity and is based on the 

molar limiting. For processes with two or more longest linear 

step sequences (LS) starting materials with the same step 

distance to the API, the starting material with the largest 

contribution to the API structure, or largest atom economical 

molecular weight (MWAE), is prioritized. YD reflects the 

cumulative product of yields LS across steps (k). 

           

  

   

 

Process Convergence (CV) indicates how directly the starting 

materials are assembled into the API and therefore reflects the 

efficiency of API process design. The appeal of using CV in 

combination with YD is that they are orthogonal and pertain to 

two complementary dimensions of process efficiency: design 

efficiency (CV) and productivity (YD).  

       
 

    

      

Accordingly, YD and CV could be crucial sustainability 

indicators for S-CASD algorithms if used for larger systems. 

Figure 10 shows the application of the CV and YD-optimized 

CASD. Authors claim that the iGAL 2.0 based CASD could 

significantly reduce global API (active pharmaceutical 

ingredient) manufacturing wastes. Actually, CV and YD 

evaluate green chemistry; however, the global dimension of 

the waste analysis upgrades the scale to sustainability. 

 
Figure 10. iGAL 2.0 scorecard output for 3rd generation Dabigatran API process. 

Copyright © 2022 American Chemical Society 

The number of indicators explored for sustainability 

assessment is high. The United Nations framework of the 

Sustainable Development Goals (SDGs)
166

 enumerates 231 

unique indicators within 17 dimensions.
142

 In Table 5, we 

specify indicators available in this area. A comparison between 

sustainability and greenness clearly illustrates how complex 

could be to define sustainability precisely enough. Many 

indexes are heuristics based on (chemical) intuition. The 

question is, can a large combination of such indexes efficiently 

control sustainability? The life cycle assessment (LCA) is a 

broader concept involved in sustainable development.
167 

To better understand the S-CASD potential, we illustrated in 

Figure 11a the first total synthesis of tropinone performed by 

Willstatter. The linear process performed in 1901 needed as 

many as 15 steps, yielding 0.5% of the product. Despite this 

small yield, Willstatter's synthesis was a masterpiece of 

chemistry designed by the Nobel Prize winner. A first total 

synthesis of tropinone. Could we design a better procedure 

that minimizes the number of steps, significantly increasing 

the process's greenness and sustainability? In Figure 11b, we 

illustrated the retrosynthesis of tropinone by our vertical 

hand-made mode, showing what is familiar to all current 

organic chemists. Tropinone can be obtained practically in a 

single step with almost 100% yield. In 1917, Robinson, another 

Noble Prize winner, reported this synthetic way. He obtained 

originally 17% yield, which was improved later to 90%  

An original approach to sustainability is a search for bio-based 

building blocks of specific chemicals (solvents or reagents) from bio-

based products. A represenattive example of bio-based 

retrosynthesis can be the publication of Moity et al. describing the 



 

 

bio-based building block strategy in which authors were able to 

design a few-step synthesis of a large number of commodity 

chemicals. In particular, the authors used the CASD software, 

GRASS (Generator of Agro-based Sustainable Solvents), to design 

solvents from biomass. GRASS was programmed in 1980’ to predict 

the products of flavor and food degradation products [R. Barone, C. 

Chanon, G. Vernin and C. Parkanyi, in Food Flavor and Chemistry; 

Explorations into the 21st Century, ed. A. M. Spanier, F. Shahidi, T. 

H. Parliment, C. Mussinan and E. Tratras Contis, RSC, Cambridge, 

UK, 2005, pp. 175–212.]. The study engaged as a starting chemical 

itaconic acid, a multifunctional bio-based building block. Figure XX 

briefly illustrates the results reported in reference [Moity et al., In 

silico design of bio-based commodity chemicals: application to 

itaconic acid based solvents, Green Chem., 2014, 16, 146 , DOI: 

10.1039/c3gc41442f].  

Figure 12 compares the GRASS (dotted arrow) vs. experimental 

(black arrow) pathways to compounds that are reported in the 

literatures as as solvents derived from itaconic acid; 2-MBDO, 2-

MGBL, 3-MGBL, 3-MTHF and NACP are the codes of bolded 

compounds, the numbers above dotted arrows are references to 

the table entries in the original publication. We see a forward mode 

retrosynthetic visualization. © [In silico design of bio-based 

commodity chemicals: application to itaconic acid based solvents, 

Green Chem., 2014, 16, 146 , DOI: 10.1039/c3gc41442f]. 

Recently, the Grzybowski group published an entirely novel 

approach to sustainable chemistry, where authors designed novel 

synthetic routes to the essential drugs using the waste chemicals 

available by in silico retrosynthesis [Wolos et al., Computer-

designed repurposing of chemical wastes into drugs, Nature 

https://doi.org/10.1038/s41586-022-04503-9]. Dapsone is a sulfone 

class antibiotic known from 1930’. Their current application is 

leprosy, for which FDA approved it in 2016. In Figure 12 we 

compared their approach which we can describe as the waste 

building block appropach to dapsone synthesis to the currently 

synthetic procedure. 

Interestingly the comparison of retrosyntheses in Figures 11 and 12 

also reveals the differences between the hand-made vs. in silico 

black box retrosyntheses. While the first approach is an essential 

issue to provide us with the backward disconnections 

comprehendible to a chemist working in the product-to-reactant 

strategy, the second one does not even show the backward process 

hidden from our view. Usually, in this mode we present a forward 

reaction scheme, even not pretending that the software user can 

intrude on the computer algorithm. Instead, the obtained scheme is 

even more accessible for human interpretation, while the usability 

of the results for substantial sustainability increase is impressive. 

The waste-building block strategy retrosynthesis is a significant 

breakthrough in sustainability. A variety of retrosyntheses with this 

strategy the reader can find in the reference [Nature (a) 

https://doi.org/10.1038/s41586-022-04503-9] 

Retrosynthesis beyond target molecule  

Virtually, retrosynthetic analysis involves two problems. The first is 

the design of the reaction sequence giving the target molecule, 

which is the primary goal in the organic chemistry domain. 

Optimization of disconnections leads to a comprehensive library of 

reactions that can be evaluated to select proper parameters for 

these reactions, in the search for brilliant green and sustainable 

reactants and conditions. The second problem, optimization of 

individual syntheses and processes is independent of the target 

molecule. An example of an decisively target independent green 

and sustainability level increase could be computer-aided 

sustainability-oriented process optimization. An excellent 

introduction to this problem the reader can find in the references  

Similarly, the parameters that we listed in Tables 2, 3 and 5 ranges 

from these that can be directly engaged in the prediction or design 

procedures (in the target dependent and independent modes) to 

those that are vague heuristics. Let us indicate the publication year 

(Table 5), which is indicated in the literature as a sustainability 

index. It is well-defined but soft concerning a correlation to 

experimental data reliability. 

Evaluating the toxicity of molecules and chemicals is an important 

metric for green chemistry or sustainable CASD. Therefore 

predictive toxicology is an essential issue for G-, S- or nano-CASD. 

Since we do not plan molecule synthesis here, predictive toxicology 

differs from classical retrosynthesis, being an example of the 

operation beyond TM. Great progress has been made in this 

direction, including the application of a variety of machine learning 

methods: support vector machines (SVMs), random forest (RF) and 

decision trees (DTs), neural networks, regression models, naïve 

Bayes, k-nearest neighbors or ensemble learning. The illustrative 

review in predictive toxicology the reader can find in the reference 

[Machine Learning in Predictive Toxicology: Recent Applications and 

Future Directions for Classification Models, Chem. Res. Toxicol. 

2021, 34, 217−239].  

 Safe- and Sustainable-by-Design (SSbD) concept for nanomaterial 

S-CASD architectures 

In the concept of Safe- and Sustainable-by-Design (SSbD), the 

design process of chemicals and (nano)materials should 

consider both safety assessment (i.e., identification of the 

potential risk that newly designed (nano)materials bring to the 

humans and the environment) and the sustainability, i.e., 

environmental, social or economic impact at the early stage of 

the design process of innovative (nano)materials.
168

 The 

materials based on nanostructures offer unique 

physicochemical properties compared to the same micro or 

macro scale chemicals. However, in the literature the 

systematic knowledge about the influence of nanostructure 

modification or nanostructure combination on the 

functionality and safety of newly designed advanced 

(nano)materials is still limited.
169

 Due to the high cost and time 

of experiments, investigating all possible structure 

combinations to design the most optimal (safe- and 

sustainable) products is impracticable. The most promising 

approaches that may support the design of Safe- and 



 

 

Sustainable nanomaterials in a shorter time are based on in 

silico methods such as physics-based materials modeling 

(MM)
170

 and data-based methods with Machine Learning (ML). 

Nano Quantitative Structure-Activity Relationship (nano-QSAR) 

is a related novel tool developed
171

, but generally, this area 

still needs exploration. In Figure 11 we showed how nano-

QSAR could be used for designing novel parameters for 

descriptive sustainable nano-retrosynthesis, while Table 6 

specifies the descriptors and properties potentially useful for 

nano-CASD. 

  
Figure 11. The schematic representation of CASD methods combined with MM/ML-

based modeling. 

One problem of nano-QSAR modeling are nanostructure 

representation and characterization.
171

 Wyrzykowska et al. 

reviewed the most promising directions for developing the 

appropriated nanostructure representation described by a set 

of nanodescriptors that enhance the reliability of 

computational methods for Safe- and Sustainable-by-Design 

Strategy.
169 

This study answers how to represent and describe 

nanomaterials in predictive nanoinformatics based on 

combined molecular modeling (MM) and machine learning 

(ML) techniques.
169

 The concept
169

 includes a system 

perspective that is crucial for nanomaterials characterization, 

i.e., (i) system-independent nanodescriptors that describe 

nanostructure (e.g., chemical composition, crystal structure, 

size, shape, surface structure), so-called S-descriptors;  (ii) 

system dependent descriptors that describe particular 

elements of a nanoparticle and its environment in real-time 

(i.e., core, coating, ligands), so-called E-descriptors, and (iii) 

multicomponent structure represented by numerical 

combinations of descriptors for individual components of the 

nanostructure and descriptors related to interactions between 

these components.
172–174

 According to JRC
168

, one of the most 

promising data-driven methods to process the relationship 

between toxicological, environmental or physicochemical data 

and the nanomaterial structure is related to predictive QSAR, 

Nano-QSAR modeling and read-across methods, respectively. 

In the chemical sector, more than 200 000 chemicals have a 

limited number of information crucial for the design process of 

safe and sustainable nanoproducts.
168

 Chemical-specific data 

gaps related to the specific process (including lack or 

inconsistency in data resources or synthesis process) may be 

overcome by nano-QSAR methods and read-across. These 

methods may predict missing datapoints (so-called endpoints, 

such as toxicity, ecotoxicity, or physicochemical properties) 

helping also to model quantitative relationship between 

synthesis conditions, nanostructure properties and its safety or 

sustainability profiles. The nano-QSAR methods combined with 

molecular modeling (MM) and ML screening may help to 

answer which structural features of nanomaterials are 

responsible for the observed toxic effects or physicochemical 

properties of industry interest.
175–178

 Implementation of virtual 

screening in SSbD strategy may support the screening of a 

huge library of virtually created nanostructures and their 

combination, then manage ("design out") hazardous features 

(safety) as well as functionality (sustainability) at the earliest 

possible manufacturing step.
179

 As a result of virtual screening, 

only the most optimal structures (i.e., components described 

by specific features and safety) may be finally selected for 

synthesis and experimental validation.
176,178

 By the application 

of nano-QSAR methods and read-across, it is possible to 

reduce cost, time, and the number of necessary experiments 

and, at the same time, increase the efficiency of the design 

process. Thus, the combination of various in silico methods in 

the S-CASD architecture offers novel opportunities for 

knowledge-based optimization and development of new 

nanomaterials by improving their functionality and minimizing 

the potential unexpected risk to the human body and the 

environment. 

Table 6 Descriptors for nano S-CASD 

Descriptors Reference 

Electronegativity 

180 

Sum of metal electronegativity for individual metal oxide divided by the number of oxygen atoms present in particular metal oxide 

Number of metal atoms 

Number of oxygen atoms 

Charge of the metal cation corresponding to a given oxide 

Molecular Weight 

Enthalpy of formation of a gaseous cation having the same oxidation state as that in the metal oxide structure 181 
Lattice energy 

Energy of highest occupied molecular orbital 182 
Energy of lowest unoccupied molecular orbital 



 

 

 

 

Conclusions 

When retrosynthesis started computers were newborns hardly 

adapted to chemical applications. The chemical audience 

received Corey's retrosynthesis idea with skepticism. Early 

computers were not ready to process chemical ideas and data. 

Therefore, teaching chemistry to computers was one of the 

first tasks of chemoinformatics. The view of the human 

chemists differed significantly from the computer needs. We 

required many efforts and ideas to transit chemical art to 

efficient chemical informatics. Today, in silico information 

processing and human brain chemistry arranges into 

complementary structures. The need to adapt chemistry to a 

form understandable to computers has brought much 

freshness to chemistry, allowing chemists to understand and 

clear out some ambiguities. In turn, by analyzing the work of 

the computer, chemists learned a different view of chemistry. 

It was the computer that became the teacher. In the case of 

retrosynthesis, we observe how the computational dimension 

makes the original symbolic product-to-reagents symbolic 

visualization layout lose meaning. The CASD strategy is a 

complex problem engaging both backward and forward 

strategies, and today, the results of retrosynthesis are often 

presented directly as the reagents-to-product process. Playing 

retro (backward) or forward strategy visualization is easily 

interchangeable with modern software. The classical retro-

analysis stayed somewhere below the software level 

recognized by the user. However, the user accepts this black 

box-like architecture because we highly appreciate 

outstanding results of modcern CASDs. When analyzing 

chemists' sentiments, we can observe a bumpy road from 

initial reserve to enthusiasm. With suitable software, chemists 

can design synthesis efficiently.  

Retrosynthesis is a tool allowing for finding reaction pathways 

to chemical compounds. Chemistry decides that in 

retrosynthesis, the molecules can be disconnected in many 

ways, indicating a variety of potential synthetic routes to 

products called retrosynthetic trees. From one side, the 

abundance of retrosynthetic trees is a severe complication. 

Therefore, in standard hand-made retrosynthesis, chemists 

tend to limit the number of possible solutions keeping it under 

the control of human brain capabilities. Even in computer-

assisted synthesis design (CASD), retrosynthetic trees need 

trimming for efficient analysis. However, this abundance can 

be an opportunity for finding the path to reducing toxicity to 

humans and the environment, improving the degradability of 

chemicals, and their recycling or reusing potential. Drug design 

and retrosynthesis were the methods significantly improved 

recently to computer-assisted technologies. Machine learning 

and deep learning support this area.  

Selecting retrosynthetic trees with a high fit with green 

chemistry requires unique methods. Similarly, we need 

particular strategies to support the new sustainable chemistry 

paradigm, which focuses not on a simple chemical reaction but 

on extending the analysis borders beyond individual processes. 

Data mining allows for exploring databases and literature for 

green and sustainable methods. However, in order to design 

novel chemistry, we need predictions. Predictive greenness 

and sustainability need efficient metrics for numerical 

evaluation. E-factor was the first index designed to estimate 

the reaction environmental fit. Various modifications were 

developed and used in the descriptive and predictive role. 

Retrosynthesis beyond the organic chemical subspace is a 

recent idea involving inorganic and nano domains, which 

targets nanostructures of the desired shapes and sizes. 

Predictive sustainability in (nano)materials needs novel 

methods that may speed up the design process. Combined 

MM with ML methods (including predictive QSAR or Nano-

QSAR modeling) may significantly increase the in silico 

potential for designing safe and sustainable (nano) materials 

(i.e., more structure with different properties may be 

considered, and a more comprehensive description of 

nanostructure would be possible at the same time). The 

described in silico methods for CASD may reduce time, cost, 

and number of experiments, which is crucial for future 

optimization of the design process of safe and sustainable 

(nano)materials.  

Although routine GC- S-or nano CASDs are still a matter of the 

future, some early birds have appeared in this area. The story 

of retrosynthesis resembles this of chess-playing software in 

the last decade. In 90’ human players used to win with AI 

algorithms. The Deep Blue chess-playing algorithm first 

brought a draw; nowadays, no human can compete with a 

machine in chess. In retrosynthesis, the machine and humans 

can produce similar results now that the Turing test cannot 

Dipole moment 

Mean polarizability 

Largest Mulliken negative charge 

Ratio of surface molecules to molecules in volume 

183 

Aggregation parameter 

Covalent index 

Cation polarizing power 

mass density 

Wigner–Seitz radius of oxide's molecule 

Zeta potential in water 184 
Number of electron shells in the metal of the oxides 



 

 

distinguish. Similarly to classical organic retrosynthesis, the 

GC-, S-or nano CASDs will also profit from humans playing with 

computers who bring entirely novel ideas. The waste-oriented 

building blocks approach [Wolos et al., Computer-designed 

repurposing of chemical wastes into drugs, Nature 

https://doi.org/10.1038/s41586-022-04503-9] is an example of 

creatively overcoming sustainability problems with a fresh 

computer-oriented concept. In perspective, we can better 

mount the green, sustainability or nano indexes to the GC- S-or 

nano CASDs to essentially finetune the results. Because the 

parameter-oriented GC- S-or nano CASDs will need extensive 

data processing in the backward and forward modes, we can 

expect the human-computer interplay will provide the black-

box-like architectures for the big data-dependent mode in 

which humans cannot easily compete with computers. These 

architectures will engage all available measured reactions and 

chemical data available for chemical compounds and reactions 

available in the literature as these listed in Tables 2-5. In 

conclusion, we can expect significant development and profit 

from the CASD strategies here.     
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