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EXPONENTIAL STABILITY OF SOLUTIONS TO THE
SCHRÖDINGER–POISSON EQUATION

JOACKIM BERNIER, NICOLAS CAMPS, BENOÎT GRÉBERT, AND ZHIQIANG WANG

Abstract. We prove an exponential stability result for the small solutions of the Schrödinger–
Poisson equation on the circle without exterior parameters in Gevrey class. More precisely we
prove that for most of the initial data of Gevrey-norm smaller than ε small enough, the solution
of the Schrödinger–Poisson equation remains smaller than 2ε for time of order exp

(

α
| log ε|2

log | log ε|

)

.
We stress out that this is the optimal time expected for PDEs as conjectured by Jean Bourgain
in [Bou04].

Contents

1. Introduction 1
2. Functional setting and polynomials 5
3. Resonant normal form 10
4. Dynamics of the high modes 17
5. Rational fractions 19
6. Rational normal form 26
7. Proof of the main results 35
Appendix A. Proof of Lemma 4.1 44
References 45

1. Introduction

Hamiltonian PDEs have been very popular in many mathematical researchers over the past
decades. Meanwhile, Birkhoff normal form theory is a key technique to study the long-time
behaviors of small amplitude solutions of nonlinear PDEs on bounded domains. In particular
Birkhoff normal forms have been used in non-resonant cases to prove stability over long periods
of small and regular solutions [Bou96, Bam03, BG06, BDGS07, Gré07, GIP09, Del12, FGL13,
YZ14, BD17, FI19, BFG20b, BMP20, BFM22, BMM22]. However, in all these works, external
parameters were required to ensure non-resonance conditions on the linear frequencies.
Without external parameters, Kuksin-Pöschel [KP96] constructed a Cantor set of quasi-periodic
solutions for resonant nonlinear Schrödinger equation (NLS) through KAM normal forms. The
key was to use the nonlinearity to modulate the resonant linear frequencies and then to avoid
resonances. In short, the nonlinear term contributes to the stability of the solutions. Later Bernier-
Faou-Grébert [BFG20a] exhibited rational normal forms to study Hamiltonian PDEs without
external parameters and obtained the stability over very long time (ε−r for any large r given)
of the solutions to nonlinear Schrödinger equations and Schrödinger-Poisson equation (NLSP) on
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the circle (see also [Bou00]). Then similar results were proved for Korteweg-De Vries equations
and Benjamin Ono equations in [BG21] and for Kirchhoff equations in [BH22].

In the present work we want to obtain exponential stability, i.e. stability for time of order

exp
(
α | log ε|2

log | log ε|

)
for solutions of initial size ε in Gevrey class and still without using exterior

parameters. As commented below this is the optimal time expected for PDEs (as conjectured
by J. Bourgain, see [Bou04]). Roughly speaking this exponential time is obtained by optimizing
the procedure described in [BFG20a]. It turns out that the NLSP case is easier than the NLS
case. The reason is that the cubic term of NLSP is enough to eliminate the higher orders (this
simplifies the algebraic construction of the rational normal form) while the quintic term of NLS
was used in [BFG20a] to get rid of certain non-integrable resonant terms. The same result can
be obtained for NLS, but at the cost of an extra technical effort and, in this work, we want to
highlight the general method that can be applied in other cases, rather than fighting for the most
general framework.
We note that, very recently, J. Liu and D. Xiang have deposited a paper on arxiv [LX23] which
demonstrates a similar result for NLS still based on [BFG20a] but they do not obtain the optimal
time but rather time of order exp(α| log ε|1+β) for any β < 1.
So in this work we consider the following Schrödinger-Poisson equation on the torus T = R/2πZ

(NLSP)







i∂tz −∆z +Wz = 0,

−∆W = |z|2 − 1

2π

∫

T

|z|2 dx, z = z(t, x), (t, x) ∈ R× T,

As usual, we identify each function z ∈ L1(T;C) with the sequence of its Fourier coefficients
(za)a∈Z ∈ C

Z defined by

za =
1

2π

∫

T

z(x)e−iax dx.

Given σ > 0, θ ∈ (0, 1), we define the following Gevrey space (the parameter θ and σ are fixed
once and for all)

(1.1) G :=

{

z ∈ C
Z | ||z||σ := 2

∑

a∈Z

eσ|a|
θ |za| < ∞

}

.

Note that, since σ and θ are positive, this is a space of smooth functions, i.e. G ⊂ C∞(T;C).
Moreover, since it is based on ℓ1, it is a Banach algebra.

By the second equation one has W = V ⋆ |z|2 where V is the Green function of the operator
−∆ with zero average on the torus. Therefore, we obtain the associated Hamiltonian

(1.2) H(z) =
1

2π

∫

T

(

|∇z|2 + 1

2
(V ⋆ |z|2)|z|2

)

dx.

Note that it rewrites

(1.3) H(z) =
∑

a∈Z

a2|za|2 +
∑

a1+a2=b1+b2
a1 6=b1

1

2(a1 − b1)2
za1za2zb1zb2 =: L2(z) + P4(z).

1.1. Main result. We are going to consider solution of (NLSP) generated by initial data in a
family of open subsets Θε of G surrounding the origin (i.e. 0 ∈ ∪ε>0Θε). They are explicitly
defined by (7.1), but their precise definition requires lots of notations and is not really necessary
to state and to understand our main result.
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First, we are going to state a theorem, describing, for very long times, the dynamics of the
solutions of (NLSP) whose initial data are in Θε ∩B(0, ε) where B(0, ε) denotes the ball of radius
ε in G and centered at the origin. Then we will state three propositions to explain why it allows
to control the dynamics of most of the solutions in a sense that we specify carefully.

Theorem 1.1. There exists ε∗(σ, θ) > 0 such that for all ε ∈ (0, ε∗), for all z(0) ∈ Θε of size

‖z(0)‖σ ≤ ε, the local solution with data z(0) = z(0) to (NLSP) exists in C([−Tε, Tε];G) with

(1.4) Tε := ε−rε with rε =
min(σ, 1)θ(1 − θ)

1500

log ε−1

log log ε−1
,

and this solution satisfies for |t| ≤ Tε

‖z(t)‖σ ≤ 2‖z(0)‖σ ,
∑

a∈Z

eσ|a|
θ ||za(t)|2 − |za(0)|2|

1
2 ≤ ‖z(0)‖

3
2
σ .

Now, it remains to prove that the sets Θε are large and enjoy good properties. First, we focus on
the geometric properties of Θε. To claim this first proposition, we need to introduce the projection
ΠM : G → G defined by

(1.5) ΠMz =
∑

|a|≤M

zae
iax

then we naturally define GM := ΠMG and BM(0, ε) = ΠMB(0, ε).

Proposition 1.2. For all ε ∈ (0, ε∗), Θε is an open subset of G, which is a right cylinder of

direction (IdG −ΠMε)G where Mε = (log ε−1)1+
4
θ , i.e.

z ∈ Θε ⇐⇒ ΠMεz ∈ Θε

and that is invariant by translation of the angles, i.e.
∑

a∈Z

zae
iax ∈ Θε ⇐⇒

∑

a∈Z

|za|eiax ∈ Θε.

Proposition 1.3. For all ε ∈ (0, ε∗), setting Mε = (log ε−1)1+
4
θ , we have that

(1.6) meas(Θε ∩ BMε(0, ε)) ≥ (1− ε
1
6 )meas(BMε(0, ε))

where meas denotes any Lebesgue measure1 on GMε.

Comment 1.4. We stress out that the first property of Proposition 1.2 says that the belonging
of z to the set Θε does not depend on the high Fourier modes of z but only on those with indices
smaller than Mε. Note that, from a numerical point of view, Mε is actually very small in terms
of ε−1. Furthermore Proposition 1.3 asserts that, reduced to this finite number of modes, the set
Θε is asymptotically of full Lebesgue measure.

Now we state a probability result on Θε.

Proposition 1.5. Let Y be a random function in G, whose Fourier coefficients Ya are real,

independent and uniformly distributed in (0, 〈a〉−2e−σ|a|θ ), and let Z(0) = Y/‖Y ‖σ be the projection
of Y on the unit sphere. Then, provided that ε0 is small enough, we have

P(∀0 < ε ≤ ε0, εZ(0) ∈ Θε) ≥ 1− ε
1/12
0 .

1Note that, thanks to the change of variable formula, the estimate (1.6) does not depend on the Lebesgue
measure we choose on GMε

.
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As a consequence we deduce that
⋃

ε>0Θε ∩ B(0, ε) (i.e. the set of the "good" initial data) is
"almost surely star shaped":

Corollary 1.6. Almost surely, there exists ε0 > 0 such that for all ε ∈ (0, ε0), εZ
(0) ∈ Θε.

1.2. Related results. The stability of small solutions over exponential times, in a stronger or
weaker sense depending on the article, has already been demonstrated using external param-
eters. For the NLS equation on T

d in analytic regularity, Faou-Grébert in [FG13] obtain a
time Tε = exp(α| log ε|1+β) for any β < 1. For the NLS equation on T with Gevrey regular-
ity, Biasco-Massetti-Procesi in [BMP20] obtain, still using external parameters, a time of or-

der exp(α| log ε|1+θ/4) (see also [CMWZ22] for derivative NLS and [CCMW22] for a result in
class of regularity between C∞ and Gevrey). As already noticed above, Liu and Xiang (see
[LX23]), for NLS without parameters in Gevrey regularity, obtained very recently a time of order
Tε = exp(α| log ε|1+β) for any β < 1.
In finite dimension n, the standard Nekhoroshev result [Nek77] controls the dynamics over times

of order exp
(
αε−1/(τ+1)

)
for some α > 0 and τ > n+1 (see for instance [BGG85, GG85, Pös93])

which is, of course, much better than our Tε. Nevertheless, clearly this standard result does not
extend to the infinite dimensional context: when n → +∞ we get τ → +∞. Actually this kind of

exponential times exp
(
α | log ε|2

log | log ε|

)
were obtained by Benettin-Fröhlich-Giorgilli in [BFG88] for a

Hamiltonian system with infinitely many degrees of freedom but with finite-range couplings. We
also notice that this time was suggested by Bourgain as the optimal time that we could obtain in
an analytical context (see eq. (2.14) in [Bou04]). It’s somewhat surprising that we get the same
time for Gevrey regularities. We are also convinced that this optimal time is not model-dependent,
and that we could adapt our method to NLS and probably also to KdV. As usual the method
is based on an optimization with respect to ε of the order rε of the normal form (in this case a
rational normal form) that we perform. An important point in our approach (see section 1.3 ) is
that we perform the optimization on a reduced system involving only low frequency modes. The
initial model mainly plays a role in controlling the high modes (and their influence on low modes)
and not directly on the optimal time. Note in passing that this method could also be applied to
simpler cases, in particular to NLS with convolutive potentials acting as external parameters. By
the way, this is also the time that two of us obtained in [BG22] for special choices of convolution
potentials in NLS on T

d in Hs for any s > d/2.
Finally, we’d obviously like to obtain a result that is valid for any small initial condition and
not just for almost any small initial data. In finite dimension, this is achieved by the geometric
Nekhoroshev method (in contrats to the analytic Nekhoroshev method used in this work) based
on convexity arguments. This approach is very tempting in the case of resonant PDEs, but un-
fortunately the [BK05] article is not very optimistic about its success in high dimension, let alone
infinite dimension (see however [Bam99]).

1.3. Proof strategy and paper outline. In Section 2 we introduce Hamiltonian setting and
we define a class of polynomial Hamiltonians for which we describe the associated Hamiltonian
flows (Lemma 2.7). Then, in Section 3, we are in position to state and prove a resonant normal
form result, Theorem 3.1. Notice that in formula (3.5) NLSP appears as a perturbation of L2+L4

which is nonlinear but integrable. We will use this fact to modulate the frequencies.
In Section 4, just using the resonant normal form, we control the dynamics of the high frequencies
over exponential times, under some a priori control on the norm of the solution. Then it remains
to control the dynamics of the low frequencies, says u≤M := (uk)|k|≤M . Naturally u≤M satisfies a
finite dimensional system governed by the truncated Hamiltonian. Thus in Section 5 and Section 6
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we perform a rational normal form for this truncated Hamiltonian, Theorem 6.2, in a finite
dimensional setting. This way of proceeding (i.e. reducing first the problem in finite dimension)
has the enormous advantage (comparing with [BFG20a]) of leaving aside many of tricky problems
of convergence and in particular the problem of the existence of derivatives with respect to time,
which usually require a somewhat convoluted passage through density. We emphasize that in
Section 5 and Section 6 we follow carefully the dependency of all the parameters with respect to
the degree r of the normal form. This was not necessary in [BFG20a] since this order r was fixed
from the very beginning, but now we want to optimize it.
Finally in Section 7 we put all together and prove the main Theorem by optimizing the parameters
(in particular the degree r) introduced in the previous sections in term of ε, the size of the solution.

The optimal degree is rε = c(σ, θ) log ε−1

log log ε−1 and thus we naturally obtained the optimal time

(1.4) in Theorem 1.1. The optimized truncation parameter is Mε = (log ε−1)1+
4
θ and since the

construction of the set Θε only depends on the rational normal form construction of Section 6, we
obtain easily Proposition 1.2.

1.4. Notations. In all this paper we set U2 := {−1, 1}. L2(T;C) is equipped with its real scalar
product

(1.7) (u, v)L2 = Re
∑

a∈Z

uava =
1

2π
Re

∫

T

u(x)v(x)dx

As usual, we always identify sequences z ∈ C
Z with sequences in C

U2×Z by using the convention

z−1,a := za and z1,a := za, ∀a ∈ Z.

Given j = (δ, a) ∈ U2 × Z, we define its conjugate by

(1.8) j = (δ, a) = (−δ, a)

and we set

δ(j) = δ and a(j) = a.

Furthermore, we use the following unusual conventions

|j| := |(δ, a)| := |a| and 〈j〉 := 〈(δ, a)〉 := max(1, |a|).
Given a set E and finite sequence v ∈ En of elements of E of size n ≥ 0 for some n ∈ N then #v
denotes the number of elements of v that is #v := n.

1.5. Acknowledgments. During the preparation of this work the authors benefited from the sup-
port of the Centre Henri Lebesgue ANR-11-LABX-0020-0 and J.B. and N.C. were also supported
by the region "Pays de la Loire" through the project "MasCan" and Z.W. was also supported by
CSC grant (202206100095) and Nankai Zhide Foundation. The authors were partially supported
by the ANR project KEN ANR-22-CE40-0016.

2. Functional setting and polynomials

2.1. Differential calculus and symplectic structure. In this paper, we always consider G as
a real normed vector space (and not as a complex one). Note that, in particular, it implies that
z 7→ z is smooth. Being given a real Banach space E and a map f ∈ C1(G;E) we define its partial
derivatives with respect to za and za by

2∂zaf := ∂Rezaf − ∂Imza
f and 2∂zaf := ∂Rezaf + ∂Imza

f.
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Moreover, we set

∂Iaf := ∂za∂zaf.

Given an open set O ⊂ G and a Hamiltonian P ∈ C1(O;C) we define its Hamiltonian vector field
XP : G → C

Z by

(XP (z))a := i∂zaP (z).

Note that if P is real valued it implies that

XP =
i

2
∇P ,

where the gradient is associated the L2 scalar product (1.7). Moreover, if P is real valued, we
have the useful relation

(XP (z))j = δ(j)i
∂P

∂zj̄
(z), ∀j ∈ U2 × Z.

Given P,Q ∈ C1(O;C) two Hamiltonians such that XP or XQ takes values in G, we define their

Poisson bracket by2

{P,Q} := i

∑

j∈U2×Z

δ(j)
∂P

∂zj

∂Q

∂zj̄
.

Note that if P and Q are real valued then, with these conventions, we have

{P,Q} = −1

2
(i∇P,∇Q)L2 .

Given an open set O ⊂ G, a map Ψ : G → G is said symplectic if for all z ∈ O,

∀v,w ∈ G, (idΨ(z)(v),dΨ(z)(w))L2 = (iv,w)L2 .

2.2. Multi-indices. We denote by J the following set of the multi-indices

J =
⋃

m≥0

Jm where Jm = (U2 × Z)2m .

We extended the conjugation to multi-indices by setting

j̄ := (j1, · · · , j2m).

We denote by µi(j) the ith largest element among the collection {〈jβ〉|β = 1, · · · , 2m}, i.e.

µ1(j) ≥ µ2(j) ≥ · · · ≥ µ2m(j).

Given a sequence z ∈ C
Z, we define zj ∈ C by

zj := zj1 · · · zj2m .

By abuse of notation, zj will also refer to the associated monomial.
For m ∈ N we define three nested index sets satisfying zero momentum conditions of increasing

2Note that, it makes sense because by duality we always have XP (z),XQ(z) ∈ G′.
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order as follows:

Zm =

{

j = (δ, a) ∈ Jm |
2m∑

α=1

δα = 0

}

,

Mm =

{

j = (δ, a) ∈ Zm |
2m∑

α=1

δαaα = 0

}

,

Rm =

{

j = (δ, a) ∈ Mm |
2m∑

α=1

δαa
2
α = 0

}

.

We define
Z =

⋃

m≥1

Zm, M =
⋃

m≥1

Mm and R =
⋃

m≥1

Rm.

For future use, we note the following result

Lemma 2.1. Let j ∈ Rm with m ≥ 2 and let ℓ ∈ Z. Then either {Iℓ, zj} = 0 or µ3(j) ≥
( 〈ℓ〉
m

) 1
2 .

Proof. Let j ∈ Rm. Without lost of generality we can assume that

|j1| ≥ |j2| ≥ · · · ≥ |j2m|.
Using that j ∈ Rm we have

|j1|2 ± |j2|2 ± · · · ± |j2m|2 = 0

from which we deduce that

(2.1) (2m− 2)|j3|2 ≥ |j1|2 ± |j2|2.

Now if {Iℓ, zj} 6= 0, then (±1, ℓ) ∈ {j1, · · · , j2m}. If 〈ℓ〉 ≤ µ3(j) then µ3(j) ≥
( 〈ℓ〉
m

) 1
2 and the

lemma is proved. So we can assume 〈ℓ〉 > µ3(j) which in turn leads to 〈ℓ〉 = 〈j1〉 or 〈ℓ〉 = 〈j2〉.
But then we cannot have3 j2 = j̄1 because in this case we would have {Iℓ, zj} = 0 (recall that
〈ℓ〉 > µ3(j)). Now if j2 6= j̄1, we have |j1|2±|j2|2 ≥ 2|j1|−1 and thus (2.1) leads to the result. �

2.3. Polynomials.

Definition 2.2. Given m ≥ 1, we denote by Hm the space of the homogeneous polynomial of
degree 2m of the form

P (z) =
∑

j∈Mm

Pjzj

where the coefficients Pj ∈ C satisfy

• the reality condition: ∀j ∈ Mm, Pj = Pj

• the symmetry condition: ∀j ∈ Mm,∀ϕ ∈ S2m, Pj = Pϕj

• the bound:
||P ||ℓ∞ := sup

j∈Mm

|Pj | < ∞.

Remark 2.3. • The bound ensures that P is locally bounded on ℓ1 (by the Young inequality).
A fortiori it is locally bounded on G. Note that since it is a polynomial it implies that it is
smooth on G.

• The reality condition ensures that P is real valued. The symmetry condition ensures that
the coefficients Pj are unique and, as a consequence, that the norm ||P ||ℓ∞ is well defined.

3The notation j̄ is defined in (1.8).
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Definition 2.4. We denote by HR
m the subspace of Hm made of resonant polynomials

HR
m =

{

P ∈ Hm |Pj 6= 0 ⇒ j ∈ R
}

.

Lemma 2.5 (Vector field). Let m ≥ 2 and P ∈ Hm, then the associated Hamiltonian vector field
is smooth and locally Lipschitz. More precisely, we have the estimates

||XP (z)||σ ≤ 2m||P ||ℓ∞ ||z||2m−1
σ ,

||dXP (z)(w)||σ ≤ 4m2||P ||ℓ∞ ||z||2(m−1)
σ ||w||σ .

Proof. By symmetry of the coefficients of P , we have

(
XP (z)

)

j0
= iδ(j0)2m

∑

j∈Mm

j1=j0

Pj

2m∏

α=2

zjα ,

and so, using successively the zero momentum condition, the Young convolution inequality and
the Minkowski inequality (because θ ∈ (0, 1)), we get

||XP (z)||σ =
∑

j0∈U2×Z

eσ|j0|
θ |
(
XP (z)

)

j0
| ≤ 2m‖P‖ℓ∞

∑

j0∈U2×Z

eσ|j0|
θ
∑

j∈Mm

j1=j0

2m∏

α=2

|zjα |

= 2m‖P‖ℓ∞
∑

j∈Mm

eσ|δ1j1+···+δ2mj2m|θ
2m∏

α=2

|zjα | ≤ 2m‖P‖ℓ∞
∑

j∈Mm

2m∏

α=2

eσ|jα|
θ |zjα |

≤ 2m‖P‖ℓ∞ ||z||2(m−1)
σ .

The estimate for the derivative of the vector field, is just a direct refinement of the previous
estimate on XP using its multi-linearity.

�

Lemma 2.6 (Poisson bracket). Let P ∈ Hm and P ′ ∈ Hm′ , then there exists P ′′ ∈ Hm′′ with
m′′ = m+m′ − 1 such that

P ′′ = {P,P ′},
satisfying

||P ′′||ℓ∞ ≤ 4mm′||P ||ℓ∞ ||P ′||ℓ∞ .

Proof. The proof of this Lemma is very classical. We refer for example to Proposition 2.5 of
[BG22]. Actually, this lemma is also a direct corollary of Lemma 5.10 below (it corresponds to
the case nQ = nQ′ = 0). �

The main result of this section concerns the Hamiltonian flows generated by polynomials:

Lemma 2.7 (Local flow). Let m ≥ 2 and S ∈ Hm, we define

ε1 :=
1

4
(4m||S||ℓ∞)

− 1
2(m−1) .

The flow Φt
S(·) defines a smooth map from [−1, 1] × B(0, ε1) into G such that

(2.2)

{

∂tΦ
t
S(z) = XS

(
Φt
S(z)

)
,

Φ0
S(z) = z.
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Moreover, given t ∈ [−1, 1], one has
(i) Φt

S is symplectic,
(ii) Φt

S is locally invertible:

Φ−t
S ◦Φt

S(z) = z, if z ∈ B(0, ε1) and Φt
S(z) ∈ B(0, ε1),

(iii) Φt
S is close to identity:

||Φt
S(z)− z||σ ≤ 23m||S||ℓ∞ ||z||2m−1

σ for z ∈ B(0, ε1),

(iv) Φt
S is locally Lipschitz:

||dΦt
S(z)(w)||σ ≤ 2||w||σ for z ∈ B(0, ε1) and w ∈ G.

Proof. Thanks to Lemma 2.5, we know that the associated Hamiltonian vector fields XS is locally-
Lipschitz, which ensures that the smoothness of the flow Φt

S by the Cauchy-Lipschitz Theorem.
The only thing we need to check is that the solution exists for |t| ≤ 1. Without loss of generality
we only consider positive times. Let T > 0 and y = y(t) ∈ C1([0, T );G) be the maximal solution
of the Cauchy problem

{

ẏ = XS(y),

y(0) = z ∈ B(0, ε1).

It is enough to prove that if 0 ≤ t < T and t ≤ 1 then ||y(t)||σ ≤ 2||z||σ < 2ε1. We set
E0 = [0, T ) ∩ [0, 1]

E1 =
{

t ∈ E0 | ∀ τ ∈ [0, t], ||y(τ)||σ ≤ 2||z||σ
}

.

Obviously, the set E1 is non-empty, connected and closed in E0 by the continuity of the flow.
Moreover, by Lemma 2.5 one has for t ∈ E0

||y(t)− z||σ ≤
∫ t

0
||XS(y(τ))||σdτ ≤

∫ t

0
2m||S||ℓ∞ ||y(τ)||2m−1

σ dτ ≤ 2m22m−1||S||ℓ∞ ||z||2m−1
σ

≤
(
2||z||σ
4ε1

)2(m−1)

||z||σ ≤ 2−2m+2||z||σ < ||z||σ .

The last inequality implies that E1 is open, which is therefore the universal set, i.e. E1 = E0.
Now we have checked the existence of ΦS, which ensures the property (ii) since the vector field
is local-Lipschitz. Also, the property (i) is canonical as Φt

S is a Hamiltonian flow. Moreover, the
previous estimate directly implies the property (iii).

Finally, we focus on the property (iv). Observe that for z ∈ B(0, ε1) and w ∈ G
(2.3) ∂tdΦ

t
S(z)(w) = dyXS(y)

(
dΦt

S(z)(w)
)
,

where y = Φt
S(z). By Lemma 2.5 one has

||dyXS(y)
(
dΦt

S(z)(w)
)
||σ ≤ 4m2||S||ℓ∞ ||y||2(m−1)

σ ||dΦt
S(z)(w)||σ .

Therefore using (2.3) and dΦ0
S(z)(w) = d Id(z)(w) = w, we get

||dΦt
S(z)(w)||σ ≤ ||w||σ +

∫ t

0
m

(
2||z||σ
4ε1

)2(m−1)

||dΦτ
S(z)(w)||σdτ

≤ ||w||σ +

∫ t

0

1

2
||dΦτ

S(z)(w)||σdτ.
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By Grönwall’s inequality the last estimate leads to

||dΦt
S(z)(w)||σ ≤ ||w||σ exp

(∫ t

0

1

2
dτ

)

≤ √
e||w||σ ≤ 2||w||σ .

�

3. Resonant normal form

Recall that L2 given by (1.3), is the quadratic Hamiltonian corresponding to the linear part of
(NLSP). We define for j = (δβ, aβ)

2m
β=1 ∈ (U2 × Z)2m

(3.1) ∆j =
2m∑

β=1

δβa
2
β .

With this notation, we have for j ∈ Z
{L2, zj} = i∆jzj .(3.2)

We note that |∆j | ≥ 1 except j ∈ R for which ∆j = 0. In this section we eliminate all the
monomials zj of (1.3) with j /∈ R. This is relatively easy since, in view of (3.2), the corresponding
small denominators are larger than 1. Nevertheless we have to carefully follow the dependence
with respect to all the parameters in view of a future optimization.

3.1. The result.

Proposition 3.1. Let H be the Hamiltonian given by (1.3). There exists a constant C ≥ 28 such
that for all r ≥ 2, setting

(3.3) ρ =
1

8Cr
,

there are two C∞ symplectic maps φ(0) and φ(1) making the following diagram to commute

(3.4) B(0, ρ)
φ(0)

//

idG

33B(0, 2ρ)
φ(1)

// G

such that H ◦ φ(1) admits the decomposition on B(0, 2ρ)

(3.5) H ◦ φ(1)(z) := L2 + L4 +

r∑

m=3

K2m +R ,

where L4 is the integrable polynomial explicitly given by

(3.6) L4 =
∑

a1 6=a2

1

2(a1 − a2)2
|za1 |2|za2 |2,

K2m ∈ HR
m is a resonant homogeneous polynomial of degree 2m satisfying

(3.7) ||K2m||ℓ∞ ≤ C
2m−3m2(m−2), ∀ 2 ≤ m ≤ r ,

and R : B(0, 2ρ) 7→ R is a C∞ function which is a remainder term of order 2r + 2:

(3.8) ||XR(z)||σ ≤ C
4r−1r2r||z||2r+1

σ .

Furthermore, the map φ(ι) : B(0, ρ+ ιρ) 7→ G is close to the identity:

(3.9) ||φ(ι)(z)− z||σ ≤ C
2||z||3σ , ι = 0, 1.
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Proof. we split the proof in six steps.
⊲(1) Induction. We are going to prove by induction that for r ∈ J1, rK, setting

(3.10) ρ =
1

8Cr
,

there exist two C∞ symplectic maps φ(0) and φ(1) making the diagram (3.4) to commute and such
that H ◦ φ(1) admits the decomposition (3.5) where

K2m ∈ HR
m, ∀m ≤ r

satisfying
||K2m||ℓ∞ ≤ C

2m−3 min{m, r}2(m−2) , ∀ 2 ≤ m ≤ r,

and the remainder R : B(0, 2ρ) 7→ R is a C∞ function satisfying

||XR(z)||σ ≤ C
3r−1r2r4r−1

r−1∏

i=1

(1 + 2−i)2r+1||z||2r+1
σ .

Furthermore, the maps φ(ι) : B(0, ρ+ ιρ) 7→ G are close to the identity

||φ(ι)(z)− z||σ ≤
r−1∑

i=1

C28−i||z||3σ , ι = 0, 1.

We proceed by induction on r. First we note that the case r = 1 is trivial, provided that C is
chosen large enough to ensure that ||P4||ℓ∞ ≤ C.

From now, we assume that the property holds at step r < r and we are going to prove it at the
step r+ 1. To simplify notations, we denote with a superscript ♯ the maps corresponding to the

subsequent step r+ 1, such as R♯ or φ♯
(1)

.

⊲(2) Resolution of homological equation. Now we are going to eliminate the non-resonant terms of
K2(r+1) by solving the following equation:

(3.11) {L2,S}+K2(r+1) =: K♯
2(r+1) ∈ HR

r+1.

By definition of L2 (see (1.3)), we solve the equation above by setting

(3.12) K♯
2(r+1) :=

∑

j∈Mm∩R

K2(r+1),jzj ∈ HR
r+1 and S :=

∑

j∈Mm\R

iK2(r+1),j

∆j

zj ∈ Hr+1.

Obviously, by induction, we have the estimates

(3.13)
||K♯

2(r+1)||ℓ∞ ≤ ||K2(r+1)||ℓ∞ ≤ C
2r−1r2(r−1),

||S||ℓ∞ ≤ ||K2(r+1)||ℓ∞ ≤ C
2r−1r2(r−1).

⊲(3) The new variables. We recall that the Hamiltonian flow of S given by Lemma 2.7 is well-

defined for |t| ≤ 1 on B(0, ε1) where

(3.14) ε1 =
1

4
(4(r + 1)||S||ℓ∞)−

1
2r ≥ 1

4
(C2rr2r)−

1
2r ≥ 1

22Cr
= 2ρ provided C ≥ 8 .

Now we aim at defining the new maps

φ♯
(1) := φ(1) ◦ Φ1

S, φ♯
(0) := Φ−1

S ◦ φ(0).

Thanks to (3.14) we know Φ±1
S are well-defined on B(0, 2ρ). By induction hypothesis we have φ(0)

maps B(0, ρ) on B(0, 2ρ). It follows that φ♯
(0) is well-defined on B(0, ρ♯) ⊂ B(0, ρ). As for φ♯

(1), we
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just have to check that Φ1
S maps B(0, 2ρ♯) on B(0, 2ρ). Indeed, we consider a larger domain. By

the property (iii) of Lemma 2.7 we have for z ∈ B(0, 2ρ)

||Φ±1
S (z) − z||σ ≤23(r+1)||S||ℓ∞ ||z||2r+1

σ ≤ 23(r+1)
C
2r−1r2(r−1)(2ρ)2(r−1)||z||3σ

≤C27−r||z||3σ ≤ 23

C2rr2
||z||σ .(3.15)

The last inequality implies that for z ∈ B(0, 2ρ♯)

||Φ1
S(z)||σ ≤ (1 + r−1)||z||σ <

1 + r

r
2ρ♯ = 2ρ provided C ≥ 4 ,

i.e. we checked that Φ1
S maps B(0, 2ρ♯) on B(0, 2ρ).

Remark 3.2. Actually, we have for t ∈ [0, 1] that Φt
S maps B(0, 2ρ♯) on B(0, 2ρ), satisfying

||Φt
S(z)− z||σ ≤ C27−r||z||3σ ≤ 23

C2rr2
||z||σ .

Notice that by construction it is clear that φ♯
(1) and φ♯

(0) are symplectic. Then we want to prove

that φ♯
(1) is close to the identity in G. Indeed, if z ∈ B(0, 2ρ♯)

φ♯
(1)(z) − z = φ(1) ◦Φ1

S(z)− z = φ(1) ◦ Φ1
S(z)− Φ1

S(z) + Φ1
S(z)− z.

Then connecting the induction and (3.15), one has

||φ♯
(1)

(z)− z||σ ≤ ||φ(1) ◦ Φ1
S(z)− Φ1

S(z)||σ + ||Φ1
S(z) − z||σ

≤
r−1∑

i=1

C28−i||Φ1
S(z)||3σ + C27−r||z||3σ

≤
r−1∑

i=1

C28−i||z||3σ
(

1 +
23

C2r

)3

+ C27−r||z||3σ

≤
r−1∑

i=1

C28−i||z||3σ
(

1 +
23 × 7

C2r

)

+ C27−r||z||3σ

≤
r−1∑

i=1

C28−i||z||3σ + C27−r||z||3σ + 28C× 23 × 7

C2r
||z||3σ

≤
r∑

i=1

C28−i||z||3σ provided C ≥ 24 × 7 .

Next we turn to φ♯
(0). Similarly, by the induction one has for z ∈ B(0, ρ♯)

||φ(0)(z)− z||σ ≤ 28C||z||3σ ≤ 4

Cr2
||z||σ .
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Together with (3.15), we obtain that

||φ♯
(0)(z) − z||σ ≤ ||Φ−1

S ◦ φ(0)(z)− φ(0)(z)||σ + ||φ(0)(z)− z||σ

≤C27−r||φ(0)(z)||3σ +

r−1∑

i=1

C28−i||z||3σ

≤C27−r||z||3σ
(

1 +
4

C

)3

+

r−1∑

i=1

C28−i||z||3σ

≤C27−r

(

1 +
28

C

)

||z||3σ +

r−1∑

i=1

C28−i||z||3σ

≤
r∑

i=1

C28−i||z||3σ provided C ≥ 28

≤C28||z||3σ ≤ 4

C
||z||σ ≤ ||z||σ .

The last estimate implies that φ♯
(0) maps B(0, ρ♯) on B(0, 2ρ♯).

⊲(4) The new expansion. Recall that Φ1
S is the Hamiltonian flow of S (see (2.2)). Thus, for

z ∈ B(0, 2ρ♯) and K a Hamiltonian function, we have

d

dt
K ◦ Φt

S(z) = {K,S} ◦Φt
S(z) = adS(K) ◦ Φt

S(z).

Hence, by Taylor expansion of K ◦ Φt
S in t = 0 at the degree k∗, one has

(3.16) K ◦Φ1
S(z) =

k∗∑

k=0

1

k!
ad

k
S(K)(z) +

∫ 1

0

(1− t)k
∗

k∗!
ad

k∗+1
S (K) ◦Φt

S(z) dt

Consequently, we obtain the Taylor expansion of K2n ◦Φ1
S

K2n ◦ Φ1
S(z) =

k∗n∑

k=0

1

k!
ad

k
S(K2n)(z) +

∫ 1

0

(1− t)k
∗
n

k∗n!
ad

k∗n+1
S (K2n) ◦Φt

S(z) dt, 1 ≤ n ≤ r.

where k∗n denotes the largest integer k such that kr+ n ≤ r, namely

(3.17) k∗nr+ n ≤ r and (k∗n + 1)r+ n > r.

Recall that K2 = L2. By induction hypothesis, one has

H ◦ φ(1) =

r∑

n=1

K2n +R,
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and thus, since φ♯
(1) = φ(1) ◦ Φ1

S, we deduce that

H ◦ φ♯
(1) =

r∑

n=1

K2n ◦Φ1
S +R ◦ Φ1

S

=
∑

0≤k≤k∗n
1≤n≤r

1

k!
ad

k
S(K2n) +

∑

1≤n≤r

∫ 1

0

(1− t)k
∗
n

k∗n!
ad

k∗n+1
S (K2n) ◦Φt

S dt+R ◦Φ1
S

:=
r∑

m=1

K♯
2m +R♯,

where

K♯
2m =

∑

kr+n=m
k≥0,n≥1

1

k!
ad

k
S(K2n), 1 ≤ m ≤ r,(3.18)

R♯ =
∑

1≤n≤r

∫ 1

0

(1− t)k
∗
n

k∗n!
ad

k∗n+1
S (K2n) ◦ Φt

S dt+R ◦ Φ1
S.(3.19)

Now we focus on the estimate of (3.18). We have

(3.20) K♯
2m =

∑

kr+1=m
k≥0

1

k!
ad

k
S(L2) +

∑

kr+n=m
k≥0,n≥2

1

k!
ad

k
S(K2n).

Notice that by above equation (3.20), one has

(3.21)
K♯

2m = K2m, ∀ 1 ≤ m ≤ r,

K♯
2(r+1) = adS(L2) +K2(r+1).

Observe that by (3.11)

adS(L2)

(k + 1)!
+

K2(r+1)

k!
=

K♯
2(r+1) −K2(r+1)

(k + 1)!
+

K2(r+1)

k!
=

K♯
2(r+1)

(k + 1)!
+

(
1

k!
− 1

(k + 1)!

)

K2(r+1),

which leads, using (3.13), to

(3.22)

∥
∥
∥
∥

adS(L2)

(k + 1)!
+

K2(r+1)

k!

∥
∥
∥
∥
ℓ∞

≤
||K2(r+1)||ℓ∞

k!
.

Therefore, we do not have to take into account the contribution of terms associated with L2 in
the estimate of (3.20), i.e.

(3.23) ‖K♯
2m‖ℓ∞ ≤ ‖K2m‖ℓ∞ +

∑

kr+n=m
k≥1,n≥2

1

k!
‖adkS(K2n)‖ℓ∞ .

Next we aim to prove

‖K♯
2m‖ℓ∞ ≤ C

2m−3 min{q, r+ 1}2(m−2), ∀ 2 ≤ m ≤ r.

Since by induction hypothesis and equations (3.13), (3.21), the above estimate holds for 2 ≤ m ≤
r+ 1, it remains to prove that

(3.24) ‖K♯
2m‖ℓ∞ ≤ C

2m−3(r+ 1)2(m−2), ∀ r+ 2 ≤ m ≤ r.
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First, by induction hypothesis, we have

(3.25)
‖K2m‖ℓ∞

C2m−3(r+ 1)2(m−2)
≤
(

r

r+ 1

)2(m−2)

≤
(

r

r+ 1

)2r

≤
(

r

r+ 1

)r+1

=
1

(
1 + 1

r

)r+1 ≤ e−1.

Then, by Lemma 2.6, we have for the sum in (3.23)

∑

kr+n=m
k≥1,n≥2

1

k!
‖adkS(K2n)‖ℓ∞ ≤

∑

kr+n=m
k≥1,n≥2

4k

k!
‖K2n‖ℓ∞

(
(r+ 1)‖S‖ℓ∞

)k
k−1∏

i=0

(n+ ir)

≤
∑

kr+n=m
k≥1,n≥2

4k
mk

k!
C
2n−3r2(n−2)

(

(r+ 1)C2r−1r2(r−1)
)k

≤
∑

kr+n=m
k≥1,n≥2

mk

k!
8kC2(n+kr)−3−kr2(n+kr−2)−k

=C
2m−3(r+ 1)2(m−2)

∑

kr+n=m
k≥1,n≥2

mk8k

k!

C
2m−3−kr2(m−2)−k

C2m−3(r+ 1)2(m−2)

≤C
2m−3(r+ 1)2(m−2)

∑

k≥1

8k

k!
C
−kr−kmk

(
r+ 1

r

)−2m

≤C
2m−3(r+ 1)2(m−2)

∑

k≥1

1

k!

(
k

e

)k

8kC−kr−k

(

log

(
r+ 1

r

)2
)−k

by Lemma A.2

≤C
2m−3(r+ 1)2(m−2)

∑

k≥1

4kC−kr−k

(
1

1 + r

)−k

≤1

2
C
2m−3(r+ 1)2(m−2) provided C ≥ 27 .

Connecting the last estimate with (3.25), we finish the proof of (3.24).
⊲(5) The new remainder. Now we estimate the new remainder term R♯ given by (3.19). Using

property (iv) of Lemma 2.7 about the estimate of dΦ1
S and the induction hypothesis we have

‖XR◦Φ1
S
(z)‖σ ≤ 2‖XR(ΦS(z))‖σ ≤ 2C3r−1r2r4r−1

r−1∏

i=1

(1 + 2−i)2r+1‖Φ1
S(z)‖2r+1

σ(3.26)

Together with (3.15) we obtain for z ∈ B(0, 2ρ♯)

(3.27) ‖XR◦Φ1
S
(z)‖σ ≤ 1

2
C
3r−1r2r4r

r∏

i=1

(1 + 2−i)2r+1‖z‖2r+1
σ provided C ≥ 8 .

It remains to estimate the sum in (3.19). Reasoning as in (3.22), with an abuse of notations, we
ignore the contribution of the terms associated with L2. Thanks to Remark 3.2 and the triangle
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inequality, by Lemma 2.5 we get for z ∈ B(0, 2ρ♯)
∥
∥
∥
∥
∥
∥

1

2
∇
∑

2≤n≤r

∫ 1

0

(1− t)k
∗
n

k∗n!
ad

k∗n+1
S (K2n) ◦ Φt

S(z) dt

∥
∥
∥
∥
∥
∥
σ

≤
∑

2≤n≤r

∫ 1

0

1

k∗n!

∥
∥
∥
∥
X

ad
k∗n+1
S

(K2n)◦Φt
S

(z)

∥
∥
∥
∥
σ

dt

≤
∑

2≤n≤r

∫ 1

0

2

k∗n!

∥
∥
∥
∥
X

ad
k∗n+1
S

(K2n)

(
Φt
S(z)

)
∥
∥
∥
∥
σ

dt

≤4
∑

2≤n≤r

∫ 1

0

n+ (k∗n + 1)r

k∗n!

∥
∥
∥ad

k∗n+1
S (K2n)

∥
∥
∥
ℓ∞

∥
∥Φt

S(z)
∥
∥2
(
n+(k∗n+1)r

)
−1

σ
dt

(3.28)

Recalling the definition (3.17), we get r < n+ (k∗n +1)r ≤ 2r and k∗n ≤ r− 2. Estimating the last
sum (3.28) as before, we obtain

(3.28) ≤ 4
∑

2≤n≤r

n+ (k∗n + 1)r

k∗n!

∥
∥
∥ad

k∗n+1
S (K2n)

∥
∥
∥
ℓ∞

(2||z||σ)2
(
n+(k∗n+1)r

)
−1

≤ 8r24r−1
∑

2≤n≤r

(k∗n + 1)

(k∗n + 1)!

∥
∥
∥ad

k∗n+1
S (K2n)

∥
∥
∥
ℓ∞

||z||2
(
n+(k∗n+1)r−r−1

)

σ ‖z‖2r+1
σ

≤ 2r224r
∑

2≤n≤r

C
2
(
n+(k∗n+1)r

)
−3(r+ 1)2

(
n+(k∗n+1)r

)
−2

(
4C(r + 1)

)2
(
n+(k∗n+1)r−r−1

) ‖z‖2r+1
σ

≤ 2r324rC2r−1(r+ 1)2r||z||2r+1
σ

≤ 26rC2r−1r2r||z||2r+1
σ ≤ C

3r−1r2r||z||2r+1
σ provided C ≥ 26

≤ 1

2
C
3r−1r2r4r

r∏

i=1

(1 + 2−i)2r+1‖z‖2r+1
σ .

Connecting the last estimate with (3.27), we get for z ∈ B(0, 2ρ♯)

||R♯(z)||σ ≤ C
3r−1r2r4r

r∏

i=1

(1 + 2−i)2r+1‖z‖2r+1
σ ,

which concludes the induction.
⊲(6) Calculation of K4 and L4. From the equations (3.12) and (3.21), it follows that

K4(z) =
∑

j∈Mm∩R

P4,jzj =
∑

a1+a2=b1+b2
a21+a22=b21+b22

a1 6=b1

1

2(a1 − b1)2
za1za2zb1zb2 .

Recalling that (as in [KP96])

a1 + a2 = b1 + b2
a21 + a22 = b21 + b22

}

⇐⇒ {a1, a2} = {b1, b2}

we get, as expected (see (3.6) for the definition of L4)

K4(z) =
∑

a1 6=a2

1

2(a1 − a2)2
|za1 |2|za2 |2 =: L4(z).
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This concludes the proof of Proposition 3.1. �

4. Dynamics of the high modes

In this Section we use two (large) truncation parameters M and N linked by

(4.1) M = 6rN2.

The parameter M corresponds to the truncation to the largest index while N will correspond
to the truncation at the third largest index. We will consider as high (resp. low) the Fourier
modes with index modulus greater than M (resp. smaller than or equal to M). We are going to
prove some estimates on high modes4 when the Hamiltonian is resonant. In order to obtain some
exponential decay we exploit the Gevrey regularity in a crucial way, building upon the following
inequality:

Lemma 4.1. Let m,N ≥ 1 and θ ∈ (0, 1). For all j ∈ Mm, if µ3(j) > N then

2m∑

β=2

|jβ |θ −
( 2m∑

β=2

|jβ |
)θ

≥ (1− θ)N θ.

We postpone the proof of this lemma to Appendix A.

Proposition 4.2 (High frequency vector field estimates for resonant polynomials). Let K2m ∈
MR

m be a resonant polynomials of order 2m, then for all ℓ ∈ Z we have

(4.2) e2σ|ℓ|
θ |{Iℓ,K2m}| ≤ 2e−σ(1−θ)

(
|ℓ|
m

) θ
2

‖K2m‖ℓ∞eσ|ℓ|
θ√

Iℓ‖z‖2m−1
σ ,

and for N ≥ 1,

(4.3)
∑

|ℓ|≥mN2

eσ|ℓ|
θ |{Iℓ,K2m}| 12 ≤

√
2‖K2m‖

1
2
ℓ∞e−

1
2
σ(1−θ)Nθ‖z‖mσ .

Note that, while eσ|ℓ|
θ√

Iℓ is the natural behavior linked with Iℓ, the extra decay in (4.2) is a
consequence of the resonant nature of K2m.
This proposition together with estimate (3.8) implies that high modes (|j| ≥ M = 6rN2) will not
move a lot as soon as ‖z‖σ remains under control (and small). This will be concretized in the
final step (see Section 7) by a double bootstrap argument.

Proof of Proposition 4.2. Let K2m =
∑

j∈Rm
cjzj ∈ MR

m, one has using Lemma 2.1

|{Iℓ,K2m}| ≤
∑

j∈Rm

|cj | |{Iℓ, zj}| ≤ ‖K2m‖
∑

j∈Rm

|{Iℓ, zj}|

≤ ‖K2m‖
∑

j∈Rm

µ1(j)≥〈ℓ〉

|{Iℓ, zj}| ≤ 2‖K2m‖
∑

((1,ℓ),j)∈Mm

µ2(j)≥
(

〈ℓ〉
m

) 1
2

|zj ||zℓ|.

4In the sequel we will speak indistinctly of high and low modes or high and low frequencies, the particularity of
high modes obviously being to be associated with high frequencies.
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Therefore, writing j = (j1, · · · , j2m−1) ∈ (U2 × Z)2m−1 and ji = (δi, ai),

e2σ|ℓ|
θ |{Iℓ,K2m}| ≤ 2‖K2m‖ℓ∞eσ|ℓ|

θ√

Iℓ
∑

∑2m−1
i=1 δjaj=−ℓ

µ2(j)≥
(

〈ℓ〉
m

) 1
2

eσ|
∑2m−1

i=1 δjaj |θ |zj |

≤ 2‖K2m‖ℓ∞
√

Iℓ




 sup

µ2(j)≥
(

〈ℓ〉
m

) 1
2

eσ(|
∑2m−1

i=1 δjaj |θ−
∑2m−1

i=1 |aj |θ)






∑

∑2m−1
i=1 δjaj=−ℓ

2m−1∏

i=1

eσ|ji|
θ |zji |

≤ 2‖K2m‖ℓ∞eσ|ℓ|
θ√

Iℓe
−σ(1−θ)

(
|ℓ|
m

) θ
2
( ∑

∑2m−1
i=1 δjaj=−ℓ

2m−1∏

i=1

eσ|ji|
θ |zji |

)

where we have used, for the last line, Lemma 4.1. Estimate (4.2) easily follows. We conclude the
proof of Proposition 4.2 as follows: first apply Cauchy-Schwarz’s inequality,

∑

|ℓ|>M

eσ|ℓ|
θ |{Iℓ,K2m}| 12

≤
√
2‖K2m‖

1
2
ℓ∞e−

1
2
σ(1−θ)Nθ

∑

|ℓ|>M

e
1
2
σ|ℓ|θI

1
4
ℓ

( ∑

∑2m−1
i=1 δjaj=−ℓ

2m−1∏

i=1

eσ|ji|
θ |zji |

) 1
2

≤
√
2‖K2m‖

1
2
ℓ∞e−

1
2
σ(1−θ)Nθ

( ∑

|ℓ|>M

eσ|ℓ|θ
√

Iℓ

) 1
2
( ∑

|ℓ|≥M

∑

∑2m−1
i=1 δjaj=−ℓ

2m−1∏

i=1

eσ|ji|
θ |zji |

) 1
2
,

and deduce from Young’s convolution inequality that
∑

|ℓ|>M

eσ|ℓ|
θ |{Iℓ,K2m}| 12 ≤

√
2‖K2m‖

1
2
ℓ∞e−

1
2
σ(1−θ)Nθ‖z‖mσ .

This concludes the proof of Proposition 4.2.
�

Next we introduce the set of Hamiltonian polynomials whose monomials contains at least one
high modes:

H(>M)
m :=

{

P ∈ Hm | Pj 6= 0 =⇒ µ1(j) > M
}

, H(≤M)
m = Hm \ H(>M)

m .

When we truncate the Hamiltonian system using ΠM (see (1.5)) in order to reduce our problem
to a finite dimensional phase space, we have to control the dynamics of the high modes. This is
essentially done by Proposition 4.2, but we also have to control the effect of the high mode part

of the Hamiltonian (i.e. the part in ∪mH(>M)
m ) on the dynamics of the low modes (see (7.13)). In

the next Lemma we control this effect in the case of a resonant Hamiltonian (which is essentially
what we get back after Proposition 3.1). Actually we exploit the mismatch between high and low
modes, together with the resonant structure of the Hamiltonian in resonant normal form, to gain
an exponential decay factor.

Lemma 4.3 (Mismatch vector field estimate). For all m ≥ 1, if K2m ∈ H(>M)
m then for all z ∈ G

we have (recall (4.1))

‖ΠMXK2m(z)‖σ ≤ 2m‖K2m‖ℓ∞e−σNθ‖z‖2m−1
σ .
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Proof. Let j0 ∈ U2 × Z with |j0| ≤ M , K2m ∈ H(>M)
m and z ∈ G, we have

(

XK2m(z)
)

j0
= 2miδ(j0)

∑

j∈Rm

j0=j1

K2m(j)

2m∏

α=2

zjα .

Given j ∈ Mm we write

µ1(j) = |j∗1 | ≥ |j∗2 | ≥ · · · ≥ |j∗2m|

the non-increasing ordering of |j1|, · · · , |j2m|. Since K2m ∈ H(>M)
m , µ1(j) > M . Thus if K2m(j) 6=

0 with j1 = j0 then

j∗1 ∈ {j2, · · · , j2m}.
Now if |j∗1 | = |j∗2 | then two indices in {j2, · · · , j2m} have a modulus greater than M . But even if
|j∗2 | < |j∗1 | (a case that does not exclude that j0 = j∗2) we then have {zj , |zj∗1 |2} 6= 0 and we deduce

by Lemma 2.1 that |j∗3 | ≥ (Mm )
1
2 . So in both cases we have

2m∑

α=2

|jα|θ ≥ Mθ + (
M

m
)
θ
2 ≥ Mθ +N θ.

Therefore we get

‖ΠMXK2m(z)‖σ = 2m
∑

j0∈U2×Z

|j0|≤M

eσ|j0|
θ
∣
∣
∣

∑

j∈Rm

j0=j1

K2m(j)
2m∏

α=2

zjα

∣
∣
∣

≤ 2m‖K2m‖ℓ∞
∑

j0∈U2×Z

|j0|≤M

∑

j∈Rm

j0=j1

eσ(|j0|
θ−

∑2m
α=2 |jα|

θ)
2m∏

α=2

eσ|jα|
θ |zjα |

≤ 2m‖K2m‖ℓ∞e−σNθ
∑

j0∈U2×Z

∑

j∈Mm

j0=j1

2m∏

α=2

eσ|jα|
θ |zjα |

and we conclude by Young’s convolution inequality.
�

5. Rational fractions

5.1. Setting. In this section, we consider a rational normal form theorem on the finite dimensional
space

GM := C
J−M,MK ,

where M ≥ 1 is a real number and J−M,MK := [−M,M ]∩Z. We always identify this space with
a subspace of G by setting

∀z ∈ GM , |a| > M ⇒ za := 0.

Naturally, BM will denote the balls of GM .
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5.1.1. Integrable multi-indices.

Definition 5.1 (Sets Int, N and N). A multi-index j ∈ J is said integrable, and we denote
it by j ∈ Int, if zj depends only on the actions or more precisely, if there exists a permutation,

ϕ ∈ S#j , such that for all α ∈ J1,#jK, jϕα
= jα. We denote by N the set of the non integrable

multi-index which are resonant, that is

N := R \ Int
and we denote by N the set of the multi-non-integrable multi indices, that is

N :=
⋃

n≥0

N n.

Remark 5.2. Note that if j ∈ N then #j ≥ 6.

5.1.2. Small divisors and non resonant set. Given M ≥ 1 and j ≡ (δβ , aβ)1≤β≤#j ∈ J , we set

ωM
j (z) :=

#j
∑

β=1

δβ∂IaβL4 =

#j
∑

β=1

δβ
∑

a6=aβ
|a|≤M

|za|2
(a− aβ)2

,

Define

(5.1) N r,M := {j ∈ N | #j ≤ r , µ1(j) ≤ M} ,
and

Ur,M
γ := {z ∈ GM | min

j∈N r,M
|ωM

j (z)| > γ||z||2σ} ,(5.2)

U
r,M
0+

:= {z ∈ GM | min
j∈N r,M

|ωM
j (z)| > 0}.(5.3)

Lemma 5.3. For all M ≥ 1, j ∈ J , and z, z′ ∈ GM , we have

(5.4) |ωM
j (z)− ωM

j (z′)| ≤ #j
∑

|a|≤M

|Ia(z)− Ia(z
′)| .

Remark 5.4. As a consequence we also have

|ωM
j (z)− ωM

j (z′)| ≤ #jmax(‖z‖σ , ‖z′‖σ)‖z − z′‖σ ,
which we will use when comparing ωj(z) and ωj(z

′), with for instance z′ = ϕι(z).

Proof. Let us first prove that for M ≥ 1, j0 ∈ U2×Z and j ∈ J , ∂Ij0ω
M
j is a constant, independent

of z, and satisfies

(5.5)
∣
∣
∣∂Ij0ω

M
j

∣
∣
∣ ≤ #j.

By definition ∂Ij0 = ∂zj0∂zj0 , setting j ≡ (δβ , aβ)1≤β≤#j and j0 = (δ0, a0), we have

∂Ij0ω
M
j = 1|a0 |≤M

∑

1≤β≤#j
aβ 6=a0

δβ
1

(a0 − aβ)2
.

We conclude by applying the triangular inequality. The Lipschitz estimate (5.4) then follows from
the mean value Theorem:

|ωM
j (z)− ωM

j (z′)| ≤ #j
∑

|a|≤M

||za|2 − |z′a|2| .
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This concludes the proof of the Lemma. �

5.2. Definition and main properties. In this paper, we consider rational fractions of the form

(5.6) Q(z) =
∑

j∈R

fj(z)zj with fj(z) :=
∑

h∈N

Qj,h

#h
∏

α=1

i

ωM
hα

(z)
.

where only finitely many coefficients Qj,h ∈ C are non zero. More precisely, we consider the
following subspace:

Definition 5.5 (Formal rational fractions). For m ≥ 3, M ≥ 1 and Q ∈ C
R×N. We says that Q

belongs to H M
q if it satisfies the following conditions

i) Order 2q. For all j ∈ R, all h ∈ N, if Qj,h 6= 0 then

2q = #j − 2#h.

ii) Finite number of modes. For all j ∈ R, all h ∈ N, if Qj,h 6= 0 then

µ1(j) ≤ M and max
1≤α≤#h

µ1(hα) ≤ M.

iii) Reality condition. For all j ∈ R, all h ∈ N, Qj,h = Qj,h.

iv) Uniform bound on the degree of the numerators. We have

mQ :=
1

2
sup
j∈R

∃h∈N, Qj,h 6=0

#j < ∞.

v) Finite complexity of the denominators. We have

hQ := sup
h∈N

∃j∈R, Qj,h 6=0

sup
1≤α≤#h

#hα < ∞.

Remark 5.6. Note that assumptions i), ii), iv) and v) imply that only finitely many coefficients
are non-zero. In particular, the order condition i) implies that

nQ := sup
h∈N

∃j∈R, Qj,h 6=0

#h ≤ mQ + q ≤ 2mQ < ∞.

We also note that thanks to the reality condition iii), the maps z 7→ Q(z) are real valued.

Remark 5.7. The coefficients Qj,h are not unique in the sense that two distinct sequences of
coefficients may generate the same rational function. We should impose some heavy symmetry
conditions to remedy this point. Nevertheless, it does not matter for us. The important point is
that, the map, defined implicitly by (5.6), which associates a sequence of coefficients (Qj,h)R×N ∈
C
R×N with a function on U

hQ,M

0+
, is R-linear.

Definition 5.8 (Norm of the rational fractions). Given Q ∈ H M
q , we set

(5.7) ||Q||ℓ∞Γ :=
∑

0≤m≤mQ

sup
j∈Rm

∑

h∈N

|Qj,h|.

Now we present the properties of rational Hamiltonians.
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Lemma 5.9 (Rational vector field). Let q ≥ 2 and Q ∈ H M
q , then the associated Hamiltonian

vector field is smooth and local Lipschitz. More precisely, for all γ ∈ (0, 1) and all z ∈ U
hQ,M
γ we

have the estimates

||XQ(z)||σ ≤ 2
mQ(1 + hQ)

γnQ+1 ||Q||ℓ∞Γ ||z||2q−1
σ ,

||dXQ(z)(w)||σ ≤ 4
m2

Q(1 + 2hQ)
2

γnQ+2 ||Q||ℓ∞Γ ||z||2(q−1)
σ ||w||σ .

Proof. ⊲Vector field. First, we note that, given j ∈ U2 × Z, we have

∂zjQ(z) = ∂uj
Q(z, z) + ∂vjQ(z, z) =: Fj +Gj

where we have set

(5.8) Q(u, v) :=
∑

j∈R

fQ
j (u)vj .

When we estimate G the fQ
j coefficients can be seen as constants. As a consequence, the

estimate is the same as the polynomial one we proved in Lemma 2.5, i.e. one has

Gj(z) =
∑

0≤m≤mQ

∑

0≤α≤2m

∑

j∈Rm

jα=j

fQ
j (z)

∏

β 6=α

zjβ

and so using the Young convolution inequality and the order condition,

||G||σ =
∑

j∈U2×Z

eσ|j|
θ

∑

0≤m≤mQ

∑

0≤α≤2m

∑

j∈Rm

jα=j

|fQ
j (z)|

∏

β 6=α

|zjβ |

≤
∑

0≤m≤mQ

∑

0≤α≤2m

∑

j∈U2×Z

∑

j∈Rm

jα=j

(
∑

h∈N

|Qj,h|
(γ‖z‖2σ)#h

)
∏

β 6=α

eσ|jβ |
θ |zjβ |

=
∑

0≤m≤mQ

∑

0≤α≤2m

∑

j∈U2×Z

∑

j∈Rm

jα=j

(
∑

h∈N

|Qj,h|γ−#h‖z‖2q−2m
σ

)
∏

β 6=α

eσ|jβ |
θ |zjβ |

≤ (2m)
∑

0≤m≤mQ

(
sup
j∈Rm

∑

h∈N

|Qj,h|
)
γ−nQ ||z||2q−1

σ ≤ 2mQγ
−nQ ||Q||ℓ∞Γ ||z||2q−1

σ .

Now, we focus on estimating F . First, we note that we have

Fj(z) =
∑

0≤m≤mQ

∑

j∈Rm




∑

h∈N

Qj,h

#h
∑

β=1

(−1)zj∂Ijω
M
hβ
(z)

ωM
hβ

(z)

#h
∏

α=1

i

ωM
hα

(z)



 zj

Using that |∂IjωM
hβ

(z)| ≤ #hβ ≤ hQ (see Lemma (5.5)) and nQ ≤ 2mQ, we get that

|Fj(z)| ≤
∑

0≤m≤mQ

∑

j∈Rm

γ−nQ−1|zj |nQhQ
(
∑

h∈N

|Qj,h|
)

‖z‖2q−2m−2
σ |zj |

≤ 2mQ||Q||ℓ∞Γ γ−nQ−1hQ‖z‖2q−2
σ |zj |.
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and so we deduce that

||F ||σ ≤ 2mQhQ||Q||ℓ∞Γ γ−nQ−1‖z‖2q−1
σ .

Since γ < 1, putting together the estimates we proved on F and G we get the estimate on
||XQ(z)||σ .

⊲Differential of the Vector field. We have to distinguish 5 sub-cases depending on which kind of
term we have to derive (numerators or denominators). Nevertheless, the estimates are almost the
same as the ones for the vector fields. So we omit the proof.

�

Lemma 5.10 (Rational Poisson bracket). Let Q ∈ H M
q and Q′ ∈ H M

q′ with q, q′ ≥ 2, then there

exists Q′′ ∈ H M
q′′ with q′′ = q + q′ − 1 such that

Q′′ = {Q,Q′} on U
hQ′′ ,M

0+

satisfying

||Q′′||ℓ∞Γ ≤ 4mQmQ′(1 + hQ + hQ′)||Q||ℓ∞Γ ||Q′||ℓ∞Γ .

Moreover, one has

mQ′′ ≤ mQ +mQ′ , nQ′′ ≤ nQ + nQ′ + 1, hQ′′ ≤ max{hQ, hQ′}.
Proof. We define Q,Q′ as in (5.8). First, we note that since for all z ∈ GM , Q(·, z), Q′(·, z) depends
only on the actions, we have

{Q(·, z), Q′(·, z)} = 0

and so for all z ∈ U
hQ,M

0+
∩ U

hQ′ ,M

0+

{Q,Q′}(z) = {Q(z, ·), Q′(z, ·)}(z) + {Q(z, ·), Q′(·, z)}(z) + {Q(·, z), Q′(z, ·)}(z)

=: Q(1)(z) + Q(2)(z) + Q(3)(z).

⊲Estimation of Q(1). It is defined as the Poisson bracket of 2 polynomials, so the proof is very
similar to the classical one. Indeed, we have

Q(1)(z) =
∑

j∈R

∑

j′∈R

fQ
j (z)fQ′

j′
(z){zj , zj′}

=
∑

0≤m≤mQ

0≤m′≤mQ′

∑

j∈Rm

j′∈Rm′

∑

1≤α≤2m
1≤α′≤2m′

∑

j∈U2×Z

fQ
j (z)fQ′

j ′
(z)(iδ(j))1jα=j1j ′

α′=j

zjzj′

|zj |2

Now, let us consider the map

Ψm,m′

α,α′ :

{

{(j, j ′) ∈ Rm ×Rm′ | jα = j ′α′} → Jm+m′−1

(j, j ′) 7→ ((jβ)β 6=α, (j
′
β′)β′ 6=α′)

and denote by Im,m′ its image (note that it clearly does not depend on (α,α′)). It is straightfor-
ward to check that Im,m′ ⊂ Rm+m′−1. Moreover, since R ⊂ M, it is injective. As a consequence,
we have

Q(1)(z) =
∑

j′′∈R

∑

m+m′−1=#j′′/2
j′′∈Im,m′

∑

1≤α≤2m
1≤α′≤2m′

(j,j′):=(Ψm,m′

α,α′ )−1(j′′)

(iδjα)f
Q
j (z)fQ′

j′
(z)zj ′′ .
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Expanding fQ
j , fQ′

j′
, we get

Q(1)(z) =
∑

j′′∈R

gj′′(z)zj ′′

where, setting m′′ = #j′′/2,

gj′′(z) :=
∑

m+m′−1=m′′

j′′∈Im,m′

∑

1≤α≤2m
1≤α′≤2m′

(j,j′)=(Ψm,m′

α,α′ )−1(j ′′)

(iδjα)f
Q
j (z)fQ′

j′
(z)

=
∑

m+m′−1=m′′

j′′∈Im,m′

∑

1≤α≤2m
1≤α′≤2m′

(j,j′)=(Ψm,m′

α,α′ )−1(j′′)

(iδjα)
∑

h′′∈N

∑

h,h′∈N
(h,h′):=h′′

Qj,hQj′,h′

#h
′′

∏

β=1

i

ωM
h′′
β
(z)

=
∑

h′′∈N

Q
(1)

j′′,h′′

#h
′′

∏

β=1

i

ωM
h′′
β
(z)

with
Q

(1)

j′′,h′′ :=
∑

m+m′−1=m′′

j′′∈Im,m′

∑

1≤α≤2m
1≤α′≤2m′

(j,j′)=(Ψm,m′

α,α′ )−1(j′′)

(iδjα)
∑

h,h′∈N
(h,h′):=h′′

Qj,hQj′,h′ .

Thanks to this explicit expression, it can be easily checked that the coefficients Q
(1)

j′′,h′′ satisfy all

the conditions to belong to H M
q′′ with q′′ = q + q′ − 1. Moreover, it is clear that

mQ(1) ≤ mQ +mQ′ − 1, nQ(1) ≤ nQ + nQ′ , hQ(1) ≤ max{hQ, hQ′}.
The crucial point is to estimate ‖Q(1)‖ℓ∞Γ . Indeed, we have

‖Q(1)‖ℓ∞Γ =
∑

m′′≥0

sup
j′′∈Rm′′

∑

h′′∈N

|Q(1)

j′′,h′′ |

≤
∑

m′′≥0

sup
j′′∈Rm′′

∑

m+m′−1=m′′

j′′∈Im,m′

∑

1≤α≤2m
1≤α′≤2m′

(j,j′)=(Ψm,m′

α,α′ )−1(j′′)

∑

h,h′∈N

|Qj,h||Qj′,h′ |

≤
∑

m′′≥0

∑

m+m′−1=m′′

(2m)(2m′)

(

sup
j∈Rm

∑

h∈N

|Qj,h|
)(

sup
j′∈Rm′

∑

h′∈N

|Qj′,h′ |
)

≤ 4mQmQ′‖Q‖ℓ∞Γ ‖Q′‖ℓ∞Γ .

⊲Estimation of Q(2) and Q(3). By symmetry, without loss of generality, we focus only on Q(2) :

Q(2)(z) =
∑

j∈R

∑

j′∈R

zjf
Q′

j′
(z){fQ

j (z), zj ′}

=
∑

j∈R

∑

j′∈R

#j′
∑

α′=1

(−iδ(j ′α′))f
Q′

j′
(z)

(

∂Ij′
#j′

fQ
j (z)

)

zjzj′ .
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Moreover, we have

∂Ij′
α′
fQ
j (z) = −

∑

h∈N

Qj,h

(
#h
∏

α=1

i

ωM
hα

(z)

)



#h
∑

β=1

∂I
j′
α′
ωM
hβ

(z)

ωM
hβ
(z)



 .

Note that since ωM
hα

is a linear form on the actions, ∂I
j′
α′
ωM
hα

(z) is a constant (i.e. it does not

depend on z). Therefore, setting

Q
(2)

j′′,h′′ = −
∑

j,j′∈M
j′′=(j,j′)

#j′
∑

α′=1

δ(j ′α′)
∑

h∈N

#h
∑

β=1

∑

h′∈N
h′′=(h,h′,hβ)

Q′
j′,h′Qj′,h′∂Ij′

α′
ωM
hβ
(z)

we have

Q(2)(z) =
∑

j′′∈R




∑

h′′∈N

Q
(2)

j′′,h′′

#h′′
∏

α=1

i

ωM
h′′
α
(z)



 zj′′ .

As previously, thanks to this explicit expression, it can be easily checked that the coefficients of
Q(2) satisfy all the conditions to belong to H M

q′′ with q + q′ − 1. Moreover, it is clear that

mQ(2) ≤ mQ +mQ′ , nQ(2) ≤ nQ + nQ′ + 1, hQ(2) ≤ max{hQ, hQ′}.
It just remains to estimate ‖Q(2)‖ℓ∞Γ . Indeed, we have

‖Q(2)‖ℓ∞Γ =
∑

m′′≥0

sup
j′′∈Rm′′

∑

h′′∈N

|Q(2)

j′′,h′′ |

≤
∑

m′′≥0

sup
j′′∈Rm′′

∑

m+m′=m′′

j′′=(j,j′)
#j=2m

∑

h,h′∈N

#j′
∑

α′=1

|Qj,h||Qj′,h′ |
#h
∑

β=1

|∂Ij′
α′
ωM
hβ
|.

Thanks to Lemma 5.5, we use the estimate |∂Ij′
α′
ωM
hβ
| ≤ #hβ ≤ hQ and according to Remark 5.6,

#h ≤ nQ ≤ 2mQ, to get (and to conclude as previously) that

‖Q(2)‖ℓ∞Γ ≤ (2mQ)(2mQ′)hQ
∑

m′′≥0

sup
j′′∈Rm′′

∑

m+m′=m′′

j′′=(j,j′)
#j=2m

∑

h,h′∈N

|Qj,h||Qj′,h′ |

≤ 4mQmQ′hQ‖Q‖ℓ∞Γ ‖Q′‖ℓ∞Γ .

�

Lemma 5.11 (Rational local flow). Let q ≥ 2, γ ∈ (0, 1), M ≥ 1, S ∈ H M
q and define

ε2 :=
1

4

(
m2

S(1 + 2hS)
2

γnS+2
||S||ℓ∞Γ

)− 1
2(q−1)

.

There is a smooth map ΦS : [−1, 1] ×
(

B(0, ε2) ∩ U
hS ,M
γ

)

7→ B(0, 2ε2) ∩ U
hS ,M
γ/2 such that

(5.9)

{

∂tΦ
t
S(z) = XS(Φ

t
S(z)),

Φ0
S(z) = z.
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Moreover, given z ∈ B(0, ε2) ∩ U
hS ,M
γ and t ∈ [−1, 1], one has

(i) Φt
S is symplectic.

(ii) Φt
S is locally invertible:

Φ−t
S ◦ Φt

S(z) = z, if Φt
S(z) ∈ B(0, ε2) ∩ UhS ,M

γ .

(iii) Φt
S is close to identity:

||Φt
S(z) − z||σ ≤ mS(1 + hS)2

2q

γnS+1
||S||ℓ∞Γ ||z||2q−1

σ ≤ 2−2(q−1)

1 + 2hS
γ‖z‖σ .

(iv) Φt
S is locally Lipschitz:

||dΦt
S(z)(w)||σ ≤ 2||w||σ .

Proof. Mimicking the proof of Lemma 2.7 we consider the maximal solution y ∈ C1([0, T );GM )
to the Cauchy problem {

ẏ = XS(y),

y(0) = z ∈ B(0, ε2) ∩ U
hS ,M
γ ,

we set E0 = [0, T ) ∩ [0, 1] and

E2 =
{

t ∈ E0 | ∀ τ ∈ [0, t], ||y(τ)||σ ≤ 2||z||σ and y(τ) ∈ U
hS ,M
γ/2

}

.

Clearly, it is non-empty, connected and closed in E0 by continuity. First, invoking Lemma 5.9,
one has

||y(t)− z||σ ≤
∫ t

0
||XS(y(τ))||σ dτ ≤

∫ 1

0
2mS(1 + hS)γ

−(nS+1)||S||ℓ∞Γ ||y(τ)||2q−1
σ dτ

≤ mS(1 + hS)2
2qγ−(nS+1)||S||ℓ∞Γ ||z||2q−1

σ(5.10)

≤ 4γ

mS(1 + 2hS)

(
2||z||σ
4ε2

)2(q−1)

||z||σ ≤ 2−2(q−1)

1 + 2hS
γ||z||σ < ||z||σ .(5.11)

Thanks to Lemma 5.3 we have, for each j ∈ N satisfying #j ≤ hS and µ1(j) ≤ M ,

|ωM
j (y)− ωM

j (z)| ≤ #jmax
{
||y||σ , ||z||σ

}
||y − z||σ ≤ 2hS ||z||σ ||y − z||σ

≤ 1

4
γ||z||2σ ≤ 1

4
|ωM

j (z)|.

It follows that |ωM
j (y)| ≥ (3/4)|ωM

j (z)|. Together with (5.11), it implies that E2 is open, and so,

since it is connected that E2 = E0 (and a fortiori that T > 1).
Since T > 1, we have checked the existence of the flow ΦS . It is symplectic because the

associated vector field is Hamiltonian and (ii) is an application property of the group property of
the flow. Furthermore, estimate (5.10) implies the property (iii). The proof the estimate (iv) is
the same as in the polynomial case (see proof of Lemma 2.7). �

6. Rational normal form

Given r ≥ 1, we denote by H(2r) a resonant normal form of order 2r of the Schrödinger–Poisson
Hamiltonian. More precisely, we set

H(2r) := L2 + L4 +

r∑

m=3

K2m

where K6, · · · ,K2r are given by Proposition 3.1.
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Then, given M ≥ 1, we define H(2r,M) : GM → R as the restriction of H(2r) to GM , that is

(6.1) H(2r,M) = H
(2r)
|GM

.

Similarly, we define L
(M)
2 (resp. L

(M)
4 , resp. K

(M)
2m ) as the restriction of L2 (resp. L4, resp.

K2m) to GM . Note that, by construction K
(M)
2m ∈ H M

2m and that it satisfies n
K

(M)
2m

= h
K

(M)
2m

= 0,

m
K

(M)
2m

= m and

(6.2) ‖K(M)
2m ‖ℓ∞Γ ≤ C2m−3m2(m−2)

where C > 0 is a universal constant (i.e. independent of r and M).

Definition 6.1. A rational Hamiltonian L ∈ H M
q is said integrable and we denote it by L ∈

H
M,Int
q if it depends only on the actions, i.e.

∀j ∈ N ,∀h ∈ N, Lj,h = 0.

Theorem 6.2. Let r ≥ 3, M ≥ 3, γ ∈ (0, 1), and H(2r,M) be the polynomial defined by (6.1).
There exists a universal constant C > 1 (independent of r,M, γ) such that setting

(6.3) ̺ = γ
3
2C

−1r−4

there exist two C∞ symplectic maps ϕ(0) and ϕ(1) making the following diagram to commute

(6.4) BM(0, ̺) ∩ U
6r,M
γ

ϕ(0)
//

idGM

22BM (0, 2̺) ∩ U
6r,M
γ/2

ϕ(1)
// GM

such that H(2r,M) ◦ ϕ(1) admits the following decomposition on BM (0, ̺) ∩ U
6r,M
γ

(6.5) H(2r,M) ◦ ϕ(1) = L
(M)
2 + L

(M)
4 +

r∑

q=3

L
(M)
2q +Υ

where L
(M)
2q ∈ HM,Int

q is an integrable Hamiltonian of order 2q and Υ : BM (0, 2̺) ∩ U
6r,M
γ/2 7→ R is

a smooth function which is a remainder term of order 2r + 2, i.e.

||XΥ(z)||σ ≤ C
rr10rγ−2r+3||z||2r+1

σ .

Furthermore, the maps ϕ(ι) : B(0, ̺+ ι̺) ∩ U
6r,M
γ− ι

2
γ 7→ GM , ι = 0, 1, are close to the identity

(6.6) ||ϕ(ι)(z)− z||σ ≤ Cγ−2||z||3σ
and their differential are not too large: for all w ∈ GM , we have

(6.7) ‖dϕ(ι)(z)(w)‖σ ≤ 2r−2‖w‖σ .
Proof. We split the proof in five steps.

⊲(1) Induction. We are going to prove by induction on r ∈ J1, r − 1K that there exists a universal
constant C > 1 such that setting

̺ =
γ3/2

29C2r3r
,
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there exist two C∞ symplectic maps ϕ(0) and ϕ(1) making the diagram

(6.8) BM(0, ̺) ∩ U
6r,M
νrγ

ϕ(0)
//

idGM

22BM(0, 2̺) ∩ U
6r,M
νrγ/2

ϕ(1)
// GM

to commute, where5

νr = 1−
r−2∑

i=r

2−2i > 1/2

and such that H(2r,M) ◦ ϕ(1) admits the decomposition (6.5) where L2q (i.e. L
(M)
2q ∈ HM,Int

q ) is
integrable for q ≤ r+ 1 and satisfies

(6.9) m
L
(M)
2q

≤ 3q − 6, (1/2)h
L
(M)
2q

≤ 3r− 3 and n
L
(M)
2q

≤ 2q − 6,

and

(6.10) ||L(M)
2q ||ℓ∞Γ ≤ C

4q−9q2(q−2)min{q, r}4(q−3), ∀ 3 ≤ q ≤ r,

and the remainder Υ : BM (0, 2̺) ∩ U
6r,M
νrγ/2

7→ R is a smooth function satisfying

‖XΥ(z)‖σ ≤ 4r−1
C
9rr10rγ−2r+3||z||2r+1

σ

r−1∏

i=1

(1 + 2−2i)2r+1.

Furthermore, the map ϕ(ι) : B(0, 2
ι̺) ∩ U

6r,M
2−ινrγ

is close to the identity

||ϕ(ι)(z)− z||σ ≤ 230γ−2
C
3‖z‖3σ

r−1∑

i=1

2−2i, ι = 0, 1,

and their differential are not too large, that is, for all w ∈ GM , we have

‖dϕ(ι)(z)(w)‖σ ≤ 2r−1‖w‖σ .
First we note that the case r = 1 is trivial. Indeed, in view of (6.1) and (6.2), it is enough to

set L
(M)
2q = K

(M)
2q and to ensure that C > 0 is large enough to have

∀q ≥ 3, C2q−3q2(q−2) ≤ C
4q−9q2(q−2).

From now, we assume that the property holds at step r < r − 1 and we are going to prove
it at step r + 1. To simplify notations, we denote with a superscript ♯ the maps and indices

corresponding to the subsequent step r+ 1, such as L
(M),♯
2q and ϕ♯

(1).

⊲(2) Resolution of homological equation. Now we are going to remove the non integrable terms of

L
(M)
2(r+2) by solving the following cohomological equation:

(6.11) {L(M)
4 ,S}+ L

(M)
2(r+2) = L

(M),♯
2(r+2) ∈ H

M,Int
r+2 .

We solve the above equation by setting

L
(M),♯
2(r+2) =

∑

j∈Int

f
L
(M)
2(r+2)

j zj and S =
∑

j∈N

if
L
(M)
2(r+2)

j

ωM
j

zj .

5Note that νr−1 = 1.
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or more precisely

L
(M),♯
2(r+2),j,h := 1j∈IntL

(M)
2(r+2),j,h

and the non zero coefficients of S are of the form

Sj,h = L
(M)
2(r+2),j,h with j ∈ N .

Obviously, by the induction hypothesis, we have the estimates

(6.12) max(||S||ℓ∞Γ , ||L(M),♯
2(r+2)||ℓ∞Γ ) ≤ ||L(M)

2(r+2)||ℓ∞Γ ≤ C
4r−1(r+ 2)2rr4(r−1).

Moreover, we have

mS ≤ m
L
(M)
2(r+2)

, hS ≤ max(2mS , hL(M)
2(r+2)

), nS ≤ n
L
(M)
2(r+2)

+ 1

and so, by induction hypothesis, one has

(6.13) mS ≤ 3r, hS ≤ 6r, nS ≤ 2r− 1.

⊲(3) The new variables. We recall that the Hamiltonian flow Φt
S , given by Lemma 5.11, is well-

defined for |t| ≤ 1 on BM(0, ε2) ∩ U
hS ,M
γ/4 where

ε2 =
1

4

(
m2

S(1 + 2hS)
2

(γ/4)nS+2
||S||ℓ∞Γ

)− 1
2r

≥ 1

4
(γ/4)1+

1
2r
(
32 × 132 × 24r × C

4r−1r6r
)− 1

2r

≥ γ
3
2

26C2r3
≥ 2̺, provided C ≥ 4× 32 × 132 .(6.14)

Moreover, since Φt
S is close to the identity, if z ∈ BM(0, 2̺) ∩ U

hS ,M
γ/4 we have

||Φt
S(z) − z||σ ≤ mS(1 + hS)2

2(r+2)

(γ/4)nS+1
||S||ℓ∞Γ ||z||2r+1

σ

≤ 3r(1 + 6r)22(2r+2)(γ/4)−2r
C
4r−1(r+ 2)2rr4(r−1)(2̺)2(r−1)||z||3σ

≤ 212r+9γ−2r
C
4r−1r6r−2

( γ3/2

28C2r3r

)2(r−1)||z||3σ
≤ 2−4r+25γ−2r

C
4r−1r4r6(r−1)

C
−4(r−1)γ3(r−1)r−6(r−1)||z||3σ

≤ 2−2r+29γr−3
C
3||z||3σ

(6.15)

and so a fortiori

(6.16) ||Φt
S(z)− z||σ ≤ 2−2r+29γr−3

C
3(2̺)2||z||σ ≤ γ2−2r+13

C
−1r−6r−2||z||σ .

At this step, we aim at proving that the new change of variables

ϕ♯
(1) := ϕ(1) ◦ Φ1

S , ϕ♯
(0) := Φ−1

S ◦ ϕ(0).

are well defined and enjoy the expected properties. We set

̺♯ =
γ3/2

29C2(r+ 1)3r
=

(
r

1 + r

)3

̺.



30 JOACKIM BERNIER, NICOLAS CAMPS, BENOÎT GRÉBERT, AND ZHIQIANG WANG

• First let us prove that ϕ♯
(1) is well defined, i.e. that Φ1

S maps BM(0, 2̺♯)∩U6r,M
νr+1γ/2

on BM(0, 2̺)∩
U
6r,M
νrγ/2

. Indeed, we have

‖Φ1
S(z)‖σ ≤ ‖z‖σ + ||Φt

S(z)− z||σ ≤ ‖z‖σ(1 + γ2−2r+13
C
−1r−6r−2)

≤ ‖z‖σ(1 + r−6) provided C ≥ 213

≤ 2ρ

(
r

1 + r

)3

(1 + r−6) < 2ρ

and, given j ∈ N such that #j ≤ 6r and µ1(j) ≤ M , by Lemma 5.3 (and using that 1+ r−6 ≤ 2)

|ωM
j (Φ1

S(z))− ωM
j (z)| ≤ (6r)(2‖z‖σ)(γ2−2r+13

C
−1r−6r−2||z||σ)

≤ 2−2r−1γ‖z‖2σ provided C ≥ 12× 214 .

and so

|ωM
j (Φ1

S(z))| > (νr+1 − 2−2r)(γ/2)‖z‖2σ = (1−
r−2∑

i=r+1

2−i − 2−2r)(γ/2)‖z‖2σ = νr(γ/2)‖z‖2σ ,

that is Φ1
S(z) ∈ U

6r,M
νrγ/2

.

• We have to prove that ϕ♯
(0) is well defined, i.e. that ϕ(0) maps BM(0, ̺♯)∩U

6r,M
νr+1γ on BM (0, 2ε2)∩

U
6r,M
γ/4 . This follows directly of the induction hypothesis because, as we have seen, 2ε2 ≥ 2̺ and

̺♯ < ̺.

• The facts that ϕ♯
(0) and ϕ♯

(1) are symplectic and the estimate on the differential are obvious by

composition.

• We have to prove that ϕ♯
(1) is close to the identity. Indeed, if z ∈ BM(0, 2̺♯)∩U

6r,M
νr+1γ/2

, by (6.16)

and convexity, provided that C ≥ 14× 213, we have

‖Φ1
S(z)‖3σ ≤ (1 + γ2−2r+13

C
−1r−6r−2)3||z||3σ ≤ (1 + 14−12−2r)3||z||3σ ≤ (1 + 2−2r−1)||z||3σ .

and so

‖ϕ♯
(1)(z)− z‖σ ≤ ‖ϕ(1)(Φ

1
S(z))− Φ1

S(z)‖σ + ‖Φ1
S(z)− z‖σ

(6.15)
≤ 230γ−2

C
3
r−1∑

i=1

2−2i‖Φ1
S(z)‖3σ + 2−2r+29γr−3

C
3||z||3σ

≤ 230γ−2
C
3‖z‖3σ(

r−1∑

i=1

2−2i + 2−2r−1 + 2−2r−1) = 230γ−2
C
3‖z‖3σ

r∑

i=1

2−2i.

• We have to prove that ϕ♯
(0) is close to the identity. Indeed, if z ∈ BM (0, ̺♯) ∩ U

6r,M
νr+1γ , we have

‖ϕ(0)(z)‖σ ≤ (1 + ̺2230γ−2
C
3
r−1∑

i=1

2−2i)‖z‖σ

≤ (1 + 212γC−1(1/3)r−2)‖z‖σ ≥ 21/3‖z‖σ , provided C ≥ 220

(6.17)
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and so as expected, using (6.15), we have

‖ϕ♯
(0)(z)− z‖σ ≤ ‖Φ−1

S (ϕ(0)(z))− ϕ(0)(z)‖σ + ‖ϕ(0)(z)− z‖σ

≤ 2−2r+29γr−3
C
3||ϕ(0)(z)||3σ + 230γ−2

C
3‖z‖3σ

r−1∑

i=1

2−2i

≤ 230γ−2
C
3‖z‖3σ

r∑

i=1

2−2i.

(6.18)

• Finally, we have to prove that ϕ♯
(0) maps BM(0, ̺♯)∩U

6r,M
νr+1γ on BM(0, 2̺♯)∩U

6r,M
νr+1γ/2

. Note that

it directly implies by construction that the diagram (6.8) commutes. First, using that ϕ♯
(0) is close

to the identity (see (6.18)) and proceeding as in (6.17), we get that ‖ϕ♯
(0)(z)‖σ ≤ 21/3‖z‖σ and so

that it maps BM (0, ̺♯) ∩ U
6r,M
νr+1γ on BM(0, 2̺♯). Now let z ∈ BM(0, ̺♯) ∩ U

6r,M
νr+1γ and j ∈ N such

that #j ≤ 6r and µ1(j) ≤ M . By Lemma 5.3, and proceeding as in (6.17), we have

|ωM
j (ϕ♯

(0)(z)) − ωM
j (z)| ≤ (6r)(2‖z‖σ)(212γC−1(1/3)r−2‖z‖σ)

≤ (γ/4)‖z‖2σ provided C ≥ 216 .

and so (using that νr+1 > 1/2)

|ωM
j (ϕ♯

(0)(z))| > (νr+1 −
1

4
)γ‖z‖2σ ≥ νr+1(γ/2)‖z‖2σ ,

that is ϕ♯
(0)(z) ∈ U

6r,M
νr+1γ/2

.

⊲(4) The new expansion. Since Φt
S is the Hamiltonian flow of S, if z ∈ BM(0, 2̺♯) ∩ U

6r,M
νr+1γ/2

, we

have
d

dt
L
(M)
2p ◦ Φt

S(z) = {L(M)
2p ,S} ◦ Φt

S(z), 1 ≤ p ≤ r.

Therefore, by Taylor expansion we obtain that

L
(M)
2p ◦Φ1

S(z) =

k∗p∑

k=0

1

k!
ad

k
S(L

(M)
2p )(z) +

∫ 1

0

(1− t)k
∗
p

k∗p!
ad

k∗p+1

S (L
(M)
2p ) ◦ Φt

S(z)dt, 2 ≤ p ≤ r.

Notice that L
(M)
2 ◦ Φ1

S = L
(M)
2 since {L(M)

2 ,S} ≡ 0 and that k∗p denotes the largest integer such
that kr+ p ≤ r, i.e

(6.19) k∗pr+ p ≤ r and (k∗p + 1)r + p > r.

Recalling that ϕ♯
(1) = ϕ(1) ◦ Φ1

S , we get

H(2r,M) ◦ ϕ♯
(1) =

r∑

p=1

L
(M)
2p ◦ Φ1

S +Υ ◦Φ1
S

= L
(M)
2 +

∑

1≤k≤k∗p
2≤p≤r

1

k!
ad

k
S(L

(M)
2p ) +

∑

2≤p≤r

∫ 1

0

(1− t)k
∗
p

k∗p!
ad

k∗p+1

S (L
(M)
2p ) ◦ Φt

S dt+Υ ◦ Φ1
S

=: L
(M)
2 +

r∑

q=2

L
(M),♯
2q +Υ♯,
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where

L
(M),♯
2q =

∑

kr+p=q
k≥0,p≥2

1

k!
ad

k
S(L

(M)
2p ), 2 ≤ q ≤ r,(6.20)

Υ♯ = Υ ◦Φ1
S +

∑

2≤p≤r

∫ 1

0

(1− t)k
∗
p

k∗p!
ad

k∗p+1

S (L
(M)
2p ) ◦Φt

S dt.(6.21)

We will focus on the new remainder Υ♯ at the next step of the proof. For the moment we only

focus on L
(M),♯
2q . As previously, we decompose

L
(M),♯
2q =

∑

kr+2=q
k≥0

1

k!
ad

k
S(L

(M)
4 ) +

∑

kr+p=q
k≥0,p≥3

1

k!
ad

k
S(L

(M)
2p ),

which implies that by the cohomological equation (6.11)

(6.22)
L
(M),♯
2q := L

(M)
2q , ∀ 1 ≤ q ≤ r+ 1,

L
(M),♯
2(r+2) = adS(L4) + L

(M)
2(r+2).

Therefore, from now we only focus on q > r+ 2. Using that S solves the cohomological equation
(6.11), we get for q > r+ 2

L
(M),♯
2q =

∑

kr+p=q
k≥0,p≥3

1

k!
ad

k
S(L

(M),q
2p ),

where L
(M),q
2p := L

(M)
2p if p 6= r+ 2 or p = r+ 2 and r does not divide q − r− 2, else if there exists

an integer k such that kr+ r+ 2 = q then we have set

(6.23) L
(M),q
2(r+2) :=

1

k + 1
L
(M)
2(r+2) +

k

k + 1
L
(M),♯
2(r+2).

Note that by construction L
(M),q
p ∈ H M

p , ‖L(M),q
p ‖ℓ∞Γ ≤ ‖L(M)

p ‖ℓ∞Γ , m
L
(M),q
p

= m
L
(M)
p

, n
L
(M),q
p

=

n
L
(M)
p

and h
L
(M),q
p

= h
L
(M)
p

.

The Hamiltonian L
(M),♯
2q being defined as a sum of Poisson brackets of rational fractions, thanks

to Lemma 5.10, we note that L
(M),♯
2q is also a rational fraction of order 2q, that is L

(M),♯
2q ∈ H M

q .

Moreover, this lemma provides quantitative bounds. First, we have using (6.13) and the induction
hypothesis

m
L
(M),♯
q

≤ max
kr+p=q

kmS +m
L
(M),q
p

≤ max
kr+p=q

3p− 6 + 3kr = 3q − 6.

n
L
(M),♯
q

≤ max
kr+p=q

k(nS + 1) + n
L
(M),q
p

≤ max
kr+p=q

2kr+ 2p− 6 = 2q − 6.

h
L
(M),♯
q

≤ max
kr+p=q

max(h
L
(M)
p

, hS) ≤ 6r.

Then we focus on estimating ||L(M),♯
2q ||ℓ∞Γ . Applying the triangular inequality, we get

(6.24) ||L(M),♯
2q ||ℓ∞Γ ≤ ||L(M)

2q ||ℓ∞Γ +
∑

kr+p=q
k≥1,p≥3

1

k!
||adkS(L

(M),q
2p )||ℓ∞Γ .
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Using (6.22), to prove (6.10), it remains to verify that for r+ 2 < q ≤ r,

(6.25) ||L(M),♯
2q ||ℓ∞Γ ≤ C

4q−9q2(q−2)(r+ 1)4(q−3), ∀ r+ 3 ≤ q ≤ r.

Firstly, we have by the induction hypothesis

(6.26)
||L(M)

2q ||ℓ∞Γ
C4q−9q2(q−2)(r+ 1)4(q−3)

≤
(

r

r+ 1

)4(q−3)

≤
(

r

r+ 1

)r+1

≤ e−1.

Then, using the quantitative estimate given by Lemma 5.10, we have
∑

kr+p=q
k≥1,p≥3

1

k!
||adkS(L

(M)
2p )||ℓ∞Γ

≤
∑

kr+p=q
k≥1,p≥3

1

k!
||L(M),q

2p ||ℓ∞Γ
(

4mS(1 + 2max{hS , hL(M),q
2p

})||S||ℓ∞Γ
)k k−1∏

i=0

(m
L
(M),q
2p

+ imS)

≤
∑

kr+p=q
k≥1,p≥3

1

k!
||L2p||ℓ∞Γ

(

12r(1 + 12r)||S||ℓ∞Γ
)k

k−1∏

i=0

3(p + ir)

≤
∑

kr+p=q
k≥1,p≥3

1

k!
C
4p−9p2(p−2)r4(p−3)

(

12× 13× r2C4r−1(r+ 2)2rr4(r−1)
)k

(3q)k

≤
∑

kr+p=q
k≥1,p≥3

1

k!
(36 × 13)kC4p+4kr−9−kq2(p−2)r4(p−3)

(
q2rr4r−2

)k
qk

=
∑

kr+p=q
k≥1,p≥3

1

k!

(
36× 13

C

)k

C
4q−9q2(q−2)r4(q−3)qkr−2k ≤ C

4q−9q2(q−2)(r+ 1)4(q−3)δq,p,r,C.

where

δq,p,r,C :=
∑

k≥1

1

k!

(
36× 13

C

)k

qk
(
1 + r

r

)−4(q−3)

r−2k

So, to prove the expected bound (6.25), thanks to (6.26), we only have to prove that δq,p,r,C ≤
1− e−1. Indeed, we have

δq,p,r,C ≤
∑

k≥1

212

k!

(
36 × 13

C

)k

qk
(

1 +
1

r

)−4q

r−2k

≤
∑

k≥1

212
(
36× 13

C

)k 1

k!

(
k

e

)k
(
log
[
(1 + r−1)4

])−k
r−2k by Lemma A.2

≤
∑

k≥1

212
(
36× 13

4C

)k

(1 + r)kr−2k ≤
∑

k≥1

212
(
36× 13

2C

)k

≤212 × 13× 36

C
≤ 1

2
, provided C ≥ 213 × 13× 36.
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⊲(5) The new remainder. Finally, we just have to estimate the new remainder term Υ♯ given by

(6.21). At this step we fix z ∈ BM (0, 2̺♯)∩U6r,M
νr+1γ/2

. First, note that we can simplify a little bit the

expression of Υ♯ by removing the term of the sum associated with p = 2 using the Hamiltonians

L
(M),q
2p (defined by (6.23)) :

Υ♯ = Υ ◦ Φ1
S +

∑

3≤p≤r

∫ 1

0
(1− t)k

∗
p(k∗p + 1)Qp ◦ ◦Φt

S dt.

where q∗p := (k∗p +1)r+ p ∈ Jr+1, 2rK and Qp = ((k∗p +1)!)−1
ad

k∗p+1

S (L
(M),q∗p
2p ). Note that applying

Lemma 5.10, we have that Qp ∈ H M
q∗p

and that proceeding as we did at the previous step (i.e. the

estimates are the same) we have that

‖Qp‖ℓ∞Γ ≤ C
4q∗p−9(q∗p)

2(q∗p−2)(r+ 1)4(q
∗
p−3) ≤ C

8r−924r−4r10r−16.

and

mQp ≤ 3q∗p − 6, nQp ≤ 2q∗p − 6, hQp ≤ 6r.

Then, applying the triangular inequality and using that ‖dΦ1
S(z)(w)‖σ ≤ 2‖w‖σ we get

‖XΥ♯(z)‖σ ≤ ‖XΥ◦Φ1
S
(z)‖σ +

∑

3≤p≤r

sup
0≤t≤1

‖XQp◦Φt
S
(z)‖σ

≤ 2‖XΥ ◦ Φ1
S(z)‖σ + 2

∑

3≤p≤r

sup
0≤t≤1

‖XQp ◦ Φt
S(z)‖σ .

Using the rough estimate ‖Φt
S(z)‖σ ≤ 2‖z‖σ , Lemma 5.9 and ‖z‖σ ≤ 2̺♯ < γ (and that νr+1 >

1/2), we get

‖XΥ♯(z)‖σ ≤ 2‖XΥ ◦ Φ1
S(z)‖σ + 2

∑

3≤p≤r

sup
0≤t≤1

2
mQp(1 + hQp)

(νr+1γ/2)
nQp+1 ||Qp||ℓ∞Γ ||Φt

S(z)||
2q∗p−1
σ

≤ 2‖XΥ ◦ Φ1
S(z)‖σ + C

8r−9216r+2r10r−14
∑

3≤p≤r

γ−2q∗p+5||z||2q
∗
p−1

σ

≤ 2‖XΥ ◦ Φ1
S(z)‖σ + C

9rr10r−14γ−2r+3||z||2r+1
σ , provided C ≥ 216.

Finally, using the induction hypothesis and the sharper estimate ‖Φ1
S(z)‖σ ≤ (1 + 2−2r)‖z‖σ

(proved in (6.16)), we get

‖XΥ♯(z)‖σ ≤ (C9rr10r−14γ−2r+3)
(
4r−12||Φ1

S(z)||2r+1
σ

r−1∏

i=1

(1 + 2−2i)2r+1 + ||z||2r+1
σ

)

≤ (C9rr10r−14γ−2r+3||z||2r+1
σ )

(
4r−12

r∏

i=1

(1 + 2−2i)2r+1 + 1
)

≤ 4rC9rr10rγ−2r+3||z||2r+1
σ

r∏

i=1

(1 + 2−2i)2r+1.

This concludes the proof of the quantitative rational normal form Theorem 6.2. �
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7. Proof of the main results

In this section we prove the main results: Theorem 1.1, Proposition 1.2, Proposition 1.3 and
Proposition 1.5. As you might expect, the proof of Theorem 1.1 will require the most effort. It is
based on a bootstrap argument on Tε the maximal existence time of the local solution initiated
from an initial data of size ε. As usual in a Birkhoff normal form procedure, we obtain that
Tε = O(εr). Then our precise estimates obtained in the previous section allow us to optimize r
in term of ε. Actually for simplicity of presentation, we prefer to give the optimized values of the
various parameters as a function of ε, and then check that they are compatible with our bootstrap.
So provided that ε ≤ e−1, we define the optimal normal form order

rε := ⌊min(1, σ)θ(1 − θ)

500

log ε−1

log log ε−1
⌋

and the optimal truncation parameters

Mε = (log ε−1)1+
4
θ , Nε = (log ε−1)

2
θ , Lε := 6rεN

2
ε .

Then we define the optimal set of good initial data

(7.1) Θε := Π−1
Lε

V
6rε,Lε

10δε

where
δε = ε2γε , γε = ε1/2

and
V

r,M
δ := {z ∈ GM | min

j∈N r,M
|ωM

j (z)| > δ} .

We notice that this new non resonant set V
r,M
δ is related to the already defined set U

r,M
γ (see

(5.2)) as follow: if δ = η2γ, then if z ∈ B(η), we have

ΠMz ∈ V
r,M
δ =⇒ ΠMz ∈ Ur,M

γ .

7.1. Geometric aspects : proof of Proposition 1.2. First, we note that by its definition

(5.2) the set V
r,M
γ is open and invariant by translation of the angles. To prove that it is a right

cylinder of direction (IdG − ΠMε)G, it is enough to note that by definition Θε is a right cylinder

of direction (IdG − ΠLε)G provided ε is small enough so that Mε = (log ε−1)1+
4
θ ≥ Lε and thus

(IdG −ΠMε)G ⊂ (IdG −ΠLε)G.

7.2. Dynamics : proof of Theorem 1.1. We are going to prove that provided ε is smaller
than a constant depending only (σ, θ) then for all z(0) ∈ Θε of size ‖z(0)‖σ ≤ ε the local solution

to (NLSP) initiated from z(0) exists in C([−Tε, Tε],G), where Tε := ε−
rε
3 , and satisfies, for all

|t| ≤ Tε,

(7.2) ‖z(t)‖σ ≤ 2‖z(0)‖σ , 2
∑

a∈Z

eσ|a|
θ |Ia(z(t))− Ia(z(0))|

1
2 ≤ ‖z(0)‖

3
2
σ .

We only prove the result for the forward evolution t ≥ 0. So let z(0) ∈ Θε and let z be the
corresponding local solution6, defined on a maximal lifespan interval [0, T∗] with T∗ > 0.

• Step 0: Preliminaries and statement of the bootstrap. From now on, to avoid overloading
the notations, we’ll omit the index ε for the various parameters introduced above. Thus, r = rε,

6Note that the existence and uniqueness of such a solution is a consequence of a local Cauchy theory for (NLSP)
in G that we do not specify here. However, it is just a basic corollary of the multilinear estimates given by Lemma
2.5.
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N = Nε, M = Mε and so on.
First, for later use, we note that by assumption the parameters satisfy

(7.3) e−σ(1−θ)Nθ ≤ ε
500
θ

r log log ε−1
, M r ≤ (log ε−1)rε−

1
125

min(1,σ)(1−θ) ,

and in particular, when ε is small enough (depending on σ, θ)

(7.4) rr ≤ ε−
1

250 , e−σ(1−θ)Nθ ≤ ε500r , M r ≤ ε−
1

108 , e6σr ≤ ε−
1

500 .

Remark 7.1. We stress out that this previous estimates are crucial: they show that factors of
order rr (that appears in the estimates of Theorem 3.1 and Theorem 6.2) and even M r (that
appears in the control of the measure of the set of "good initial data" see Proposition 7.2) are
actually not so big since they are controlled by a small power of ε−1. We also note that this fact
will not be true with rε = c log ε−1, i.e. we really need to choose an optimal order smaller. It turns

out that rε = c log ε−1

log log ε−1 is small enough and in particular we don’t need to take rε = c(log ε−1)β

with 0 < β < 1 as it is done in [FG13, BMP20, LX23]).

Then, in order to apply the normal form Theorem 3.1 (resp. Theorem 6.2) we shall make sure
that 10ε ≤ ρ(rε) (resp. 10ε ≤ ̺(rε)), where ρ (resp. ̺) is defined in (3.3) (resp. (6.3)). The latter
constraint is stronger. Observe that

̺(rε) := γ
3
2C

−1r−4
ε ≫

ε→0
ε

1
50 ε

3
4 ≫
ε→0

ε ,

in which case, when ε is small enough we have

B(0, 10ε) ⊂ B(0, ̺) ⊂ B(0, ρ) .

Therefore, as we will see, under our choice of parameters the solution, in resonant and in rational
coordinates, will always be in the set where Theorem 3.1 and Theorem 6.2 can be applied, with
good estimates on the change of coordinates.

Let us now prove that T∗ ≥ Tε (defined in (1.4)), together with the estimates (7.2). We argue
by contraction: set

(7.5) T := sup
{

t ∈ [0, T∗] | ∀ τ ∈ [0, t], 2
∑

a∈Z

eσ|a|
θ |Ia(z(τ)) − Ia(z(0))|

1
2 ≤ ‖z(0)‖

3
2
σ

}

,

and assume that T < Tε. By a continuity argument, we have

(7.6) 2
∑

a∈Z

eσ|a|
θ |Ia(z(T )) − Ia(z(0))|

1
2 = ‖z(0)‖

3
2
σ .

Let us contradict (7.6).

• Step 1: Consequences of the bootstrap assumption. It follows from the bootstrap
assumption (7.5) that for all t ∈ [0, T ],

‖z(t)‖σ ≤ ‖z(0)‖σ + ‖z(0)‖
3
2
σ ≤ 2‖z(0)‖σ ,(7.7)

2
∑

a∈Z

e2σ|a|
θ |Ia(z(t)) − Ia(z(0))| ≤ ‖z(0)‖3σ .(7.8)

To obtain (7.7) we use that for all x, y ≥ 0,

(7.9) |x 1
2 − y

1
2 | ≤ |x− y| 12 ,
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from which we deduce (7.7):

‖z(t)‖σ = 2
∑

a∈Z

eσ|a|
θ |Ia(z(t))|

1
2 ≤ ‖z(0)‖σ + 2

∑

a∈Z

eσ|a|
θ |Ia(z(t))

1
2 − Ia(z(0))

1
2 |

≤ ‖z(0)‖σ + 2
∑

a∈Z

eσ|a|
θ |Ia(z(t)) − Ia(z(0))|

1
2 ≤ ‖z(0)‖σ + ‖z(0)‖

3
2
σ .

The estimate (7.8) follows from the embedding ℓ2(Z) ⊂ ℓ1(Z):

2
∑

a∈Z

e2σ|a|
θ |Ia(z(t))− Ia(z(0))| ≤ 2

(∑

a∈Z

eσ|a|
θ |Ia(z(t)) − Ia(z(0))|

1
2

)2
≤ ‖z(0)‖3 .

In particular we have from (7.7) that z(t) ∈ B(0, 2ε). Moreover, we deduce from (7.8) and from

the stability Lemma 5.3 that ΠLz(t) ∈ V
6r,L
3δ : given j ∈ N 6r,L we have

|ωj(ΠLz(t))| ≥ |ωj(ΠLz(0))| − |ωj(ΠLz(t))− ωj(ΠLz(0))|
≥ 4δ − 6r

∑

|a|≤L

|Ia(z(t))− Ia(z(0))|

≥ 4δ − 6rε3 ≥ 3δ (use (7.4)) .

Then, we apply the resonant normal form Theorem 3.1 to H the original Hamiltonian on B(10ε),
and denote φ(0), φ(1) the change of coordinates (as in the statement of Theorem 3.1):

H ◦ φ(1) = L2 + L4 +
r∑

m=3

K2m

︸ ︷︷ ︸

:=Hres

+R ,

where each K2m is resonant and R is the remainder. It follows from (7.7) and (3.9) that the local
solution written in resonant coordinates satisfies, for ε small enough,

(7.10) u(t) := φ(0)(z(t)) ∈ B(0, 3ε) ,

and that

(7.11) ‖u(t)‖σ ≤ 3‖z(0)‖σ .
It is the solution to the Cauchy problem7

i∂tu = ∇Hres(u) +∇R(u) , u(0) = φ(0)(z(0)) .

Moreover, the stability Lemma 5.3 (more precisely Remark 5.4) combined with (3.9) and the fact

that ΠLz(t) ∈ V
6r,L
3δ imply, again for ε small enough, that

ΠLu(t) ∈ V
6r,L
2δ .

We now split u into its high and its low modes parts:

u := u≤L + u>L , u≤L := ΠLu .

7This identity is classical and relies on the fact that the change of variable φ(0) is symplectic. Nevertheless, to
be proven rigorously, the solution should be approximated by a smoother one in order to have the extra property
that z ∈ C1([0, T ];G). This process is quite classical (and heavy) so we omit it (we refer for example to [BG22] for
a detailed proof). The key point is that if ‖∂2

xz(0)‖σ is finite then while ‖z(t)‖σ is finite, we can prove (using tame
estimates and the Grönwall inequality) that ‖∂2

xz(t)‖σ is also finite. This is nothing but the classical property of
the preservation of regularity for dispersive equations in the context of Gevrey spaces (the proof is the same).
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We control these two parts by performing a double bootstrap argument. The high-frequency (or
high-mode) part is handled by the estimates obtained in Section 4. As for the low frequency (or

low mode) part, we do a rational normal form as in Theorem 6.2 on B(0, 10ε)∩U6r,M
γ , with γ = ε

1
2 ,

for the Hamiltonian

H(L)
res := L

(L)
2 + L

(L)
4 +

r∑

m=3

K
(L)
2m .

Thus we obtain ϕ(0) and ϕ(1) such that

H(L)
res ◦ ϕ(1) = L

(L)
2 + L

(L)
4 +

r∑

m=3

L
(L)
2m +Υ ,

where L
(L)
2m is integrable and homogeneous of degree 2m and Υ is a remainder of order 2r+1. Set

v(t) := ϕ(0)(ΠLu) ∈ B(0, 20ε) ∩ U
6r,L
γ
2

.

It follows from (6.6) and from the a priori bound (7.11) that we actually have for all t ∈ [0, T ],

(7.12) ‖v(t)‖σ ≤ 4‖z(0)‖σ .
Moreover, by freezing the high frequencies of u we see that v solves the finite dimensional non-
autonomous ODE

i∂tv = ∇(H(L)
res ◦ ϕ(1))(v) + dϕ(0)(u≤L)

(

ΠLXH
(>L)
res

(u)
)

+ dϕ(0)(u≤L)
(

ΠLXR(u)
)

=: ∇(H(L)
res ◦ ϕ(1))(v) + f(t) .(7.13)

In particular, we have from (6.7) that, since u ∈ B(0, 3ε) under the bootstrap assumption,

‖f(t)‖σ ≤ ‖dϕ(0)(u≤L)‖σ→σ

(

‖ΠLXH
(>L)
res

(u)‖σ + ‖ΠLXR(u)‖σ
)

≤ 2r−2
(

‖ΠLXH
(>L)
res

(u)‖σ + ‖ΠLXR(u)‖σ
)

≤ 2r−2
(

2r2C2r−3r2(r−2)e−σNθ‖u(t)‖5σ + C
4r−1r2r‖u(t)‖2r+1

σ

)

,

where the last inequality follows from Lemma 4.3 and (3.7), (3.8). In particular, we deduce from
(7.11) that under our choices of parameters (7.4) we have for all t ∈ (0, T ),

(7.14) ‖f(t)‖σ ≤ ε2r−2‖z(0)‖2σ .
We are now ready to perform the double bootstrap argument.

• Step 2: Bootstrap estimates. Let us deduce some a priori bounds from the bootstrap
assumption (7.5): if T < T∗ then for all t ∈ (0, T ] and ε ∈ (0, ε∗),

2
∑

|a|>L

eσ|a|
θ |Ia(u(t))− Ia(u(0))|

1
2 ≤ ε

r
6 ‖z(0)‖

3
2
σ ,(7.15)

2
∑

|a|≤L

eσ|a|
θ |Ia(v(t)) − Ia(v(0))|

1
2 ≤ ε

r
20 ‖z(0)‖

3
2
σ .(7.16)

These bounds provide a control on the long-time evolution of the high (resp. low) frequency
components of the solution in the resonant (resp. rational) coordinates.
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− Bootstrap for the high-frequencies: We show (7.15). Recall that under the bootstrap assumption,
u ∈ B(0, 10ε) and that

H ◦ φ(1)(u) = L2(u) + L4(u) +
r∑

m=3

K2m(u) +R(u) ,

as in (3.5), where each K2m ∈ HR
m is a resonant homogeneous polynomial of degree 2m, bounded

by (3.7). For |a| > L, we have

d

dt
Ia(u(t)) =

r∑

m=3

{Ia,K2m}(u(t)) + {Ia, R}(u(t)) .

It follows from (3.8) and from Cauchy-Schwarz inequality that
∑

|a|>M

eσ|a|
θ |{Ia, R}(u(t))| 12 ≤ 2

∑

|a|>L

eσ|a|
θ |ua(s)|

1
2 |(XR(u))a|

1
2

≤ 2‖u>L(s)‖
1
2
σ ‖XR(u(s))‖

1
2
σ ≤ 2C2rrr‖u(t)‖r+1

σ .

Moreover, we have from Proposition 4.2 and form the bounds (3.7) that

∑

|a|>L

r∑

m=3

eσ|a|
θ |{Ia,K2m}(u(t))| 12 ≤ 2rCr−2rr−2e−

1
2
σ(1−θ)Nθ‖u(t)‖3σ .

We deduce from the bootstrap assumption and from (7.4) that for all t ∈ [0, T ],

∑

|a|>L

eσ|a|
θ | d
dt
Ia(u(t))|

1
2 ≤ 2C2rrr‖u(t)‖r−

1
2

σ ‖u(t)‖
3
2
σ + 2rCr−2rr−2e−

1
2
σ(1−θ)Nθ‖u(t)‖3σ

≤ (2C)2rε−
1
50

+r− 1
2 ‖u(t)‖

3
2
σ + 2rCr−2ε−

1
50

+100r23‖u(t)‖3σ
≤ ε

r
2‖z(0)‖

3
2
σ ,

assuming ε∗ is sufficiently small with respect to the universal constant C. Therefore, since we
assumed that T ≤ Tε, we obtain

∑

|a|>L

eσ|a|
θ |Ia(u(t)) − Ia(u(0))|

1
2 ≤ T sup

s∈[0,T ]

∑

|a|>L

eσ|a|
θ | d
dt
Ia(u(s))|

1
2 ≤ Tεε

r
2‖z(0)‖

3
2
σ ≤ ε

r
6 ‖z(0)‖

3
2
σ .

This proves (7.15).

− Bootstrap for the low frequencies: It remains to prove (7.16). Our estimate rely on the fact that

H
(L)
res ◦ ϕ(1) is essentially integrable (up to the remainder Υ). In light of (7.13), for fixed |a| ≤ L

we have

d

dt
Ia(v(t)) = {Ia,H(L)

res ◦ ϕ(1)}(v(t)) + 2Im
(

vafa(t)
)

= 2Im
(

va∂vaΥ
)

+ 2Im
(

vafa(t)
)

,

so that, for t ∈ (0, T ),

(7.17)
∑

a

eσ|a|
θ | d
dt
Ia(v(s))|

1
2 ≤ 2‖v‖

1
2
σ

(
‖XΥ(v(t))‖

1
2
σ + ‖f(t)‖

1
2
σ

)
.
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We deduce from the bootstrap assumption that v ∈ U
6r,L
γ
2

∩ B(0, 4ε) and B(0, 4ε) ⊂ B(0, 2̺).

According to Theorem 6.2 and to (7.12) we obtain

‖XΥ(v(t))‖σ ≤ C
rr10rγ−2r+3(4‖z(0)‖)2r+1 ≤ ε

9r
10

−2‖z(0)‖2σ .
Inserting this last estimate and (7.14) in (7.17) we deduce that for t ≤ Tε = ε−r/3,

∑

|a|≤L

eσ|a|
θ |Ia(v(t)) − Ia(v(0))|

1
2 ≤ t sup

s∈[0,]

∑

|a|≤L

eσ|a|
θ | d
dt

Ia(v(s))|
1
2

≤ Tε(ε
9r
20 + εr)ε−2‖z(0)‖

3
2
σ ≤ (ε

7r
60 + ε

2r
3 )ε−2‖z(0)‖

3
2
σ ≤ 1

2
ε

r
10

−2‖z(0)‖
3
2
σ .

This concludes the proof of (7.16).

• Step 3: Raising the contradiction. It follows from the triangle inequality and the from fact
that for all x, y ≥ 0,

(x+ y)
1
2 ≤ x

1
2 + y

1
2 ,

that we have
∑

a∈Z

eσ|a|
θ |Ia(z(t)) − Ia(z(0))|

1
2 ≤

∑

|a|≤L

eσ|a|
θ
[

|Ia(z(t)) − Ia(u(t))|
1
2

+ |Ia(u(t))− Ia(v(t))|
1
2 + |Ia(v(t))− Ia(v(0))|

1
2 + |Ia(v(0))− Ia(u(0))|

1
2 + |Ia(u(0))− Ia(z(0))|

1
2

]

+
∑

|a|>L

eσ|a|
θ
[

|Ia(z(t)) − Ia(u(t))|
1
2 + |Ia(u(t))− Ia(u(0))|

1
2 + |Ia(u(0)) − Ia(z(0))|

1
2

]

.

The bootstrap estimate (7.15) (resp. (7.16)) provides a control of |Ia(u(t)) − Ia(u(0))| (resp.
|Ia(v(t)) − Ia(v(0))|) when |a| ≤ L (resp. |a| > L), for 0 ≤ t ≤ T . Therefore

∑

a∈Z

eσ|a|
θ |Ia(z(t)) − Ia(z(0))|

1
2 ≤

∑

|a|≤L

eσ|a|
θ
[

|Ia(u(t))− Ia(v(t))|
1
2 + |Ia(u(0)) − Ia(v(0))|

1
2

]

(ε
r
6 + ε

r
20 )‖z(0)‖

3
2
σ +

∑

a∈Z

eσ|a|
θ
[

|Ia(z(t)) − Ia(u(t))|
1
2 + |Ia(z(0)) − Ia(u(0))|

1
2

]

.

To control the remaining terms, observe that for functions w,w′ ∈ G,
∑

a

eσ|a|
θ |Ia(w) − Ia(w

′)| 12 ≤ (‖w‖σ + ‖w′‖σ)
1
2‖w − w′‖

1
2
σ .

Then, we use the estimates (3.9) and (6.6) on the different changes of coordinates to deduce that
for all t ∈ (0, T ),
∑

|a|≤L

eσ|a|
θ |Ia(u(t))− Ia(v(t))|

1
2 ≤ sup

t
(‖u(t)‖σ + ‖v(t)‖σ)

1
2 ‖u(t)− v(t)‖ 1

2 ≤ C
1
2 (4‖z(0)‖σ)2γ−1 ,

∑

a∈Z

eσ|a|
θ |Ia(u(t)) − Ia(z(t))|

1
2 ≤ sup

t
(‖u(t)‖σ + ‖z(t)‖σ)

1
2 ‖u(t)− z(t)‖ 1

2 ≤ C
1
2 (3‖z(0)‖σ)2 .

Therefore, again for ε small enough (depending only on σ, θ), we conclude

2
∑

a∈Z

eσ|a|
θ |Ia(z(t)) − Ia(z(0))|

1
2 ≤

(

2ε
r
6 + 2ε

r
20 + C

1
2 42(εγ−1)

1
2 + C

1
2 32ε

1
2

)

‖z(0)‖
3
2
σ < ‖z(0)‖

3
2
σ .
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This contradicts (7.6), and thus T∗ ≥ Tε. We conclude that (7.2) holds true.

7.3. Measure estimates: proof of Proposition 1.3. In this section we prove the measure
estimate of the non-resonant set of initial data, that is

(7.18) meas(Θε ∩ BMε(0, ε)) ≥ (1− ε
1
6 )meas(BMε(0, ε))

where Mε = (log ε−1)1+
4
θ . By definition of Θε (see (7.1)), it will be a direct corollary of the

following proposition.

Proposition 7.2 (Measure estimate for non-resonant set). For ε > 0, κ ∈ (0, 1), r ≥ 3, M ≥
L ≥ 3r, if

(7.19) δ ≤ κε2(64M2)−1(9r)−2rL−3re−3σr

then, we have

meas(Vr,L
δ ∩ BM(0, ε)) ≥ (1− κ)meas(BM (0, ε)) .

In order to apply this proposition with r = 6rε, δ = 2δε = 2ε5/2, κ = ε1/6, M = Mε, L = Lε,
we just have to check (7.19) which, in view of (7.4), is clear provided that ε is small enough.

Now, just before starting to prove Proposition 7.2, let us just mention the following property
of the modulated frequencies (whose proof is given in Lemma 5.11 in [BFG20a]) :

Lemma 7.3. For all m ≥ 2 and j = (δα, aα)
2m
α=1 ∈ Jm \ Int there exists a∗ ∈ (−3m, 3m) \

{a1, · · · , a2m} such that
∣
∣
∣

2m∑

α=1

δα
(a∗ − aα)2

∣
∣
∣ ≥ 1

(6m)4m
∏2m

α=1〈aα〉2
.

Proof of Proposition 7.2. First, we note that by homogeneity, it is enough to deal with the case
ε = 1. We have to prove that

(7.20) meas
({

z ∈ BM (0, 1) | max
j∈N r,L

|ωL
j (z)| ≤ δ

})

≤ κ meas(BM (0, 1)) .

Fix j = (δα, aα)
2m
α=1 ∈ N r,L and set

Ej =
{

z ∈ BM (0, 1) , | |ωL
j (z)| ≤ δ

}

.

Take a∗(j) given by Lemma 7.3. Note that since L ≥ 3r, we have that a∗(j) ∈ [−L,L]. We are
going to impose some restrictions on Ia∗(z) without moving the variables (zj)j 6=a∗ . By a slight
abuse of notations we write

ωL
j (z) = ωL

j (Ia∗) .

Recall that

ωL
j (Ia∗) =

2m∑

α=1

δα
∑

a6=aα

Ia
2(a− aα)2

=

2m∑

α=1

δα
2(aα − a∗)2

Ia∗ +

2m∑

α=1

δα
∑

a6=aα,a∗

Ia
2(a− aα)2

.

Then, we observe that for all Ia∗ , I
′
a∗ we have

|ωL
j (Ia∗)− ωL

j (I
′
a∗)| =

∣
∣
∣

2m∑

α=1

δα
2(aα − a∗)2

∣
∣
∣|Ia∗ − I ′a∗ | ≥

1

(6m)4m
∏2m

α=1〈aα〉2
|Ia∗ − I ′a∗ | .

Since j ∈ N r,L (see (5.1)) we deduce that

(7.21) |ωL
j (Ia∗)− ωL

j (I
′
a∗)| ≥ (3r)−2rL−2r|Ia∗ − I ′a∗ | .



42 JOACKIM BERNIER, NICOLAS CAMPS, BENOÎT GRÉBERT, AND ZHIQIANG WANG

Therefore, if z, z′ are such that za = z′a for all a 6= a∗ then

(7.22) z, z′ ∈ Ej =⇒ |Ia∗ − I ′a∗ | ≤ 2δ(3r)2rL2r .

As a consequence, setting

GM,a∗ = {z ∈ GM | za∗ = 0} and BM,a∗(0, y) = BM(0, y) ∩ GM,a∗ ,

we have

(7.23) sup
z′∈GM,a∗

∫

C

1Ej
(z′; za∗)dza∗ ≤ 2πδ(3r)2rL2r .

Indeed, for fixed z′, writing za∗ in polar coordinates, za∗ = yeiφ, yields
∫

C

1Ej
(z′; za∗)dza∗ =

∫

(0,2π)

∫

(0,1)
1Ej

(z′; yeiφ)ydy = π

∫

(0,1)
1Ej

(z′; yeiφ)dy2 ,

and (7.23) follows from (7.22). Now, we apply Fubini’s theorem to get

meas(Ej) =

∫

BM (0,1)
1Ej

(z)dz

≤
∫

z′∈BM,a∗(0,1)

∫

C

1Ej
(z′; za∗)dza∗dz

′

≤ meas(BM,a∗(0, 1))2πδ(3r)
3rL2r ,

where the last estimate follows from (7.23). Now we note that, by homogeneity,

meas(BM (0, 1)) =

∫

z′∈BM,a∗(0,1),za∗∈C

‖z′‖σ+2eσ|a∗|
θ
|za∗ |≤1

1dz′ dza∗ =
πe−2σ|a∗ |θ

2

∫ 1

0

∫

z′∈BM,a∗(0,1−y)
1dz′ ydy

= meas(BM,a∗(0, 1))
πe−2σ|a∗ |θ

2

∫ 1

0
y(1− y)4Mdy = meas(BM,a∗(0, 1))

πe−2σ|a∗|θ

8M(4M + 1)
.

Therefore, since |a∗| ≤ 3r/2

meas(Ej) ≤ 64M2δ(3r)2rL2re3σrmeas(BM (0, 1))

and using that #N r,L ≤ 2r(2L+ 1)r ≤ (9L)r, we conclude that

meas
({

z ∈ BM(0, 1) | max
j∈N r,L

|ωL
j (z)| ≤ δ

})

≤
∑

j∈N r,L

meas(Ej)

≤ 64M2δ(9r)2rL3re3σrmeas(BM (0, 1)).

The proof of Proposition 7.2 then follows from assumption (7.19). �

7.4. Probability estimates: proof of Proposition 1.5. Let Y be the random function in G,

whose Fourier coefficients Ya are independent and uniformly distributed in (0, 〈a〉−2e−σ|a|θ ), and
let Z(0) = Y/‖Y ‖σ be the projection of Y on the unit sphere of G. We aim at proving that,
provided that ε0 is small enough, we have

P(∀0 < ε ≤ ε0, εZ(0) ∈ Θε) ≥ 1− ε
1/12
0 .

• Step 1 : probabilistic part. First, we consider j ∈ N , γ > 0 and as previously a∗(j) given by
Lemma 7.3. Then we note that

ω∞
j (Y ) = ca∗ |Ya∗ |2 +Ra∗ where |ca∗ | ≥ (µ1(j))

−2#j(3#j)−2#j
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and Ra∗ is independent of Ya∗ . As a consequence, applying Lemma 4.17 of [BG21], we have

P(|ω∞
j (Y )| < γ) = E

∫ 1

0
1

|ca∗ 〈a∗〉
−4e−2σ|a∗|θy2+Ra∗ |<γ

dy ≤ 4
√
γc−1/2

a∗ 〈a∗〉2eσ|a∗|
θ

≤ 4
√
γ(µ1(j))

#j(3#j)#bj+2e3σ#j/2.

It follows that8

P(∃j ∈ N , |ω∞
j (Y )| < 10γηj) ≤

√
γ
∑

j∈N

30−#j(µ1(j))
−2#j ≤ √

γ

where

ηj :=
1

160
(µ1(j))

−6#j(90#j)−2#j−4e−3σ#j .

Then we note that almost surely we have

‖Y ‖σ ≤ 2
∑

a∈Z

〈a〉−2 ≤ 2(1 + π) < 10.

Since ω∞
j is homogeneous, it follows that for all ε0 > 0, we have

P(∀j ∈ N , |ω∞
j (Z(0))| ≥ ε

1/6
0 ηj) ≥ 1− ε

1/12
0 .

• Step 2 : deterministic part. To conclude this proof it is enough to prove that, provided that ε0

is small enough, if z(0) ∈ G is such that for all j ∈ N , |ω∞
j (z(0))| ≥ ε

1/6
0 ηj and if ε ≤ ε0 then

εz(0) ∈ Θε.
More concretely, we fix such ε and z(0) and j ∈ N 6rε,Lε and we aim at proving that

(7.24) |ωLε

j (εΠLεz
(0))| > 2δε.

Applying the triangular inequality and noticing that ωLε

j = ω∞
j ◦ΠLε , we get

|ωLε

j (εΠLεz
(0))| ≥ |ω∞

j (εz(0))| − |ω∞
j (εz(0))− ω∞

j (εΠLεz
(0))|.

On the one hand, since j ∈ N 6rε,Lε , we have (provided that ε0 is small enough)

|ω∞
j (εz(0))| ≥ ε

1/6
0 ε2ηj ≥ 1

160
ε2+1/6L−36rε

ε (540rε)
−12rε−4e−18σrε ≥ 4δε.

where the last estimate is ensured by our choice of the parameters (7.4). On the other hand,
applying Lemma 5.4, we have (provided that ε0 is small enough)

|ω∞
j (εz(0))− ω∞

j (εΠLεz
(0))| ≤ ε2#j

∑

|a|>Lε

|z(0)a |2 . ε26rεe
−2σ|Lε|θ ≤ δε.

Putting together the three last estimates, we get, as expected, (7.24).

8These estimates are very standard, for a more detailed proof of them, we refer for example the reader to [BG21].
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Appendix A. Proof of Lemma 4.1

This short appendix is devoted to the proof of Lemma 4.1. We first show preliminary technical
Lemmas.

Lemma A.1. Let f(x) = ax

log a − ex on x ∈ R of a > 1, then one has f(x) ≥ 0.

Proof. We first compute the zero point of the derivative

f ′(x) = ax − e = 0 ⇒ x =
1

log a
.

Obviously f(x) = 0 at the point, which leads to f(x) ≥ 0. �

Lemma A.2. Let f(x) =
(
n
e

)n
(log x)−n − mnx−m on x ∈ (1,∞) of m,n ∈ N

∗, then we have
f(x) ≥ 0.

Proof. Thanks to Lemma A.1 one gets

x
m
n

log x
≥ e

m

n
.

It follows that for x > 1
n

e
(log x)−1 ≥ mx−

m
n ,

which implies f(x) ≥ 0. �

Lemma A.3. Let f(x) = 1 + θx− (1 + x)θ on x ∈ [0,∞) of θ ∈ (0, 1), then we have f(x) ≥ 0.

Proof. Thanks to f(0) = 0 and f ′(x) ≥ 0, we directly obtain the result. �

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. First, we note that if j ∈ Mm satisfies µ3(j) > N , then µ2(j2, · · · , j2m) >
N . As a consequence, we have

(A.1) inf
j∈Mm

µ3(j)>N

2m∑

β=2

|jβ |θ −
( 2m∑

β=2

|jβ |
)θ

≥ inf
a2≥···≥a2m≥0

a3>N

2m∑

β=2

aθβ −
(

2m∑

β=2

aβ
)θ

Then, observe that

2m∑

β=2

aθβ −
(

2m∑

β=2

aβ
)θ ≥ aθ2 + aθ3 − (a2 + a3)

θ +

2m∑

β=4

aθβ −
(

2m∑

β=4

aβ
)θ ≥ aθ2 + aθ3 − (a2 + a3)

θ.

It follows that

(A.1) ≥ inf
a,b∈Z
a≥b≥N

{aθ + bθ − (a+ b)θ}.

Thanks to Lemma A.3, letting q = b
a ∈ (0, 1], we have

(a+ b)θ = aθ(1 + q)θ ≤ aθ(1 + θq) = aθ + θ
b

a1−θ
= aθ + θbθq1−θ ≤ aθ + θbθ.

It leads to that

(A.1) ≥ inf
b≥N

{bθ − θbθ} ≥ (1− θ)N θ.

�
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