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Containing Sharp Displacements
Tristan Montagnon, Sophie Giffard-Roisin, Mauro Dalla Mura, Mathilde Marchandon, Erwan Pathier,

and James Hollingsworth

Abstract—Optical image correlation is an effective method
for remotely assessing ground movement from satellite imagery,
e.g associated with natural disasters, such as earthquakes. This
approach enables the characterization, and identification of the
causal factors and mechanisms underlying such processes. By
employing sub-pixel correlation algorithms, one can obtain highly
accurate (m-to-cm level) displacement fields at high spatial reso-
lution (dm-to-cm) by comparing satellite images acquired before
and after a period of movement. However, this method generally
assumes a homogeneous translation of all pixels within a given
correlation window, which will lead to biased estimates of ground
displacement if the real case is not well represented by such a
simplification. This is particularly true when resolving ground
displacements next to sharp gradients (or discontinuities) in
displacement, such as those found in the near-field of earthquake
surface ruptures.

In this paper, we present an innovative deep learning method
estimating sub-pixel displacement maps from optical satellite
images for the retrieval of ground displacement. From the
generation of a realistic simulated database, comprising Landsat-
8 satellite image pairs containing simulated sub-pixel shifts
and sharp discontinuities, we developed a Convolutional Neural
Network (CNN) able to retrieve sub-pixel displacements. The
comparison to state-of-the-art correlation methods shows that
our pipeline is able to significantly reduce the estimation bias
around fault ruptures, thus leading to more accurate character-
ization of the near-field strain in surface rupturing earthquakes.
Application of our model to the 2019 Ridgecrest earthquake
(USA) demonstrates the ability of our model to accurately resolve
ground displacement using real satellite images.

The numerical experiments proposed in this paper can
be reproduced with Pytorch code available on Github at
https://github.com/tristanmtg/cnn4l-discontinuities.

Index Terms—optical image correlation, image registration,
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I. INTRODUCTION

A. General context

PRECISE estimation of ground displacement at regional
scales is fundamental for the study of natural hazards,

such as earthquakes, volcanoes, landslides, as well as mon-
itoring of glaciers [1], [2], [3], [4], [5], [6]. In the case of
earthquakes, an accurate and unbiased estimation of ground
deformation, especially in the near-field of surface ruptures, is
crucial to address the location, geometry, spatial distribution
(on- vs off-fault) of slip, and the down-dip slip distributions
of the causative fault. Accurate characterization of the near-
field displacement around surface ruptures in turn provides
valuable constraints needed to understand the physics of
earthquake slip [7], and to anticipate the seismic hazard posed
to neighboring infrastructure and populations [8]. Such obser-
vations are essential for addressing many areas of earthquake
science, including fault mechanics, seismology, and struc-
tural/geological evolution of faulting, as well as earthquake
engineering, including seismic hazard assessment, and seismic
design. Recent observations have shown that the degree of slip
localization can vary along the fault in individual earthquakes,
as well as between different earthquakes in different settings
[9], [10], [11]. The mechanism by which slip localization
varies in a surface rupturing earthquake isn’t well understood,
although several controlling parameters have been proposed
(e.g. lithology, rupture velocity, earthquake magnitude, fault
geometry, topography, etc.) [12], [13], [14]. One difficulty
in addressing this issue lies in the relative paucity of obser-
vational data currently available, rendering a comprehensive
statistical analysis of the various parameters, and their trade-
offs, challenging. Furthermore, of the modest number of case
studies available, the observations are additionally complicated
by the quality of the displacement maps obtained by image
correlation. In particular, our ability to accurately resolve the
degree of slip localization may be limited by the methodology
used to generate the displacement map.

B. Optical image correlation

Optical satellite geodesy has revolutionized how we charac-
terize ground deformation associated with natural hazards such
as earthquakes [15], [16]. Optical Image correlation (OIC) is
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an imaging technique able to estimate a full deformation field
between two optical satellite images acquired over the same
area at different times (separated by hours up to years). The
main advantage of OIC, compared with more precise satellite
geodetic techniques such as Interferometric Synthetic Aperture
Radar (InSAR), lies in the ability to resolve large and high-
strain displacements with very high spatial detail and using
images with relatively long temporal baselines (up to many
years). OIC has therefore been widely applied to the study of
various sources of ground motion, such as surface rupturing
earthquakes, volcanoes, landslides, and glacial movement [17].
In the study of earthquakes, where displacements are generally
small relative to the pixel size, sub-pixel precision is critical for
accurately capturing the displacement field, especially close to
surface ruptures, where the deformation may become complex
(e.g. sharp discontinuities, distributed off-fault deformation,
secondary faulting, along-strike slip variability, etc). In this
sense, earthquakes can represent a relatively challenging fea-
ture to measure with OIC, compared with large, fast-moving
features such as glaciers.

In recent years, OIC has gained utility in constraining the
near-field displacement around earthquake surface ruptures
[18], [19], [20], [12], [11], [21], [14], in part due to the increas-
ing availability of high resolution optical satellite datasets,
as well as the difficulty in constraining these regions using
InSAR (which typically decorrelate due to cycle skipping
associated with the large strain gradients, [22], [23]). OIC can
therefore provide valuable constraints on the localization (or
distribution) of slip between the primary fault core and the
neighboring (decimeter-scale) off-fault damage zone.

Over the past few decades, various OIC methods have
been developed for quantifying image displacement [24],
[25], [26], [27]. Focusing on the approaches largely used in
the remote sensing community (involving satellite and aerial
imagery), these can be broadly grouped in correlation-based
techniques working in the spatial [28], [29], [30], [31] or
frequency (Fourier) domain [1], [2], [29], [32]. Spatial cross-
correlation is a fundamental technique for estimating ground
deformation by comparing reference and target images through
a sliding window approach. This technique has been used
(and refined) to efficiently solve the correlation problem [33],
[29]. Frequency-based correlation is considered to be more
accurate and faster (given that convolution in the spatial
domain is equivalent to multiplication in the frequency do-
main) than commonly used spatial correlation methods such
as normalized cross correlation [34]. Both methods generally
employ a block-based matching scheme, employing a sliding
window to capture the local displacement field over the full
image. However, this may lead to high frequency noise in the
final displacement map (at wavelengths similar to the sliding
window dimension). Therefore, some approaches also make
use of multi-scale regularization schemes to mitigate this effect
[2], [29].

The Semi-Global Matching (SGM) spatial-domain algo-
rithm of [25], and similar stereo-matching techniques [35],
employs a global optimization step that enforces consistency
and regularization at both local and larger scales. This helps
to produce more accurate and smooth displacement maps,

which can capture a broad range of displacement magnitudes.
Such regularization schemes also permit smaller correlation
windows to be used (as low as 3-by-3 pixels), thereby allowing
more spatial detail to be resolved. It is these aspects which
have made SGM popular for disparity estimation in stereo
matching applications, i.e. for producing accurate depth maps,
and generating digital elevation models from stereo imagery.

Optical Flow (OF) is a related approach which aims to track
the motion of pixels from a sequence of images using local
spatial gradients [36], [37], [38]. Nevertheless, SGM and OF
generally have lower sub-pixel precision and accuracy than
dedicated sub-pixel correlators employing larger windows,
especially when using multi-temporal images acquired under
different reflectance and incidence conditions.

Satellite images are subject to sources of noise leading to
correlation bias or even temporal decorrelation. For example,
the difference in illumination between two acquisitions, typ-
ically acquired with a difference of weeks to months, can
introduce topographically-correlated artifacts in the resulting
estimated displacement map [3], [39], [1], [6]. Reflectance
changes due to vegetation or anthropogenic changes between
acquisitions may also hinder the correlation over long time
periods [1]. Noise present in the acquisitions can be also a
source of errors in the correlation results. Low level image
pre-processing carried out by the data providers, such as image
resampling performed in the mosaicking of the raw acquisi-
tions from single arrays for forming an image in staggered
pushbroom sensors or the projection in a geographic refer-
ence system can introduce additional errors such as periodic
artifacts appearing at specific spatial frequencies [3], [32].
Spatial regularization schemes [29], or frequency masking
[3] have been used to help mitigate high frequency noise in
the resulting displacement maps, although they can result in
smoothing of the spatial detail. However, these approaches
do not address limitations in the correlation process, such
as the underlying assumption of rigid translations over the
correlation window [40], or spatial smoothing associated with
the correlation kernel [19], which may bias the displacements
in the vicinity of sharp discontinuities typical with earthquake
surface ruptures. In particular, smoothing of the displacement
field in the vicinity of a sharp discontinuity will artificially
distribute displacement into the neighboring areas. In the case
of earthquakes, this effect may severely bias our estimates of
slip localization, and the partitioning of slip between the fault
plane and the surrounding damage zone, as well as estimates
of near-field strain [14].

C. Data-driven image registration

Convolutional neural networks (CNNs) [41], [42] have
emerged as a powerful tool in all image processing fields. A
CNN is able to learn a task from a set of training images in
order to then estimate a prediction for new test images. The
architecture of a CNN consists of a succession of different
layers. First, the input layer takes as input one or more images.
Convolutional layers apply a set of learnable convolution
filters (known as kernels) to the input. Each filter scans over
the input and computes a weighted sum of pixel values within
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its receptive field. Then, an activation function (commonly
Rectified Linear Unit, or ReLU) is applied element-wise to
introduce non-linearity into the network. Optional pooling
layers reduce the spatial dimensions of the feature maps
produced by the convolutional layers. Max-pooling layers
retain the maximum value within a sliding window, effectively
downsampling the outputs of convolutional layers (feature
maps). The output layer produces the final estimations by
linearly combining the outputs of the last layer. Training a
CNN for a specific task such as image registration consists in
updating the network’s weights (convolution filters) iteratively
with a specific gradient descent optimization algorithm to
minimize the loss function, here measuring the dissimilarity
between the network’s predictions and the ground truth trans-
formations. Therefore, training requires labeled data, which
consists here of source and target image pairs (input) with
known transformations (output, i.e. label). The data is typically
split in 3 sets: training set for model learning, validation set
for monitoring the performance during the training phase, and
test set to assess the model’s performance on unseen examples
once the model is trained. We call hyper-parameters the set of
variables controlling the deep learning model architecture and
algorithm, as opposed to the parameters, or weights, which
are optimized during training. The hyper-parameters are the
number and size of layers, the optimization algorithm (e.g.,
Adam, SGD), the learning rate (step size at each gradient
descent iteration), etc.

Image registration and displacement field estimation from
optical images has been successfully addressed by recent data-
driven approaches, and in particular CNNs, e.g. in medical-
imaging [43], [44], and remote sensing [45]. In the domain
of satellite images registration, CNNs have been shown to
improve global image registration performance [46], [45].
Displacement field estimation between two images can also
be efficiently solved by deep learning, e.g. treating optical
flow estimation as a learning task [47]. However, the large
majority of registration problems focus on the estimation
of large displacements (> 1 pixel) from temporally dense
datasets, while the estimation of sub-pixel shifts from tem-
porally limited and distant acquisitions has been little studied.
Several recent studies have demonstrated the potential of data-
driven approaches to retrieve sub-pixel displacements [48],
[49], [50], [51]. However, to the best of our knowledge, no
application in remote sensing has yet been proposed for re-
solving sub-pixel displacements, particularly in the presence of
local complexities such as sharp discontinuities, from optical
satellite data, which are fundamental features for automatic
slip characterization techniques.

D. Contributions

We developed a pipeline using a convolutional neural net-
work (CNN) to solve the sub-pixel displacement estimation
problem. CNNs have the capability (1) to be robust to varia-
tions (noise and lightning for example); (2) to learn relevant
features from the data without manual feature engineering,
which simplifies the modeling process and enhances the ability
to capture complex patterns; (3) to generalize well to unseen

data with similar characteristics to the training set, making
them suitable for tasks where correlation properties may vary.
A novel aspect of the proposed technique is that we address
the specific challenge faced when discontinuities are present
within the sliding window, i.e. in the near-field of fault
ruptures. We achieve this by training a sub-pixel model on
a realistic synthetic dataset that includes samples mimicking
real fault discontinuities (See Fig. 1). Our implementation
includes a two-step pipeline that can effectively estimate
(1) significant displacements exceeding one pixel by initially
employing a coarse model in a pixel-scale registration step,
and subsequently (2) refining the sub-pixel details centered
around the pixel-scale displacement using a sub-pixel model.

This paper contributes to the literature in tree major aspects:
1) The creation of large realistic synthetic training sets

that allow data-based techniques to learn retrieving sub-pixel
ground surface deformation.

2) The development of the first end-to-end neural network-
based OIC method, as a 2-step procedure: first a coarse
estimation (larger than one pixel), then a finer estimation (sub-
pixel refinement).

3) Comparisons with state-of-the-art correlation methods
COSI-Corr [3] and MicMac [29] to quantitatively (with syn-
thetic realistic images) and qualitatively evaluate the results.
The latter case is addressed through a study of the 2019 Ridge-
crest earthquake [52], [21], where we aim at characterizing the
co-seismic displacement.

II. RELATED WORKS

OIC is based on image registration principles, in which
the goal is to estimate a displacement (or disparity) between
common features (represented by pixels) present within two
images [53]. Sub-pixel OIC refers to the estimation of the
displacement field between two images with a precision less
than the image resolution (i.e. < 1 pixel) [54]. Attaining sub-
pixel precision requires interpolating into the sub-pixel do-
main. In order to solve this problem, one common approach (in
block-based matching schemes) is to assume a homogeneous
displacement between the two images (i.e. the displacement
is smooth enough to consider a locally rigid deformation). In
most remote sensing cases, the transformation between the pre-
and post-images is dominated by a simple rigid translation in
2-dimensions, and rotations are assumed to be small. In these
cases, we can thus simplify our registration problem to just 2
degrees of freedom.

1) Spatial correlation methods: A correlation measurement
between two images of scalar values I1 (reference) and I2
(template) of same size consists of retrieving a similarity score,
that indicates how well the content of the two images match
and is typically used in template matching problems [55]. The
cross-correlation CI1,I2 between image I1 and I2 is computed
by integrating within the image domain the pixel-wise product
between the two images for each 2D spatial shift, represented
by a translation vector of components (x, y):

CI1,I2(x, y) =
∑
n

∑
m

I1(x+ n, y +m) · I2(n,m). (1)
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Fig. 1: From left to right: A pair of input images (pre and post) are acquired on two different dates. The sub-pixel displacement
field between the two images is retrieved using first a coarse model registering every pair of windows pixel-wise, followed by
the sub-pixel model that extract the sub-pixel shift; displacements is given in the row (North-South) and column (East-West)
direction. Our sub-pixel model is trained with data containing discontinuities.

The estimation of the integer 2D shift between the two
images can be performed by finding the couple (x, y), denoted
by (x∗, y∗), that maximises the correlation score:

(x∗, y∗) = argmax
x,y

C(x, y). (2)

We recall that (x∗, y∗) might not be unique and that corre-
sponds to a global translation of the two images, meaning that
all pixels in the template image will get shifted by the same
amount.

Traditional methods [3], [29] use the principle of cross-
correlation to retrieve displacement maps that describe the
surface displacement field between two satellite images in two
directions: East-West (horizontal) and North-South (vertical).
Let us assume we have two images I1 and I2, and we want to
retrieve the 2D displacement field between the two images. In
contrast to the global registration presented previously, in this
context the translation vector can be potentially different in
each pixel. To produce a map of the displacement field based
on cross-correlation, we consider a spatially local approach
consisting of splitting the template image I2 into a set of
rectangular windows of a given size. Each window {Wk,l}
corresponds to the set of pixels of the image I2 included by
the window when centered at the I2 coordinates (k, l). We first
compute the correlation coefficient map (function of (x, y)) for
every W with origin (e.g., the window center) at coordinates
(k, l), named CI1,W (k, l, x, y):

CI1,W ((k, l, x, y) =
∑
n

∑
m

I1(x+ n, y +m) ·Wk,l(n,m).

(3)
Note that in practise, we do not compute the correlation
coefficient map on the whole reference image I1, but restrict
the (x, y) to a research area around the coordinates of W .
Then, from C(k, l, x, y), that is a 4-way tensor, we can
compute (x∗

k,l, x
∗
k,l), which correspond to the displacement

vector maximising the correlation score for every (k, l):

(x∗
k,l, y

∗
k,l) = argmax

x,y
CI1,W ((k, l, x, y). (4)

From this, we are able to retrieve the displacement field
∆(k, l):

∆(k, l) = (k − x∗
k,l, l − y∗k,l). (5)

In the state-of-the-art sub-pixel spatial correlation approach
of MicMac ([29]), the displacement estimation is based on nor-
malized cross correlation, in which the displacement precision
is refined iteratively using a progressively smaller search space
with each iteration. Additional refinements, such as the use of
a non-linear cost function, and iterative spatial regularization
(isotropic and non-isotropic) help to further reduce the impact
of high frequency noise in the final displacement map. The
spatial regularization takes into account the a priori knowl-
edge of the surface regularity, by introducing parameters in
the cross-correlation formula able to penalize certain aspects
of the computation, such as high-frequency components or
unrealistically large shifts [56]. MicMac can be less sensitive
to image noise, and to large spatial heterogeneities due to large
time differences between the acquisitions [29] than frequency
methods. However, spatial correlation can be computationally
expensive, as it involves a convolution process involving many
computations. The correlation can also fail, or be heavily
biased under particular noise conditions (e.g changes in at-
mospheric conditions, sensor artifacts, radiometric differences,
geometric distortions, stereoscopic artifacts, aliasing, color
saturation, etc) or very close to the fault, by the nature of
the assumptions made.

2) Frequency-based correlation methods: Another way to
retrieve displacement between two images is to work in the
frequency domain. The general principle of frequency-based
correlation is to compute the normalized cross-power spectrum
QI1,I2 (i.e. the complex conjugate of the Fourier transform
F{·} of an image multiplied element-wise by the Fourier
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transform of a second image), and retrieve its inverse Fourier
transform F−1{·}, that will give us the normalized cross-
correlation matrix RI1,I2(x, y) for a specific template image
I2 compared with I1:

RI1,I2(x, y) = F−1

{
F {I1}F∗ {I2}
|F {I1}F {I2} |

}
. (6)

The relative displacement between the two images is then
determined spatially from the position of the peak in this
correlation matrix [26]. To then estimate a displacement field
over the full image space, we split I1 and I2 into a set of
template windows W1 and W2 of coordinates (k, l) which are
used to obtain the local displacement values ∆(k, l) from the
local correlation coefficient maps RW1,W2(k, l, x, y).

RW1,W2
(k, l, x, y) = F−1

{
F
{
W1k,l

}
F∗ {W2k,l

}
|F

{
W1k,l

}
F
{
W2k,l

}
|

}
. (7)

Alternatively, for every set of windows, ∆(k, l) may be
estimated directly in the frequency domain [1], [3], [32] from
the 2-D slope of the normalized cross-spectrum’s unwrapped
phase.

In the sate-of-the-art frequency-based correlator, COSI-Corr
([3]), the displacement is estimated purely in the frequency
domain (thus avoiding expensive IFFT operations, where FFT
denotes the Fast Fourier Transform, an algorithm used for
converting a time-domain signal into its frequency-domain
representation, and IFFT the corresponding inverse operation).
Iterative adaptive frequency masking helps to mitigate the
impact of noisy (high) frequencies, while maintaining a rea-
sonable computational cost [2]. As with all frequency-based
methods, the technique gives increasingly robust results with
larger correlation windows [3], [29], albeit at the expense of
spatial detail. Therefore, correlation windows of ∼ 32-by-32
(equivalent to an effective width of 16-by-16, accounting for
the windowing function applied to reduce spectral leakage
when computing the FFT) often represent the optimum trade-
off between accuracy, acceptable noise levels, and spatial de-
tail. Nevertheless, the assumption of a homogenous translation
over this correlation window results in bias around sharp
discontinuities or regions where the true displacement is more
complex.

III. METHODOLOGY

A. Approach and pipeline of the proposed framework

Our proposed approach relies on the same principle as state-
of-the-art OIC approaches. First, we work at the local scale
with two small windows, W1 and W2, of size k × k (with
k the size of the sliding window in pixels; we use k = 16,
as it has been demonstrated to be an effective window size
from previous OIC studies of earthquake deformation, and
allows us to compare with state-of-the-art approaches; k could
be adapted). We also make the assumption of a locally rigid
and non-rotating transformation, by evaluating the translational
displacements ∆ between the two windows. We develop an
integrated 2-step pipeline able to estimate (1) the large scale
displacements (>1 pixel) with a coarse model in a pixel-scale

registration step, followed by (2) sub-pixel refinement centered
on the pixel-scale displacement with a sub-pixel model. Both
steps are implemented using a sliding window procedure. Fig.
1 summarizes the full pipeline, taking two satellite images
(global scale) as input.

B. Sub-pixel model architecture

To perform the sub-pixel estimation, we developed a 4
convolutional layer CNN architecture cnn4l that takes two
16 × 16 pixel patches, W1 and W2, as input. The model
outputs a vector of two displacement values, representing the
estimated shift (in pixels) between the two input windows,
in the row and column directions (corresponding to north-
south and east-west directions for UTM-projected imagery).
The architecture of our network can be summarized as follows:
the input is passed through four convolutional layers, with an
increasing number of small kernels (64, 128, 256 and 256).
The size of the kernels (3×3) was selected in order to extract
small features in already small (16 × 16) windows, and is
well suited to work on small displacements [48]. The output
of each convolution is processed by the Rectified Linear Unit
(ReLU) activation function. After the convolutions, two fully
connected layers reduce the size of the data (from 16384 to
64 to 2) and outputs the estimated shift. The structure and its
parameters are summarized on Fig. 2. Pooling operations are
not used here; as the input images are already very small, the
size reduction caused by the convolution operations without
padding is sufficient to extract multi-scale features (the last
feature maps shape is 8× 8, thus, two times smaller than the
input). The proposed architecture is generic, could be used
with other window sizes than k = 16.

C. Generation of the training database

In the Earth Science community, no suitable archive of
synthetic earthquake displacements currently exists for the
purposes of training a Convolutional Neural Network. Further-
more, the lack of precise, spatially dense ground displacement
measurements in real earthquake cases hinders the creation of
a relevant database of suitable ground truth data. Consequently,
we generate our own synthetic satellite imagery with known
displacements, to train and validate our network. This training
dataset contains pairs of patches (input windows), together
with the rigid deformation values linking them (targets). In
order to create samples containing realistic reflectance noise
(resulting from variations in illumination, changes in vegeta-
tion, etc), we use real Landsat-8 acquisitions acquired over the
same region, but on different dates. We select satellite images
from areas which are stable between the two acquisitions (i.e.
no ground displacement is present). Additionally, we globally
co-register the two acquisitions using phase correlation (a
Python implementation of the matrix-multiply DFT method
of [26] available in the the Scikit-image library), to reduce
global mis-registrations that might remain after processing by
the USGS.

We extract two windows, W1 and W2, respectively, from
two large satellite images, I1 and I2, which are acquired over
the same area on two different dates, t1 and t2. We build a
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Fig. 2: Architecture of the model used to achieve the sub-pixel estimation (cnn4l). The model takes the pre- and the post-
windows as input, and outputs the estimated shift (EW and NS displacements between the two windows).

synthetic displacement field, ∆, used to warp W2 to obtain
W2s, the distorted version of W2. One sample of the training
dataset is the standardized pair (W1,W2s) (re-scaled with a
0-mean and a unit variance), with the target deformation ∆
associated. A re-sampling algorithm is necessary during the
warping process, because the shift applied is sub-pixel: we
use Lanczos interpolation, with a kernel size of 6× 6.

This can be summarized as follows:

W2s(x, y) = eδt(f∆(W1(x, y)))(x, y)

with e the natural evolution of the ground during δt, and
f the distortion operation associated to ∆. This process
is repeated many times (with random ∆, random window
extraction location, random pair (I1, I2), following a uniform
distribution), to create a large number of unique samples. The
procedure is summarized on Fig. 3.

1) UNI Dataset: The first database that was generated
assumes a perfectly uniform shift between the two patches,
similar to the traditional correlation implementations. This
uniform training dataset is called ’UNI’. Let’s fix:

∆ = (∆x,∆y)

where (∆x,∆y) ∈ [−1, 1]2. Here, ∆ simulates a uniform
sub-pixel shift in W2s. The UNI Dataset is created with
this uniform distribution of displacement fields, and is made
of 125,000 samples for training (80% for training; 20% for
validation) and 25,000 for testing.

2) DIS Dataset: A second training database was created in
order to address the incorrect assumption of a uniform shift in
cases where a displacement discontinuity is present within the
sliding window. Here, ∆ used to warp W2 is not uniform, but
contains a discontinuity (see Fig. 3). This discontinuity dataset
is called ’DIS’. Formally,

∆(x, y) =

{
∆a(x, y) = (∆xa ,∆ya) if (x, y) ∈ A

∆b(x, y) = (∆xb
,∆yb

) if (x, y) ∈ B
(8)

where A and B are the two areas (green and pink on Fig.
3) created by intersecting a random line with the window
square, with area(A) > 1.05 × area(B), and (x, y) are
the coordinates of the pixels in W2. This means that the
center pixel is always contained in A. Therefore, the target
deformation for this sample is ∆a. With this simulated fault
discontinuity, the model needs to identify the displacement of
the largest area A in a given pair of windows, while some
smaller area B is allowed to move in a different direction.
Again, 125,000 samples are created for training (80% for
training; 20% for validation) and 25,000 for testing.

We separately trained the cnn4l model with both UNI and
DIS datasets, respectively giving two models: cnn4l-uni16
and cnn4l-dis16, both made to do the sub-pixel estimation.
Two other training datasets were tested: (1) using eδt(W1) =
Id(W1), i.e. t = 0 using exactly the same acquisition, and (2)
using eδt(W1) = Id(W1)+n with n a uniform random noise
to train the model. However, the accuracy reached on real data
was unsatisfactory.

D. Sensitivity study

In order to select the best hyperparameters, we evaluated
our models on the test set (25,000 Landsat-8 16× 16 patches,
acquired on different dates and locations, to guarantee that
there is no common data used in both training and evaluation
stages).

1) The sub-pixel model architecture: We evaluated the
sensitivity of our model with respect to the two main param-
eters controlling the architecture: the number of convolutional
layers, and the number of filters in each convolutional layer.
We evaluated the mean absolute error when using 1, 2, 3,
and 4 convolutional layers, and with three different levels of
filters per layer (small, medium and large). Table I gives details
on the architectures tested, and quantitative precision on the
evaluations. We trained the different architectures with the
UNI training set, and tested on the UNI test set four times
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UNI Dataset DIS Dataset
Multiple Random Processes

Pre Image 03.01.2019

Post Image 17.01.2019

Synthetic Sub-pixel 
2D Displacement

Lanczos 6×6 kernel
(dx dy)

dx
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TRAINING DATA

50K
      x

(Pair + Shift)

Pair Shift

pre-window
W1

post-window
W2

post-window
shifted W2_s

16 x 16 px

16 x 16 px 16 x 16 px

Pre Image 03.01.2019

Post Image 17.01.2019

dx

dy

TRAINING DATA

50K
      x

(Pair + Shift)

Pair Shift
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(dx , dy)

Discontinuity

pre-window
W1

post-window
W2

post-window
shifted W2_s

16 x 16 px

16 x 16 px 16 x 16 px

Fig. 3: Creation of our two training sets, UNI (left) and DIS (right). For the UNI dataset, the displacement incorporated in
W2 is uniform, when for the DIS dataset, the deformation includes a discontinuity.

TABLE I: Architectures details (number of layers and number of feature maps for each layer) and Mean absolute error (MAE) of the UNI
test set (in px, mean over four runs) for the different models using 16× 16 input patches (notation: s: small; m: medium; l: large).

Model name: cnn-1l cnn-2l cnn-3l cnn-4l
s m l s m l s m l s m l

conv1 (filters) 16 48 128 16 24 64 16 24 64 16 24 64
conv2 (filters) x x x 20 48 128 20 48 128 20 48 128
conv3 (filters) x x x x x x 24 72 256 24 72 96
conv4 (filters) x x x x x x x x x 28 96 256

MAE (px) 0.127 0.137 0.133 0.107 0.106 0.106 0.110 0.110 0.106 0.114 0.111 0.105

for each architecture, so every evaluation is a mean of four
runs.

We see that the main precision gain is obtained with an
depth of at least 2 convolutional layers. The best precision
is reached with the most complex architecture: 4 layers with
the largest number of filters. With this architecture, the model
is complex enough to be able to use all the information of
the training samples. This architecture was developed using
the UNI dataset, although the same trends are observed for
the DIS dataset. We thus retain this architecture for the rest
of our study. However, future studies may explore broader
architectures.

2) The window size: The largest are the images, the more
information the model has to estimate the displacement. There-
fore, on our synthetics (that have a uniform displacement),
the best precision is achieved for the largest window size
(Table II). However, for real cases where the displacement
is heterogeneous within an image, using large windows will
bias the estimation. It is thus preferable to use a window size
as small as possible. All trained models are performing well
(Table II), but for size 8 pixels, the accuracy drops by 30%
compared to size 16 pixels. We will focus the rest of our study
on the 16× 16 window size, known to be more accurate than
larger resolutions on real (i.e. not uniform) deformations.

E. Pixel-scale registration with a coarse registration model

The above trained cnn4l model captures shifts that are
smaller than 1 pixel in each direction. Even though Earth
deformations are contained in this range for the majority
of remote images acquired, larger shifts can happen. Yet,

TABLE II: Mean absolute error (MAE) on the UNI test sets
(in px) for the different CNN models taking as input different
window sizes.

cnn4l-
uni8

cnn4l-
uni16

cnn4l-
uni32

cnn4l-
uni64

MAE (px) 0,130 0,105 0,0960 0,0884

estimating a shift at a pixel level is a different (and easier) task,
and it requires a larger patch window. We thus trained another
cnn3l model, called cnn3l-5px, with another dataset UNI-5px,
very similar to UNI, but with (∆x,∆y) ∈ [−5, 5]2 and k = 32.
With this model, we register pixel-wise the sliding windows
as a pixel-scale registration step, and then apply our sub-pixel
model to refine our estimation. While the results of cnn3l-5px
are more than satisfactory for estimating the rounded pixel-
level shift (MAE=0.37px, notably smaller than 0.5 pixel), there
is a clear advantage to perform the refinement with the specific
sub-pixel cnn4l model. This procedure is detailed on Fig. 1,
and allows an estimation of large and small displacements.

F. Implementation details

Our cnn4l-uni16 and cnn4l-dis16 models were implemented
using PyTorch library in Python. We trained cnn4l-dis16 on
200 epochs and cnn4l-uni16 on 99 epochs (with early stop-
ping), with an initial learning rate of 1×10−3, decaying every
10 epochs with a factor of 0.8. We used the Adam optimizer,
and the Mean Squared Error (MSE) loss. We chose a batch
size of 128, averaging 10 minutes of computing per epoch
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for both models. Computations were performed on a GPU
NVIDIA Tesla V100 NVLink. The pipeline is implemented
in Python (a combination of Numpy and PyTorch).

IV. RESULTS

A. Evaluation on realistic synthetic earthquake images

In the absence of substantial ground truth data from real
earthquakes, we first generate realistic synthetic earthquake
images using Landsat-8 satellite acquisitions re-sampled to
include realistic synthetic displacement fields; we then quan-
titatively validate our model and compare with existing state-
of-the-art correlators using these synthetic satellite images.

1) Generation of realistic synthetic earthquake images: We
first develop a pipeline that randomly generates realistic fault
discontinuities with rough geometries and slip distributions
embedded in a homogeneous elastic half-space (assumed to
behave in a linear elastic fashion). Using analytical expres-
sions, relating slip on triangular fault patches (in the elastic
material) to displacement at the surface, we then compute the
resulting surface displacement field produced by the prescribed
fault geometry and associated earthquake slip distribution [57],
[58]. The faults obey a length-displacement scaling consistent
with natural earthquake faults [59], rupturing only the seismo-
genic part of the crust, with geometric roughness consistent
with natural faults (self-affine scaling, with a Hurst exponent
of ∼ 0.8, [60]), fractal slip distributions [61], [62], and the
potential for reduced slip in the uppermost crust (shallow
slip deficit, [63]). We only consider strike-slip faults (fault
dip varies +/-60° from vertical), in which the displacement
is mainly contained within the horizontal plane, as vertical
displacements are highly challenging to resolve using or-
thorectified nadir-view satellite images. The fault models are
discretized with an unstructured meshing approach (Mesh2D,
[64]) using triangular displacement elements (TDEs), with
sub-pixel resolution at the surface, which increases to several
kilometers at depth; this depth-dependent spatial sampling
accounts for the rapid decay of static displacements with
distance to the source (1/r²), which prevents fine spatial details
at depth to be resolved by surface measurements alone (i.e.
through inverse modelling - see [65]), while also significantly
reducing the number of TDEs when computing the surface
displacement field (generated using cutde, a GPU-accelerated
implementation of [58]). Nevertheless, the high resolution of
the fault model near the surface allows us to produce real-
istic displacements at the resolution of the satellite imagery.
Finally, we also generate observation points (locations where
we calculate a surface displacement) using an unstructured
mesh, densifying points with proximity to the surface rupture,
thereby concentrating the number of observation points to
where there is significant variation in the displacement, further
reducing redundant calculations with cutde; the irregular grid
of output displacements are subsequently resampled onto a
regular grid using the griddata function within the Python
library: SciPy.

We then extract 1024×1024 patches from Landsat-8 satellite
images acquired on two different dates, but for a stable
region in which no ground deformation has occurred. We

Post-image

No Deformation

Natural Changes

2 weeks

Post-imagePre-image

Warped Post-imageRealistic Synthetic 
Displacement Map

Fig. 4: Creation of a pair of realistic synthetic earthquake
images. Here, the warped post-image (bottom right) contains
natural differences in reflectance due to the different acqui-
sition time of pre-image (top left), and carries the synthetic
displacement map (bottom center), that our model should
retrieve.

perform an initial global co-registration step (using phase
correlation), to ensure there is no mis-registration between
the two images. The displacement field ∆ is then used to
warp the second (post) satellite image using a quintic-order
spline re-sampling algorithm [66], to simulate an earthquake
where the displacement field is fully known. The precision
of this resampling approach (∼ 1/100th to 1/100th pixel) is
significantly higher than the precision of state-of-the-art cor-
relators (<1/10th pixel). Three different 1024× 1024 images
were created for evaluation; the creation of the input images
is summarized on Fig. 4.

2) Comparisons with MicMac and COSI-Corr: The pre-
and post-images are then compared using our new deep
learning approach, COSI-Corr, and MicMac, to retrieve the
displacement map. We then compute the absolute residual
maps (using the ground truth displacement). In these examples,
all displacements are kept in the range [-1,1], so we just focus
on sub-pixel performance.

Using a sliding k × k pixels window with a stride of 1
pixel, we compute the full displacement maps for the three
evaluation examples using our two sub-pixel models, cnn4l-
uni16 and cnn4l-dis16, as well as MicMac and COSI-Corr.
For consistency, COSI-Corr was applied with a 32 × 32
window, because the effective correlation window width is
reduced ∼ half due to the windowing function applied [4].
MicMac typically uses smaller window sizes (the default is
9× 9). However, we increase this to 15× 15 to allow a more
meaningful comparison with COSI-Corr and our pipeline.
(Although COSI-Corr can use 16×16 windows, thus yielding
an effective window of 8 × 8, the displacements start to be
biased too low). We also remove the spatial regularization
option in MicMac, to keep consistency with our model and
COSI-Corr (however, noise is still mitigated in MicMac by
using a non-linear cost function, and in COSI-Corr by using
adaptive frequency masking). Thus, we focus on the core sub-
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TABLE III: Mean residuals (mean absolute error) of cnn4l-
uni16, cnn4l-dis16, Mic-Mac and COSI-Corr on the three
synthetic simulated 1024× 1024 maps.

Mean residual (px) Mean residual

around fault (px)

cnn4l-uni16 0.0919 0,208

cnn4l-dis16 0.0909 0.150
MicMac 0.0716 0.231

COSI-Corr 0.0689 0.211

pixel performance of the various algorithms.
On Fig. 5, the four EW displacement maps are presented

for one of the three realistic earthquake examples (NS dis-
placement maps in Appendix A). To first order, the four
models have similar results, with some small differences in
texture, and in the sharpness of the fault boundary. Stacked
displacement profiles spanning the fault (Fig. 6) highlight a
much sharper discontinuity (i.e. narrower displacement width)
for our cnn4l-dis16 model, which compares most accurately
to the ground truth of all the models; even compared to the
default MicMac parameters (9x9 with 0.3 regularization) or
MicMac using the smallest available window size (3x3 with
0.3 regularization; note that such parameters yield noisier
correlation maps than we obtain with our CNN approach, e.g.
see Appendix B), see Fig. 6b. This sharper, more accurate
representation of the fault trace is also clear from the 2-D
residual maps (Fig. 7). The displacement maps for the two
other synthetic earthquake images are available in the Github
repository.

The mean residuals (MAE) for each of the 4 methods over
the full extent (1024×1024) of the displacement map, as well
as a narrow zone extending 16 pixels from the fault trace are
given in Table III. The global mean errors of the four models
are similar, ranging from from 6.89e − 2 to 9.19e − 2 pixel.
Our models perform slightly worse than MicMac and COSI-
Corr (MAE increases by up to 2.30e − 2 pixel). This can be
seen visually in the displacement maps (Figure 5): our cnn4l-
uni16 and cnn4l-dis16 models yield displacement maps with
slightly more high frequency noise. This is in part because we
have made no effort to mitigate high frequency noise, unlike
MicMac and COSI-Corr (simple post-processing such as Total
Variation - L1 smoothing (weight 0.2) (see [67]) allows our
results to attain comparable level of smoothness with MicMac,
while preserving sharper fault discontinuity (see Figure B)).
Nevertheless, the stacked displacement maps spanning the
fault displacement yield very similar displacements (Figure 6).

The error in the near-field of the fault trace is higher than
the global residuals in each case. However, for cnn4l-dis16, the
residual is almost one third that of the other methods (MAE
drops by ∼ 5.91e − 2), reflecting a substantial improvement
in resolving the displacement close to the fault rupture.

B. Evaluation on real case: Ridgecrest

On 4th and 7th July 2019, a large foreshock-mainshock
earthquake sequence struck the town of Ridgecrest, in the

Mojave desert region of southern California [52], [68], [69].
The foreshock broke a NE-SW-striking left-lateral fault, while
the subsequent mainshock broke a conjugate NW-SE-striking
right-lateral fault. Using very high resolution satellite imagery
spanning both earthquakes, various studies used OIC to char-
acterize the near-field displacements close to the surface rup-
ture, and assess the extent of off-fault deformation associated
with the event [13], [70], [69], [21]. These displacement maps
also allowed an assessment of the local strain field, which turn
helps to provide new constraints on the mechanics of fault slip
in surface rupturing earthquake, and the distribution of slip
between the fault core and neighboring damage zones.

Comparisons of our model with COSI-Corr and MicMac
for optical data spanning the Ridgecrest earthquake is valu-
able two reasons: (1) to test our model on satellite images
containing real earthquake displacements, and (2) to test our
model on different imagery to that used to train our model.
In this case, our models are trained with Landsat-8 imagery
(15 m), while we test on pre- and post-event Pleiades satellite
images (from [21]; resampled here from 0.5 m to 1.5 m
for memory constraints); thus, we assess the performance
of our model on data with acquired by a different sensor
(with different characteristics, e.g. sensitive to different spatial
wavelengths), different incidence angles (Pleiades imagery is
typically acquired off-nadir, unlike Landsat-8), and at highly
different resolutions (spanning ∼ 1 order of magnitude).
Furthermore, we avoid any artifacts potentially introduced by
warping the satellite imagery, and we are not constrained by
an artificial synthetic earthquake displacement model (however
realistic we attempt to make it). Finally, the displacements
involved during the earthquake can reach a magnitude of ∼ 6
meters, while the input imagery is 1.5 m resolution; therefore,
we can test our full pipeline, which solves for displacements
at the pixel-scale and then the sub-pixel scale (Fig. 1). These
comparisons therefore allow us to assess the generalizability
of our technique. However, we note that for real cases of
earthquakes, like Ridgecrest, we do not have a ground truth
map of known displacements. Comparing different techniques
is nevertheless useful to check consistency with existing and
more established OIC methods. Furthermore, visual inspection
of the displacement field close to the fault rupture can often
reveal errors or bias which are identifiable from their spatial
distribution, and which offer another means for comparison.

We compute displacement maps in 3 different areas using
(1) our CNN-framework (step-1: pixel-scale registration with
cnn3l-5px using 32x32 windows, followed by step-2: sub-pixel
refinement with cnn4l-dis16 using 16×16 pixels windows), (2)
COSI-Corr (32x32 windows), and MicMac (15×15 windows).
A stride/step of 4 pixels is used for the CNN-pipeline and
COSI-Corr at large scales (Fig. 8a,c), and a stride of 1 for
finer scales (Fig. 8b,d); MicMac (Fig. 8e,f) can only stride at
1 pixel increments. The displacement maps for the first area
are shown in Fig. 8 (two results for additional areas are shown
in Appendix C). The pre-image of this example was acquired
on 23rd June 2012, and the post-image on 8th September 2019
[21].

All four methods give very similar displacement values
globally, with small differences in the high frequency content
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Fig. 5: EW displacement map for the four models cnn4l-uni16, cnn4l-dis16, MicMac and COSI-Corr on one of the three
examples. On the left, the synthetic displacement maps used to warp the two satellite images. Results are expressed in pixels.

(Fig. 8). Both MicMac (and to a lesser extent COSI-Corr) give
slightly smoother results, and in several small areas smooth
over high frequency noise or regions of decorrelation (e.g.
from buildings or roads), compared with our CNN pipeline.
Nevertheless, globally the displacements are consistent with
each other at medium and long wavelengths (Fig. 8.

Close to the fault rupture (Fig. 8b,d,f), where displace-
ments are dominated by high-frequency components (i.e. sharp
discontinuities), we see more significant differences between
the various methods, consistent with our observations for the
synthetic earthquake cases (e.g. Fig. 7 bottom panel). MicMac
yields a relatively clean, albeit slightly pixelated displacement
map (Fig. 8d), which is generally consistent with our CNN-
pipeline result (Fig. 8b). COSI-Corr yields a slightly smoother,
lower resolution displacement map (Fig. 8f), with occasional
outliers, and apparent fattening/adhesion artifacts [71] along
the rupture trace, indicating an artificially induced component
of geometric roughness (which likely results from the fre-
quency masking approach used to mitigate noisy frequencies).
Therefore, in real case examples, our CNN-pipeline features
significantly less bias in the near-field of the fault rupture.

V. DISCUSSION

In our experiments, we demonstrate that a CNN-based
optical registration scheme can achieve similar performance
to existing state-of-the-art optical sub-pixel correlators, and
in the case of sub-pixel displacements characterized by sharp
discontinuities, we exceed it. Reduction of near-field displace-
ment bias in the proximity of sharp discontinuities represents
a significant break-through in the characterization of ground
displacements using satellite images. Recent applications of
OIC in the study of earthquake surface ruptures using high
resolution (<1 m) satellite data have tended to focus on (1)
characterizing the fault zone width (from the spatial width of
the displacement step, e.g. see Fig. 6), (2) examining the near-
field strain components (e.g. shear and dilatation), to spatially
assess the transition between elastic and inelastic deformation
(e.g. a yield strength of 0.5% is often assumed), and (3) to

quantify the total (on- and off-fault) displacement, which can
then be compared with highly localized field-based measure-
ments of slip (assumed to represent purely on-fault displace-
ment), in order to quantify the extent of off-fault displacement.
All of these applications require an unbiased correlator, able
to accurately and precisely resolve the near-field displacement,
which has so far remained elusive (though perhaps not well
realized by the community). Therefore, potentially all previous
studies investigating near-field strain and off-fault deformation
based on optical correlation may be biased by to some degree
by limitations of the correlation process used to retrieve the
displacements. This will be especially apparent when sharp
discontinuities become artificially smoothed over a wider zone
by the correlation kernel, thereby artificially attributing on-
fault slip to the off-fault region. Consequently, estimates of
near-field strain will be biased too high, leading to incorrect
interpretations about the mechanical behaviour of fault zones.
Our approach helps to address this issue, and will lead to more
accurate estimates of near-fault displacement in the future;
this is the primary value of OIC methods for the study of
earthquakes, where the medium and far-field displacements
can be more precisely characterized using InSAR techniques).

Additionally, our pipeline, although trained with Landsat-
8 satellite imagery, is shown to have general applicability to
other optical datasets (e.g. Pleiades). This is likely due to the
scale-invariant nature of very small (e.g. 16-by-16 pixel) image
windows, which look similar regardless of the sensor used to
acquire the data. Nevertheless, our simple pipeline represents
a first step towards using data-drive approaches to retrieve
sub-pixel displacement maps using optical satellite data.

Several limitations remain in our approach, which will be
addressed in future studies. Firstly, to create the training
datasets, we used the Lanczos resampling algorithm to in-
corporate sub-pixel shifts, which can ultimately can add sub-
pixel bias resulting from high-frequency ringing artifacts. The
magnitude of these artifacts varies (in part) as a function of
spatial contrasts between image pixels, and which, in turn,
may correlate with topography; the magnitude of this bias
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Fig. 6: Stacked displacement profile on a portion of the
fault for (a) the synthetic ground truth displacement field, the
cnn4l-dis16 and cnn4l-uni16 models, COSI-Corr, and Mic-
Mac (15 × 15, no regularization), and (b) MicMac (9x9 and
3x3 with 0.3 regularization), and cnn4l-dis16 with TV-L1
smoothing (weighting 0.2; see [67]). The fault zone width
(FZW) is estimated in each case (colored bars, with the width
in pixels displayed), based on the inflection points of the
horizontal displacements each side of the fault.

is typically <1/10th pixel. When evaluating the error over
larger synthetic displacement maps, we are also subject to
interpolation bias introduced by our warping procedure, used
to create synthetically displaced satellite images; the magni-
tude of these resampling errors on the resulting displacement
map is generally substantially less than 1/50th pixel. We are
also subject to initial mis-registration of the satellite images
used to general our training data, which can add bias to
our synthetic displacements. We try to mitigate this error by
applying a global mis-registration correction to the full pre
and post images (i.e. not just on the two windows), based
on sub-pixel phase correlation, to bring the two images into
better alignment; by aligning the two images over a large area,
we obtain a more accurate global alignment exceeding 1/10th
pixel. Nevertheless, this global alignment step may become
less accurate if the illumination conditions between the two
images are strongly different.

In addition, we also face the same basic problem of solving
for an overly simplistic displacement transform. Although
we can now solve for a displacement step function con-
tained within a sliding window, we still ignore higher order
terms, rotations, scale changes, etc, which may be impor-
tant in characterizing the displacement (especially close to
sharp discontinuities). Furthermore, insufficient calibration of
the CCD sensors, and resampling errors introduced during
the ortho-rectification process (prominent in topographically
rough regions, and when the DEM is of lower resolution
than the image) both introduce sub-pixel bias in the training
data. Therefore, the sub-pixel precision of our CNN-approach
is likely limited to ∼ 1/10th pixel, reflecting the combined
contribution of all these error sources.

Additional development of our CNN-based registration ap-
proach will likely further enhance performance, particularly
in mitigating high frequency noise in the final estimated
displacement map. Numerous tests were performed in tuning
the model parameters; however, further investigation may lead
to improved sub-pixel capability. We also limit the amount of
training data to 100k samples (based on sensitivity studies
for this parameter, striking a balance between accuracy and
computation time); nevertheless, increasing the number of
samples may also leave to additional improvements. Our sub-
pixel CNN-based model is fixed to window sizes of 16 × 16
pixels, thus restricting the level of spatial detail we can resolve;
it could be possible to further reduce the window size to
obtain additional spatial detail, while relying on multi-scale
spatial regularization techniques to mitigate increased noise
associated with smaller sliding windows.

The reduction of noise introduced during the generation of
training data will also directly enhance the sub-pixel accuracy
and precision which we can obtain (and consequently the high
frequency spatial noise in the output displacement maps). A
significant component of the high frequency noise is likely
related to systematic bias resulting from variations in surface
reflectance related to differing illumination conditions between
the two images. In the case of widespread and freely avail-
able optical datasets, such as Landsat-8 or Sentinel-2, where
images are acquired at approximately the same time of day
(∼ 10am local time), these sources of noise should vary in a
predictable manner, thereby enabling this source of bias to be
learned and potentially removed using data-driven approaches
[6]. Here we make no effort to apply spatial regularization
techniques to smooth high frequency noise; therefore, the fact
that our simple data-driven approach already performs on a par
with state-of-the-art OIC approaches is encouraging for future
development of CNN-based optical registration techniques.
One obvious direction for future development will be in the
use of multi-scale approaches, such those offered by U-Net
architectures, and which have been shown to achieve sub-
pixel performance in particular cases [48], [49]. In the case
of earthquake, the displacement fields are generally smooth
over longer wavelengths, and thus should benefit from multi-
scale spatial regularization techniques.

Finally, our CNN-based registration method is developed
within a GPU environment, which offers the potential for sig-
nificant speed improvements in generating displacement maps
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Fig. 7: Residual maps of the displacements from Fig. 5 for the four models (EW component) cnn4l-uni16, cnn4l-dis16, MicMac
and COSI-Corr.

from optical data. Speed optimization is beyond the scope of
this current study, which represents a proof of concept for the
technique. Nevertheless, we obtain computation speeds within
∼ 1-order of magnitude of COSI-Corr and MicMac, which
have both been optimized for speed (e.g. developed in C++,
multi-threaded); e.g. for a pre/post image pair (1024 × 1024
pixels), the computation time is ∼ 10 minutes on a GPU
NVIDIA Tesla V100 NVLink, compared with 30 seconds for
COSI-Corr and 1m30 for MicMac on 4 CPU cores. How-
ever, for larger images, where the computational overhead of
loading images into memory is small relative to the correlation
time, the run-times of COSI-Corr and MicMac become similar
(for a stride of 1). It is for these larger image cases where we
expect significant improvement in the runtime for our CNN-
based method. Our pipeline would drastically increase in speed
by processing the windows in batches to reduce data transfer
between CPU and GPU, and using parallelism with multiple
GPUs. In addition, future efforts should explore multi-scale
deep learning architectures (e.g. U-Net), which offer the best
potential for speed gain; such approaches work with much
larger image windows, thereby reducing the computational
burden associated with processing many correlation windows.

VI. CONCLUSION

Our paper presents a complete deep learning framework that
extracts ground motion, from pairs of optical satellite images
(OIC), with sub-pixel accuracy. By addressing the presence
of sharp discontinuities within sliding windows, we propose
a new approach that mitigates displacement estimation bias,
exceeding the performance of state-of-the-art methods, in the
near-field of earthquakes. We demonstrate this improvement
quantitatively using evaluations on high quality synthetic data
generated using realistic fault slip models. We also demon-
strate that our technique is transferable, achieving state-of-
the-art performance on satellite images acquired with different
sensors and resolutions; which is not trivial for such data-
driven approaches. Future work will focus on leveraging multi-
scale deep learning approaches to improve accuracy (including
reduction of high frequency noise, and systematic bias), and
speed.
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