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Introduction

Improving chemical procedures to meet the needs of green and sustainable chemistry is a complex problem. Despite many efforts in this area in the last two decades, the results are below expectations. We still often lack information on the toxicity of chemicals to humans and the environment, their degradability, and recycling or reusing potential or life cycle analyses (LCA) which are essential to meet the supply limitations of chemicals or energy sources but has not attained yet a sufficient level of specialization to green and sustainable chemistry concepts.

1 Chemical synthesis is a severe challenge in this field. The structural abundance of synthesized compounds complicates their toxicity evaluation or prediction. Chemical compounds can be obtained from different reactants by many different procedures in the presence of different solvents. In recent years, various catalytic and biocatalytic methods have been developed as critical innovations, reducing the toxicity and environmental nuisance of the procedures. The concept of green chemistry has been outlined clearly, focusing on toxicity, safety, energy preservation, preference of mild reaction conditions, suitable solvents, catalysts, etc. Green chemistry can concentrate on a single reaction, laboratory, country, or industry type. Sustainability is a much more complex conception because we should extend the analysis beyond a single system, preferentially to the global scale. Therefore, the precise evaluation of sustainable materials creates problems. An essential dimension of improving chemical synthesis's green or sustainability dimension is to design and evaluate a library of potential synthetic routes targeting a certain chemical compound. Planning syntheses requires associating three domains: macroscopic, sub-microscopic and symbolic.

2,3

Retrosynthesis is a tool starting from a human chemist's byhand symbolic transformations (transforms, disconnections) of the targeted molecule (target molecule) into smaller fragments, synthons (retrons). Corey defines a transformation as the exact reverse of a synthetic reaction (transforms), a retron -as the structural subunit for that transform must be present in the target molecule. He used a term synthon as the synonym of molecular fragment. [START_REF] Corey | Logic of chemical synthesis[END_REF] Disconnecting or reforming atomic bonds in molecules in the search of transforms has evolved into the sophisticated computer-aided synthesis design (CASD) system. It is not but recently that machine learning approaches significantly improved the CASD method. Notable, retrosynthesis and CASD, originating from the organic domain, tend to be extended to cover inorganic matter [START_REF] Aykol | [END_REF] and nano materials

6

. With the new CASD software, we could better assist green chemistry needs of a comprehensive evaluation of the methods engaged in chemical substance preparation. The hazardous reagents, solvents, or auxiliaries could be avoided, while catalytic or biocatalytic processes should be preferred. Can we further upgrade the CASD to a method focusing directly on greenness and sustainability, which are critical issues for contemporary chemistry? Various indexes were recently designed to measure the chemical efficiency of the process, minimizing waste and optimizing resource and energy use. Numerical values of the indexes enable us to sort reactions according to, for example, safety, environmental friendliness, or recyclability. We should optimize green or sustainable CASDs based on these indexes. Can recent learning machine approaches improve our understanding of green and sustainability issues? Despite the potential in this area, only a few examples appeared in the literature. [START_REF] Plourde | Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings[END_REF]8 One of the obstacles can be a significant distance between the concerns of synthetic vs. computational chemistry. Retrosynthesis is still an autonomous outskirt of organic or inorganic chemistry rather than its central core. The software available is still not widespread enough among bench chemists, who still must care much more about the availability of the methods, lab potential, and staff experience to perform the reaction efficiently than about sustainability. Green aspects are often defeated by this complexity, especially when the synthetic scale is low. A focus on green and sustainability issues increases with the growing process scale. At the same time, sophisticated software engaging machine learning tends to form black box-like architectures of which we have little understanding. We present this review as a tutorial illustrating the retrosynthetic concept and its application in finding greener and more sustainable chemistry solutions.

Retrosynthesis: a method for diversifying and evaluating synthetic solutions

The core of retrosynthesis is the recognition of smaller fragments within the target molecule for which assembly is possible by known or predictable-plausible reactions.

Originally, Corey designated these fragments as synthons.

Figures 1234and Table 1 explain the idea and basic lexicon of organic retrosynthesis. An informative introduction into the extended synthon concept and nomenclature is available in the reference.
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Synthon (S)

Any group of atoms indicated within the target molecule that converts the reagent (R) representing this synthon in vitro to a target molecule in the known or expected reaction(s). A heterolytic disconnection of the bonding within the target molecule forms either an electrophilic or nucleophilic center, an acceptor (a) or a donor (d) synthon in the lexicon of retrosynthesis. Homolytic disconnections controlling radical chemistry are not shown in Figure 3. A formal nomenclature of synthons involves functional group (heteroatom) identification which defines the location of the a or d center vs. this heteroatom. The a alkyl or d alkyl designate the synthons derived from the fragments that do not have functional groups. Synthons are virtual units needing conversion to reagents for in vitro operations (S R ).

Functional group (FG)

An essential element controlling chemical reactivity. "Proximity of reactive functional groups is of major importance in synthesis"; Corey identifies potential FG operations as FG introduction, FG modification: removal, interconversion. [START_REF] Corey | Logic of chemical synthesis[END_REF][START_REF] Corey | [END_REF][START_REF] Fuhrhop | Organic Synthesis; Concepts, Methods, Starting Materials[END_REF] The reactivity type at certain atoms, or the synthon type (d or a) in the retrosynthesis lexicon, essentially depends on FG neighborhood. A direct relation of the d and a synthons to FGs allows for mapping the reactivity of FGs. A compact and consistent introduction to FG chemistry can be ref. [START_REF] Fuhrhop | Organic Synthesis; Concepts, Methods, Starting Materials[END_REF] Transform(ation)

The exact reverse of a synthetic reaction (transforms) to identify a retron -a structural subunit needed for a certain transform to be present in the target molecule. Often retrons and synthons are treated as synonyms.

Disconnection

Disconnection is a virtual breaking of one or more bonds in TM to form synthons. A wavy line indicates disconnection.

The arrows showing transparently the (d) or (a) synthon polarity should guide heterolytic disconnections in a way analogous to the arrows marking electrophilic or nucleophilic reagents' behavior in chemical reactions.

Synthon chemistry

Connecting synthons d and a forms a chemical bond.

Reagent

A real chemical substance that represents corresponding synthon reactivity in vitro. A single synthon can be represented by a number of reagents showing its reactivity type. Sometimes, oxidation state of a given synthon can be modulated to help identifying the relevant reagent and associated chemistry.

Operations on synthons

Functional group interconversion (FGI)

Individual FG stamps neighboring carbon atoms in synthon with the (d) or (a) polarity type. It also fine-tunes reactivity in the reagents corresponding to these synthons. FGIs are conversions of FG to FG1 planned in such a way that we know simple reactions transforming FG1 to FG for the reagents representing these synthons in vitro.

Functional group addition (FGA) FG can be mounted on the unfunctionalized carbon atom of a synthon. If the TM should not contain the added FG, then, a chemistry should be known to remove this FG in the reaction(s) of reagents representing synthons in vitro.

Synthon identification should provide a scheme of structural transformations designing synthesis strategy and not strict laboratory manipulations. We arranged retrosynthesis scheme in a vertical format to jointly map the disconnections, synthons, reactivity, and reagents (Figure 1). This scheme divides the synthon strategy (left) from reagent tactics (right) after synthon to reagent conversion. In other words, on the left side, we map transforms (retro-reactions), while on the right side, we note the current knowledge, which is represented, first of all, by the facts cataloged in databases and literature but also designed by analogy to them. The left side projects disconnections to predict optimal or promising reactions shown on the right side. Having a large reaction library (right factual side), we can also try to predict the nonfactual reaction outcomes for nonfactual reaction conditions, which is a fundamental goal of modern CASD systems.

Figure 2 outlines synthon nomenclature in which heteroatom X controls reactivity type and locants to indicate carbon atom positions. Alcohols are a common compounds type used in synthetic procedures. Figure 3 shows an example how we can illustrate a disconnection of a target molecule (TM) having an alcohol functional group (FG) to synthons S1 (d alkyl ) and S2 (a1). Synthon to reagent conversion S1R1 and S2R2 gives; 1hexyl magnesium bromide and pentanal, which will react in Grignard reaction. Heterolytic bond disconnection, an essential operation, defines the acceptor or donor synthons corresponding to the electrophilic or nucleophilic reactivity types. Radical disconnections were also broadly explored. [START_REF] Smith | [END_REF] In vertical disconnections' flow we could realize how much information we need to support molecular symbols (left) to make them real in vitro chemistry (right). Retrosynthetic representation allows us to understand complex chemical reactivity problems. The retrosynthetic tree is a graph showing several (or all) possible routes to TM. Figure 4 compares a fuzzy chemical view with the strictly algorithmic representation of such a tree.

Retrosynthesis beyond the organic domain

Originally, retrosynthesis and CASD systems developed for organic synthesis extended into inorganic materials and nanostructures. [START_REF] Corey | Logic of chemical synthesis[END_REF][START_REF] Aykol | [END_REF] A short history decides that these domains are much less explored; however, expectations here are high.

The exceptional particularity of organic molecules is that carbons and hydrogens are their two main components. Carbon catenation, i.e., the ability to form long chains, is another unique feature. Due to catenation, organic retrosynthetic trees have many deep branches. Usually, we need several reactions to create a long chain or a complex ring. These reactions can penetrate different areas of chemical space. However, on molecular level, substances of the defined structure synthesized as designed by different reactions are the same.

Synthon to reagent conversion (S R)

A virtual operation in which a synthon is transformed to a molecule. This usually needs adding to the synthon some fragment(s) with the opposed polarity which can be a simple stable ending fragment (Figure 3).

Synthon activation or blocking

S R conversion could result in the reagents of the different reactivity levels involving these completely unreactive (blocked). Activation and blocking could take place selectively at different positions. Not favored in green or sustainable chemistry since it adds synthetic operations.

Umpolung

The (d) synthon is converted to the (a) synthon and vice versa (a) to (d). This operation results in the alteration of the reagent types and chemistry needed for in vitro reactions. In the reagent domain, umpolung converts electrophiles to nucleophiles and vice versa nucleophiles to electrophiles. Thus, that can be concluded that the resulting organic structure does not critically depend on the reaction path or reaction conditions used. Therefore, classical organic retrosynthesis, first of all, does not focus on reaction conditions but a chain or ring disconnections strategy. After finding the disconnection strategy, we decide tactics by choosing individual reactions, reactants and fine-tuning reaction conditions. In contrast, the structures in the inorganic or nanodomains can be more complex, having no restrictions on the types of atoms engaged. For example, in nanomaterials, the critical structural features deciding material functionality are agreed in the nanoscale, i.e., at a much larger size than the single-molecule level. Reaction conditions usually substantially influence such structures. Hence, to obtain the desired structural or functional properties, we focus much more on predicting reaction conditions. Practically, retrosynthesis of inorganic-or nano materials are computational approaches where we predict the influence of different reaction parameters for the structures yielded. Reproducibility and data quality 12 in these areas is much more problematic than in the organic domain, e.g., a small amount of dopants can critically influence a structure or function. The other factor hindering exploratory inorganic synthesis are anthropogenic biases in chemical reaction data.

13

Since beyond organic domain we predict mainly in tactics, high throughput experimentation (HTE) 12 is one approach to the problem. An example can be the HTS screening of bimetallic catalysts targeting rational control of the geometry and composition of an active site for efficient chemical transformations. 14 The abundance of potential structures decides that novel machine learning methods are indispensable in inorganic or nano retrosynthesis. However, previously extensively explored methods, for example, QSAR in its predictive and robust 15,[START_REF]Chemoinformatics: a textbook[END_REF] versions can contribute, e.g., by

suggesting reasonable meaningful descriptors or indirectly predicting reaction conditions yielding targeted chemical compounds or chemical systems.

The representative example of nano-CASD is an autonomous retrosynthesis of gold nanoparticles via shape matching. The nanostructures were designed using the Bayesian optimization targeted at a specific nano-assembly structure, shape, and size. The reagents needed to be selected a priori while computations were formulated as the shape-matching minimizing the shape discrepancy. The highly computational analysis demonstrated that we are still at the beginning of this direction [6]. Could we expect disconnections in nanostructures similar to classical retrosynthesis needing to develop nanostructure representations?

Ab initio electronic structure methods in retrosynthesis

The main goal of the transform is a structural simplification of a target molecule to synthon representation. In turn, conversing synthons to synthon equivalents (reactans), we replace them with real in vitro reagents. How close do these equivalents resemble synthons, and how reliable could synthon-to-reagent transformation be? We recently pointed out that some synthons may be electronically, kinetically, and thermodynamically stable systems. In other words, we can nearly use them directly in the syntheses. [START_REF] Cyraniak | [END_REF] The representative examples of such stable synthons are, for example, borataalkene anions. The borata-alkene anions (H2C=BR2)-are carbanionic synthons formally representing stabilized α-monoboryl carbanions. 18,19 We described the structures of the isolated negatively charged (H2C=BR2)-(R=H, CH3, C6H5, C6F5, Mes) systems (Mes = 2,4,6-trimethylphenyl) and characterized their electronic and thermodynamic stability basing on theoretical ab initio models (the QCISD/aug-cc-pVTZ and MP2/aug-cc-pVDZ). The structurally smallest (H2C=BH2)synthon adopts a planar C2v-symmetry equilibrium structure with the double-bond connecting the carbon and boron atoms. Positively charged synthons are even more promising candidates for such systems because, in their case, the electronic stability would not be an issue (whereas the stability of the anions is always potentially jeopardized by the possibility of the excess electron auto detachment). Of course, even such stable synthons are ionic species; therefore, for the S → R conversion, we need a counterion to neutralize their negative or positive charge. The anionic borata-alkene synthon supported with sodium cation is an illustrative example.

In the more general context, currently, quantum chemistry probes reaction mechanisms efficiently; therefore, its application to retrosynthesis seems natural. Once standard retrosynthesis provides us with the retrosynthetic tree, we can determine by quantum methods the kinetic barriers involved in each reaction pathway and, thus, the corresponding reaction rates to choose the most efficient (i.e., Gibbs free energy-wise) synthetic route. Quantum chemistry methods, e.g., post-Hartree-Fock methods such as configuration interaction (CI) 20-22 , Møller-Plesset perturbation theory (MP2, MP4) 23-25 , coupled cluster (CC) 26-28 , composite methods (G2, G4) 29,30 or the methods based on the density functional theory (DFT, e.g., B3LYP, CAM-B3LYP or wB97XD functionals) 31-34 , together with the basis sets of double-or triple-zeta quality (e.g., 6-31++G(d,p), aug-cc-pVDZ, 6-311++G(d,p), aug-cc-pVTZ) [35][36][37][38] not only enables the evaluation of the overall reaction rate but also provides an insight into each elementary step of a chemical process at the molecular level. In order to gain such insight, the geometric structures of all stationary points (corresponding to the isolated substrates, initial reactant complex, intermediate products, transition states, and final products) involved in each reaction step must be obtained. In addition, the structure of each transition state (whose determination is often the most difficult part of the whole investigation) must be verified (usually by following the intrinsic reaction coordinate) to assure its relevance (i.e., to confirm that it connects the substrates and products of a given elementary step). Once such a comprehensive theoretical study is completed, the exact mechanism of a studied chemical reaction is revealed, applying to studying any chemical reaction, including those planned via retrosynthetic analysis.

Data and their processing by machine learning in retrosynthesis

Chemical descriptors or properties represent chemical compounds. [START_REF] Polanski | Handbook of Computational Chemistry[END_REF][START_REF] Polanski | Encyclopedia of bioinformatics and computational biology[END_REF] While descriptors can be calculated from molecular representations, properties need experiments to be measured. Alternatively, having a large library of the properties measured, we can attempt property predictions for novel structures. Among thousands of molecular descriptors available, SMILES are probably the most popular in recent computations for coding molecular structures. [START_REF] Butler | [END_REF] First, the SMILES system is relatively easy to understand and interpret by computers and humans. Second, the SMILES system, in particular canonical SMILES, can be an unambiguous molecular representation, i.e., each SMILES represents a unique compound, and a unique SMILES code can represent each compound.

Coding molecular connectivity SMILES can efficiently generate novel molecules beyond factual space. However, novel descriptors still appear, e.g., for materials description. [START_REF] Butler | [END_REF]42 For example, we can use fragment-related representations 43 or simplex codes 44 to code chemical data in the inorganic domain, while DeepSMILES 45 or SELFIES 46 are novel descriptors developed especially for novel structure generation avoiding vacant code to structure mapping. An example of the recent application of atomic descriptors coding atomic environments to retrosynthesis can be found in the reference. 47 A variety of other barriers in computer-assisted material design, e.g., data sharing in catalyst design, is discussed in the reviews.

48,49

The increasing number of engaged molecular structures is typical for the current molecular design. Machine learning and deep learning involving neural networks are new methods needed to support computational approaches in these areas.

Although drug design pioneered a number of in silico algorithms, recently, it is CASD that has significantly improved its efficiency. The lexicon of the current data science, especially for neural network approaches, is buzzily interfering in many areas. Usually, we identify three main learning architectures: unsupervised, supervised, or reinforcement learning. Figure 5 briefly illustrates these methods. In supervised learning, we support the molecular input data with the labels that the network should learn during the optimization. The unsupervised architecture is optimized by evaluating the similarity of the input signals; therefore, we need not show the labels. This is especially important when we do not know the label value, e.g., for a series of chemical compounds, we know their structures but do not know their reactivity or biological activity data. While supervised and unsupervised learning treats the data statically, reinforcement learning is a dynamic method investigating the interaction with the environment. The idea originated from the game theory, which searches for the best move. Therefore, in the language of this method, if the data (agent) moved randomly, interacting with the environment, a critique estimates an error. A low error value rewards a novel state, sitting better position as a result. Each network is optimized on the known chemical data library to be used for predictions. Since we want to explore unknown areas of chemical space, generating novel chemical structures is a fundamental problem in molecular design. We need to create novel molecules and let the network simulate the output for them. The solution to this problem can be the so-called generative approaches, e.g., generative adversarial network (GAN), in which the network maps the molecular representation of the known outputs by the discriminating block in the network. The random generator provides novel structures of the unknown output to be co-mapped to the discriminator, which gets experience in predicting. In Figure 6 we illustrated the idea of the GAN network, according to the reference. Feature engineering and feature learning are two options for modeling and predicting (chemical) data. 51 The term feature follows the lexicon of informatics more than that of chemistry. Its meaning is between a (physical or chemical) property or descriptor and a variable. The feature can be, for example, a component-type representation resulting from principal component analysis, which does not have any particular chemical interpretation. When contrasting engineering vs. learning, we focus on the autonomic capabilities of a computer algorithm. In feature engineering, we need human intervention to design variables that algorithms analyze. In turn, computers should be fully autonomous in the feature learning mode, which means that the algorithm selects the features from among the raw data. In the chemical context, feature engineering asks humans how to construct a molecular representation. Which data should represent chemical compounds in a model? We can say that feature learning is an algorithm capable of autonomous feature engineering by a computer, enabling the molecular representation suitable for the individual computation to be determined. Deep learning is the next term often used in chemical data science. Deep learning is a fully feature learning architecture using neural networks, usually the supervised backpropagation method. We get more and more experience in back-propagation routines; however, unsupervised architectures could be even more efficient.

52

Beyond synthesis design, drug discovery is another area of molecular design widely explored by machine learning. [START_REF] Polanski | Handbook of Computational Chemistry[END_REF][START_REF] Polanski | Encyclopedia of bioinformatics and computational biology[END_REF] The extensive up-to-date review of the machine learning for molecular and material sciences the reader can find in the reference. [START_REF] Butler | [END_REF] Early neural network applications can be illustrative examples for a better understanding of these methods 53,54

, in particular comparing supervised vs. unsupervised architectures in deep chemistry is discussed in the reference.

52

Computer-aided synthesis design

Retrosynthesis is a tool for splitting a target molecule into a synthon representation organized into a tree-like form. The synthon representation provides easy access to various reagents with the same reactivity type but having a spectrum of other chemical or physical properties. Accordingly, we can select the reagents with the lowest environmental impacts. Second, even more important, the number of possible synthetic routes (a strategy) under design by retrosynthesis is snowballing. The increase of potential transforms can be illustrated by the number of transformations per step, that can be as high as 80 to several thousands 55 , extensively exploring chemical space and allowing the chance to avoid the adverse environmental impacts of specific paths and find green and sustainable options. The retrosynthetic tree (Figure 4) supports decision-making. A simple interpretation can be found in the reference. 56 One significant challenge is the availability of the algorithms allowing for extensive chemical space exploration needed for in silico CASD.

55,57,58 Until recently, computers defeated the competition in this field, especially in finding the critical disconnections within complex natural products. However, machine learning is more and more competent here. Recent human-machine cooperation appeared especially successful in this competition. [59][60][61] In the recent study by the Grzybowski group, the Turing test cannot tell the difference between the human and machine-performed disconnections of the complex organic molecules. 62 Grzybowski also developed a highly efficient software in this field, Chematica (currently Synthia), which provides a full mode of synthesis design to arbitrary targets. 63 Notable, this is a feature-engineered architecture based on high-quality reaction data manually interpreted and programmed by chemists. The Grzybowski group started the many-year efforts for efficient retrosynthesis by arranging organic chemistry into the network architecture. The nods represent reagents, while their connections correspond to organic reactions. They analyzed all available structures from the Beilstein (currently Reaxys) database as the library of chemical compounds as the knowledge database. This approach allowed them to define the rules of organic chemistry and its developments throughout history. More recently, they identified the similarity between natural language and chemical structures, formulating the reaction rules or so-called templates, and programming their use in the CASD software. 59 Figure 7 shows an example of such a template. Interestingly, fully autonomous deep-learned CASD systems appeared much less successful, despite many efforts. 55,[64][65][66] However, a fully data-driven neural architecture, biosynthesis navigator (BioNavi-NP), was designed recently for computer-aided bio-retrosynthesis.

67

The reader can find an extensive up-to-date review of CASD for chemical synthesis in reference 12 broadly reviewing the problems of data curation, descriptor, and algorithm selection, retrosynthesis extension to automated synthesis, and highthroughput automated synthesis systems or autonomous systems for chemical synthesis, risk and safety assessment, as well as reaction selectivity, yield, conditions and miniaturization in the CASD context. Modular automatic robotic system application in chemical synthesis is another trend that can significantly contribute to the safety and performance of modern chemistry, also improving reproducibly and data quality. A formal computer-oriented definition of the retrosynthetic components, e.g., reaction representations and operations, is available in the thorough review [Artificial Intelligence for Retrosynthesis Prediction, https://doi.org/10.1016/j.eng.2022.04.021]. In the same publication, the authors briefly described how retrosynthetic elements and operations are mounted into the individual machine learning (ML) methods available, indicating in particular, (i) the sequence-to-sequence models, (ii) graph neural networks, (iii) search algorithms and (iv) deep reinforcement learning. Reaction prediction is a related problem of substantial importance for the CASD systems, especially in its tactics part. The reference 12 correlates retrosynthesis to the reaction prediction area, and an extensive review of machine learning for chemical reactions is available in the reference. 68 Popular interpretations and common understanding of the current state of the CASD method can be found in commentaries.

69,70

CASD Software is still not broadly available, but several options exist. Synthia, developed from Chematica, is commercial retrosynthetic software from Sigma Aldrich, currently a branch of MERCK. The retrosynthetic option is available as a part of the Reaxys database. 71 Another package, the ASKCOSsoftware tools for organic synthesis, is a freeware option for retrosynthesis available from MIT, which enables one-step retrosynthesis, enabling drawing and searching within buyable compounds catalog. This package can be used directly at the internet site in the interactive mode.

8

The first CASD for the inorganic domain, involving knowledge and prediction base, was a system integrating databases for the properties of inorganic substances and materials with data analysis having learning ability. The idea was published already in 2011. 72,73 The CASD for inorganic solids synthesis has been extensively explored recently. [START_REF] Kim | [END_REF][75][76][77][78][79][80] More recently, rational solid-state synthesis routes for inorganic materials were designed using catalytic nucleation on crystalline reactants analysis with the reaction and interfacial energies to the nucleation barriers approximated from high-throughput thermochemical data and structural and interfacial features of crystals.

5

Bimetallic catalyst synthesis is another example using feature-engineered fingerprints with DFT calculated spstates and localized d-states of adsorption sit, guiding machine learning HTS screening. 14 Recent examples in catalyst CASD can be found in the references. 76,[81][82][83][84] The reader can compare the reference 85 for the extensive review of machine learning in predictive catalyst CASDs. The reference 86 discusses perspectives for machine learning in heterogeneous catalysis. A broad review of computational and machine learning methods assisting nanoparticle synthesis is reviewed in reference. 87 The extension of retrosynthesis to the nanodomain has been developed recently to design the particles of desired shapes or sizes. 6 QSAR is a related method that, in its predictive versions, could construct the CASD systems. QSAR can involve machine learning for modeling various materials' properties. 88 Table 2 gives illustrative examples of the descriptors for predictive CASDs. 

Evaluating environmental nuisance of syntheses

While retrosynthesis alone provides insight into available synthesis options, it usually gives no systematic information on the greenness or sustainability of the processes or toxicity of reagents and solvents. With the increasing role of green chemistry, we needed an algorithmic method to evaluate the environmental benignness of chemistry. The E factor was designed as the first efficiency metric illustrating a fit to green chemistry criteria in the form of numerical value.

Accordingly, the E-factor controls resource efficiency and waste minimization. Sheldon, who developed the concept of the E-factor discussed its history and perspectives in one of his recent publications. 102 We can observe that a massive production needs better E-factor optimization. For example, in the pharmaceutical industry, having a production of 10 -10 3 tons per year E factor takes a value between 25 and 100 kg waste/kg product, while in oil refining, yielding 10 6 -10 tons per year, the E factor remains below 0. Fine chemicals and bulk chemicals of the production between the above-mentioned values also have E factors between the E factors for pharmaceuticals and oil refining.

103

In particular, in Table 3 we specified several exemplary E factors calculated for individual syntheses, as reported in the literature. The ratio of the quantity of moles of a product formed to the limiting reactant consumed Conversion

The ratio of the quantity of moles of the limiting reactant consumed to its starting value Selectivity

The ratio of the quantity of moles of a desired product formed to the limiting reactant consumed Commercial availability

Reactant availability Atom Economy (AE)

The ratio of the atoms forming the product to all atoms in reagents 1991 Atom Utilization (AU)

The ratio of the mass of product (kg) to the mass of all products (kg) 1992 Environmental Impact Factor (E-factor)

The ratio of the total mass (kg) of all wastes to the mass of product (kg) 1992

Mass Intensity (MI) The total amount of mass required to produce a unit of product 2001

Process Mass Intensity (PMI)

The ratio of the total materials used in a process (kg), with the exception of water, to the final product (kg) 2011

Effective Mass Yield (EMY)

The ratio of the mass of products (kg) to the mass of non-benign reagents (kg) 1999 Carbon Efficiency (CE)

The ratio of the carbon atoms in the product to all carbon atoms in substrates 2001

Reaction Mass Efficiency (RME)

The ratio of the mass of isolated product (kg) to the total mass of reactants used in the reaction (kg) 2001

Optimum Efficiency (OE)

The ratio of the Observed Reaction Mass Efficiency to theoretical Atom Economy 2015 simple E-factor (sEF)

The ratio of the total mass of all raw materials and reagents (kg) excluded the final product to the mass of the product (kg) 2015

complete E-Factor (cEF)

The ratio of the total mass of all raw materials and reagents (kg) excluded the final product, solvents, and water to the mass of the product (kg) 2015

Solvent Intensity (SE)

The ratio of the total mass of solvents used (kg) to the mass of the product (kg) 2001 Wastewater Intensity (WWI)

The ratio of the total mass of the process water (kg) to the mass of the product (kg)

Green chemistry CASD (GC-CASD)

A natural goal of retrosynthesis is to simplify the synthetic availability of the targeted compound, making synthesis cheaper, less hazardous, and easier. Therefore, retrosynthesis naturally favors green solutions. For example, the Synthia application allowed to improve synthesis providing higher yields in shorter paths giving higher purity and decreasing the number of chromatography steps needed for product purification.

119

To prioritize green chemistry in CASD, we should not only design a suitable synthetic path but also need to predict the chemical context of the reaction and operating conditions. Catalysts, reagents, solvents (chemical context), temperature, and pressure (operating conditions) are examples of the parameters critically important. The problem of the predictive design of reaction conditions is still not well explored; however, this issue has gained special interest recently.

120-124

Machine learning was used to predict suitable parameters for organic reactions to improve the accuracy and specificity of reaction outcome predictions. 125,126 In the context of green chemistry, efficient predictions would guide the search for green solutions, e.g., green solvents. Gao et al. designed a neural network model to predict up to one catalyst, two solvents, two reagents, and the temperature for a given organic reaction.

127 They trained the model on 10 million reactions extracted from the Reaxys to test it on 1 million reactions outside the training set. The prediction accuracy for combining chemical context with the catalyst and at least one solvent and reagent was ca. 69.6%. CASD programs still prioritize synthetic success and chemical diversity of the pathways. Consideration of green chemistry rules is only scarce; for example, early examples in the references. 128,129 One reason for this is the complication of CASD itself. For example, the best first searches (BFS) or depthfirst searches (DFS) synthesis tree search algorithms used in CASD needed manually formulated heuristics, which did not lead to sufficient CASD efficiency. 57,65 Therefore, making CASD more efficient needs more efficient algorithms with reasonable evaluation metrics. Trimming retrosynthetic tree complexity is an important objective being here a bottleneck. Segler applied the Monte Carlo Tree Search (MCTS) algorithm with symbolic architecture to reduce the complexity of the synthesis tree processing. 55 For the discussion of the technical problems of the MCTS method, the reader should see the reference. 130 Schreck et al. used similar method in their CASD system. 131,132 They recognized the CASD as a game performed by a chemist or a computer. The game rules to obtain the target molecule limits the use of chemicals for buyable compounds, i.e., these available at the market. The selection of the individual reaction depends upon the learning algorithm, i.e., the strategy an agent uses to pursue goals, or the so-called policy defined by the user. The user specifies the cost of performing a reaction, and this value is added to a running total, ultimately determining the overall synthesis cost. If the reactants identified are not buyable, we should plan their synthesis to count the total running cost. The authors used deep reinforcement learning to determine policies for the optimal reaction choices according to a user-defined cost metric in CASD.

131 A focus on buyable reactants optimizes economic cost but can also be a measure of green chemistry, for example, on a single laboratory scale. We will refer to the CASD considering green chemistry as GC-CASD. Wang et al. adopted MCTS to design the GC-CASD architecture.

58 Unlike in classical CASD, a fundamental problem of GC-CASD is the rapid assessment of the environmental nuisance of reactants, solvents, catalysts, and so on. At the same time, since retrosynthesis often explores new synthetic pathways, it is necessary to predict the properties of compounds in specific chemical environments.

We can refer to such operations as predictive green chemistry.

Green Aspiration Level (GAL) Transformation GAL times complexity 2015 109 transformation GAL (tGAL)

The ratio of the sEF (or cEF) to average complexity 2015 109 Relative Process Greenness (RPG)

The ratio of the GAL to actual sEF 2015 109 Renewable Intensity (RI)

The ratio of the total mass of all renewable derivable materials used to the mass of the final product 2015 116 Renewable Percentage (RP)

The ratio of the Renewable Intensity to a Reaction Mass Intensity 2015 116 Innovative GAL (iGAL) 34.4% of the molecular weight of the salt-free form of the desired drug/product 2018 117

Scale Risk Index (SRI) Total scores for the human health, environmental and physical hazards times total mass of all substances and time for performing the synthesis 2017 118

Solvents are usually simple chemicals, but optimization of their use is a complex multidimensional problem. An example is their design so that they have the potential to increase reagents' reactivity. Technically, Wang's GC-CASD system uses the MCTS variant with reinforcement learning. 58 This CASD operates on reaction rules, or the so-called templates 57,138,139 , and is limited to buyable chemicals, similar to other CASD algorithms. 55,131,140 The availability at the market estimates the easiness of synthesis. The catalog is a collection o ca. 100 000 low-price (under $100 per gram) compounds from Sigma Aldrich or eMolecules. The solvents were registered in the database to be represented by different scores depending upon their biosafety and flammability. Score values were defined after the solvent selection guides, as discussed by Byrne et al. 141 Green solvents such as water and ethanol obtained a score of 1, mediocre (poor), such as methyl isobutyl ketone or toluene, a score of 0, and non-green ones got -1.

Figure 8 illustrates a neural network method used by authors to predict suitable solvents with a probability distribution given for a target reaction. The MCTS variant suggested shorter pathways with greener solvents than those reported earlier. Authors claim that the method could predict milder reaction temperatures and more economical catalysts. A similar procedure was designed by Gao et al. 126 In Table 4, we listed indicators that can be used to evaluate green chemistry aspects. Only some of them were used in the published CASD systems.

From green to sustainable CASD (S-CASD)

We need a global transformation of the chemical industry to sustainable routines. However, we still do not have generally efficient methods for predictive sustainability. Chemical intuition, manual data processing, and experience are still dominating practices. Weber et al. indicated the bottlenecks for automated predictive discovery in this area as (i) data, (ii) evaluation metrics, and (iii) decision-making.

142 Figure 9. Sustainability needs the extension of the analysis beyond a single system. The circularity between the systems should influence the final analysis results. For example, the output flows (e.g., wastes) from outside could be used as the input to the system, potentially decreasing overall waste production. 142 Copyright © 2022 Royal Society of Chemistry Not all GC-CASDs are sustainable. An example could be a search guided by buyable reactants. Although buying reagents, vs. their synthesizing, improves green chemistry locally for a specific lab, this is not necessarily true globally. The shift from green to sustainable systems means we should not care for a simple system. However, we should involve in an analysis a complex environment beyond the system boundary 143,144

, as illustrated in Figure 9. Therefore, sustainability is much more complicated to predict than greenness. Weber et al. suggested using a reaction network (network of organic chemistry -NOC) for route selection and identifying strategic molecules for sustainable supply chains. [145][146][147] Notable, the NOC is a close analog to the network designed by Fialkowski et al. to discover the architecture of organic chemistry. 57,62,[148][149][150][151] We should remember that this approach provided efficient knowledge for CASD design, resulting in the Chematica and Synthia.

7

The new possibilities offered by the increasing computer power allowed for more efficient data mining and knowledge extraction from databases. For example, Voll and Marquardt designed Flux Analysis (RNFA) to identify optimal pathways for bio renewables on the literature extracted data. Thermodynamics-based metrics for ecological systems are discussed thoroughly in the book. 153 Exergy is an illustrative sustainability metric facilitating the second thermodynamics law in an ecological context. 153 Although theoretically, such metrics allow us to define better sustainability, we use much simpler practical measures for practical S-CASD evaluation. Exemplary heuristic rules for large-scale screening, can include carbon counts, catalysts, fragments, publication year, number of reaction records, reaction type, reagents, similarity, solvents, and yield. A function of these heuristics is to select the best possible solutions with the highest probability, e.g., remove old reactions, remove undesired solvents, remove undesired catalysts, remove reactions with yields lower than the threshold, etc. A practical example of the extension of the green concept to sustainability is an application of the green aspiration level index iGAL 2.0 to reduce global API (active pharmaceutical ingredient) manufacturing wastes. Roschangar et al. developed iGAL for sustainability evaluation. The iGAL 2.0 extends the API (active pharmaceutical ingredient, drug substance) process waste, process mass intensity (PMI), and the complete E factor (cEF) metrics. They also showed how to adapt the yield (YD) and the convergence (CV) as sustainability measures.

Article

165 Syntheses of similar yields arranged convergently provide better yields than those assembled linearly. Let us say that we have the reactions of the same yield value. Because the reaction yield is always a number lower than 100% (<1), the power function giving the total yield of linearly arranged syntheses decreases rapidly with an increasing power value.

For the given number of starting materials (SM), the lower sum of subprocess steps (SSS) means a higher CV. Roschangar et al. modified simple CV metrics of SSS used previously by Hendrickson by using its relative value, SSavg, amounting to SSS/SM. Yield is a measure of step productivity and is based on the molar limiting. For processes with two or more longest linear step sequences (LS) starting materials with the same step distance to the API, the starting material with the largest contribution to the API structure, or largest atom economical molecular weight (MW AE ), is prioritized. YD reflects the cumulative product of yields LS across steps (k).

Process Convergence (CV) indicates how directly the starting materials are assembled into the API and therefore reflects the efficiency of API process design. The appeal of using CV in combination with YD is that they are orthogonal and pertain to two complementary dimensions of process efficiency: design efficiency (CV) and productivity (YD).

Accordingly, YD and CV could be crucial sustainability indicators for S-CASD algorithms if used for larger systems.

Figure 10 shows the application of the CV and YD-optimized CASD. Authors claim that the iGAL 2.0 based CASD could significantly reduce global API (active pharmaceutical ingredient) manufacturing wastes. Actually, CV and YD evaluate green chemistry; however, the global dimension of the waste analysis upgrades the scale to sustainability. In Figure 12 we compared their approach which we can describe as the waste building block appropach to dapsone synthesis to the currently synthetic procedure.

Interestingly the comparison of retrosyntheses in Figures 11 and 12 also reveals the differences between the hand-made vs. in silico black box retrosyntheses. While the first approach is an essential issue to provide us with the backward disconnections comprehendible to a chemist working in the product-to-reactant strategy, the second one does not even show the backward process hidden from our view. Usually, in this mode we present a forward reaction scheme, even not pretending that the software user can intrude on the computer algorithm. Instead, the obtained scheme is even more accessible for human interpretation, while the usability of the results for substantial sustainability increase is impressive.

The waste-building block strategy retrosynthesis is a significant breakthrough in sustainability. A variety of retrosyntheses with this strategy the reader can find in the reference [Nature (a) https://doi.org/10.1038/s41586-022-04503-9]

Retrosynthesis beyond target molecule

Virtually, retrosynthetic analysis involves two problems. The first is the design of the reaction sequence giving the target molecule, which is the primary goal in the organic chemistry domain.

Optimization of disconnections leads to a comprehensive library of reactions that can be evaluated to select proper parameters for these reactions, in the search for brilliant green and sustainable reactants and conditions. The second problem, optimization of individual syntheses and processes is independent of the target molecule. An example of an decisively target independent green and sustainability level increase could be computer-aided sustainability-oriented process optimization. An excellent introduction to this problem the reader can find in the references

Similarly, the parameters that we listed in Tables 2, 3 and 5 ranges from these that can be directly engaged in the prediction or design procedures (in the target dependent and independent modes) to those that are vague heuristics. Let us indicate the publication year (Table 5), which is indicated in the literature as a sustainability index. It is well-defined but soft concerning a correlation to experimental data reliability.

Evaluating the toxicity of molecules and chemicals is an important metric for green chemistry or sustainable CASD. Therefore predictive toxicology is an essential issue for G-, S-or nano-CASD. 

Safe-and Sustainable-by-Design (SSbD) concept for nanomaterial S-CASD architectures

In the concept of Safe-and Sustainable-by-Design (SSbD), the design process of chemicals and (nano)materials should consider both safety assessment (i.e., identification of the potential risk that newly designed (nano)materials bring to the humans and the environment) and the sustainability, i.e., environmental, social or economic impact at the early stage of the design process of innovative (nano)materials. 168 The materials based on nanostructures offer unique physicochemical properties compared to the same micro or macro scale chemicals. However, in the literature the systematic knowledge about the influence of nanostructure modification or nanostructure combination on the functionality and safety of newly designed advanced (nano)materials is still limited.

169 Due to the high cost and time of experiments, investigating all possible structure combinations to design the most optimal (safe-and sustainable) products is impracticable. The most promising approaches that may support the design of Safe-and Sustainable nanomaterials in a shorter time are based on in silico methods such as physics-based materials modeling (MM) 170 and data-based methods with Machine Learning (ML).

Nano Quantitative Structure-Activity Relationship (nano-QSAR) is a related novel tool developed 171 , but generally, this area still needs exploration. In Figure 11 we showed how nano-QSAR could be used for designing novel parameters for descriptive sustainable nano-retrosynthesis, while Table 6 specifies the descriptors and properties potentially useful for nano-CASD. One problem of nano-QSAR modeling are nanostructure representation and characterization. 171 Wyrzykowska et al.

reviewed the most promising directions for developing the appropriated nanostructure representation described by a set of nanodescriptors that enhance the reliability of computational methods for Safe-and Sustainable-by-Design Strategy. 169 This study answers how to represent and describe nanomaterials in predictive nanoinformatics based on combined molecular modeling (MM) and machine learning (ML) techniques. 169 The concept 169 includes a system perspective that is crucial for nanomaterials characterization, i.e., (i) system-independent nanodescriptors that describe nanostructure (e.g., chemical composition, crystal structure, size, shape, surface structure), so-called S-descriptors; (ii) system dependent descriptors that describe particular elements of a nanoparticle and its environment in real-time (i.e., core, coating, ligands), so-called E-descriptors, and (iii) multicomponent structure represented by numerical combinations of descriptors for individual components of the nanostructure and descriptors related to interactions between these components. [172][173][174] According to JRC 168 , one of the most promising data-driven methods to process the relationship between toxicological, environmental or physicochemical data and the nanomaterial structure is related to predictive QSAR, Nano-QSAR modeling and read-across methods, respectively. In the chemical sector, more than 200 000 chemicals have a limited number of information crucial for the design process of safe and sustainable nanoproducts.

168 Chemical-specific data gaps related to the specific process (including lack or inconsistency in data resources or synthesis process) may be overcome by nano-QSAR methods and read-across. These methods may predict missing datapoints (so-called endpoints, such as toxicity, ecotoxicity, or physicochemical properties) helping also to model quantitative relationship between synthesis conditions, nanostructure properties and its safety or sustainability profiles. The nano-QSAR methods combined with molecular modeling (MM) and ML screening may help to answer which structural features of nanomaterials are responsible for the observed toxic effects or physicochemical properties of industry interest. [175][176][177][178] Implementation of virtual screening in SSbD strategy may support the screening of a huge library of virtually created nanostructures and their combination, then manage ("design out") hazardous features (safety) as well as functionality (sustainability) at the earliest possible manufacturing step. 179 As a result of virtual screening, only the most optimal structures (i.e., components described by specific features and safety) may be finally selected for synthesis and experimental validation. 176,178 By the application of nano-QSAR methods and read-across, it is possible to reduce cost, time, and the number of necessary experiments and, at the same time, increase the efficiency of the design process. Thus, the combination of various in silico methods in the S-CASD architecture offers novel opportunities for knowledge-based optimization and development of new nanomaterials by improving their functionality and minimizing the potential unexpected risk to the human body and the environment. 

Conclusions

When retrosynthesis started computers were newborns hardly adapted to chemical applications. The chemical audience received Corey's retrosynthesis idea with skepticism. Early computers were not ready to process chemical ideas and data. Therefore, teaching chemistry to computers was one of the first tasks of chemoinformatics. The view of the human chemists differed significantly from the computer needs. We required many efforts and ideas to transit chemical art to efficient chemical informatics. Today, in silico information processing and human brain chemistry arranges into complementary structures. The need to adapt chemistry to a form understandable to computers has brought much freshness to chemistry, allowing chemists to understand and clear out some ambiguities. In turn, by analyzing the work of the computer, chemists learned a different view of chemistry.

It was the computer that became the teacher. In the case of retrosynthesis, we observe how the computational dimension makes the original symbolic product-to-reagents symbolic visualization layout lose meaning. The CASD strategy is a complex problem engaging both backward and forward strategies, and today, the results of retrosynthesis are often presented directly as the reagents-to-product process. Playing retro (backward) or forward strategy visualization is easily interchangeable with modern software. The classical retroanalysis stayed somewhere below the software level recognized by the user. However, the user accepts this black box-like architecture because we highly appreciate outstanding results of modcern CASDs. When analyzing chemists' sentiments, we can observe a bumpy road from initial reserve to enthusiasm. With suitable software, chemists can design synthesis efficiently.

Retrosynthesis is a tool allowing for finding reaction pathways to chemical compounds. Chemistry decides that in retrosynthesis, the molecules can be disconnected in many ways, indicating a variety of potential synthetic routes to products called retrosynthetic trees. From one side, the abundance of retrosynthetic trees is a severe complication. Therefore, in standard hand-made retrosynthesis, chemists tend to limit the number of possible solutions keeping it under the control of human brain capabilities. Even in computer-assisted synthesis design (CASD), retrosynthetic trees need trimming for efficient analysis. However, this abundance can be an opportunity for finding the path to reducing toxicity to humans and the environment, improving the degradability of chemicals, and their recycling or reusing potential. Drug design and retrosynthesis were the methods significantly improved recently to computer-assisted technologies. Machine learning and deep learning support this area.

Selecting retrosynthetic trees with a high fit with green chemistry requires unique methods. Similarly, we need particular strategies to support the new sustainable chemistry paradigm, which focuses not on a simple chemical reaction but on extending the analysis borders beyond individual processes. Data mining allows for exploring databases and literature for green and sustainable methods. However, in order to design novel chemistry, we need predictions. Predictive greenness and sustainability need efficient metrics for numerical evaluation. E-factor was the first index designed to estimate the reaction environmental fit. Various modifications were developed and used in the descriptive and predictive role. Retrosynthesis beyond the organic chemical subspace is a recent idea involving inorganic and nano domains, which targets nanostructures of the desired shapes and sizes. Predictive sustainability in (nano)materials needs novel methods that may speed up the design process. Combined MM with ML methods (including predictive QSAR or Nano-QSAR modeling) may significantly increase the in silico potential for designing safe and sustainable (nano) materials (i.e., more structure with different properties may be considered, and a more comprehensive description of nanostructure would be possible at the same time). The described in silico methods for CASD may reduce time, cost, and number of experiments, which is crucial for future optimization of the design process of safe and sustainable (nano)materials.

Although routine GC-S-or nano CASDs are still a matter of the future, some early birds have appeared in this area. The story of retrosynthesis resembles this of chess-playing software in the last decade. In 90' human players used to win with AI algorithms. The Deep Blue chess-playing algorithm first brought a draw; nowadays, no human can compete with a machine in chess. In retrosynthesis, the machine and humans can produce similar results now that the Turing test cannot distinguish. Similarly to classical organic retrosynthesis, the GC-, S-or nano CASDs will also profit from humans playing with computers who bring entirely novel ideas. The waste-oriented building blocks approach [Wolos et al., Computer-designed repurposing of chemical wastes into drugs, Nature https://doi.org/10.1038/s41586-022-04503-9] is an example of creatively overcoming sustainability problems with a fresh computer-oriented concept. In perspective, we can better mount the green, sustainability or nano indexes to the GC-S-or nano CASDs to essentially finetune the results. Because the parameter-oriented GC-S-or nano CASDs will need extensive data processing in the backward and forward modes, we can expect the human-computer interplay will provide the blackbox-like architectures for the big data-dependent mode in which humans cannot easily compete with computers. These architectures will engage all available measured reactions and chemical data available for chemical compounds and reactions available in the literature as these listed in Tables 2345. In conclusion, we can expect significant development and profit from the CASD strategies here.

Figure 1 .

 1 Figure 1. The idea of retrosynthesis. Target molecule (TM) transformed by bond disconnecting or reforming into fragments (synthons) in virtual operations (on paper or in silico). Converting (S -> R) into actual reagents which can be reacted in vitro to TM.Retrosynthesis initially focused on TM's symbolic disconnection strategies to synthons (left side). With the development of machine learning, the prediction of synthesis tactics, i.e., chemical context and operating conditions for the synthetic path from reagent to TM could be more predictive. This part is essential for extending retrosynthesis beyond the organic domain into inorganic compounds and nanoparticles and designing green and sustainable synthetic paths.

Figure 2 .

 2 Figure 2. Functional group (FG) with heteroatom (X) labels the carbon chain atoms with locants.

Figure 3 .

 3 Figure 3. A vertical scheme illustrating disconnections and synthons (left), the synthon to reagent (S→R) conversion and reacting reagents (right) for an exemplary molecule. TM can be disconnected to S1 (d alkyl ) and S2 (a 1 ). S1→R1 and and S2→R2 conversion gives 1-bromohexane and pentanal. The S→R conversion reveals the reagents needed for in vitro reaction are pentyl bromide and pentanal TM1. TM1, after FGI conversion to alcohol, disconnects (left side) to synthons S3 [a1] and S4 [d alkyl ]. The S→R provides the respective reagents R3 and R4.

Figure 4 .

 4 Figure 4. Synthetic tree addressing chemical (a) or informatics (b) representations. 56 Copyright © 2022 American Chemical Society and Division of Chemical Education, Inc. (a) and 2022 XXXX

50Figure 5 .

 5 Figure 5. The unsupervised, supervised and reinforcement learning architectures. Details in text.

41 Figure 6 .

 416 Figure 6. A complex learning architecture crossing the random generator of new structures in which chemical connectivity is coded by SMILES or related descriptor types. Reproduced after. Copyright © 2022 Springer Nature

Figure 7 .

 7 Figure 7. A reaction template (reaction rules) noted for an exemplary reaction. The template is programmed manually on factual data from databases. Data are carefully curated, and expert human knowledge is critical for the high efficiency of the featureengineered CASD systems. Colors codes different molecules, yellow -target molecule, red -buyable, green -recorded in literature, violet -not recorded in the literature.59
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Figure 8 .

 8 Figure 8. The MCTS architecture for CASD finding short paths with green solvents.58

Figure 10 .

 10 Figure 10. iGAL 2.0 scorecard output for 3rd generation Dabigatran API process. Copyright © 2022 American Chemical Society

Figure 11 .

 11 Figure 11. The schematic representation of CASD methods combined with MM/MLbased modeling.

  shells in the metal of the oxides

Table 1

 1 Basic lexicon of retrosynthesis

Definition Target molecule (TM)

A molecule under design.

Table 2

 2 Descriptors for predictive CASDs. . Mean_d, σ_d, mean_iV, σ_iV, mean_T, σ_T are six topological descriptors based on the first Delaunay shell. Group is the Periodic Table group of the element. eg electrons is the nominal number of transition-metal electrons based on its formal oxidation state and spin state. SMILES is a line notation for entering and representing molecules and reactions.

	Entry	Descriptors a	Domain	Material	Method	References
	1	Binding energy				
	2	Filling of a d-band				
	3	Center of a d-band				
	4	Width of a d-band				
	5	Skewness of a d-band				
	6 7	Kurtosis of a d-band Work function	inorganic	Bimetallic catalysts	ML	14, 89, 90
	8	Local Pauling Electronegativity				
	9	Ionization Potential				
	10	Electron Affinity				
	11	Pauling electronegativity				
	12	Atomic Radius				

a/ The parameters that we listed in Tables

2, 3

, and 5 operate in the forward mode evaluating individual molecules or reaction s mode rather than molecular disconnections in the forward mode. For more details, the reader should compare the section (Retrosynthesis beyond TM); descriptors or (calculated/predicted) properties

Table 3

 3 Examples of E factors values reported in literature for individual reaction A variety of efficiency metrics for green chemistry are available currently. Illustrative examples are shown in Table4. To realize the complexity of chemical problems, we can analyze such a simple metric as yield (Table4, entry 1). In precise calculations,

	we involve the recovered starting material and the purity of
	the product. Typically, 95% spectroscopic purity is a level
	determining the isolated yield.	103 For a broader discussion of
	the metrics available, the reader should compare ref.	109

  Struebing et al. use quantum methods to select appropriate solvents.

		133 Predictive catalyst design would
	be even more complicated. For example, could we extend a
	simple drug design heuristics of privilege structures	134 to
	privilege metal combinations	135 , designing catalysts for
	environmental nanocatalysis?	136 Marcou et al. developed the
	system for the predictive design of catalysts for Micheal
	reaction. 137 Biocatalytic CASD is another problem explored in
	recent years.	67

Table 5

 5 

	Indexes for S-CASD			
	Metrics	Type	Effect	Reference
	Total net primary energy usage rate (GJ/y)	Predictive	negative	154
	Total net primary energy sourced from renewables (% )	Predictive	positive	154
	Total net primary energy usage per kg product (kJ/kg)	Predictive	negative	154
	Total net primary energy usage per unit value added (kJ/$)	Predictive	negative	154
	Total weight of raw materials used per 1 kg of a product (kg/kg)	Predictive	negative	154
	Total raw materials used per unit value added	Predictive	negative	154
	Fraction of raw materials recycled	Predictive	positive	154
	Hazardous raw material per kg product	Predictive	negative	154
	Net water consumed per unit mass of product (kg/kg)	Predictive	negative	154
	Net water consumed per unit value added	Predictive	negative	154
	Waste reduction	Predictive	positive	154
	Safety index	Predictive	positive	154
	LCA -ozone layer depletion	Predictive	negative	154
	LCA -photochemical oxidation	Predictive	negative	154
	LCA -acidification	Predictive	negative	154
	LCA -eutrophication	Predictive	negative	154
	Carbon footprint -raw materials	Predictive	negative	154
	Number of Records	Factual	positive	142
	Publication Year	Factual	positive	142
	Reaction Type	Factual	positive	142
	Similarity	Predictive	positive	142
	Yield	Predictive	positive	142
	Number of hazardous materials input	Predictive	negative	155
	Mass of hazardous materials input	Predictive	negative	155
	Chemical exposure index	Predictive	negative	156
	Health hazard, irritation factor	Predictive	negative	157,158
	Health hazard, chronic toxicity factor	Predictive	negative	157,158
	Safety hazard, fire/explosion	Predictive	negative	157,158
	Safety hazard, reaction /decomposition	Predictive	negative	157,158
	Safety hazard, acute toxicity	Predictive	negative	157,158
	Fault tree assessment	Predictive	negative	159
	Toxic release intensity	Predictive	negative	160
	Environmental quotient	Predictive	negative	161
	Environmental hazard, persistency of organic substances	Predictive	negative	157,158
	Environmental hazard, air hazard	Predictive	negative	157,158
	Environmental hazard, water hazard	Predictive	negative	157,158
	Environmental hazard, solid waste	Predictive	negative	157,158
	Environmental hazard, bioaccumulation	Predictive	negative	157,158
	Global warming potential	Predictive	negative	162
	Global warming intensity	Predictive	negative	155
	Emergy to yield ratio	Predictive	positive	163
	Emergy sustainability index	Predictive	positive	164
	Renewability index	Predictive	positive	164
	Total solid waste mass	Predictive	negative	155
	Recycling mass fraction	Predictive	positive	155
	Disposal mass fraction	Predictive	negative	155
	Hazardous solid waste mass fraction	Predictive	negative	155
	Total volume of liquid waste	Predictive	negative	

Table 5 ,

 5 we specify indicators available in this area. A comparison between sustainability and greenness clearly illustrates how complex could be to define sustainability precisely enough. Many indexes are heuristics based on (chemical) intuition. The question is, can a large combination of such indexes efficiently control sustainability? The life cycle assessment (LCA) is a broader concept involved in sustainable development. the publication of Moity et al. describing the bio-based building block strategy in which authors were able to design a few-step synthesis of a large number of commodity chemicals. In particular, the authors used the CASD software, GRASS (Generator of Agro-based Sustainable Solvents), to design solvents from biomass. GRASS was programmed in 1980' to predict the products of flavor and food degradation products [R.Barone, C. 
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Table 6

 6 Descriptors for nano S-CASD

	Descriptors

182

Energy of lowest unoccupied molecular orbital
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