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Abstract

Structured reinforcement learning leverages
policies with advantageous properties to
reach better performance, particularly in sce-
narios where exploration poses challenges.
We explore this field through the concept of
orchestration, where a (small) set of expert
policies guides decision-making; the modeling
thereof constitutes our first contribution. We
then establish value-functions regret bounds
for orchestration in the tabular setting by
transferring regret-bound results from adver-
sarial settings. We generalize and extend the
analysis of natural policy gradient in Agarwal
et al. [2021, Section 5.3] to arbitrary adver-
sarial aggregation strategies. We also extend
it to the case of estimated advantage func-
tions, providing insights into sample com-
plexity both in expectation and high proba-
bility. A key point of our approach lies in its
arguably more transparent proofs compared
to existing methods. Finally, we present sim-
ulations for a stochastic matching toy model.

1 INTRODUCTION

Markov decision processes (MDPs) and their model-
free counterparts in reinforcement learning (RL) face
nowadays complex situations with large state or ac-
tion spaces, where the learning processes can be pro-
hibitively slow. Consequently, there is a growing em-
phasis in current research on pioneering the next gen-
eration of more ‘democratic’ algorithms that can be
applied effectively across a wider range of practical
context (Qian et al. [2019]). A promising avenue of
research builds on leveraging the inherent knowledge
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and structure present in many control and learning
problems, allowing to develop computationally more
efficient algorithms. This approach finds applications
in various fields, including computing systems schedul-
ing, energy system control, and matching problems
(Qian et al. [2019], Perera and Kamalaruban [2021]).
In such applications, the underlying MDPs often ex-
hibit unique structural characteristics. For instance,
restless multi-armed bandit problems (Gittins et al.
[2011], Whittle [1985]) serve as valuable models for
scheduling and resource allocation, while switching
curves provide efficient policy parameterizations in
certain MDPs (Iravani et al. [1997]).

One setting of structured RL involves orchestrating a
predefined set of expert policies chosen for their effi-
ciency or robustness considering the specific problem
at hand. Having exploration being guided by expert
policies may avoid pitfalls consisting of suboptimal de-
cisions stemming from local minima. Additionally, or-
chestration can foster the concept of transfer learning,
while it may contribute to system robustness and re-
liability in situations marked by noise or uncertainty,
provided that at least some expert policies are opti-
mized for such challenging conditions.

A variety of aggregation strategies for combining the
outputs of expert policies have been explored so far.
Notable approaches include those proposed by Jiang
[2007], Song et al. [2023], Cuayáhuitl et al. [2019],
which define weighted probabilities associated with se-
lecting a particular action at each state. Additionally,
Wiering and Van Hasselt [2008], Song et al. [2023] in-
vestigate schemes that employ weights based on Boltz-
mann additive or multiplicative principles. Some al-
ternative methodologies advocate for a voting system,
with examples such as the majority-voting algorithm
as discussed in Jiang [2007], Wiering and Van Has-
selt [2008], Hans and Udluft [2010], plurality voting
(winner-takes-all) as mentioned in Jiang [2007], or
rank-voting based on a Boltzmann distribution as out-
lined in Wiering and Van Hasselt [2008], Song et al.
[2023]. In the latter approach, the ranks are deter-
mined by the probabilities assigned to specific actions
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by the expert policies. Moreover, other counting mech-
anisms, including Borda counting, find consideration
in the work presented by Jiang [2007]. All of these pro-
posals are supported by numerical illustrations, rang-
ing from simple toy examples to more ambitious ex-
periments. Nevertheless, despite the promising nu-
merical outcomes, their theoretical foundations remain
notably underdeveloped.

Contributions First, we model orchestration in
Section 2 by considering expert policies as “super-
arms”, i.e., by drawing actions in two steps: first, by
picking a policy, and then, by picking the action based
on this policy.

Second, we propose and analyse in detail a set of ele-
mentary policy-building schemes maintaining weights
over the expert policies, with weights evolving accord-
ing to the advantage functions of policies built over
time. When the weights rely on the exponential po-
tential and an oracle is available, this scheme coincides
with the application of natural policy gradient strate-
gies, as exposed in Agarwal et al. [2021], but is oth-
erwise different both from value-learning and policy-
gradient alternatives. Actually, our approach consists
of a third way between value learning and policy gra-
dient, as we detail below (and in Appendix F).

Formally, we leverage the proof technique of Agar-
wal et al. [2021, Section 5.3] to work with arbi-
trary adversarial-learning strategies (see the mono-
graph by Cesa-Bianchi and Lugosi [2006b]). We trans-
fer the BT,K adversarial regret bounds achieved by
these strategies for T rounds and K experts into value
regret bounds of order BT,K/T +

√
T in the case no

oracle to compute the advantage functions is available
and the latter are estimated. As the optimal orders
of magnitude of BT,K are

√
T lnK, the achieved rates

are consistent with the literature. Because we rely
on bounded estimators for advantage functions (un-
like in Agarwal et al. [2021, Section 6]), we are actually
able to get value regret bounds not only in expecta-
tion but also with high probability. Another desirable
aspect of our approach relies on its transparent and
elementary proofs.

Finally, we illustrate our findings through a simulation
scenario involving a matching system.

Literature review. There has been a recent surge
of interesting theoretical findings around the concept
of policy gradient, in particular using the concept of
gradient domination (Fazel et al. [2018], Xiao [2022]).
Agarwal et al. [2021] proposes a comprehensive review
of policy-gradient methods. As indicated above, of
special interest to us is the approach taken by Agar-
wal et al. [2021, Section 5.3], originating in Kakade

[2001], which consists of the so-called natural policy
gradient algorithm with the softmax parameterization
(i.e., exponential weights). However, we explain in Ap-
pendix D why this approach does not accomodate well
the estimation of advantage functions.

Concurrently to our work, another noteworthy study
by Jin et al. [2022] transfers regret bound from the ad-
versarial setting — but from the bandit adversarial set-
ting, while our approach relies on the full-information
setting. Actually, Jin et al. [2022] take a different an-
gle, in the Q-learning vein, as they primarily concen-
trate on action-state value-function updates and thus
learn an optimal policy indirectly. To be more pre-
cise, the algorithm by Jin et al. [2022] is based on a
generalized policy improvement principle. They first
update the value function (with some optimism addi-
tional term); they subsequently enhance the policy us-
ing an adversarial bandit mechanism. In the case of a
single agent, they obtain bounds scaling as 1/

√
T and

close to the optimal sample complexity for episodic
settings without discount. Their emphasis lies in the
multi-agent context, whereas our attention is directed
towards orchestration in a single-agent scenario. Any-
how, we acknowledge the value of a comprehensive
numerical comparative analysis between our methods
and theirs, that is left for future research.

Additional references and more details on why our ap-
proach consists of a third way between policy gradient
and value learning may be found in Appendix F.

Notation

We consider a Markov decision process (MDP) with
finite state and action spaces A and S, i.e., a transi-
tion kernel T : S × A → P(S) and a reward function
R : S × A → P

(
[0, 1]

)
, where P(X ) denotes the set

of probability distributions over some set X . We de-
note by r : S × A → [0, 1] the mean-payoff function
associated with R, i.e., r(s, a) is the expectation of the
distribution R(s, a), for each s ∈ S and a ∈ A. We set
some discount factor γ ∈ (0, 1) throughout this article.

A stationary policy π is a mapping S → P(A): we de-
note by π( · |s) the probability distribution over actions
that it uses in state s. Starting from some initial state
s0, at each round t > 0, such a policy draws an arm
at ∼ π( · |st), after which it obtains a stochastic re-
ward rt ∼ R(st, at) while the environment moves to a
new state drawn as st+1 ∼ T ( · |st, at). The expected
infinite-horizon discounted reward accumulated by π
starting from s0 equals, by the tower rule,

Vπ(s0) = E(s0,π)

[
+∞∑

t=0

γt rt

]
= E(s0,π)

[
+∞∑

t=0

γt r(st, at)

]
.

The notation E(s0,π) indicates that actions are drawn
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according to policy π and that the initial state is s0.
The thus defined function Vπ is called the value func-
tion of π. In this article, we will be interested in de-
signing policies with V –values as large as possible.

Some additional pieces of notation will be used to de-
fine our learning strategies. For a given stationary
policy π, an initial state s0 and an action a such that
π(a|s0) > 0, we define the total reward conditional to
the first action a0 taken by π being equal to a:

Qπ(s0, a) = E(s0,π)

[
+∞∑

t=0

γt r(st, at)

∣∣∣∣ a0 = a

]
.

We set Qπ(s0, a) in an arbitrary manner otherwise, for
instance, Qπ(s0, a) = 0. We then define the so-called
advantage function as Aπ(s0, a) = Qπ(s0, a) − Vπ(s0)
By the law of total expectation,

∑

a∈A
π(a|s0)Aπ(s0, a) = 0 . (1)

Given a distribution ν = (νa)a∈A over actions, we
overload notation and define

Aπ(s, ν) =
∑

a∈A
νaAπ(s, a) . (2)

In particular, Aπ
(
s0, π( · |s0)

)
= 0.

2 SETTING AND OBJECTIVES

We fix a collection Π of K > 2 stationary policies
(π1, . . . , πK), referred to as expert policies. They are
indexed by k ∈ [K], where [K] = {1, . . . ,K}. We
combine these expert policies through state-dependent

weights q =
(
q( · |s)

)
s∈S ∈ P

(
[K]
)S

, i.e., each q( · |s)
is a probability distribution over the expert policies.
More precisely, we denote by qΠ the stationary policy

qΠ : s ∈ S 7−→ qΠ( · |s) =
∑

k∈[K]

q(k|s)πk( · |s) . (3)

Picking an action a′ according to qΠ( · |s) amounts to
performing a two-stage randomization: first, drawing
a policy index k′ ∼ q( · |s), then drawing a′ ∼ πk′( · |s).
See the steps 1(a) and 1(b) in Box A. We consider the
class C(Π) of all such policies:

C(Π) =
{
qΠ, q ∈ P

(
[K]
)S}

,

and aim to learn a good policy in this class.

Comment 1. The first contribution of this article is
the modeling of policy orchestration described in this
section. It basically consists of considering expert poli-
cies as “super-actions”, i.e., actions in a lifted MDP.

Example 1 (no expert policies). When K = |A| and
the policies ∆ = (πa)a∈A are given by Dirac masses,
i.e., πa(s) = δa for all s ∈ S, then

C(∆) =
{
p∆, p ∈ P(A)S

}

is the set of all stationary policies, stated in their tab-
ular form via a direct parametrization (following the
terminology of Agarwal et al., 2021, Section 3).

A standard result (based on the so-called Bellman’s
equations) states that there exist optimal stationary
policies π? : S → P(A), i.e., satisfying

∀s0 ∈ S, Vπ?(s0) = max
π

Vπ(s0) ,

where the maxima in the display above and below are
over all stationary policies π. These optimal stationary
policies also satisfy

∀s0 ∈ S, ∀a ∈ A, Qπ?(s0, a) = max
π

Qπ(s0, a) .

We may thus use the shorthand notation V ? = Vπ?

and Q? = Qπ? , and observe that a given stationary
policy π is optimal if and only if

∀s ∈ S, Supp
(
π( · |s)

)
⊆ argmax

A
Q?(s, · ) , (4)

where Supp denotes the support of a distribution. The
standard results recalled right above in the no-expert
case and the reduction stated in Comment 1 readily
guarantee, in particular, that there exists an optimal
policy q?Π in C(Π), i.e., satisfying

∀s0 ∈ S, Vq?Π(s0) = max
q
VqΠ(s0) ,

where the maximum is over all q ∈ P
(
[K]
)S

. The
weights q? may actually be given by Dirac masses, in
view of (4).

The literature is interested (see, among many others,
Agarwal et al., 2021, Jin et al., 2022) in constructing
sequences of stationary policies π(t), where t > 1, such
that the sequence of regrets V ?(s)− Vπ(t)(s) vanishes
asymptotically, for all s ∈ S. Typical bounds are of
order 1/

√
t.

In this article, we decompose the above total regret
into an approximation error, measuring how close in
V –values the class C(Π) is from an optimal policy π?,
and a regret with respect to C(Π), based on policies of
the form π(t) = qtΠ:

V ?(s)− VqtΠ(s)

= V ?(s)− Vq?Π(s)︸ ︷︷ ︸
approximation error

+Vq?Π(s)− VqtΠ(s)︸ ︷︷ ︸
regret w.r.t. C(Π)

. (5)

We do so because learning based on K policies can be
much more efficient than learning the optimal policy
in tabular form when A is large. We summarize our
setting and goal in Box A.
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Box A: Aggregation of expert policies

MDP: state space S, action space A, transi-
tion kernel T : S ×A → P(S), reward function
R : S × A → P

(
[0, 1]

)
with mean-payoff func-

tion r : S ×A → [0, 1]

Expert policies: π1, . . . , πK : S → P(A)

Initialization: state s0, weights q0 ∈ P
(
[K]
)S

For rounds t = 0, 1, 2, . . .:

1. The learner

(a) observes st,

(b) chooses a policy index kt ∼ qt( · |st),
(c) picks an action at ∼ πkt

( · |st);

2. The learner gets a reward rt ∼ R(st, at),
with conditional expectation r(st, at);

3. The state of the environment is updated
according to st+1 ∼ T ( · |st, at);

4. The learner picks state-dependent weights

qt+1 ∈ P
(
[K]
)S

.

Goal: Maximize s ∈ S 7→ VqTΠ(s) or equiva-
lently, minimize the regret function

s ∈ S 7−→ Vq⋆Π(s)− VqTΠ(s)

On the approximation error

The approximation error is of course uniformly null in
the situation of Example 1, as C(Π) is exactly the set
of all stationary policies therein.

But it may well be that C(Π) is a strict subset of the
set of all stationary policies while the approximation
error is uniformly null. This is the case, by definition,
as soon as q?Π is an optimal policy, i.e., abides by the
characterization (4). We summarize this discussion
in the lemma below and draw consequences after its
statement.

Lemma 1. The approximation error V ?(s)− Vq?Π(s)
is null for all s ∈ S if and only if
∀s ∈ S, ∃ws ∈ P

(
[K]
)

s.t.

Supp

( ∑

k∈[K]

ws,k πk( · |s)
)
⊆ argmax

A
Q?(s, · ) .

The condition stated means that for each state s, there
should exist a convex combination (possibly depending
on s) of the distributions of actions recommended by
the expert policies at this state s coinciding with the
distribution recommended by an optimal stationary
policy. This condition is satisfied, in particular, when
for each state s, one of the expert policies (but not
always the same), coincides with an optimal stationary
policy. This observation motivates the use of experts
policies for exploration when the state space is large.

3 ADVERSARIAL LEARNING

In this article, we show how strategies designed to con-
trol the regret in the so-called adversarial setting, i.e.,
satisfying guarantees as described in Definition 1 be-
low, may be used to pick weights qt so as to control
the regret w.r.t. C(Π). More precisely, we show how
the regret bounds BT,K of adversarial learning may be
transferred into BT,K/T bounds on the regret w.r.t.
C(Π). This is detailed in the next section and forms
the main result of this article.

But for now, we must first briefly recall what the ad-
versarial setting consists in; see the monograph by
Cesa-Bianchi and Lugosi [2006a] for a more detailed
exposition. At each round t > 1, based on the past,
a learning strategy ϕ = (ϕt)t>1 picks a convex com-
bination wt = (wt,1, . . . , wt,K) ∈ P

(
[K]
)

while an
opponent player picks, possibly at random, a vector
gt = (gt,1, . . . , gt,K) of signed rewards. Both wt and
gt are revealed at the end of the round. By “based on
the past”, we mean, for the learning strategy, that

wt = ϕt
(
(wτ , gτ )τ6t−1

)
.

Definition 1. A sequential strategy controls the re-
gret in the adversarial setting with rewards bounded
by M > 0 if against all opponent players sequentially
picking reward vectors in [−M,M ], for all T > 1,

max
k∈[K]

T∑

t=1

gt,k −
T∑

t=1

∑

j∈[K]

wt,j gt,j 6M BT,K ,

where BT,K/T → 0.

The optimal orders of magnitude of BT,K are
√
T lnK.

In Definition 1, the strategy may know M and rely on
its value.

The potential-based strategies by Cesa-Bianchi and
Lugosi [2003] are defined based on a non-decreasing
function Φ : R→ [0,+∞). They resort to w1,k = 1/K
and for t > 2,

wt,k =
vt,k∑

j∈[K] vt,j
, where

vt,k = Φ



t−1∑

τ=1

gτ,k −
t−1∑

τ=1

∑

j∈[K]

wt,jgτ,j


 . (6)

Example 2. Cesa-Bianchi and Lugosi [2003, Sec-
tion 2] show that the strategy based on the polynomial

potential Φ : x 7→
(
max{x, 0}

)2 lnK
provides the con-

trol BT,K =
√

6T lnK for the regret in the adversarial
setting.

Example 3. Another example includes the exponen-
tial potential Φ(x) = exp(ηx). Fixed values of η do
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not lead to sublinear adversarial regret bounds but to
BT,K = (lnK)/η+ηT/2; see Cesa-Bianchi and Lugosi
[2003, Section 2]. Appendix D discusses the specific
case of the exponential potential with constant learn-
ing rate η, which is out of the scope of the main body
of this article.

Example 4. However, Auer et al. studied the use of
exponential potential with time-varying learning rates
ηt = (1/M)

√
(lnK)/t, i.e., using Φt(x) = exp(ηtx)

in (6) to define the weights at round t. This sequential
strategy controls the regret with BT,K =

√
T lnK in

the adversarial setting

A final example is of a different, not potential-based,
nature.

Example 5. The greedy projection algorithm of
Zinkevich [2003] relies on a sequence (ηt)t>1 of pos-
itive step sizes and sets wt+1 = proj

(
wt + ηt gt

)
for

t > 1, where w1 = (1/K, . . . , 1/K) and where proj is
the convex projection onto P

(
[K]
)

in Euclidean norm.

For the choices ηt = (1/M)
√

2/(Kt), it achieves a re-

gret bound of M BT,K = 3M
√
KT against sequences

of gains in [−M,M ].

Appendix A states a property, called monotonicity of
weights, satisfied by the strategies stated above (ex-
cept maybe the one of Example 4 relying on exponen-
tial potential with time-varying learning rates).

4 POLICY ORCHESTRATION
WITH ORACLE HELP

In this section, we consider an ideal strategy, relying on
oracle help, in the form of knowing the advantage func-
tions. This section is meant as a warm-up conveying
some main ideas, before the estimation of advantage
functions is dealt with in Section 5.

4.1 The strategy and its regret bound

We consider an sequential strategy ϕ in the adversarial
setting and construct the weights qt as

∀s ∈ S, qt( · |s) = ϕt

((
qτ ( · |s), AqτΠ(s, · )

)
τ6t−1

)
,

where we use the piece of notation introduced in (2)
and define AqτΠ(s, · ) as the vector

(
AqτΠ(s, k)

)
k∈[K]

=
(
AqτΠ

(
s, πk( · |s)

))
k∈[K]

. (7)

For the sake of concreteness, an example of this strat-
egy based on potential-based strategies (6) is stated in
Box B in Appendix C.

Remark 1. The exponential potential of Example 2
leads to the so-called natural policy gradient ascent

for the softmax parametrization (Agarwal et al., 2021,
Section 5.3); see Appendix D.1.

The theorem below is a “theoretical” result, as it relies
on the oracle knowledge of the advantage functions (7)
— an issue that we mitigate later in Section 5.

Theorem 1. If the sequential strategy ϕ controls the
regret in the adversarial setting (Definition 1) by BT,K
then the stationary policies based on the weights qt de-
fined above control the regret w.r.t. C(Π) as:
∀s0 ∈ S, ∀T > 1,

Vq?Π(s0)− 1

T

T∑

t=1

VqtΠ(s0) 6
BT,K

(1− γ)2T
.

If in addition, ϕ satisfies monotonicity of weights (see
Property 1 in Appendix A), then

∀s0 ∈ S, ∀T > 1, Vq?Π(s0)− VqTΠ(s0) 6
BT,K

(1− γ)2T
.

We recall that examples of values of BT,K , of optimal

order
√
T lnK, are provided in Examples 2–5.

The bound of Theorem 1 holds with a 1/T rate for the
case of exponential potential with a constant learning
rate η (see Appendix D.1), but this result is not ro-
bust to the lack of oracle help, i.e., to the mitigations
discussed in Section 5 (see Appendix D.2 for details).

4.2 Proof of Theorem 1

The proof below heavily builds on techniques used in
Agarwal et al. [2021, proof of Theorem 16]. To some
extend, it can actually be seen as a simplified version of
their proof, also extended to other adversarial learning
strategies than with exponential potential.

Preparation. First, the adversarial guarantees en-
tail that ∀s ∈ S,

max
k∈[K]

T∑

t=1

AqtΠ(s, k)−
T∑

t=1

=0︷ ︸︸ ︷∑

j∈[K]

qt(j|s)AqtΠ(s, j)

= max
k∈[K]

T∑

t=1

AqtΠ(s, k) 6
1

1− γ BT,K , (8)

where the equalities in the display below follow
from (1) via the definitions (2)–(3)–(7):

∑

j∈[K]

qt(j|s)AqtΠ(s, j)

=
∑

j∈[K]

qt(j|s)
∑

a∈[A]

πj(a|s)AqtΠ(s, a)

=
∑

a∈[A]

qtΠ(a|s)AqtΠ(s, a) = 0 . (9)
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Second, for a given stationary policy π, we introduce,
for each s ∈ S,

µ(s0,π)(s) = (1− γ)

+∞∑

t=0

γt P(s0,π)(st = s) ,

i.e., µ(s0,π) is the discounted state visitation distribu-
tion starting from s0 and taking actions drawn by π.

Lemma 2 (performance difference lemma; see Kakade
and Langford, 2002a, Lemma 6.1). For any pair π, π′

of stationary policies and all states s0,

Vπ(s0)− Vπ′(s0)

=
1

1− γ
∑

s∈S
µ(s0,π)(s)

∑

a∈A
π(a|s)Aπ′(s, a) .

Now, the second building block is the following re-

statement of the lemma: for any pair q, q′ ∈ P
(
[K]
)S

of state-dependent weights and all states s0:

VqΠ(s0)− Vq′Π(s0)

=
1

1− γ
∑

s∈S
µ(s0,qΠ)(s)

∑

a∈A
qΠ(a|s)Aq′Π(s, a)

=
1

1− γ
∑

s∈S
µ(s0,qΠ)(s)

∑

k∈[K]

q(k|s)Aq′Π(s, k) , (10)

where we used here again the definitions (2)–(3)–(7).

Proof of the first part of Theorem 1. We com-
bine the two building blocks above in the following
way. By (10),

Vq?Π(s0)− 1

T

T∑

t=1

VqtΠ(s0) =
1

T

T∑

t=1

(
Vq?Π(s0)−VqtΠ(s0)

)

=
1

T

T∑

t=1

1

1− γ
∑

s∈S
µ(s0,q

?Π)(s)
∑

k∈[K]

q?(k|s)AqtΠ(s, k) .

We conclude the proof by rearranging, then replacing
the weighted sum over k by a maximum, and by finally
substituting the adversarial regret bound (8):

1

(1− γ)T

∑

s∈S
µ(s0,q

?Π)(s)
∑

k∈[K]

q?(k|s)
T∑

t=1

AqtΠ(s, k)

6
1

(1− γ)T

∑

s∈S
µ(s0,q

?Π)(s) max
k∈[K]

T∑

t=1

AqtΠ(s, k)

(11)

6
1

(1− γ)2T

∑

s∈S
µ(s0,q

?Π)(s)BT,K =
BT,K

(1− γ)2T
.

Proof of the second part of Theorem 1. See
Appendix A.

5 POLICY ORCHESTRATION
BASED ON ESTIMATED VALUES

We extend the strategy of Section 4 to work without
oracle help, by estimating the advantage functions. To
do so, Agarwal et al. [2021] resorted to unbiased but
unbounded estimators, which do not naturally lead
to high-probability bounds (see detailed discussions
in Appendix B.3). We rather resort to biased but
bounded estimators, where boundedness is useful both
to apply the bound of Definition 1 and to provide high-
probability bounds.

The estimators rely on a target precision ε (the bias
of the estimators), based on which we set a length of
episodic settings H such that γH/(1 − γ) 6 ε, and
on the other hand, an average share κ of the num-
ber of states for which we will actually perform esti-
mation. For each given a policy π, starting state s0,
and action a, we independently estimate Qπ(s0, a) by
the discounted reward achieved in the first H round
of an independent simulation times Z/κ, where Z is
a Bernoulli distribution with parameter κ. Based on
these estimates of Q–values, we build estimates of the
advantage functions. We may extend this scheme from
actions to “super-actions” given by expert policies.
Details on the estimator construction, on the filtra-
tion F introduced now, and on the lemma below, are
provided in Appendix B.1.

We denote by Ẽ denotes the expectation with respect
to auxiliary randomizations and by Ft−1 the σ–algebra
generated by randomizations used up to round t − 1
included. As will become clear in (13), we denote by
q̃t the weights constructed based on estimates.

Lemma 3. For all t > 1, the estimators Ãq̃tΠ(s, k)
are Ft–measurable and satisfy, on the one hand,

∣∣Ãq̃tΠ(s, k)
∣∣ 6 1

κ(1− γ)
a.s.

and
∑

k∈[K]

q̃t(k|s) Ãq̃tΠ(s, k) = 0 a.s., (12)

and on the other hand,
∣∣∣Ẽ
[
Ãq̃tΠ(s, k)

∣∣Ft−1

]
−Aq̃tΠ(s, k)

∣∣∣ 6 ε a.s.

5.1 Definition and analysis of the strategy

We run a similar learning scheme as in Section 4, but
with the Ãq̃τΠ(s, k) instead of the AqτΠ(s, k), i.e.,
∀s ∈ S,

q̃t( · |s) = ϕt

((
q̃τ ( · |s), Ãq̃τΠ(s, · )

)
τ6t−1

)
, (13)

where Ãq̃τΠ(s, · ) denotes the vector with components

Ãq̃τΠ(s, k) for k ∈ [K]. For the sake of concreteness,
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an example of this strategy based on potential-based
strategies (6) is stated in Box C in Appendix C.

Analysis in expectation. The first two building
blocks of the analysis in Section 4.2 relied on deter-
ministic guarantees and readily extend to the learning
scheme with estimation. The counterpart of (8) reads

max
k∈[K]

T∑

t=1

Ãq̃tΠ(s, k)−
T∑

t=1

=0︷ ︸︸ ︷∑

j∈[K]

q̃t(j|s)Ãq̃tΠ(s, j)

= max
k∈[K]

T∑

t=1

Ãq̃tΠ(s, k) 6
1

κ(1− γ)
BT,K . (14)

The second building block (10) remains as it is: the
performance difference lemma is to be stated in terms
of the true (not estimated) advantage functions A.

Theorem 2 (control in expectation). If the sequen-
tial strategy ϕ controls the regret in the adversarial set-
ting (Definition 1) by BT,K then the stationary policies
based on the weights q̃t defined in (13) control the re-
gret w.r.t. C(Π) as: ∀s0 ∈ S, ∀T > 1,

Vq?Π(s0)− 1

T

T∑

t=1

Ẽ
[
Vq̃tΠ(s0)

]
6

ε

1− γ +
BT,K

κ(1− γ)2T
.

The computational burden of the strategy (13) de-
creases with ε and 1/κ, while the regret bound
increases—as expected.

Proof. By (10), we have

Vq?Π(s0)− 1

T

T∑

t=1

Vq̃tΠ(s0) (15)

=
1

(1− γ)T

∑

s∈S
µ(s0,q

?Π)(s)
∑

k∈[K]

q?(k|s)
T∑

t=1

Aq̃tΠ(s, k) .

By the tower rule, Lemma 3 implies in particular that

−ε 6 Ẽ
[
Ãq̃tΠ(s, k)

]
− Ẽ

[
Aq̃tΠ(s, k)

]
6 ε . (16)

Therefore, since the quantities µ(s0,q
?Π)(s) and q?(k|s)

are fully deterministic and sum up to 1, taking expec-
tations with respect to Ẽ in (15) guarantees that

Vq?Π(s0)− 1

T

T∑

t=1

Ẽ
[
Vq̃tΠ(s0)

]
6

ε

1− γ+ (17)

Ẽ


 1

(1− γ)T

∑

s∈S
µ(s0,q

?Π)(s)
∑

k∈[K]

q?(k|s)
T∑

t=1

Ãq̃tΠ(s, k)




By (14), we have, almost surely, for all s:

∑

k∈[K]

q?(k|s)
T∑

t=1

Ãq̃tΠ(s, k) 6 max
k∈[K]

T∑

t=1

Ãq̃tΠ(s, k)

6
1

κ(1− γ)
BT,K . (18)

Substituting this inequality in (17) yields

Vq?Π(s0)− 1

T

T∑

t=1

Ẽ
[
Vq̃tΠ(s0)

]
6

ε

1− γ +
BT,K

κ(1− γ)2T
,

as claimed.

Analysis in high probability. Compared to the
expected bound of Theorem 2, the high-probability
regret bound adds a factor 2 ln(1/δ)/

(
κ(1 − γ)2

√
T
)
,

which is of the same order of magnitude as the main
term BT,K/

(
κ(1− γ)2T

)
.

Theorem 3 (high-probability control). If the sequen-
tial strategy ϕ controls the regret in the adversarial set-
ting (Definition 1) by BT,K then the stationary policies
based on the weights q̃t defined in (13) control the re-
gret w.r.t. C(Π) as follows: for all δ ∈ (0, 1), for all
T > 1, for all s0, with probability at least 1− δ,

Vq?Π(s0)− 1

T

T∑

t=1

Vq̃tΠ(s0)

6
ε

1− γ +
BT,K

κ(1− γ)2T
+

2 ln(1/δ)

κ(1− γ)2
√
T
.

The detailed proof may be found in Appendix B.2.
It basically consists of replacing the T applications of
inequality (16) for expectations by an application of
the Hoeffding-Azuma lemma. Additional comments
on Theorems 2 and 3 may also be found there (e.g., as
far as learning schemes based on exponential potentials
are concerned, or why we offer results only in terms of
Cesàro averages, unlike in Theorem 1).

5.2 Comparison to Agarwal et al. [2021]

A first angle of discussion concerns the regret bounds
themselves. On the one hand, the bounds in terms of
Cesàro averages are stronger than the form of bounds
that Agarwal et al. [2021, Section 6] offered, which
corresponds to the left-hand side of this inequality:

Ẽ
[

min
16t6T

{
Vq?Π(s0)− Vq̃tΠ(s0)

}]

6 Vq?Π(s0)− 1

T

T∑

t=1

Ẽ
[
Vq̃tΠ(s0)

]
.

However, on the other hand, we take a different angle
and rely on the decomposition (5): the regret we con-
trol is not in terms of V ? but of Vq?Π. Our bounds
and the ones by Agarwal et al. [2021, Section 6] are
therefore difficult to compare. We advocate that our
approach leads to more readable bounds, not relying
on rather abstract estimation or transfer errors εstat

or εbias.

A second angle of discussion concerns the estimators
used, see Appendix B.3.
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6 SIMULATIONS

We consider a discrete-time version of the stochastic
dynamic matching problem described in continuous
time in, among others, Comte et al. [2017], Jonckheere
et al. [2023]. This type of problem has applications in
a wide range of fields, including exchange programs,
online marketplaces, and supply-chain management.

Corresponding MDP. We are given I classes of
items, indexed by [I]; all items in a class are equiva-
lent. At each round t > 1, a new item arrives, of class
it drawn at random according to a predefined prob-
ability distribution λ = (λi)i∈[I], independently from
everything else. This item may be either matched with
an existing item located in one of the I queues main-
tained, or placed in queue it for later matching, pro-
vided that this queue has not reached yet its maximal
length L. Otherwise the item is trashed.

Admissible matchings are indicated by an undirected
graph referred to as the compatibility graph: two items
can be matched if their classes are connected in this
graph. We denote by %t = (%t,i)i∈[I] the number of
unmatched items in each class queue at the beginning
of round t, before the new item is taken care of. States
st = (%t, it) are composed of the lengths of the queues
and of the index of the item to be taken care of. We
start with initially fully empty queues and a random
index; we denote by µ0 the corresponding distribution
over states.

The corresponding action space A, state space S, tran-
sition kernel T , and deterministic reward function r,
i.e., the corresponding MDP, is formally defined in Ap-
pendix E.1. It relies on some parameters that we will
vary in the simulations (e.g., the compatibility graph,
λ, and L described above, but also other parameters,
like the penalty for the queue lengths). Each set of
parameters will be referred to as a scenario.

Expert policies. The first expert policy π1 is called
“match the longest”: if at least one match is possi-
ble, this policy always chooses the class with the most
items in its queue (ties broken based on the payoffs).
The other policies are of “edge-priority” type and se-
lect matches according to some (lack of) intrinsic pri-
ority order defined on the edges of the compatibility
graph. If at least one match is possible, the expert pol-
icy π2 chooses the match leading to the largest payoff
(ties broken based on queue lengths). Similarly, the ex-
pert policy π3 randomly selects at each round an edge
among the possible matches. Sometimes, we will con-
sider a final the expert policy π4, picking some random
priority order over [I] at the time of its creation, and
keeping it for all simulations (this is just a way to avoid
figuring out an arbitrary order by ourselves when I is
large). Otherwise, if no match is possible, all expert

policies described above add the item to its queue, if
the maximal length L of the latter is not achieved yet;
and in last resort, they trash the item. These policies
are also formally defined in Appendix E.1.

Results. For the sake of space, we provide only the
outcome for one simple scenario. Other (more com-
plex) scenarios are to be found in Appendix E and are
presented in a similar way.

The scenario corresponds to I = 4 with the following
compatibility graph, and L = 5.

2

1 4

3

g1,2 = 200 g2,4 = 10

g2,3 = 50

g1,3 = 30 g3,4 = 1

λ2 = 0.41

λ1 = 0.1 λ4 = 0.22

λ3 = 0.27

The values achieved based solely on the first three
expert policies are stated below; they show that q?Π
is an interesting policy to target.

Vπ1
(µ0) Vπ2

(µ0) Vπ3
(µ0) Vq?Π(µ0) V ?(µ0)

135.74 136.80 135.14 138.18 138.92

As detailed in Appendix E, we run N times the learn-
ing schemes of Section 5, where the n-th run gives rise
to weights q̃n,t indexed by n, and report in solid lines

t 7−→ 1

N

N∑

n=1

Vq̃n,tΠ(µ0) ,

as well as the corresponding ±2× standard errors in
shaded areas. We obtain the following picture with
N = 20 and the learning scheme based on polynomial
potential with p = 3; it achieves the target Vq?Π(µ0)
set, up to the bias ε. The performance of other learn-
ing schemes is discussed in the appendix.

0 500 1000 1500 2000 2500
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Céline Comte, Fabien Mathieu, and Thomas Bonald.
Performance of balanced fairness in resource
pools: A recursive approach. arXiv preprint
arXiv:1711.02880, 2017.
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Supplementary material for

“Symphony of experts: orchestration with adversarial insights in
reinforcement learning”

This appendix contains the following sections:

• Appendix A states and proves some monotonicity property alluded at in the second part of the statement
of Theorem 1 in Section 4.

• Appendix B provides all details required for our main results stated in Section 5, e.g., among others, the
precise definition of the estimators used and a proof of Theorem 3.

• Appendix C states more concrete examples of the policy learning schemes considered in Sections 4 and 5,
based on potential-based adversarial strategies.

• Appendix D discusses the specific case of the exponential potential Φ : x 7→ exp(ηx), for which a 1/T value
regret bound may be proved with oracle help, but for which it seems difficult to extend the analysis beyond
oracle help (we explain why this is so).

• Appendix E describes formally the simulation setting considered in Section 6 and provides all details on
implementation, as well as a thorough exposition of the results achieved.

• Appendix F provides additional elements for the literature review, mostly on policy orchestration.
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A AROUND THE MONOTONICITY PROPERTY OF AN ADVERSARIAL
STRATEGY

In this appendix, we first define the monotonicity property of an adversarial strategy (in Appendix A.1) and
then prove the second part of Theorem 1 in Appendix A.2), which relies on this property.

A.1 The monotonicity property: definition and examples

Property 1 (monotonicity of weights). For all sequences of rewards, for all t > 1, the convex weights output
are such that

∑

k∈[K]

wt+1,k


gt,k −

∑

j∈[K]

wt,jgt,j


 > 0 .

We now prove that it is satisfied by many adversarial strategies stated in Section 3.

Lemma 4. The potential-based strategies (6) enjoy monotonicity of weights in the sense of Property 1.

Proof. Indeed, with the notation of Example 2, since Φ is non-decreasing, we have that

vt+1,k > vt,k if gt,k −
∑

j∈[K]

wt,jgt,j > 0

and vt+1,k 6 vt,k if this difference is 6 0. Therefore,

∑

k∈[K]

vt+1,k


gt,k −

∑

j∈[K]

wt,jgt,j


 >

∑

k∈[K]

vt,k


gt,k −

∑

j∈[K]

wt,jgt,j


 = 0 .

The result follows by normalization.

The calculation above shows that the property is natural as it is satisfied as soon as weights for components k
associated with a good (respectively, bad) reward in the previous round increase (respectively, decrease). This
is why we termed it monotonicity of weights.

Lemma 5. The greedy projection algorithm of Example 5 satisfies monotonicity of weights in the sense of
Property 1.

Proof. Indeed, by a property of Euclidean projection onto a convex set, the following inner product is non-
positive:

0 >
〈
wt − wt+1, (wt + ηt gt)− wt+1

〉
= ‖wt − wt+1‖2 + ηt〈wt − wt+1, gt〉 ,

so that 〈wt+1 − wt, gt〉 > 0, which is exactly monotonicity of weights.

A.2 Proof of the second part of Theorem 1

The monotonicity property of the weights (see above) and the equality (9) entail that for all t > 1 and s ∈ S,

∑

j∈[K]

qt+1(j|s)AqtΠ(s, j) >
∑

j∈[K]

qt(j|s)AqtΠ(s, j) = 0 . (19)

As a consequence of (10) and (19), we have, for all t > 1 and s0,

Vqt+1Π(s0)− VqtΠ(s0) > 0 , (20)

so that

Vq?Π(s0)− VqTΠ(s0) 6
1

T

T∑

t=1

(
Vq?Π(s0)− VqtΠ(s0)

)
.

This proves the second part of Theorem 1 based on its first part.
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B OMITTED PROOFS IN THE ANALYSIS OF SECTION 5

We provide details on several statements made in Section 5, and more precisely,

• we define and study in a rigorous way the estimators of Q–values and advantage functions defined therein
(in Appendix B.1);

• we provide a proof of Theorem 3 and comments on Theorems 2 and 3 (in Appendix B.2);

• we compare the merits of our estimation scheme to the one considered by Agarwal et al. [2021, Section 6]
(in Appendix B.3).

B.1 Definition and properties of estimators

We recall that the estimators rely on two parameters: on the one hand, a target precision ε (the bias of the
estimators), based on which we set a length of episodic settings H such that γH/(1− γ) 6 ε, and on the other
hand, an average share κ of the number of states for which we will actually perform estimation.

We start by explaining how we use κ. We consider a family (Zt,s)t>1, s∈S of i.i.d. variables, independent from
everything else, distributed according to Ber(κ), the Bernoulli distribution with parameter κ. At each round
t > 1, we perform the estimation of the advantage function only for those states s for which Zt,s = 1.

To estimate the advantage function, it is necessary and sufficient to estimate the Q–values. Given a policy π, a
starting state s0, and an action a, we estimate Qπ(s0, a) as follows, based on an auxiliary randomization Uπ,s0,a,
e.g., generated independently from everything else according to a uniform distribution over [0, 1]:

1. We set s′0 = s0 and a′0 = a, and we iteratively simulate s′τ ∼ T ( · |s′τ−1, a
′
τ−1), then a′τ ∼ π( · |s′τ ), and finally

r′τ ∼ R(s′τ , a
′
τ ), for 1 6 τ 6 H − 1. All these simulations are based on the value of Uπ,s0,a.

2. We define Q̃π(s0, a) =

H−1∑

τ=0

γτr′τ .

We recall from Section 5 that the expectation with respect to auxiliary randomizations like Uπ,s0,a here (or the

Zt,s defined above) is denoted by Ẽ. We note that by the very simulation design and the tower rule,

Ẽ
[
Q̃π(s0, a)

]
= E(s0,π)

[
H−1∑

τ=0

γτ r(sτ , aτ )

∣∣∣∣ a0 = a

]

and thus,

0 6 Qπ(s0, a)− Ẽ
[
Q̃π(s0, a)

]
= E(s0,π)

[
+∞∑

τ=H

γτ r(sτ , aτ )

∣∣∣∣ a0 = a

]
6

γH

1− γ 6 ε . (21)

Put differently, Q̃π(s0, a) is a pessimistic estimator, with bias smaller than ε. We also note that by definition,

Q̃π(s0, a) lies in the bounded range
[
0, 1/(1− γ)

]
.

We move to the estimation of advantage functions as follows. In rounds t > 1, for states s ∈ S such that Zt,s = 1,
we estimate Aq̃tΠ(s, k) by

Ãq̃tΠ(s, k) =
Zt,s
κ

∑

a∈A
πk(a|s)

(
Q̃q̃tΠ(s, a)−

∑

a′∈A
q̃tΠ(a′|s) Q̃q̃tΠ(s, a′)

)
, (22)

and we set Ãq̃tΠ(s, k) = 0 when Zt,s = 0. Actually, we may use the first closed-form definition for Ãq̃tΠ(s, k)
whether Zt,s = 1 or Zt,s = 0.

We denote by

Ft−1 = σ
(
(Zτ,s)τ6t−1, s∈S , (Uq̃τΠ,s,a)τ6t−1, s∈S, a∈A

)
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the σ–algebra generated by past randomizations. The second part of Lemma 3 (restated below for the conve-
nience of the reader) follows easily from the independence between Ft−1, one the one hand, and the variables
(Zt,s)s∈S and (Uq̃tΠ,s,a)s∈S,a∈A on the other hand: the conditional expectation considered in this second part
corresponds to integrating over the (Zt,s)s∈S and the (Uq̃tΠ,s,a)s∈S,a∈A. The first part of Lemma 3 is by design—

as in (9) for the equality (12). We recall once again that Ẽ denotes the expectation with respect to the auxiliary
randomizations used.

Lemma 3. For all t > 1, the estimators Ãq̃tΠ(s, k) are Ft–measurable and satisfy, on the one hand,

∣∣Ãq̃tΠ(s, k)
∣∣ 6 1

κ(1− γ)
a.s.

and
∑

k∈[K]

q̃t(k|s) Ãq̃tΠ(s, k) = 0 a.s., (12)

and on the other hand, ∣∣∣Ẽ
[
Ãq̃tΠ(s, k)

∣∣Ft−1

]
−Aq̃tΠ(s, k)

∣∣∣ 6 ε a.s.

B.2 Proof of Theorem 3 and comments on Theorems 2 and 3

Theorem 3 may be proved by adapting the proof of Theorem 2, from which we extract two (in)equalities.

Proof. We use again the (in)equalities (15) and (18), which hold with probability 1, and based on Lemma 3, we
therefore only need to explain why, with probability at least 1− δ,

∑

s∈S
µ(s0,q

?Π)(s)
∑

k∈[K]

q?(k|s)
T∑

t=1

Ẽ
[
Ãq̃tΠ(s, k)

∣∣Ft−1

]

6
∑

s∈S
µ(s0,q

?Π)(s)
∑

k∈[K]

q?(k|s)
T∑

t=1

Ãq̃tΠ(s, k) +
1

κ(1− γ)

√
2T ln

1

δ
.

The inequality above indeed follows from the Hoeffding-Azuma lemma, applied to the martingale difference
sequence

Xt =
∑

s∈S
µ(s0,q

?Π)(s)
∑

k∈[K]

q?(k|s)
(
Ãq̃tΠ(s, k)− Ẽ

[
Ãq̃tΠ(s, k)

∣∣Ft−1

])
,

whose increments are bounded by 2/
(
κ(1− γ)

)
.

Comment 2. We were unable to provide an analysis for the exponential potential of Example 3 with a constant
learning rate, see the difficulties discussed in Appendix D. However, the sequential strategy ϕ of Example 3, i.e.,
exponential potential with time-varying learning rates, satisfies the assumptions of Theorems 2 and 3.

Comment 3. We only control Cesàro averages because we were unable to show inequalities like

Ẽ
[
Vq̃t+1Π(s0)

]
− Ẽ

[
Vq̃tΠ(s0)

]
> −ε

To mimic the analysis of Section 4.2, we would apply (10) for the equality below and Lemma 3 for the inequality:

(1− γ)
(
Vq̃t+1Π(s0)− Vq̃tΠ(s0)

)
=
∑

s∈S
µ(s0,q̃t+1Π)(s)

∑

k∈[K]

q̃t+1(k|s)Aq̃tΠ(s, k)

> −ε+
∑

s∈S
µ(s0,q̃t+1Π)(s)

∑

k∈[K]

q̃t+1(k|s) Ẽ
[
Ãq̃tΠ(s, k)

∣∣Ft−1

]
.

Now, monotonicity of weights (Property 1), together with (12), guarantees

∑

k∈[K]

q̃t+1(k|s) Ãq̃tΠ(s, k) > 0 a.s. ,

but the quantity to control involves some conditional expectation.
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B.3 On the estimators of Agarwal et al. [2021, Section 6]

This section may be summarized as opposing “bounded but biased estimators” (the estimation scheme of this
work) vs. “unbiased but unbounded estimators” (the estimation scheme considered in Agarwal et al. [2021,
Section 6]).

As noted by Agarwal et al. [2021, Section 6], the key for a practical implementation of aggregation of RL policies
is the ability to estimate the value functions Qπ : S × A → [0, 1] for any policy π. We proposed an estimation
scheme in (21) that leads to bounded and biased estimators, but we illustrated in Theorems 2 and 3 that the
bias is not too much of an issue, as it can be taken of the same order of magnitude as the rest of the regret
bound. The boundedness of the estimators allows for high-probability bounds via the classic Hoeffding-Azuma
deviation bound.

Agarwal et al. [2021, Section 6] rather suggested unbounded but unbiased estimators of the following kind: given
a policy π, a starting state s0, and an action a,

1. draw a random variable according to a geometric distribution, G ∼ Geom(1−γ), i.e., P(G = h) = (1−γ) γh

for all h ∈ {0, 1, 2, . . .};
2. set s′0 = s0 and a′0 = a, and if G > 1, iteratively simulate s′τ ∼ T ( · |s′τ−1, a

′
τ−1), then a′τ ∼ π( · |s′τ ), and

finally r′τ ∼ R(s′τ , a
′
τ ), for 1 6 τ 6 G;

3. define Q̂π(s0, a) =

G∑

τ=0

r′τ .

Of course, an additional layer of Bernoulli randomization via the variables Zt,s/κ could be added to reduce the
computational burden, but this is unimportant for the discussion below.

The estimators thus defined are unbiased. Indeed, with the same arguments as in Appendix B.1 and still denoting
by Ẽ the expectation with respect to the auxiliary randomizations used, we note that by the very simulation
design, by repeated applications of the tower rule, and by exchanging the sums overs h and τ ,

Ẽ
[
Q̃π(s0, a)

]
= E(s0,π)

[
G∑

τ=0

r(sτ , aτ )

∣∣∣∣ a0 = a

]
= E(s0,π)

[
+∞∑

h=0

(1− γ) γh
h∑

τ=0

r(sτ , aτ )

∣∣∣∣ a0 = a

]

= E(s0,π)

[
+∞∑

τ=0

(1− γ) γτr(sτ , aτ )

+∞∑

h=τ

γh−τ
∣∣∣∣ a0 = a

]

= E(s0,π)

[
+∞∑

τ=0

γτr(sτ , aτ )

]
= Qπ(s0, a) .

The estimators Q̂π(s0, a) are unfortunately unbounded, which raises two issues when extending the analysis

conducted in Section 5.1 to strategies of the form (13) but relying instead on the estimators Q̂π(s0, a).

First, the application (14) of the underlying adversarial guarantees needs to be adapted, by assuming sharper
bounds than the uniform bounds considered in Definition 1 (which are called zero-order bounds, as they only
depend on the range). These sharper bounds could be second-order bounds, involving quantities of the form g2

t,j ,
with the notation of Definition 1. Transferring these adversarial regret bounds to regret bounds for aggregation
of policies would certainly only require ensuring that the (conditional) second-order moments of the Q̂π(s0, a)
are bounded, which is the case.

Second, as far as high-probability bounds are concerned, as in Theorem (3), classic deviation inequalities for sums
of martingale differences like the Hoeffding-Azuma inequality or even Bernstein’s inequality are not applicable.
However, as means of n i.i.d. geometric distributions enjoy 1/

√
n deviations bounds (see, e.g., Brown, 2011), and

since the Q̂q̃tΠ(s, a) are dominated (as t varies, for fixed s and s) by a sequence of i.i.d. random variables with
distribution Geom(1− γ), suitable deviation results may be exhibited.

All in all, while we feel that regret guarantees (in expectation and in high-probability) could be proved for

strategies of the form (13) but relying instead on the estimators Q̂π(s0, a), we deem such an analysis more
involved than the straightforward analysis we presented in Section 5.1, which relies on simple tools like the
Hoeffding-Azuma inequality.
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C EXAMPLES OF DESCRIPTIONS OF THE POLICY LEARNING
SCHEMES CONSIDERED IN SECTIONS 4 AND 5

We describe in Boxes B and C, respectively, the policy learning schemes discussed in Sections 4 and 5, respectively,
based on potential-based adversarial learning strategies, i.e., of the form (6). These descriptions are examples
only, as other adversarial learning strategies may be considered, like the greedy projection algorithm of Zinkevich
[2003] (see Example 5).

These descriptions relying on potential-based adversarial learning strategies take simple forms due to, respec-
tively, equalities (9) and (12), which we restate here: for all t > 0,

∑

j∈[K]

qt(j|s)AqtΠ(s, j) = 0 and
∑

j∈[K]

q̃t(j|s) Ãq̃tΠ(s, j) = 0 a.s.

(The Box C statement is to be found on the next page.)

Box B: Potential-based strategy with oracle help

Setting: described in Box A

Parameter: a non-decreasing function Φ : R→ [0,+∞)

Initialization: weights q0( · |s) = (1/K, . . . , 1/K) for all s ∈ S
For rounds t = 0, 1, 2, . . .:

1. The learner picks a policy index kt ∼ qt( · |st), draws an action at ∼ πkt( · |st), and gets a reward
rt ∼ R(st, at);

2. The state of the environment is updated according to st+1 ∼ T ( · |st, at);

3. An oracle reveals the value function QqtΠ : S ×A → [0, 1];

4. The learner deduces the advantage function AqtΠ : S × A → [0, 1] for actions, and computes the
advantage function AqtΠ : S × [K]→ [0, 1] for the expert policies as

AqtΠ(s, k) = AqtΠ
(
s, πk( · |s)

)
=
∑

a∈A
πk(a|s)AqtΠ(s, a) ;

5. The learner picks the weights, for all s ∈ S, qt+1(k|s) =

Φ

(
t∑

τ=0

AqτΠ(s, k)

)

∑

j∈[K]

Φ

(
t∑

τ=0

AqτΠ(s, j)

) .



Matthieu Jonckheere, Chiara Mignacco, Gilles Stoltz

Box C: Potential-based strategy estimating the advantage functions

Setting: described in Box A

Parameters: a non-decreasing function Φ : R → [0,+∞), an estimation rate κ ∈ (0, 1], the number H
of simulation steps for estimation

Initialization: weights q̃0( · |s) = (1/K, . . . , 1/K) for all s ∈ S
For rounds t = 0, 1, 2, . . .:

1. The learner picks a policy index kt ∼ q̃t( · |st), draws an action at ∼ πkt( · |st), and gets a reward
rt ∼ R(st, at);

2. The state of the environment is updated according to st+1 ∼ T ( · |st, at);

3. The learner estimates the value function Q̃q̃tΠ : S ×A → [0, 1] as follows:

For each s ∈ S, the learner draws Zt,s ∼ Ber(κ):

• if Zt,s = 0, then Q̃q̃tΠ(s, a) = 0 for all a ∈ A;

• if Zt,s = 1, then, For each a ∈ A,

(a) starting from s′0 = s and a′0 = a, the learner simulates H steps of the MDP by drawing
actions according to q̃tΠ, and gets corresponding rewards r′0, . . . , r

′
H−1;

(b) the learner sets Q̃q̃tΠ(s, a) =

H−1∑

τ=0

γτr′τ ;

4. The learner computes the estimated advantage function Ãq̃tΠ : S× [K]→ [0, 1] for the expert policies
as: for all s ∈ S and k ∈ [K],

Ãq̃tΠ(s, k) =
Zt,s
κ

∑

a∈A
πk(a|s)

(
Q̃q̃tΠ(s, a)−

∑

b∈A
q̃tΠ(b|s) Q̃q̃tΠ(s, b)

)
;

5. The learner picks the weights, for all s ∈ S, q̃t+1(k|s) =

Φ

(
t∑

τ=0

Ãq̃τΠ(s, k)

)

∑

j∈[K]

Φ

(
t∑

τ=0

Ãq̃τΠ(s, j)

) .
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D EXPONENTIAL POTENTIAL WITH CONSTANT LEARNING RATE η

In this appendix, we discuss the specific case of the exponential potential Φ : x 7→ exp(ηx) with constant learning
rate η > 0; see Example 2. The updates 6 take the simplified form

wt,k =
vt,k∑

j∈[K] vt,j
, where vt,k = exp

(
η

t−1∑

τ=1

gτ,k

)
.

The associated policy learning scheme of Section 4, i.e., with oracle help, corresponds exactly to the so-called
natural policy gradient ascent for the softmax parametrization (as underlined in Remark 1; see Agarwal et al.,
2021, Section 5.3).

We prove in Section D.1 that in the oracle case, it is associated with a regret bound of order 1/T for the
counterpart of Theorem 1, but point out in Section D.2 the difficulties encountered by replacing oracle calls
with estimation. For such constant learning rates, we were unable to extend the results even only in expectation
like the ones of Theorem 2. Of course, Theorems 2 and 3 hold however for the strategy using the exponential
potential with time-varying rates ηt, as described in Example 3.

D.1 With oracle help

The result stated below is extracted from Agarwal et al. [2021, Section 5.3]. We provide its proof for the sake of
completeness: this proof is exactly the one provided in Agarwal et al. [2021, Section 5.3], we merely change its
exposition.

Theorem 4 (Agarwal et al. [2021, Section 5.3]). The Box B strategy run with

qt+1(k|s) =

exp

(
η

t∑

τ=0

AqτΠ(s, k)

)

∑

j∈[K]

exp

(
η

t∑

τ=0

AqτΠ(s, j)

)

controls the regret with respect to C(Π) as:

∀s0 ∈ S, ∀T > 1, Vq?Π(s0)− VqTΠ(s0) 6
lnK

η(1− γ)T
+

1

(1− γ)2T
.

Proof. We follow the general analysis of Section 4.2 till (11) included, and perform sharper bounds instead of
the last step.

Part 1 — We exhibit some adversarial regret bound, in the form of “pre-regret” bound, instead of a uniform
BT,K bound (of the same flavor as the bounds by de Rooij et al., 2014, Section 2 in terms of so-called mixability
gaps). First, by bounding “à la Pisier”, for all sequences of payoffs gt,j , possibly signed and unbounded:

max
k∈[K]

T∑

t=1

gt,k =
1

η
ln

(
max
j∈[K]

exp

(
η

T∑

t=1

gt,j

))

6
1

η
ln


∑

j∈[K]

exp

(
η

T∑

t=1

gt,j

)
 =

lnK

η
+

1

η

T∑

t=1

ln


∑

j∈[K]

wt,j exp(ηgt,j)


 ,

where the equality follows by telescoping. Second, Lemma 6 below exactly states that

ln


∑

j∈[K]

wt,j exp(ηgt,j)


 6 η

∑

j∈[K]

wt+1,j gt,j .

All in all, we obtained the final “pre-regret” bound: for all sequences of payoffs gt,j , possibly signed and un-
bounded:

max
k∈[K]

T∑

t=1

gt,k 6
lnK

η
+

T∑

t=1

∑

j∈[K]

wt+1,j gt,j . (23)
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Part 2 — We apply the adversarial bound exhibited. We instantiate (23) to our learning scheme (7):

∀s ∈ S, max
k∈[K]

T∑

t=1

AqtΠ(s, k) 6
lnK

η
+

T∑

t=1

∑

j∈[K]

qt+1(j|s)AqtΠ(s, j) . (24)

We note that for any learning policy π, any state s0 ∈ S, and any non-negative function f : S → [0,+∞),

(1− γ) f(s0) 6
∑

s∈S
µ(s0,π)(s) f(s) .

Therefore, for each t > 1,

∑

j∈[K]

qt+1(j|s)AqtΠ(s, j) 6
1

1− γ
∑

s′∈S
µ(s,qt+1Π)(s′)

∑

j∈[K]

qt+1(j|s′)AqtΠ(s′, j) = Vqt+1Π(s)− VqtΠ(s) ; (25)

the equality right above corresponds to the application (10) of the performance difference lemma. All in all,
collecting all bounds above, we proved so far

∀s ∈ S, max
k∈[K]

T∑

t=1

AqtΠ(s, k) 6
lnK

η
+

T∑

t=1

(
Vqt+1Π(s)− VqtΠ(s)

)
6

lnK

η
+

1

1− γ , (26)

where the last inequality follows by telescoping and from the fact that a V –value is smaller than 1/(1− γ) with
rewards in [0, 1].

Part 3 — We conclude the proof by following the proof of Section 4.2 till (11) and by substituting (26) therein:

Vq?Π(s0)− VqTΠ(s0) 6
1

(1− γ)T

∑

s∈S
µ(s0,q

?Π)(s) max
k∈[K]

T∑

t=1

AqtΠ(s, k) 6
lnK

Tη(1− γ)
+

1

T (1− γ)2
.

This concludes the proof.

Lemma 6. For all convex weight vectors (u1, . . . ,K ) and all real numbers a1, . . . , aK ,

ln


 ∑

k∈[K]

uk exp(ak)


 6

∑

k∈[K]

uk exp(ak)∑
j∈[K] uk exp(ak)

ak .

Proof. We apply Jensen’s inequality with the convex function x 7→ x lnx to get

 ∑

k∈[K]

uk exp(ak)


 ln


 ∑

k∈[K]

uk exp(ak)


 >

∑

k∈[K]

uk exp(ak) ln
(
exp(ak)

)
,

which after rearranging is exactly the result to be proved.

D.2 With estimation, in the absence of an oracle

We now wonder whether we may adapt the proof scheme above to handle estimated advantage functions, as we
did in Section 5.1 for other strategies including the ones based on polynomial potentials.

We extract (or adapt) the following (in)equalities from Sections 5.1 and Appendix D.1. First, by T applications
of (10), we have

Vq?Π(s0)− 1

T

T∑

t=1

Vq̃TΠ(s0) =
1

T

T∑

t=1

1

1− γ
∑

s∈S
µ(s0,q

?Π)(s)
∑

k∈[K]

q?(k|s)Aq̃tΠ(s, k) .

The pre-regret bound (23) yields the following adaptation of (24):

∀s ∈ S,
∑

k∈[K]

q?(k|s)
T∑

t=1

Ãq̃tΠ(s, k) 6
lnK

η
+

T∑

t=1

∑

k∈[K]

q̃t+1(k|s) Ãq̃tΠ(s, k) .
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The bound (25) may be adapted as

∑

k∈[K]

q̃t+1(k|s)Aq̃tΠ(s, k) 6
1

1− γ
∑

s′∈S
µ(s,q̃t+1Π)(s′)

∑

k∈[K]

q̃t+1(k|s′)Aq̃tΠ(s′, k) = Vq̃t+1Π(s)− Vq̃tΠ(s) ,

so that, after telescoping and after bounding the values by 1/(1− γ),

T∑

t=1

∑

k∈[K]

q̃t+1(k|s)Aq̃tΠ(s, k) 6
1

1− γ .

To combine the inequalities above and conclude this proof scheme, we should therefore (and among others)
relate, with high probability and up to the bias ε,

∑

k∈[K]

q?(k|s)
T∑

t=1

Aq̃tΠ(s, k) and
∑

k∈[K]

q?(k|s)
T∑

t=1

Ãq̃tΠ(s, k) ,

which (by Lemma 3) may be readily achieved by an application of the Hoeffding-Azuma inequality, as in the
proof of Theorem 3. However, it seems difficult to relate

T∑

t=1

∑

k∈[K]

q̃t+1(k|s) Ãq̃tΠ(s, k) and

T∑

t=1

∑

k∈[K]

q̃t+1(k|s)Aq̃tΠ(s, k) =

T∑

t=1

∑

k∈[K]

q̃t+1(k|s) Ẽ
[
Ãq̃tΠ(s, k)

∣∣Ft−1

]
.

Indeed, the quantities q̃t+1(k|s) are Ft–measurable but not necessarily Ft−1–measurable, so that the classic
deviation inequalities like the Hoeffding-Azuma inequality are not applicable. The issue here is similar to the
one discussed in Comment 3.
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E DETAILED SIMULATION STUDY

In this appendix, we provide full technical details on the setting alluded at in Section 6, as well as the detailed
outcomes for all scenarios.

E.1 Formal description of the MPD and of the expert policies

We first formalize mathematically the description of the MDP and expert policies provided in Section 6. We
recall that %i,t denotes the number of items of class i in the queue at the beginning of round t > 0, and that
each queue has a maximal length of L.

Action space. The actions consist of making a match, i.e., selecting an index in [I], putting the item in its
queue, which we denote by �, or trashing it, which we denote by � if its queue is already full. That is,

A = [I] ∪ {�, �}

More precisely, the action taken at lies in [I] if a match can be made between it and an item of class at: this
requires compatibility between it and at (as indicated by the compatibility graph), and the availability of a least
one item in the queue at, i.e., %t,at > 1. Otherwise, at =� if %it,t 6 L− 1 and at = � if %it,t = L.

State space. The situation at the beginning of the round t > 0 is summarized by the pair st = (%t, it), where
%t = (%t,i)i∈[I] is the vector of all queue sizes. The state space therefore equals

S = [I]× [L]I .

Transition kernel. We next state the transition kernel T : S × A → P(S) To do so, we consider a state
s = (%, i) and a possible action a, i.e., such that i and a are compatible and %a > 1 whenever a ∈ [I]. The
subsequent state s′ = (%′, i′) is generated as follows: the index i′ is drawn independently at random according
to λ, while %′ is obtained in a deterministic way by

%′ =





% if a = �,

%+ 1i if a =�,

%+ 1a if a ∈ [I],

where 1j denotes indicator vector of j ∈ [I], i.e., the vector with 0 everywhere except at component j ∈ [I],
where it equals 1. This fully determines T .

Reward function. We now move to the (deterministic) reward function r : S ×A → [0,M ], where M denotes
its upper range. It turns out that (with no loss of generality) we do not normalize it, for the sake of more
readable gaps between values. Positive rewards will be obtained in case of a match, but some matches will be
more rewarding than others. Costs for maintaining the queues will be suffered in all cases. The actions of placing
an item in a queue or trashing it lead to the same values of the reward function. More precisely, for a given state
s = (%, i) and an action s, the reward function is given by

r(s, a) = c
∑

j∈[I]

(L− %j) +

{
0 if a ∈ {�, �},
g(i,a) if a ∈ [I],

where c is some penalty parameter, and where the parameters gj,j′ = gj′,j quantify how desirable is a match
between (compatible) items of respective classes j and j′. The values of gj,j′ will be written on the compatibility
graphs.

The range M is given by M = cLI + max
i∈[I]

max
j∈N (i)

gi,j .

Distribution on initial state. The initial state s0 = (%0, i0) consists of an index i0 drawn at random
according to λ and of an empty queue: %0,j = 0 for all j ∈ [I]. We denote by µ0 the corresponding distribution
of s0.
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Expert policies. We denote by N (i) ⊆ [I] the item classes that are compatible with class i, and formalize
the expert policies π1, π2, π3, π4 : S → P(A), which correspond, respectively, to match with the longest queue
possible (π1), match with the most-reward item (π2), matching at random (π3), and matching based on prefer-
ences determined by some random permutation σ of [I] drawn beforehand (π4). For a given state s = (%, i), we
denote by

M(s) =
{
j ∈ N (i) : %j > 1

}

the prospective matches. Neglecting the tie-breaking rules,

if M(s) 6= ∅, π1( · |s) = Dirac

(
argmax
j∈M(s)

%j

)
, π2( · |s) = Dirac

(
argmax
j∈M(s)

gi,j

)
,

π3( · |s) = UM(s) , π4( · |s) = Dirac

(
argmax
j∈M(s)

σ(j)

)
,

where Dirac(k) denotes the Dirac mass at j and where UM(s) denotes the uniform distribution over M(s);
otherwise,

∀k ∈ {1, 2, 3, 4} , πk( · |s) = Dirac(�) if %i 6 L− 1 and πk( · |s) = Dirac(�) if %i = L .

E.2 Scenario #1

We consider the system summarized below. We chose the arrival probabilities λ = (λ1, λ2, λ3, λ4) such that the
stability conditions of Comte et al. [2021] are satisfied.

Compatibility graph
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1 4

3

g1,2 = 200 g2,4 = 10

g2,3 = 50

g1,3 = 30 g3,4 = 1

λ2 = 0.41

λ1 = 0.1 λ4 = 0.22

λ3 = 0.27

Parameters
I L c γ κ H cLI M Mε = MγH/(1− γ)

4 5 0.5 0.8 0.1 55 10 210 ≈ 0.005

The transitions and the rewards functions being known, we—unlike the learning schemes—may of course compute
the exact value functions using Bellman’s consistency equations for stationary policies (see, for instance, Agarwal
et al. [2019] for the corresponding formulas). The table below reports the performance of the expert policies
considered—only the first three in this scenario, i.e., Π = (π1, π2, π3) here—and of the optimal values, in the
class C(Π) of policies of the form qΠ, one the one hand, and among all stationary policies, on the other hand.

Vπ1
(µ0) Vπ2

(µ0) Vπ3
(µ0) Vq?Π(µ0) V ?(µ0)

135.74 136.80 135.14 138.18 138.92

The table above shows that the best combination of policies Vq?Π(µ0) outperforms the best single expert policy,
π2 in the present scenario. The table below reports which expert policies are used in q?: remember from Section 2



Matthieu Jonckheere, Chiara Mignacco, Gilles Stoltz

that the q?( · |s) may be taken as Dirac masses on one of the expert policies. We may thus compute the average
frequencies, over all states s = (%, i) ∈ S, of each expert policy appearing as the Dirac mass in q?( · |s). We
obtain the following frequencies, which shows that all expert policies (even the ones that look bad performing)
are useful.

Expert policy π1 π2 π3

Appearance rate in the q?( · |s) 0.48 0.50 0.02

As explained in Section 6, we run the learning schemes of Section 5 a number N = 20 times each, where the
n-th run gives rise to weights q̃n,t indexed by n. In the graph below, we report in colored solid lines

t 7−→ 1

N

N∑

n=1

Vq̃n,tΠ(µ0) ,

as well as the corresponding ±2× standard errors in shaded areas. We also report the values of the expert
policies, as well as Vq?Π(µ0) and V ?(µ0).

We obtain the following picture with the learning schemes based on:

• polynomial potential Φ : x 7→
(
max{x, 0}

)p
with p = 3 ≈ 2 lnK, see Example 2;

• exponential potential with time-varying learning rates ηt = 0.005/
√
t ≈ (1/M)

√
(lnK)/t, see Example 4;

• exponential potential with fixed learning rate η = 0.00014 ≈ (1/M)
√

2(lnK)/T when T = 2500, see
Example 3;

• the greedy projection algorithm of Zinkevich [2003] with ηt = 0.004/
√
t ≈ (1/M)

√
2/(Kt), see Example 5.

All learning schemes thus considered achieve the target Vq?Π(µ0) set, up to the bias ε.
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V 3( 0)
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E.3 Scenario #2

We consider the system summarized below. The payoffs (not diplayed) were drawn uniformly over [0, 20]. The
arrival probabilities λj were drawn uniformly over [0, 1] and subsequently normalized to ensure that their sum
equals 1. We report no parameter κ: this is because we alleviate the computational burden in a different manner.
More precisely, we focus on states visited and perform the weight updates in a “lazy”manner, by updating at
round t only the component s = st: we do so by replacing the estimators given in (22) by

Ãq̃tΠ(s, k) =





0 if s 6= st,

∑

a∈A
πk(a|s)

(
Q̃q̃tΠ(s, a)−

∑

a′∈A
q̃tΠ(a′|s) Q̃q̃tΠ(s, a′)

)
if s = st .

Compatibility graph
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Parameters
I L c γ H cLI M Mε = MγH/(1− γ)

8 2 5 0.8 45 80 100 ≈ 0.02

The table below reports the performance of the expert policies considered, Π = (π1, π2, π3, π4), and of the optimal
values in the class C(Π) of policies of the form qΠ, one the one hand, and among all stationary policies, on the
other hand.

Vπ1
(µ0) Vπ2

(µ0) Vπ3
(µ0) Vπ4

(µ0) Vq?Π(µ0) V ?(µ0)

362.85 363.73 363.16 363.92 364.00 364.16

The following table reports which expert policies are used in q?. Again, as in Scenario #1, all expert policies are
useful.

Expert policy π1 π2 π3 π4

Appearance rate in the q?( · |s) 0.23 0.61 0.01 0.15

We use N = 5 repetitions and compute potential-based policy-learning schemes (only), with updated values:
polynomial potential with p = 5, exponential potential with time-varying learning rates ηt = 0.8/

√
t and ex-

ponential potential with fixed learning rate η = 0.014. As the figure shows on the next page, all algorithms
considered achieve again the target Vq?Π(µ0) set, up to the bias ε.
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F A THIRD WAY BETWEEN VALUE LEARNING AND POLICY
GRADIENT

As usual in RL, many strategies with various pros and cons can be employed to optimize the overall objective.
In the introduction, we motivated the need to follow experts to choose actions rather than attempting direct
optimization. In the case of orchestration in a tabular context, a first and natural choice is to employ methods like
value iteration or policy improvement, often referred to as value learning. This is the choice made, for instance,
in Jin et al. [2022] for a multi-agent context. While a significant body of research provides guarantees for value-
learning RL algorithms using tabular representations (see Jin et al. [2018]), many practitioners commonly resort
to basic Q-learning algorithms, overlooking more refined schemes with optimistic bonuses. Unfortunately, this
can result in exponentially poor convergence rates (see, again, Jin et al. [2018]). However, fine-tuning bonus
terms become a daunting challenge for complex Markovian dynamics.

An alternative path is to follow a policy-gradient algorithm, which arguably offers greater flexibility. This is
due in particular to their ability to directly learn a stochastic policy, mapping states to probability distributions
over actions. Unlike value-based methods, policy-gradient algorithms directly parameterize the policy itself and
naturally handle stochastic policies. This inherent stochasticity facilitates exploration, ensuring that the agent
continues to discover and learn about the environment (see Schulman et al. [2017]). This exploration can be
possibly tuned by a penalization term in the overall objective, allowing good exploration tradeoffs (see Agarwal
et al. [2021]). In the absence of penalization, the optimal policy is deterministic. However, maintaining a
sufficiently stochastic policy, strategically steering clear of quasi-deterministic states, prevents the problem of
vanishingly small gradients. Unlike the well-established sample complexity results for value learning, the theory
of convergence and sample complexity for policy gradients has only recently begun to take shape, marked by the
seminal work discussed earlier—namely, the one by Agarwal et al. [2021].

In this article, we explore parameterizations of policies using state-dependent convex combinations of few ex-
pert policies, determined by adversarial learning algorithms. Interestingly, in one specific case, given by the
exponential potential-based algorithm (see Remark 1), we retrieve the natural policy gradient scheme defined by
Kakade [2001], Kakade and Langford [2002b]. For more general adversarial learning algorithms, it remains an
open problem to link the resulting policy-learning schemes to (potentially modified) policy-gradient methods.


