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The sharp decay characterization of solutions to the compressible Navier-Stokes equations in the critical L p framework

The low-frequency L 1 assumption has been extensively applied to the large-time asymptotics of solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations since the classical efforts due to Matsumura & Nishida, Ponce, Schonbek and Wiegner. In this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations in the critical L p framework. Precisely, it is proved that the Besov space Ḃσ 1 2,∞ -boundedness condition (with d 2 -2d p ≤ σ1 < d 2 -1) of the low-frequency part of initial perturbation is not only sufficient, but also necessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of the initial perturbation belongs to a nontrivial subset of Ḃσ 1 2,∞ .

up of solutions. This approach is now classic. Recall the global existence results for the incompressible Navier-Stokes equations which go back to the pioneering work [20] by Fujita-Kato (see also results by Kozono-Yamazaki [30], Cannone [6], Cannone-Planchon [7], Chemin [9] for a small sample of the vast literature). Observe that the compressible Navier-Stokes system (1.1) is invariant by the transform ρ(x, t) ρ(lx, l 2 t), u(x, t) lu(lx, l 2 t), l > 0, up to a change of the pressure term P into l 2 P . Danchin [12] solved (1.1)-(1.2) globally in the critical homogeneous Besov space ( Ḃ d 2

,1 . Subsequently, the result of [12] has been extended to the general Besov spaces modelled on L p -norms by Charve-Danchin [8] and Chen-Miao-Zhang [11] independently. Inspired by Hoff's viscous effective flux in [23], Haspot [21] developed a L p energy argument and achieved essentially the same result using such a method. The readers are also referred to [13, 14] on the local well-posedness subject to general initial data with critical regularity. For convenience of the readers, we would like to recall a result about the global existence and uniqueness of solutions to the Cauchy problem (1.1)-(1.2) in the critical L p -framework. Denote by X p and X p the functional space and the corresponding energy norm: X p (a, u)| (a, u) ∈ C b (R + ; Ḃ d 2 -1 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +1 2,1 ), a h ∈ C b (R + ; Ḃ d p p,1 ) ∩ L 1 (R + ; Ḃ d p p,1 ), u h ∈ C b (R + ; Ḃ d p -1 p,1 ) ∩ L 1 (R + ; Ḃ d p +1 p,1 )

Introduction and main results

In 1933, J. Leray in his pioneering work [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] introduced the concept of weak (turbulent) solutions to the incompressible Navier-Stokes equations and established the global in time existence of solutions with energy bounded initial data. Also, he addressed the question whether or not the energy of weak solutions uniformly decays in the L 2 (R 3 ) as the time t goes to infinity. Schonbek [START_REF] Schonbek | L 2 decay for weak solutions of the Navier-Stokes equations[END_REF][START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF][START_REF] Schonbek | Lower bounds of rates of decay for solutions to the Navier-Stokes equations[END_REF] introduced the Fourier splitting method and deduced uniform decay for solutions in the L 2 -energy space, provided the L 1 -assumption on the initial data was additionally imposed. Wiegner [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF] addressed the optimal decay by a careful analysis of the relationship between the heat kernel and incompressible Navier-Stokes equations.

See for instance the recent survey by the first author and Schonbek [START_REF] Brandolese | Large time behavior of the Navier-Stokes flow[END_REF].

In this paper, we are concerned with the following compressible Navier-Stokes equations    ∂ t ρ + div (ρu) = 0, ∂ t (ρu) + div (ρu ⊗ u) + ∇P (ρ) = Au, (1.1) which govern the motion of a general barotropic compressible fluid in whole space R d (d ≥ 2). Here u = u(t, x) ∈ R d , with (t, x) ∈ R + × R d and ρ = ρ(t, x) ∈ R + denote the velocity and density of the fluid, respectively. The pressure function P (ρ) depends only upon the density and is assumed to be suitably smooth. The Lamé operator A takes the form Au µ∆u + (µ + λ)∇div u, where the shear viscosity µ and the bulk viscosity λ are assumed to be constants for simplicity and to satisfy µ > 0, ν 2µ + λ > 0.

System (1.1) is supplemented with the initial data

(ρ, u)(x, 0) = (ρ 0 , u 0 )(x), x ∈ R d . (1.2)
We investigate the solution (ρ, u) to the Cauchy problem (1.1)-(1.2) fulfilling the constant far-field behavior

(ρ, u) → (ρ, 0), |x| → ∞,
where ρ > 0 is a given constant.

The local existence and uniqueness of smooth solutions for System (1.1) were proved by Serrin [START_REF] Serrin | On the uniqueness of compressible fluid motion[END_REF] and Nash [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF]. The local existence of strong solutions with Sobolev regularity was obtained by Solonnikov [START_REF] Solonnikov | Estimates of solutions to a nonstationary Navier-Stokes system[END_REF],

Valli [START_REF] Valli | An existence theorem for compressible viscous fluids[END_REF] and Fiszdon-Zajaczkowski [START_REF] Fiszdon | Existence and uniqueness of solutions of the initial boundary value problem for the flow of a baratropic viscous fluid, local in time[END_REF]. The global smooth solutions were first established by Matsumura and Nishida [START_REF] Matsumura | The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heatconductive gases[END_REF], in the case the initial data are small perturbations of a linearly stable constant state (ρ, 0) in three dimensions. With the additional L 1 (R 3 )-assumption of initial data, they also derived the uniform decay rate of smooth solutions:

(ρ -ρ, u)(t) L 2 (R 3 ) t -3 4 with t 1 + t 2 , (1.3) 
which coincides with that of the heat kernel. Subsequently, Ponce [START_REF] Ponce | Global existence of small solution to a class of nonlinear evolution equations[END_REF] obtained more general L r -type decay rates:

∇ k (ρ -ρ, u)(t) L r (R d ) t -d 2 (1-1 r )-k 2 , 2 ≤ r ≤ ∞, 0 ≤ k ≤ 2, d = 2, 3. (1.4) 
Later, Matsumura-Nishida's results were extended to more physical situations, where the fluid domain is not the whole R d . For example, the exterior domain were investigated by Kobayashi [START_REF] Kobayashi | Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in R 3[END_REF] and Kobayashi-Shibata [START_REF] Kobayashi | Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain of R 3[END_REF], the half-space by Kagei & Kobayashi [START_REF] Kagei | On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in R 3[END_REF][START_REF] Kagei | Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space[END_REF]. For more general data, Xin [START_REF] Xin | Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Commun[END_REF] found that any smooth solution to the Cauchy problem of the full compressible Navier-Stokes system without heat conduction (including the baratropic case) would blow up in finite time if the initial density contains vacuum. Huang, Li and Xin [START_REF] Huang | Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations[END_REF] constructed the global existence of classical solutions that have large highly oscillations and can contain vacuum states. For the theory of weak solutions, a breakthrough is due to P.-L. Lions [START_REF] Lions | Compressible Models[END_REF], who obtained the global existence of weak solutions with finite energy initial data. Later further developments were achieved by Feireisl, Novotny and Petzeltová [START_REF] Feireisl | On the existence of globally defined weak solutions to the Navier-Stokes equations[END_REF] and Jiang & Zhang [START_REF] Jiang | On the global existence of the spherically symmetric solutions to compressible Navier-Stkoes equations[END_REF] and since then this remained a very active research field.

As shown by earlier works [START_REF] Matsumura | The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heatconductive gases[END_REF][START_REF] Ponce | Global existence of small solution to a class of nonlinear evolution equations[END_REF][START_REF] Schonbek | L 2 decay for weak solutions of the Navier-Stokes equations[END_REF][START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF][START_REF] Schonbek | Lower bounds of rates of decay for solutions to the Navier-Stokes equations[END_REF][START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF], the additional L 1 assumption for the data usually plays a key role in the derivation of large-time decay rates for the solutions. We notice the following Sobolev embedding

L 1 (R d ) → Ḃ0 1,∞ → Ḃ-d 2 2,∞ . (1.5) 
Although the latter space does not embed into Ḃ0 2,2 , any function belonging to this space and concentrated in low frequencies does also belong to Ḃ0

2,2 ∼ L 2 (R d ). This indicates the L 1 regularity is actually stronger than the L 2 regularity at low frequencies. Inspired by this simple observation, it will be natural to investigate the decay properties of the solutions, not under the stringent L 1 -condition, but rather under a more general low-frequency assumption for viscous compressible fluids in the Besov framework with critical (minimal) regularity, in which the uniqueness of solutions holds.

As for many evolutionary equations coming from mathematical physics, scaling invariance plays a fundamental role and suitable critical quantities (scaling invariance norms) may control the possible blow-and X p (a, u)

L ∞ t ( Ḃ d 2 -1 2,1 ) + a h L ∞ t ( Ḃ d p p,1 ) + u h L ∞ t ( Ḃ d p -1 p,1 )
+ (a, u)

L 1 t ( Ḃ d 2 +1
2,1 )

+ a h L 1 t ( Ḃ d p p,1 ) + u h L 1 t ( Ḃ d p +1 p,1 )
. (1.6) The definition of Besov spaces, the /h notation of low/high-frequency are referred to the ending of this section. Moreover, L ∞ t ( Ḃs p,q ) = L ∞ (R + , Ḃs p,q ) denotes Chemin and Lerner's space, see [START_REF] Chemin | Flot de champs de vecteurs non lipschitziens etëquations de Navier-Stokes[END_REF][START_REF] Danchin | Fourier Analysis Methods for the Compressible Navier-Stokes Equations[END_REF]. Two assumptions will be needed. These assumptions are labeled as follows (H 1 ): P (ρ) > 0;

(H 2 ): a 0 ρ 0 -ρ ∈ Ḃ d p p,1 and u 0 ∈ Ḃ d p -1 p,1 , besides, (a 0 , u 0 ) ∈ Ḃ d 2 -1 2,1 s.t.
X p,0 (a 0 , u 0 )

Ḃ d 2 -1 2,1 + a 0 h Ḃ d p p,1 + u 0 h Ḃ d p -1 p,1
1.

(1.7)

The global existence and uniqueness of solutions to the Cauchy problem (1.1)-(1.2) in the critical L pframework reads as follows. See [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Chen | Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity[END_REF][START_REF] Danchin | Global existence in critical spaces for compressible Navier-Stokes equations[END_REF][START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF]. 2) admits a unique global-in-time solution (ρ, u) with a ρ-ρ and (a, u) in the space X p . Furthermore, there exists some constant C = C(p, d, λ, µ, P, ρ) > 0 such that X p ≤ CX p,0 .

A natural problem is how to exhibit the large-time asymptotic behavior of the solution constructed in Theorem 1.1. Although providing an accurate long-time asymptotics picture is still open, there are a number of works concerning time-decay rates of L r -type as in (1.3)- (1.4). Okita [START_REF] Okita | Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations[END_REF] established the decay estimates to (1.1)-(1.2) in the L 2 critical framework, by using a slight modification of the method in [START_REF] Danchin | Global existence in critical spaces for compressible Navier-Stokes equations[END_REF]. The low-frequency assumption with respect to Ḃ0 1,∞ was additionally imposed. However, the 2D case could not be covered. In the survey [START_REF] Danchin | Fourier Analysis Methods for the Compressible Navier-Stokes Equations[END_REF], Danchin proposed another description of the time decay which allows to handle any dimensions d ≥ 2. Subsequently, Danchin and the third author [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF] further established the decay rates in the L p critical spaces under the additional condition that the low-frequency part of initial perturbation is suitably small in some Besov space Ḃσ0 2,∞ (σ 0 d 2 -2d p ) which is exactly linked with the critical embedding L p/2 → Ḃσ0 2,∞ (2 ≤ p ≤ min{4, d * }). The third author [START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF] proved a general low-frequency assumption in terms of Ḃσ1 2,∞ for the upper bound of decay estimates, where the regularity exponent fulfills σ 0 ≤ σ 1 < d 2 -1. That result shows that the optimal decay rates of strong solutions in Theorem 1.1 can be obtained, provided that the low frequency assumption is reasonably strengthened (say, Ḃσ1

2,∞ → Ḃd/2-1

2,1

). The above decay results depend on the time-weighted energy approach in the Fourier semi-group framework and the smallness of low frequencies of initial data is usually needed. Later, Xin and the third author [START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF] developed a Lyapunov-type energy method in the L p critical spaces to obtain the time-decay rates. Their approach still requires the Ḃσ1 2,∞ condition on the low-frequency part of initial data but not necessarily small.

To the best of our knowledge, whether the low-frequency assumption Ḃσ1 2,∞ is sharp or not for the largetime behavior of strong solutions to the compressible Navier-Stokes equations in critical spaces remains an open question. In the present paper, we shall give a positive answer to this issue and provide a necessary and sufficient condition for the sharp time-decay rates of solutions to the Cauchy problem (1.1)-(1.2).

More precisely, we establish that both upper and lower bounds of time-decay estimates of solutions to the Cauchy problem for (1.1)-(1.2) in the L p critical spaces hold if and only if the low-frequency part is bounded in a non-trivial subset of Ḃσ1 2,∞ . Without loss of generality, we set ρ = 1. We denote by a = ρ -1 and reformulate the Cauchy problem

(1.1)-(1.2) as            ∂ t a + div u = -div (au), ∂ t u + ∇a -Au = g, (a, u)(x, 0) = (a 0 , u 0 )(x) (1.9)
with the nonlinear term

g -u • ∇u -k(a)∇a -I(a)Au, (1.10) 
where k(a) P (1+a) 1+a -1 and I(a) a a+1 . To study the decay characterization of solutions to (1.9), we introduce a subset of the Besov space

Ḃσ1 2,∞ (σ 1 ∈ R): Ḃσ1 2,∞ f ∈ Ḃσ1 2,∞ | ∃ two constants c 0 , M > 0 and a sequence of integers {j k } k=1,2,... such that lim k→∞ j k = -∞, |j k -j k+1 | ≤ M and 2 σ1j k ∆j k f L 2 ≥ c 0 . . (1.11)
Indeed, Ḃσ1 2,∞ (with σ 1 ∈ R) has a nontrivial intersection with Ḃσ0 2,1 when σ 0 > σ 1 , which will be characterized in Section 2.

Our main result is stated as follows.

Theorem 1.2. Let (a, u) be the global solution to the Cauchy problem (1.9) obtained in Theorem 1.1.

Let the real numbers σ

0 , σ 1 satisfy σ 0 d 2 -2d p and σ 0 ≤ σ 1 < d 2 -1.
Then there exists a time t 0 > 0 and two constants c, C > 0 such that

• (Upper bounds): The solution (a, u) fulfills (a, u) (t) Ḃσ 1 2,∞ ≤ C, t > 0,
(1.12)

(a, u)(t) Ḃσ 2,p ≤ C t -1 2 (σ-σ1) , t > t 0 , σ 1 < σ ≤ d 2 , (1.13) 
if and only if (a 0 , u 0 ) ∈ Ḃσ1 2,∞ .

• (Upper and lower bounds): The solution (a, u) fulfills (1.12) and

c t -1 2 (σ-σ1) ≤ (a, u)(t) Ḃσ 2,p ≤ C t -1 2 (σ-σ1) , t > t 0 , σ 1 < σ ≤ d 2 , (1.14) 
if and only if

(a 0 , u 0 ) ∈ Ḃσ1 2,∞ .
Here the hybrid norm

(a, u)(•, t) Ḃσ 2,p
is defined by

(a, u)(•, t) Ḃσ 2,p (a, u) (•, t) Ḃσ 2,1 + (a, u)(•, t) h Ḃ d p p,1
.

The proof of Theorem 1.2 is motivated by Wiegner's argument regarding the energy decay of Leray solutions to the incompressible Navier-Stokes equations in the seminal work [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF] and the converse Wiegner's argument in [START_REF] Skalák | On the characterization of the Navier-Stokes flows with the power-like energy decay[END_REF]. The inequality (1.12) can be interpreted as the nonlinear evolution of initial regularity.

In the "if" part, it plays a key role in the derivation of the two-side time-decay estimates (1.13)- (1.14).

In fact, it is also indispensable in the "only if" part, see Proposition 5.1. As a direct consequence, one can also get the sharp characterization of two-side decay estimates in the L 2 -framework.

Corollary 1.1. There exists a time t 0 > 0 such that for σ 1 < σ ≤ d 2 , the global-in-time solution (a, u) in Theorem 1.1 fulfills (1.12) and

c t -1 2 (σ-σ1) ≤ Λ σ (a, u)(t) Ḃ0 2,1 ≤ C t -1 2 (σ-σ1) , t > t 0 , (1.15) 
if and only if

(a 0 , u 0 ) ∈ Ḃσ1 2,∞ with -d 2 ≤ σ 1 < d 2 -1 .
We comment on a few points of immediate relevance:

• The low-frequency assumption in terms of Ḃσ1 2,∞ (σ 0 ≤ σ 1 < d 2 -1)
is firstly introduced to give the sharp decay characterization for the compressible Navier-Stokes system (1.1) in critical spaces. To the best of our knowledge, the "only if" part is completely new, and this question was not been addressed for compressible fluid flows in existing literature. In addition, Theorem 1.2 actually indicates that upper bounds of algebraic time-decay rates obtained in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF] are optimal.

• It follows from Proposition 3.2 (see Section 2) that the low-frequency assumption

(a 0 , u 0 ) ∈ Ḃσ1 2,∞ is equivalent to that        P σ1 (a 0 , u 0 ) + lim sup r→0 + r -2(σ-σ1) {|ξ|≤r} |ξ| 2σ (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ < ∞, P σ1 (a 0 , u 0 ) -lim inf r→0 + r -2(σ-σ1) {|ξ|≤r} |ξ| 2σ (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ > 0 (1.16)
for any σ > σ 1 , which is closely linked with the theory of decay characters for incompressible Navier-Stokes equations and related dissipative equations (see for example, [START_REF] Bjorland | Poincaré's inequality and diffusive evolution equations[END_REF][START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF][START_REF] Niche | Decay characterization to dissipative equations[END_REF]).

• Corollary 1.1 recovers the classical L 2 decay rates of solutions if choosing σ 1 = -d 2 . The initial data (a 0 , u 0 ) ∈ Ḃσ1 2,∞ is sharp in comparison with previous works [START_REF] Kagei | On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in R 3[END_REF][START_REF] Kagei | Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space[END_REF][START_REF] Li | Large time behavior of isentropic compressible Navier-Stokes system in R 3[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heatconductive gases[END_REF][START_REF] Ponce | Global existence of small solution to a class of nonlinear evolution equations[END_REF], which is not only sufficient but also necessary to achieve two-side bounds of decay estimates. For instance, Kagei and Kobayashi [START_REF] Kagei | On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in R 3[END_REF][START_REF] Kagei | Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space[END_REF] investigated the special case that initial data satisfy that (a 0 , u 0 ) ∈ L 1 (R 3 ) and a 0 (0) = R 3 a 0 (0)dx = 0. Indeed, by the continuity of a 0 (ξ) near ξ = 0, there exists a small constant

r 1 > 0 such that for 0 < r ≤ r 1 , | a 0 (ξ)| > 0 for |ξ| ≤ r. Thus, it is not difficult to deduce that (σ 1 = -3 2 , σ = 0 and d = 3) r -3 {|ξ|≤r} (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ ≥ 4 3 π inf |ξ|≤r | a 0 (ξ)| 2 > 0, 0 < r ≤ r 1 and r -3 {|ξ|≤r} (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ (a 0 , u 0 ) 2 Ḃ-3 2 2,∞ (a 0 , u 0 ) 2 L 1 , r > 0.
Hence, it follows from Proposition 3.2 that (a 0 , u 0 ) ∈ Ḃ-3 2 2,∞ . Li and Zhang [START_REF] Li | Large time behavior of isentropic compressible Navier-Stokes system in R 3[END_REF] studied some special initial data in Ḃ0

1,∞ satisfying | a 0 (ξ)| 1 and | u 0 (ξ)| = 0 for |ξ| 1, which also implies that (a 0 , u 0 ) ∈ Ḃ-3 2 
2,∞ owing to (1.5).

• We can construct the initial function (a 0 , u 0 ) fulfilling (1.7) and (a 0 , u 0 ) ∈ Ḃσ1 2,∞ , for example,

a 0 (x) = εF -1 |ξ| σ1-d 2 φ( ξ ε ) (x), u 0 (x) = F -1 F sin( x • ω 1 ε )ω 2 (1 -φ( ξ ε )) (x), (1.17) 
where ε > 0 is a suitably small constant, φ(ξ) is a smooth cut-off function such that φ(ξ) = 0 for |ξ| ≥ 1, and ω 1 , ω 2 stand for any unit vectors of R d . Clearly, the initial data u 0 presented by (1.17) is large highly oscillating if p > d in physical dimensions d = 2, 3. See [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Chen | Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity[END_REF] for more details.

• Last but not least, we would like to mention that the sharp decay characterization in critical spaces is of independent interest, which gives a new attempt in the Fourier semi-group framework and the smallness of low frequencies of initial data is no longer needed in contrast to [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF]. The suitable modification of our approach is likely to be effective for other incompressible/compressible flow equations that are encountered in fluid mechanics.

We would like to discuss the closely related theory of decay characters, first developped for a large

class of dissipative system    ∂ t U = LU, x ∈ R d , t > 0, U (x, 0) = U 0 (x), (1.18) 
where L is a pseudo-differential operator with symbol Niche-Schonbek [START_REF] Niche | Decay characterization to dissipative equations[END_REF] proved that any Leray-Hopf's weak solution has a two-side time decay estimate

(1 + t) -σ/2α e tL U 0 L 2 (1 + t) -σ/2α if the initial data satisfy 0 < lim r→0+ r -2σ |ξ|≤r | U 0 (ξ)| 2 dξ < ∞ (1.19)
for σ > 0. The condition (1.19) is closely linked with the decay character (see [START_REF] Bjorland | Poincaré's inequality and diffusive evolution equations[END_REF][START_REF] Niche | Decay characterization to dissipative equations[END_REF]), however, it is somehow too stringent as such a limit might not exist. In order to overcome this restriction, the first author [START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF] improved the original definition of decay character and proved that a slight modification of (1.19) is not only sufficient but also necessary condition for the two-side decay estimates of Leray-Hopf's weak solutions. More precisely,

       lim inf r→0+ r -2σ |ξ|≤r | U 0 (ξ)| 2 dξ > 0, lim sup r→0+ r -2σ |ξ|≤r | U 0 (ξ)| 2 dξ < ∞ ⇐⇒ U 0 ∈ Ḃ-σ 2,∞ ⇐⇒ (1 + t) -σ 2α e tL U 0 L 2 (1 + t) -σ 2α . (1.20)
Generally speaking, those parabolic arguments in [START_REF] Bjorland | Poincaré's inequality and diffusive evolution equations[END_REF][START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF][START_REF] Niche | Decay characterization to dissipative equations[END_REF] cannot be directly applied to the compressible Navier-Stokes system (1.9) due to its hyperbolic nature. We need to investigate the precise pointwise behavior of solutions to the linear hyperbolic-parabolic mixed system

           ∂ t a + div u = 0, ∂ t u -Au + ∇a = 0, (a, u)| t=0 = (a 0 , u 0 )(x) U 0 (x).
(1.21)

Let {G(t)} t≥0 be the semi-group associated with (1.21). Observe that there is the following key pointwise estimate at low frequencies (|ξ| 1):

e -max{ ν 2 ,µ}|ξ| 2 t (| a 0 (ξ)| + | u 0 (ξ)|) | G(t)U 0 (ξ)| e -min{ ν 2 ,µ}|ξ| 2 t (| a 0 (ξ)| + | u 0 (ξ)|),
which enables us to obtain sufficient and necessary conditions for sharp decay estimates of solutions to (1.21) under the the low-frequency assumption in terms of Ḃσ1 2,∞ or Ḃσ1 2,∞ (See Proposition 3.1). Furthermore, we also perform Schonbek's Fourier splitting methods (see [START_REF] Schonbek | The Fourier Splitting Method[END_REF]) and establish the equivalence between the low-frequency assumption Ḃσ1

2,∞ and the theory of decay characters (See Proposition 3.2). To establish the optimal time-decay bounds of the solution to the nonlinear problem (1.9), we will adapt to the compressible Navier-Stokes equations (1.9) well known Wiegner's argument from incompressible flows (see [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF]): namely we compute faster time-decay rates of the nonlinear terms compared with that of the solution to the linear problem in L p -type Besov spaces (See Proposition 4.2). Here the major difficulty lies in non-conservative terms, for example, u • ∇u and I(a)Au, which cannot provide faster time-decay rates. To overcome the obstacle, we consider the following Navier-Stokes system in terms of the momentum formation:

   ∂ t a + div m = 0, ∂ t m -Am + ∇a = -div F, (1.22)
where the nonlinear terms are given by

F (1 -I(a))m ⊗ m + H(a)I d + µ∇(I(a)m) + (µ + λ)div (I(a)m) (1.23)
with H(a) = P (1 + a) -P (1) -P (1)a. Let (a L , m L ) be the corresponding solution to the linearized problem of (1.22). Precisely,

           ∂ t a L + div m L = 0, ∂ t m L -Am L + ∇a L = 0, (a L , m L )(x, 0) = (a 0 , m 0 )(x) = (a 0 , ρ 0 u 0 )(x).
(1.24)

It should be noted that due to the smallness condition (1.7) and product laws for hybrid norms, (a 0 , u 0 ) ∈

Ḃσ1 2,∞ (resp. Ḃσ1 2,∞ ) if and only if (a 0 , m 0 ) ∈ Ḃσ1 2,∞ (resp. Ḃσ1 2,∞
). Therefore, our key ingredient is to perform time-weighted estimates on the difference ( a, m) (a -a L , m -m L ) satisfying the difference system

           ∂ t a + div m = 0, ∂ t m -A m + ∇ a = -div F,
( a, m)(x, 0) = (0, 0).

(1.25) Indeed, by Duhamel's principle, the structure of conservation law in (1.9) allows to the improvement of time-decay rates of ( a, m) up to 1 2 -order in low frequencies. In order to remove the smallness of (a 0 , u 0 ) Ḃσ 1 2,∞ as in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF], we take advantage of the decay of linearized system and decompose the nonlinear terms in F as the sum of the linear part and the error part, for example,

m ⊗ m = m L ⊗ m L + m ⊗ m L + m ⊗ m.
Note that the time-decay rates of m L ⊗ m L (quadratic) are fast and are given by linear analysis, and m⊗m L +m⊗ m can be bounded by the faster decay estimates of the difference with a small quantity from (1.7). On the other hand, when we handle the high-frequency part of ( a, m), one has to overcome the difficulty coming from the higher-order term A(I(a)m) in (1.25) 2 as it may cause a loss of one derivative on a. For that end, we have to resort to the weighted L p -energy estimate of (a, u), which, together with the product law on m = u + au, implies the desired decay estimate of m. These new observations enable us to develop refined time-weighted estimates in the Fourier semi-group framework without the smallness of initial data in low frequencies, which is quite different from [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF]. Combing the time-decay estimates of (a L , m L ) with the faster time-decay rates of ( a, m), one can establish the upper and lower bounds of (a, m) (1.14), which mainly depends on non L p standard product laws and some elaborate use of Sobolev embeddings.

Finally, we prove the necessary part of the low-frequency assumption in terms of Ḃσ1 2,∞ on the upper and lower bounds for decay rates. For that purpose, we develop the inverse Wiegner's argument from incompressible flows (see Skalák [START_REF] Skalák | On the characterization of the Navier-Stokes flows with the power-like energy decay[END_REF]) to the compressible Navier-Stokes equations (1.9) in the framework of L p -type Besov spaces. Furthermore, it can be shown that the solution (a L , m L ) to (1.24) has the same decay rates as the global-in-time solution (a, u) constructed in Theorem 1.1.

The rest of the paper unfolds as follows. In Section 2, we briefly recall the Littlewood-Paley decomposition, Besov spaces and Chemin-Lerner spaces. Section 3 is devoted to the sharp time-decay characterization for the linear compressible Navier-Stokes equations. In section 4, we establish the Wiegner's argument for nonlinear compressible Navier-Stokes equations and deduce the two-side bounds for decay rates. In Section 5, we develop the inverse Wiegner's argument and justify the implication of low-frequency assumptions. Appendix 6 collects some useful lemmas for non standard product laws and composition of functions that will be used throughout the text.

Notations. For simplicity, C denotes a generic positive constant that may change from line to line.

A B (A

B) means that both A ≤ CB (A ≥ CB), while A ∼ B means that both A B and A B. For Banach space X, p ∈ [1, ∞] and T > 0, the notation L p (0, T ; X) or L p T (X) designates the set of measurable functions f : [0, T ] → X with t → f (t) X in L p (0, T ), endowed with the norm

• L p T (X)
• X L p (0,T ) . Let F(f ) = f and F -1 (f ) = f be the Fourier transform of f and its inverse, and

Λ σ f F -1 |ξ| σ F(f ) (σ ∈ R).
In addition, we write t = √ 1 + t 2 , and for any s > 0, s-means that s -ε for ε ∈ (0, 1) small enough.

Preliminary

For the convenience of reader, we recall the Littewood-Paley decomposition, Besov spaces and and Chemin-Lerner spaces in this section. The reader is referred to Chapters 2 and 3 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] or [START_REF] Danchin | Fourier Analysis Methods for the Compressible Navier-Stokes Equations[END_REF] for more details.

Choose a smooth radial non-increasing function χ(ξ) compactly supported in B(0, 4 3 ) and satisfying χ(ξ) = 1 in B(0, 3 4 ). Then ϕ(ξ) χ( ξ 2 ) -χ(ξ)

satisfies j∈Z ϕ(2 -j •) = 1, Supp ϕ ⊂ {ξ ∈ R d | 3 4 ≤ |ξ| ≤ 8 3 }.
For any j ∈ Z, define the homogeneous dyadic blocks ∆j by

∆j u F -1 ϕ(2 -j •)F(u) = 2 jd h(2 j •) u, h F -1 ϕ.
Let P be the class of all polynomials on R d and S h = S /P stand for the tempered distributions on R d modulo polynomials. One can get

u = j∈Z ∆j u in S , ∀u ∈ S h , ∆j ∆l u = 0, if |j -l| ≥ 2.
With the help of those dyadic blocks, we give the definition of homogeneous Besov spaces and mixed space-time Besov spaces as follow. For s ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov space Ḃs p,r is defined by

Ḃs p,r u ∈ S h | u Ḃs p,r {2 js ∆j u L p } j∈Z l r < ∞ .
For T > 0, s ∈ R and 1 ≤ , r, q ≤ ∞, we recall a class of mixed space-time Besov spaces L (0, T ; Ḃs p,r ) introduced by Chemin-Lerner [START_REF] Chemin | Flot de champs de vecteurs non lipschitziens etëquations de Navier-Stokes[END_REF]:

L (0, T ; Ḃs p,r ) u ∈ L (0, T ; S h ) | u L T ( Ḃs p,r ) {2 js ∆j u L T (L p ) } j∈Z l r < ∞ .
By the Minkowski inequality, it holds

u L T ( Ḃs p,r ) ≤ u L T ( Ḃs p,r ) if r ≥ (resp. u L T ( Ḃs p,r ) ≥ u L T ( Ḃs p,r ) if r ≤ ),
where • L T ( Ḃs p,r ) is the usual Lebesgue-Besov norm. Moreover, we denote

C b (R + ; Ḃs p,r ) u ∈ C(R + ; Ḃs p,r ) | f L ∞ (R+; Ḃs p,r ) < ∞ .
In order to restrict Besov norms to the low frequency part and the high-frequency part, we often use the following notations for any s ∈ R and p ∈ [1, ∞]:

     u Ḃs p,r {2 js ∆j u L p } j≤j0 r , u h Ḃs p,r {2 js ∆j u L p } j≥j0-1 r , u L T ( Ḃs p,r ) {2 js ∆j u L T (L p ) } j≤j0 r , u h L T ( Ḃs p,r ) {2 js ∆j u L T (L p ) } j≥j0-1 r ,
where j 0 is called threshold between low frequencies and high frequnencies which was chosen in [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Chen | Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity[END_REF][START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF].

Denote by u (resp. u h ) the low-frequency (high-frequency) part of u ∈ S h as follows:

u j≤j0-1 ∆j u, u h u -u = j≥j0 ∆j u.
It is easy to check for any s > 0 that

     u Ḃs p,r u Ḃs p,r u Ḃs-s p,∞ , u h Ḃs p,1 u h Ḃs p,r u h Ḃs+s p,r , u L T ( Ḃs p,r ) u L T ( Ḃs p,r ) u L T ( Ḃs-s p,∞ ) , u h L T ( Ḃs p,r ) u h L T ( Ḃs p,r ) u h L T ( Ḃs+s p,r ) .
(2.1)

3 Two-side bounds of decay for the linear compressible Navier-

Stokes equations

In this section, we are interested in establishing the theory of decay characters for the linear compressible Navier-Stokes system

           ∂ t a + div u = 0, ∂ t u -Au + ∇a = 0, (a, u)(x, 0) = (a 0 , u 0 )(x). (3.1) 
Denote by Ω Λ -1 curl u the incompressible part of u and by v Λ -1 div u the compressible part of u.

Therefore, we see that Ω satisfies the heat equation

∂ t Ω -µ∆Ω = 0, Ω(x, 0) = Λ -1 curl u 0 (x). (3.2)
On the other hand, one can get the hyperbolic-parabolic mixed system for (a, v):

   ∂ t a + Λv = 0, ∂ t v -ν∆v -Λa = 0, (3.3) 
with ν = λ + 2µ and (a, v)(x, 0) (a 0 , Λ -1 div u 0 )(x).
It should be noted that the theory of decay characters developed in [START_REF] Bjorland | Poincaré's inequality and diffusive evolution equations[END_REF][START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF][START_REF] Niche | Decay characterization to dissipative equations[END_REF] is not applicable to (3.3) in general due to the dispersion form in hyperbolic part, even though (3.2) is a pure heat equation. Indeed, we have the following pointwise estimates of (a, u) to the system (3.1) in Fourier spaces.

Lemma 3.1. Let (a, u) satisfy System (3.1). It holds that

     | a(ξ, t)| + | u(ξ, t)| e -R * t (| a 0 (ξ)| + | u 0 (ξ)|), if |ξ| ≥ 2 ν , | a(ξ, t)| + | u(ξ, t)| e -min{ ν 2 ,µ}|ξ| 2 t (| a 0 (ξ)| + | u 0 (ξ)|), if |ξ| ≤ 2 ν (3.4) for R * > 0 and | a(ξ, t)| + | u(ξ, t)| e -max{ ν 2 ,µ}|ξ| 2 t (| a 0 (ξ)| + | u 0 (ξ)|), if |ξ| ≤ η, (3.5) 
where η > 0 is sufficiently small.

Proof. Taking the Fourier transform to (3.2) with respect to the space variable yields

| Ω(ξ, t)| = e -µ|ξ| 2 t | Ω 0 (ξ)|, ξ ∈ R d . (3.6) 
On the other hand, we have the following explicit expression for the Green matrix G of system (

(see [START_REF] Chen | Global well-posedness for the compressible Navier-Stokes equations with the highly oscillating initial velocity[END_REF][START_REF] Hoff | Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow[END_REF]): [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Hoff | Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow[END_REF][START_REF] Li | Large time behavior of isentropic compressible Navier-Stokes system in R 3[END_REF]). We omit details for brevity.

G(ξ, t)   λ+e λ -t -λ-e λ + t λ+-λ- -e λ + t -e λ -t λ+-λ- |ξ| e λ + t -e λ -t λ+-λ- |ξ| λ+e λ + t -λ-e λ -t λ+-λ-   with the eigenvalues λ ± (ξ) =      -ν 2 |ξ| 2 ± i |ξ| 2 -ν 2 4 |ξ| 4 , if |ξ| ≤ 2 ν , -ν 2 |ξ| 2 ± ν 2 4 |ξ| 4 -|ξ| 2 , if |ξ| ≥ 2 ν . The upper bound (3.4) 1 in high frequencies |ξ| ≥ 2/ν is classical (see for example

In low frequencies

|ξ| ≤ 2/ν, we write b |ξ| 2 -ν 2 4 |ξ| 4 . Direct computations give                  e λ+t -e λ-t λ + -λ - = e -ν 2 |ξ| 2 sin(bt) b , λ + e λ-t -λ -e λ+t λ + -λ - = e -ν 2 |ξ| 2 cos(bt) + ν 2 sin(bt) b |ξ| 2 , λ + e λ+t -λ -e λ-t λ + -λ - = e -ν 2 |ξ| 2 cos(bt) - ν 2 sin(bt) b |ξ| 2 .
Therefore, we obtain

a(ξ, t) = λ + e λ-t -λ -e λ+t λ + -λ - a 0 (ξ) - e λ+t -e λ-t λ + -λ - |ξ| v 0 (ξ) = e -ν 2 |ξ| 2 t a * (ξ, t) (3.7) and v(ξ, t) = e λ+t -e λ-t λ + -λ - |ξ| a 0 (ξ) + λ + e λ+t -λ -e λ-t λ + -λ - v 0 (ξ) = e -ν 2 |ξ| 2 t v * (ξ, t), (3.8) 
where a * 0 (x) and v * 0 (x) are defined by

     a * (ξ, t) cos(bt) + ν 2 sin(bt) b |ξ| 2 a 0 (ξ) - sin(bt) b |ξ| v 0 (ξ), v * (ξ, t) sin(bt) b |ξ| a 0 (ξ) + cos(bt) - ν 2 sin(bt) b |ξ| 2 v 0 (ξ).
Thus, the upper bound (3.4) in low frequencies can be derived from (3.6), (3.7) and (3.8) directly. Next, we turn to prove (3.5) from below in low frequencies.

Since b is real when |ξ| ≤ 2/ν, we have

| a * (ξ, t)| 2 = a * (ξ, t) a * (ξ, t) = cos(bt) + ν 2 sin(bt) b |ξ| 2 2 | a 0 (ξ)| 2 + | sin(bt)| 2 b 2 |ξ| 2 | v 0 (ξ)| 2 - ν 2 | sin(bt)| 2 b 2 |ξ| 3 a 0 (ξ) v 0 (ξ) + a 0 (ξ) v 0 (ξ) - cos(bt) sin(bt) b |ξ| a 0 (ξ) v 0 (ξ) + a 0 (ξ) v 0 (ξ) (3.9) 
and

| v * (ξ, t)| 2 = v * (ξ, t) v * (ξ, t) = | sin(bt)| 2 b 2 |ξ| 2 | a 0 (ξ)| 2 + cos(bt) - ν 2 sin(bt) b |ξ| 2 2 | v 0 (ξ)| 2 - ν 2 | sin(bt)| 2 b 2 |ξ| 3 a 0 (ξ) v 0 (ξ) + a 0 (ξ) v 0 (ξ) + cos(bt) sin(bt) b |ξ| a 0 (ξ) v 0 (ξ) + a 0 (ξ) v 0 (ξ) . (3.10)
Clearly, there is a special structure that two "bad" zero-order terms on the right-hand side of (3.9) and 

| a * (ξ, t)| 2 + | v * (ξ, t)| 2 = | cos(bt)| 2 + | sin(bt)| 2 b 2 |ξ| 2 + ν sin(bt) cos(bt) b |ξ| 2 + ν 2 4 | sin(bt)| 2 b 2 |ξ| 4 | a 0 (ξ)| 2 + | cos(bt)| 2 + | sin(bt)| 2 b 2 |ξ| 2 -ν sin(bt) cos(bt) b |ξ| 2 + ν 2 4 | sin(bt)| 2 b 2 |ξ| 4 | v 0 (ξ)| 2 -ν | sin(bt)| 2 b 2 |ξ| 3 a 0 (ξ) v 0 (ξ) + a 0 (ξ) v 0 (ξ) ≥(1 -C ν |ξ|)(| a 0 (ξ)| 2 + | v 0 (ξ)| 2 ) -C ν |ξ|| a 0 (ξ)|| v 0 (ξ)| ≥ 1 2 (| a 0 (ξ)| 2 + | v 0 (ξ)| 2 )
for |ξ| ≤ η min{1/3C ν , 2/ν}. Together with (3.6) and the fact that

| v(ξ, t)| 2 + | Ω(ξ, t)| 2 ∼ | u(ξ, t)| 2 , we arrive at (3.5).
The pointwise estimate (3.5) implies that the dispersion property of (a, u) is eliminated from below and behaves like the heat kernel, which motivates us to develop the theory of decay characters for (3.1) in terms of Besov regularity setting. First of all, we establish the following sufficient and necessary conditions for the upper and lower bounds of time-decay estimates of solutions to (3.1).

Proposition 3.1. Let σ 0 , σ 1 ∈ R such that σ 0 > σ 1 .
Assume that (a, u) satisfy System (3.1) and

(a 0 , u 0 ) ∈ Ḃσ0 2,1 .
For any given time t L ≥ 0, the following properties hold:

(1) The solution (a, u) has upper bounds of time-decay estimate

(a, u)(t) Ḃσ 0 2,1 t -1 2 (σ0-σ1) , t > t L , (3.11) 
if and only if (a 0 , u 0 ) ∈ Ḃσ1 2,∞ ; (2) The solution (a, u) has upper and lower bounds of time-decay estimate

t -1 2 (σ0-σ1) (a, u)(t) Ḃσ 0 2,1 t -1 2 (σ0-σ1) , t > t L , (3.12) 
if and only if

(a 0 , u 0 ) ∈ Ḃσ1 2,∞ .
Proof. We first justify (3.11). Under the additional condition

(a 0 , u 0 ) ∈ Ḃσ1 2,∞ , it follows from (3.4) that (a, u)(t) Ḃσ 0 2,1 j≤[log 2 2 ν ] e -9 16 min{ ν 2 ,µ}2 2j t 2 jσ0 ∆j (a 0 , u 0 ) L 2 + j≥[log 2 2 ν ]+1 e -R * t 2 jσ0 ∆j (a 0 , u 0 ) L 2 t -1 2 (σ0-σ1) (a 0 , u 0 ) Ḃσ 1 2,∞ + e -R * t (a 0 , u 0 ) Ḃσ 0 2,1 t -1 2 (σ0-σ1) , t > 1,
where we used the fact

sup t>0 j∈Z t 1 2 (σ0-σ1) 2 j(σ0-σ1) e -9 16 min{ ν 2 ,µ}2 2j t < ∞ for σ 0 > σ 1 .
On the other hand, since (a 0 , u 0 ) ∈ Ḃσ0 2,1 , one can get from (3.4) and Parseval's theorem that

(a, u)(t) Ḃσ 0 2,1 (a 0 , u 0 ) Ḃσ 0 2,1 t -1 2 (σ0-σ1) , 0 < t ≤ 1. (3.13) 
Therefore, the upper bound (3.11) follows.

Conversely, assume that (a, u) satisfies (3.11) for t > t L . In fact, by virtue of (3.13), (3.11) holds for t > 0. The Fourier transform ( a 0 , u 0 ) can be represented by

( a 0 , u 0 )(ξ) = 2 max{ ν 2 , µ} Γ( 1 2 (σ 0 -σ 1 ) + 1) ∞ 0 t 1 2 (σ0-σ1) |ξ| σ0-σ1+2 e -2 max{ ν 2 ,µ}|ξ| 2 t ( a 0 , u 0 )(ξ)dt, where Γ(s) = ∞ 0 t s-1 e -t ds. This implies for any integer j ≤ [log 2 2/ν] that ∆j (a 0 , u 0 ) L 2 ∼ ϕ(2 -j |ξ|)( a 0 , u 0 ) L 2 ∞ 0 t 1 2 (σ0-σ1) 2 (-σ1+2)j e -9 16 max{ ν 2 ,µ}2 2j t |ξ| σ0 e -max{ ν 2 ,µ}|ξ| 2 t ( a 0 , u 0 ) L 2 dt. (3.14)
In view of (3.5), (3.11) and Parseval's theorem, it holds that

|ξ| σ0 e -max{ ν 2 ,µ}|ξ| 2 t ( a 0 , u 0 ) L 2 |ξ| σ0 ( a, u)(t) L 2 ∼ (a, u)(t) Ḣσ 0 t -1 2 (σ0-σ1) . (3.15) 
Substituting (3.15) into (3.14) and using the fact that (a 0 , u 0 ) Ḃσ 0 2,1

< ∞, we get

(a 0 , u 0 ) Ḃσ 1 2,∞ sup j≤[log 2 2 ν ] 2 σ1j ∆j (a 0 , u 0 ) L 2 + sup j≥[log 2 2 ν ]+1 2 σ1j ∆j (a 0 , u 0 ) L 2 ∞ 0 2 2j e -9 16 max{ ν 2 ,µ}2 2j t dt + 2 ν -σ0+σ1 j≥[log 2 2 ν ]+1 2 σ0j ∆j (a 0 , u 0 ) L 2 1. (3.16)
Next, we turn to prove the two-side bounds (3.12). Assume (a 0 , u 0 ) ∈ Ḃσ1 2,∞ . The upper bound in (3.12) follows from (3.11) directly. In order to derive the lower bound, it follows from the definition Ḃσ1 2,∞ as in (1.11) that there exists two constants c, M > 0 and a sequence {j k } k=1,2,... such that 

j k → -∞ as k → ∞, |j k -j k+1 | ≤ M, 2 σ1j k ∆j k (a 0 , u 0 ) L 2 ≥ c, k = 1, 2, ... ( 3 
(a, u)(t) Ḃσ 0 2,1 ≥ j≤[log 2 η] 2 σ0j ∆j (a, u)(t) L 2 = j≤[log 2 η] 2 σ0j ϕ(2 -j •)( a, u)(t) L 2 j≤[log 2 η] e -64 9 max{ ν 2 ,µ}2 2j t 2 σ0j ∆j (a 0 , u 0 ) L 2 . (3.18) 
For all t > t L , since j k tends to -∞ as k → ∞, we are able to find a maximal integer j k0 satisfying

j k0 ≤ -1 2 log 2 (1 + t L + t).
Then we have j k0 > -M -1 2 log 2 (1 + t L + t); otherwise, from (3.17) another integer j k0-1 fulfills j k0-1 ≤ j k0 + M ≤ -1 2 log 2 (1 + t L + t) which contradicts with the maximality of j k0 . Therefore, it follows from (3.17) and the fact 2

j k 0 ∼ t -1 2 that j≤[log 2 η] e -64 9 max{ ν 2 ,µ}2 2j t 2 σ0j ∆j (a 0 , u 0 ) L 2 e -64 9 max{ ν 2 ,µ}2 2j k 0 t 2 (σ0-σ1)j k 0 2 σ1j k 0 ∆j k 0 (a 0 , u 0 ) L 2 2 (σ0-σ1)j k 0 t -1 2 (σ0-σ1) ,
from which one can deduce the lower bound in (3.12).

Conversely, if we assume that (a, u) satisfy the two-side bounds (3.12) for t > t L . The upper bound in (3.12) implies that (a 0 , u 0 ) ∈ Ḃσ1 2,∞ . It suffices to construct a sequence {j k } k=1,2,... such that j k → -∞, |j k -j k+1 | ≤ M , and 2 σ1j k ∆j k (a 0 , u 0 ) ≥ c. For that end, we deduce from the high-frequency bound in (3.4) and (3.12) that

j≤[log 2 2 ν ] 2 σ0j ∆j (a, u)(t) L 2 = (a, u)(t) Ḃσ 0 2,1 - j≥[log 2 2 ν ]+1 2 σ0j ∆j (a, u)(t) L 2 t -1 2 (σ0-σ1) -e -R * t j≥[log 2 2 ν ]+1 2 σ0j ∆j (a 0 , u 0 ) L 2 t -1 2 (σ0-σ1) , t 1,
which, together with the low-frequency bound (3.4), implies that there exists a suitably large time t * > t L and a constant η * > 0 independent of time such that

j∈Z e -9 16 min{ ν 2 ,µ}2 2j t 2 σ0j t 1 2 (σ0-σ1) ∆j (a 0 , u 0 ) L 2 > η * > 0, t ≥ t * . (3.19)
In particular, (3.19) holds true with t = t * + k for all k = 1, 2, ..., and then we define

j 1,k - 1 2 log 2 (t * + k) .
Making use of (3.19) and the fact

2 -2j 1,k -2 ≤ t * + k ≤ 2 -2j 1,k , we get j∈Z e -9 16 min{ ν 2 ,µ}2 2(j-j 1,k )+2 2 (σ0-σ1)(j-j 1,k ) 2 σ1j ∆j (a 0 , u 0 ) L 2 > η * > 0.
Shifting the index j -j 1,k to j , we deduce that

j ∈Z e -9 16 min{ ν 2 ,µ}2 2j +2 2 j (σ0-σ1) 2 (j +j 1,k )σ1 ∆j +j 1,k (a 0 , u 0 ) L 2 > η * > 0. (3.20)
Due to the fact that e -9 16 min{ ν 2 ,µ}2 2j +2 2 j (σ0-σ1) ∈ l 1 (Z) holds for σ 0 > σ 1 , there exists a sufficiently large integer J > 0 such that

|j |>J e -9 16 min{ ν 2 ,µ}2 2j +2 2 j (σ0-σ1) < η * 2 (a 0 , u 0 ) Ḃσ 1 2,∞ + 1
.

Consequently, we have 

|j |>J e -9 16 min{ ν 2 ,µ}2 2j +2 2 j (σ0-σ1) 2 (j +j 1,k )σ1 ∆j +j 1,k (a 0 , u 0 ) L 2 < η * 2 . ( 3 
2 j (σ0-σ1) 2 (j +j 1,k )σ1 ∆j +j 1,k (a 0 , u 0 ) L 2 > η * 2 > 0. (3.22)
For every given j 1,k , let j 2,k ∈ [-J, J] be the integer such that

2 (j 2,k +j 1,k )σ1 ∆j 2,k +j 1,k (a 0 , u 0 ) L 2 = max |j |≤J 2 (j +j 1,k )σ1 ∆j +j 1,k (a 0 , u 0 ) L 2 .
If we define

j k j 1,k + j 2,k , k = 1, 2, ...,
then it follows from (3.22) and the definitions of

j 1,k , j 2,k that j k → -∞ as k → ∞, |j k -j k+1 | ≤ 2J + 1 2 log 2 (1 + 1 t * ) + 1 and 2 σ1j k ∆j k (a 0 , u 0 ) L 2 ≥ η * 4J e -64 9 min{ ν 2 ,µ}2 2J+2
. This implies that (a 0 , u 0 ) ∈ Ḃσ1 2,∞ . The proof of Proposition 3.1 is complete.

Furthermore, it is shown that (a 0 , u 0 ) ∈ Ḃσ1 2,∞ is equivalent to those conditions on the theory of decay characters developed by [START_REF] Bjorland | Poincaré's inequality and diffusive evolution equations[END_REF][START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF][START_REF] Niche | Decay characterization to dissipative equations[END_REF]. Precisely, we have the following proposition.

Proposition 3.2. Let σ 0 , σ 1 ∈ R such that σ 0 > σ 1 . Assume that (a, u) satisfy System (3.1) and (a 0 , u 0 ) ∈ Ḃσ0 2,1 .
Then the following two statements are equivalent:

(1) (a 0 , u 0 ) ∈ Ḃσ1 2,∞ ; (2) (a 0 , u 0 ) satisfies        P σ1 (a 0 , u 0 ) + lim sup r→0 + r -2(σ0-σ1) {|ξ|≤r} |ξ| 2σ0 (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ < ∞, P σ1 (a 0 , u 0 ) -lim inf r→0 + r -2(σ0-σ1) {|ξ|≤r} |ξ| 2σ0 (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ > 0. (3.23) Proof. We first prove that (a 0 , u 0 ) ∈ Ḃσ1 2,∞ implies (3.23). For r > 0, let the integer j = [log 2 r] such that 2 j ≤ r < 2 j+1 . Owing to (a 0 , u 0 ) ∈ Ḃσ1 2,∞ , we have r -2(σ0-σ1)j {|ξ|≤r} |ξ| 2σ0 (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ ≤ 2 -2(σ0-σ1)j {|ξ|≤2 j+1 } |ξ| 2σ0 (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ ≤ 2 -2(σ0-σ1)j j ≤j+1 2 2j (σ0-σ1) sup j ≤j+1 2 2j σ1 ∆j (a 0 , u 0 ) 2 L 2 (a 0 , u 0 ) 2 Ḃσ 1 2,∞
,

which implies P σ1 (a 0 , u 0 ) + < ∞.
Moreover, from our assumption we can take {j k } k=1,2,... as in the definition of Ḃσ1 2,∞ . For any 0 < r < 2 j1 , let j k be the largest integer of the sequence {j k } k=1,2,... such that 2 j k ≤ r. Then we have 2 j k +M ≥ r; otherwise, from j k -j k+1 l ∞ ≤ M we would find another integer j l ∈ [j k , j k + M ] such that 2 j l ≤ r, which contradicts the maximality of j k . Hence, we have

2 j k ≤ r ≤ 2 j k +M . Consequently, r -2(σ0-σ1)j k {|ξ|≤r} |ξ| 2σ0 (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ 2 -2(σ0-σ1)j k { 3 4 2 j k ≤|ξ|≤ 8 3 2 j k } 2 2σ0j k (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ 2 2σ1j k ∆j k (a 0 , u 0 ) 2 L 2 1.
This indicates P σ1 (a 0 , u 0 ) -> 0.

Conversely, if (3.23) holds, then there exists some constants r 0 , c 1 , c 2 > 0 such that for any 0 < r ≤ r 0 , it holds that

0 < c 1 r 2(σ0-σ1) ≤ {|ξ|≤r} |ξ| 2σ0 (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ ≤ c 2 r 2(σ0-σ1) . (3.24)
In order to show (a 0 , u 0 ) ∈ Ḃσ1 2,∞ , it suffices to prove the two-side bounds of decay estimates of the solution (a, u) to (3.1) under the condition (3.24). To do this, we perform Schonbek's Fourier splitting methods as in [START_REF] Schonbek | The Fourier Splitting Method[END_REF] to the compressible Navier-Stokes equations (3.1). Applying the operator Ṡν Λ σ0 with the low-frequency cut-off Ṡν z

j≤[log 2 2 ν ] ∆j z to (3.1), we get    ∂ t Ṡν Λ σ0 a + div Ṡν Λ σ0 u = 0, ∂ t Ṡν Λ σ0 u -A Ṡν Λ σ0 u + ∇ Ṡν Λ σ0 a = 0. (3.25)
Multiplying the first equation of (3.25) by Ṡν Λ σ0 a, the second one by Ṡν Λ σ0 u, adding the resulting equations together, then integrating it over R d , we have

1 2 d dt Ṡν Λ σ0 (a, u)(t) 2 L 2 + R d µ|∇ Ṡν Λ σ0 u| 2 + (µ + λ)(div Ṡν Λ σ0 u) 2 dx = 0. (3.26) 
To capture the dissipation of Ṡν Λ σ0 a, it follows from (3.25) that

d dt R d Ṡν Λ σ0 u • ∇ Ṡν Λ σ0 a dx + ∇ Ṡν Λ σ0 a 2 L 2 -div Ṡν Λ σ0 u 2 L 2 - R d A Ṡν Λ σ0 u • ∇ Ṡν Λ σ0 a dx = 0. (3.27) Define L(t) 1 2 Ṡν Λ σ0 (a, u)(t) 2 L 2 + ε R d Ṡν Λ σ0 u • ∇ Ṡν Λ σ0 a dx
for some constant ε > 0. We are able to choose ε sufficiently small such that 

L(t) ∼ Ṡν (a, u)(t)
d dt L(t) + c * ∇ Ṡν (a, u) 2 Ḣσ 0 ≤ 0, (3.29) 
where c * > 0 is a uniform constant. For any function R(t), the classical Fourier splitting idea [START_REF] Schonbek | The Fourier Splitting Method[END_REF] is then used to deduce the estimate

∇ Ṡν (a, u) 2 Ḣσ 0 ≥ {|ξ|≥R(t)} |ξ| 2+2σ0 (| Ṡν a| 2 + | Ṡν u| 2 )dξ ≥ R 2 (t) R d |ξ| 2σ0 (| Ṡν a| 2 + | Ṡν u| 2 )dξ - {|ξ|≤R(t)} |ξ| 2σ0 (| Ṡν a| 2 + | Ṡν u| 2 )dξ ≥ R 2 (t)L(t) -R 2σ (t) {|ξ|≤R(t)} |ξ| 2σ0 (| Ṡν a| 2 + | Ṡν u| 2 )dξ.
This, together with (3.29), leads to

d dt L(t) + c * R 2 (t)L(t) R 2 (t) {|ξ|≤R(t)} |ξ| 2σ0 (| a(ξ, t)| 2 + | u(ξ, t)| 2 )dξ. (3.30)
For some sufficiently large constant β, choosing now

R(t) = β c * t -1 2 ≤ min{ 2 ν , r 0 } for t > t * 1 = β c * min{ 2 ν , r 0 } 2 .
Hence, it follows from (3.4) and (3.24) that

{|ξ|≤R(t)} |ξ| 2σ0 (| a(ξ, t)| 2 + | u(ξ, t)| 2 )dξ {|ξ|≤R(t)} |ξ| 2σ0 (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ R 2(σ0-σ1) (t) ∼ t -(σ0-σ1) , t > t * 1 .
(3.31)

Multiplying (3.30) by the factor t β with β > σ 0 -σ 1 + 1, furthermore, we obtain

d dt t β L(t) t β-1-(σ0-σ1) . (3.32) Then integrating (3.32) over [t * 1 , t] yields t β Ṡν (a, u)(t) 2 Ḣσ 0 t 1 β Ṡν (a, u)(t 1 ) 2 Ḣσ 0 + t β-(σ0-σ1) .
On the other hand, one deduces from the pointwise estimates (3.4) and Parseval's theorem that Ṡν (a, u)(t 1 ) 2 Ḣσ 0 (a 0 , u 0 ) 2 Ḣσ 0 .

Therefore, we obtain

Ṡν (a, u)(t) Ḣσ 0 t -1 2 (σ0-σ1) , t > 0.

Consequently, noticing that the exponential decay property in (3.4) at high frequencies, the upper bound of decay follows that

(a, u)(t) Ḣσ 0 ≤ Ṡν (a, u)(t) Ḣσ 0 + (Id -Ṡν )(a, u)(t) Ḣσ 0 t -1 2 (σ0-σ1) + e -R * t (a 0 , u 0 ) Ḃσ 0 2,1 t -1 2 (σ0-σ1) . (3.33) 
Finally, performing the same procedure leading to (3.14)-(3.16), we arrive at (a 0 , u 0 ) ∈ Ḃσ1 2,∞ . On the other hand, it follows from (3.5), (3.24) and Parseval's theorem that

(a, u)(t) 2 Ḃσ 0 2,1 Λ σ0 (a, u)(t) 2 L 2 e -2 max{ ν 2 ,µ}r 2 t {|ξ|≤r} |ξ| 2σ0 (| a 0 (ξ)| 2 + | u 0 (ξ)| 2 )dξ r 2(σ0-σ1) ∼ t -(σ0-σ1) , (3.34) 
where we have chosen r = r 0 t -1 2 ≤ r 0 . According to Proposition 3.1 and (3.34), we thus prove Corollary 3.1. Let σ 0 , σ 1 ∈ R such that σ 0 > σ 1 . Assume that U satisfies System (1.18) and U 0 ∈ Ḃσ0 2,1 . Then the following three statements are equivalent:

(a 0 , u 0 ) ∈ Ḃσ1 2 
(1) U 0 ∈ Ḃσ1 2,∞ ; (2) U 0 satisfies        P σ1 (U 0 ) + lim sup r→0 + r -2(σ0-σ1) {|ξ|≤r} |ξ| 2σ0 | U 0 (ξ)| 2 dξ < ∞, P σ1 (U 0 ) -lim inf r→0 + r -2(σ0-σ1) {|ξ|≤r} |ξ| 2σ0 | U 0 (ξ)| 2 dξ > 0;
(3) For any t L ≥ 0, U has upper and lower bounds of time-decay:

t -1 2α (σ0-σ1) U (t) Ḃσ 0 2,1 t -1 2α (σ0-σ1) , t > t L .

Sufficient condition

It suffices to show that the solution constructed in Theorem 1.1 satisfies (1.13) (resp. (1.14)) if and only if (a 0 , u 0 ) ∈ Ḃσ1 2,∞ (resp. (a 0 , u 0 ) ∈ Ḃσ1 2,∞ ), since (1.12) is the direct consequence of Lemma 5.1 of [START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF]. In this section, we shall develop the Wiegner's argument from incompressible Navier-Stokes equations to compressible Navier-Stokes equations, and prove the "if" part. In comparison with those efforts in the Fourier semi-group framework [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF], the additional smallness of low frequencies is no longer needed. 

Wiegner's argument for compressible Navier-Stokes equations

(a L , m L ) L ∞ t ( Ḃ d 2 -1 2,1
)

+ e Rτ (∇a L , m L ) h L ∞ t ( Ḃ d p -1 p,1 ) + e Rτ m L h L ∞ (1,t; Ḃ d p +1 p,1 )
+ (a L , m L )

L 1 t ( Ḃ d 2 +1
2,1 )

+ (a L , ∇m L ) h L 1 t ( Ḃ d p p,1 ) X p,0 , (4.1) 
where R > 0 is some constant and X p,0 is defined by (1.7). Moreover, if assume that σ 0 ≤ σ 1 < d 2 -1 and σ > σ 1 , then for any t L ≥ 0 the following decay properties hold:

(a L , m L ) (t) Ḃσ 2,1 t -1 2 (σ-σ1) , t > t L , (4.2) 
if and only if (a 0 , u 0 ) ∈ Ḃσ1 2,∞ ;

t -1 2 (σ-σ1) (a L , m L ) (t) Ḃσ 2,1 t -1 2 (σ-σ1) , t > t L , (4.3) 
if and only if (a 0 , u 0 ) ∈ Ḃσ1 2,∞ .

Proof. By employing the same procedure as in [START_REF] Danchin | Fourier Analysis Methods for the Compressible Navier-Stokes Equations[END_REF] (see pages 1882-1884), one can arrive at

(a L , m L ) L ∞ t ( Ḃ d 2 -1 2,1 ) + (∇a L , m L ) h L ∞ t ( Ḃ d p -1 p,1 )
+ (a L , m L )

L 1 t ( Ḃ d 2 +1
2,1 )

+ (a L , ∇m L ) h L 1 t ( Ḃ d p p,1 )
(a 0 , m 0 )

Ḃ d 2 -1 2,1 + (∇a 0 , m 0 ) h Ḃ d p -1 p,1 X * p,0 . (4.4) 
In addition, the L p energy method developed in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF] implies that there exists a generic constant R > 0

such that e Rτ (∇a L , m L ) h L ∞ t ( Ḃ d p -1 p,1 ) X * p,0 . (4.5) 
To establish gain of regularity and decay altogether for the high frequencies of momentum, we reformulate the second equation in (1.24) as follows

∂ t (χ(t)m L ) -A(χ(t)m L ) = χ (t)m L -χ(t)∇a L , (4.6) 
where χ(t) ∈ C 1 (R + ) satisfies χ(t) = t for 0 ≤ t ≤ 1 2 and χ(t) = e Rt for t > 1. Then it follows from the maximal regularity estimate for Lamé semi-group in Lemma 6.11 that

χ(t)m L h L ∞ t ( Ḃ d p +1 p,1 ) e Rτ (m L , ∇a L )| h L ∞ t ( Ḃ d p -1 p,1 ) X * p,0 , (4.7) 
where we used the fact χ(t)m L | t=0 = 0. Hence, in order to get (4.1), it only need to show that

X * p,0 X p,0 . (4.8) 
Indeed, from Lemma 6.3 and Bernstein's inequality, we arrive at

m 0 h Ḃ d p -1 p,1 u 0 h Ḃ d p -1 p,1 + a 0 Ḃ d p p,1 u 0 Ḃ d p -1 p,1 X p,0 ,
where the boundedness of X p,0 in (1.7) is used. On the other hand, bounding m 0

Ḃ d 2 -1 2,1
is a little bit complicated and follows from the similar strategy as in [START_REF] Danchin | Fourier Analysis Methods for the Compressible Navier-Stokes Equations[END_REF]. To this end, we employ the following two inequalities:

T f g Ḃs-1+ d 2 -d p 2,1 f Ḃ d p -1 p,1 g Ḃs p,1 if d ≥ 2 and d d -1 ≤ p ≤ min(4, d * ), (4.9) 
R(f, g) 

Ḃs-1+ d 2 -d p 2,1 f Ḃ d p -1 p,
a 0 u 0 = T u0 a 0 + R(u 0 , a 0 ) + T a0 u 0 + T a0 u h 0 . (4.11) 
Thanks to (4.9) and (4.10) with s = d p , one can get

T u0 a 0 Ḃ d 2 -1 2,1 u 0 Ḃ d p -1 p,1 a 0 Ḃ d p p,1 , R(a 0 , u 0 ) Ḃ d 2 -1 2,1 u 0 Ḃ d p -1 p,1 a 0 Ḃ d p p,1 . Since T maps L ∞ × Ḃ d 2 -1 2,1 to Ḃ d 2 -1
2,1 , we have

T a0 u 0 Ḃ d 2 -1 2,1 a 0 L ∞ u 0 Ḃ d 2 -1 2,1 a 0 Ḃ d p p,1 u 0 Ḃ d 2 -1 2,1 .
In order to handle the last term on the right-side of (4.11), we observe that owing to the spectral cut-off, there exists a universal integer N 0 such that

T a0 u h 0 = Ṡk0+1 |j-k0|≤N0 Ṡj-1 a 0 ∆j u h 0 . Hence T a0 u h 0 Ḃ d 2 -1 2,1 ≈ 2 k0( d 2 -1) |j-k0|≤N0 Ṡj-1 a 0 ∆j u h 0 L 2 . If 2 ≤ p ≤ min(d, d * ) then one may use for |j -k 0 | ≤ N 0 , 2 k0( d 2 -1) Ṡj-1 a 0 ∆j u h 0 L 2 Ṡj-1 a 0 L d 2 j( d d * -1) ∆j u h 0 L d * a 0 Ḃ d p -1 p,1 u 0 h Ḃ d p -1 p,1
, and if d ≤ p ≤ 4, then it holds that

2 k0( d 2 -1) Ṡj-1 a 0 ∆j u h 0 L 2 2 j d 4 Ṡj-1 a 0 L 4 2 j( d 4 -1) ∆j u h 0 L 4 2 j( d p -1) a 0 L p 2 j( d p -1) ∆j u h 0 L p a 0 Ḃ d p -1 p,1 u 0 h Ḃ d p -1 p,1
.

Hence, the inequality (4.8) follows directly by combining above estimates.

Under the assumption (1.7), we claim that (a 0 , m

0 ) ∈ Ḃσ1 2,∞ ⇐⇒ (a 0 , u 0 ) ∈ Ḃσ1 2,∞ for σ 0 ≤ σ 1 < d 2 -1. Indeed, it follows from m 0 = u 0 + a 0 u 0 that m 0 Ḃσ 1 2,∞ u 0 Ḃσ 1 2,∞ + a 0 u 0 Ḃσ 1 2,∞ . (4.12)
It is convenient to decompose the product a 0 u 0 in terms of low-frequency and high-frequency parts:

a 0 u 0 = a 0 u 0 + a 0 u h 0 .
According to Lemma 6.7, we arrive at 

a 0 u 0 Ḃσ 1 2,∞ a 0 Ḃ d p p,1 u 0 Ḃσ 1 2,∞ a 0 Ḃ d 2 -1 2,1 + a h 0 Ḃ d p p,1 u 0 Ḃσ
a 0 u h 0 Ḃσ 1 2,∞ a 0 u h 0 Ḃσ 0 2,∞ a 0 Ḃ d p -1 p,1 + a 0 L p * u h 0 Ḃ1-d p p,1 , (4.14) 
since σ 0 ≤ σ 1 . In the limit case p = d, one can get by the Sobolev embedding that

a 0 u h 0 Ḃσ 1 2,∞ a 0 u h 0 Ḃσ 0 2,∞ a 0 u h 0 L d 2 ≤ a 0 L d u h 0 L d a 0 Ḃ0 d,1 u h 0 Ḃ0 d,1 . (4.15)
Furthermore, combining (4.14)-(4.15) and using the embeddings

Ḃ d p 2,1 → L p * and Ḃ d p -1 p,1 → Ḃ0 d,1
, we obtain 

a 0 u h 0 Ḃσ 1 2,∞ a 0 Ḃ d 2 -1 2,1 + a h 0 Ḃ d p p,1 u h 0 Ḃ d p -1 p,1 , (4.16 
a 0 u h 0 Ḃσ 1 2,∞ a 0 Ḃ1-d p p,1 + a 0 L p * u h 0 Ḃ d p -1 p,1 . ( 4 
a 0 u h 0 Ḃσ 1 2,∞ a 0 Ḃ d 2 -1 2,1 + a h 0 Ḃ d p p,1 u h 0 Ḃ d p -1 p,1 . (4.18) 
Together with (4.12), (4.13), (4.16) and (4.18), we conclude that the "if" part of this claim is true.

Conversely, the proof of "only if" part follows from the similar procedure if noticing that u 0 = m 0 + I(a 0 )m 0 and using the composite estimate in Lemma 6.9.

Furthermore, it can be shown that (a 0 , m 0 ) ∈ Ḃσ1 2,∞ if and only if (a 0 , u 0 ) ∈ Ḃσ1 2,∞ . If (a 0 , m 0 ) ∈ Ḃσ1 2,∞ , then it follows from (4.12)-(4.13), (4.16) and (4.18) that

2 σ1j k ∆j k (a 0 , u 0 ) L 2 ≥ 2 σ1j k ∆j k (a 0 , m 0 ) L 2 -a 0 u 0 Ḃσ 1 2,∞ ≥ 2 σ1j k ∆j k (a 0 , m 0 ) L 2 -C( a 0 Ḃ d 2 -1 2,1 + a h 0 Ḃ d p p,1 )( u 0 Ḃσ 1 2,∞ + u h 0 Ḃ d p -1 p,1
)

≥ c 0 -CX p,0 -CX 2 p,0 ≥ c 0 2 > 0,
which implies that (a 0 , u 0 ) ∈ Ḃσ1 2,∞ , where the sequence {j k } k=1,2,... comes from the definition (1.11) of Ḃσ1 2,∞ and the smallness assumption in (1.7) has been used. Similarly, one can prove that (a 0 , u 0 ) ∈ Ḃσ1 2,∞ implies that (a 0 , m 0 ) ∈ Ḃσ1 2,∞ . Applying the low-frequency cut-off operator Ṡj0 to (1.24) gives

           ∂ t a L + div m L = 0, ∂ t m L -Am L + ∇a L = 0, (a L , m L )(x, 0) = (a 0 , m 0 )(x). (4.19) Note that (a 0 , m 0 ) Ḃσ 2,1 (a 0 , m 0 ) Ḃσ 1 2,∞
with σ > σ 1 , the upper bound (4.2) and two-side bounds (4.3) hold for t > t L , respectively, according to Proposition 3.1.

From Theorem 1.1, we see that the Cauchy problem (1.22) with initial data (a, m)| t=0 = (a 0 , (1+a 0 )u 0 ) admits the global-in-time unique solution (a, m) with m = (1 + a)u satisfying

(a, m) ∈ C b (R + ; Ḃ d 2 -1 2,1 ) ∩ L 1 (R + ; Ḃ d 2 +1 2,1 ), a h ∈ C b (R + ; Ḃ d p p,1 ) ∩ L 1 (R + ; Ḃ d p p,1 ), m h ∈ C b (R + ; Ḃ d p -1 p,1 ) ∩ L2 (R + ; Ḃ d p p,1 ). (4.20)
For the case of compressible fluids (1.22), we get the following analogue of Wiegner's theorem (see [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF]).

Proposition 4.2. Assume that the initial data satisfy

(a 0 , u 0 ) ∈ Ḃσ1 2,∞ with σ 0 ≤ σ 1 < d 2 -1. Then the difference ( a, m) (a -a L , m -m L ) fulfills the time-weighted inequality D p (t) 1 (4.21)
for t > 0, where the difference functional D p (t) is defined as

D p (t) sup σ1<σ< d 2 τ 1 2 (σ-σ1+σ2) ( a, m) L ∞ t ( Ḃσ 2,1 ) + τ α * (∇ a, m) h L ∞ t ( Ḃ d p -1 p,1 ) + τ α * m h L ∞ (1,t; Ḃ d p p,1 ) with α * = 1 2 ( d 2 -σ 1 + σ 2 )
and the number σ 2 ∈ (0, 1] is given by

σ 2 =                    1, if σ 1 < σ ≤ d 2 -1, σ 1 < d 2 -2, 1-, if σ 1 < σ ≤ d 2 -1, σ 1 = d 2 -2, d 2 -1 -σ 1 , if σ 1 < σ ≤ d 2 -1, d 2 -2 < σ 1 < d 2 -1, min{ 1 2 , ( d 2 -1 -σ 1 )-}, if d 2 -1 < σ < d 2 .
(4.22)

Bounds for the low frequencies

Let us keep in mind that due to product laws on m = u + au, the global solution (a, m) in Theorem

1.1 satisfies a L ∞ t ( Ḃ d p p,1 ) + m L ∞ t ( Ḃ d p -1 p,1 ) + m L 2 t ( Ḃ d p p,1 )
X p,0 1 for all t > 0. 

(a L , m L ) (t) Ḃσ 2,1 t -1 2 (σ-σ1) , σ > σ 1 , t > 0. (4.24)
In what follows, we shall use repeatedly that for 0 ≤ γ 1 ≤ γ 2 ,

t 0 t -τ -γ1 τ -γ2 dτ            t -γ1 , if γ 2 > 1, t -(γ1-) , if γ 2 = 1, t -γ1-γ2+1 , if γ 2 < 1. (4.25)
Apply ∆j to the difference system (1.25). It follows from Lemma 3.1 and Duhamel's principle that

∆j ( a, m)(t) L 2 t 0 e -R32 2j (t-τ ) 2 j ∆j F L 2 dτ (4.26)
for j ≤ j 0 ∈ Z and R 3 = max{R * , 4 ν 2 2 2j 0 min{ 1 ν , µ}}. It is easy to see that (σ ∈ (0, 1])

t σ-σ 1 +σ 2 j≤j0 2 j(σ-σ1+σ ) 2 j(σ1+1-σ ) e -R32 2j t ∆j F L 2 F Ḃσ 1 +1-σ 2,∞ j∈Z ( √ t2 j ) σ-σ1+σ e -R32 2j t F Ḃσ 1 +1-σ 2,∞ and j≤j0 2 j(σ-σ1+σ ) 2 j(σ1+1-σ ) e -R32 2j t ∆j F L 2 F Ḃσ 1 +1-σ 2,∞ j≤j0 2 j(σ-σ1+σ ) F Ḃσ 1 +1-σ 2,∞
for σ -σ 1 + σ > 0, where we used the series inequalities (s > 0):

j≤j0 2 js ≤ C s , sup t≥0 j∈Z t s 2 2 js e -c02 2j t ≤ C s .
Consequently, we get

( a, m)(t) Ḃσ 2,1 t 0 t -τ -1 2 (σ-σ1+σ ) F Ḃσ 1 +1-σ 2,∞ dτ, σ > σ 1 . (4.27) 
Regarding the integral on right-hand side of (4.27), we consider cases 0 < t ≤ 2 and t > 2 separately. 

0 ≤ σ 1 < d 2 -1. It holds that t 0 t -τ -1 2 (σ-σ1+σ ) F Ḃσ 1 +1-σ 2,∞ dτ t -1 2 (σ-σ1+σ2) (X p,0 + X 2 p,0 )( (a, m) L ∞ t ( Ḃσ 1 2,∞ ) + X p,0 ) (4.28) 
for 0 < t ≤ 2 and σ , σ 2 ∈ (0, 1].

Proof. The case 0 < t ≤ 2 implies that t ≈ 1 and t -τ ≈ 1 for 0 ≤ τ ≤ t ≤ 2. Set

F = F + F h with F = F 1 + F 2 + F 3 , F h = F h 1 + F h 2 + F h 3 ,
where

F 1 = (1 -I(a))m ⊗ m , F 2 = (P (1) + G(a))aa I d , F 3 = µ∇(I(a)m ) + (µ + λ)div (I(a)m )I d , F h 1 = (1 -I(a))m ⊗ m h , F h 2 = (P (1) + G(a))aa h I d , F h 3 = µ∇(I(a)m h ) + (µ + λ)div (I(a)m h )I d .
Here G(a) satisfies G(0) = 0 and (P (1) + G(a))a 2 = P (1 + a) -P (1) -P (1)a. Owing to d 2 -1 ≤ d p , it follows from Lemmas 6.7 and 6.9 that

F 1 Ḃσ 1 +1-σ 2,∞ F 1 Ḃσ 1 2,∞ F 1 Ḃσ 1 + d p -d 2 2,∞ (1 + a Ḃ d p p,1 ) m Ḃ d p -1 p,1 m Ḃσ 1 + d p -d 2 +1
2,∞

(1 + a

Ḃ d p p,1
) m

Ḃ d p -1 p,1 m Ḃσ 1 2,∞ (X p,0 + X 2 p,0 ) m L ∞ t ( Ḃσ 1 2,∞ ) .
Similarly, one also has

F 2 Ḃσ 1 +1-σ 2,∞ (1 + a Ḃ d p p,1
) a

Ḃ d p p,1 a Ḃσ 1 2,∞ (X p,0 + X 2 p,0 ) a L ∞ t ( Ḃσ 1 2,∞ )
and

F 3 Ḃσ 1 +1-σ 2,∞ a Ḃ d p p,1 m Ḃσ 1 2,∞ X p,0 m L ∞ t ( Ḃσ 1 2,∞ ) .
To bound the term with m ⊗ m h , we use the similar procedure leading to (4.16) and (4.18). More precisely, if 2 ≤ p < d, then (6.8) with σ

= d p -1 yields m ⊗ m h Ḃσ 1 2,∞ m Ḃ d p -1 p,1 + m L p * m h Ḃ1-d p p,1
.

(4.29)

In the limit case p = d, one can get 

m ⊗ m h Ḃσ 1 2,∞ m ⊗ m h Ḃσ 0 2,∞ m ⊗ m h L d 2 m Ḃ0 d,1 m h Ḃ0 d,1 . ( 4 
m ⊗ m h Ḃσ 1 2,∞ m Ḃ d 2 -1 2,1 + m h Ḃ d p -1 p,1 m h Ḃ d p -1 p,1 X 2 p,0 , (4 
m ⊗ m h Ḃσ 1 2,∞ m Ḃ1-d p p,1 + m L p * m h Ḃ d p -1 p,1 . (4.32)
By using the embedding Ḃ1+σ0

2,1 → Ḃ1-d p p,1 and d 2 -1 < 1 + σ 0 owing to p > d, we obtain m ⊗ m h Ḃσ 1 2,∞ m Ḃ d 2 -1 2,1 + m h Ḃ d p p,1 m h Ḃ d p -1 p,1 X 2 p,0 . (4.33)
On the other hand, using Lemma 6.9 and Bony's decomposition, we follow from those lines of bounding 

Ḃ d 2 -1 2,1 a Ḃ d p p,1 m Ḃ d 2 -1 2,1 + m h Ḃ d p -1 p,1 , (4.34) 
and one can thus bound the term corresponding to I(a)m ⊗ m h as m ⊗ m h . Consequently, we deduce that

F h 1 Ḃσ 1 +1-σ 2,∞ F h 1 Ḃσ 1 2,∞ (1 + a Ḃ d p p,1
) m

Ḃ d 2 -1 2,1 + m h Ḃ d p p,1 m h Ḃ d p -1 p,1 (1 + X p,0 )X 2 p,0 . (4.35)
In order to bound the term with F h 2 , we mimic the proof of (4.35) and get

F h 2 Ḃσ 1 +1-σ 2,∞ (1 + a Ḃ d p p,1
) a

Ḃ d 2 -1 2,1 + a h Ḃ d p p,1 a h Ḃ d p -1 p,1 (1 + X p,0 )X 2 p,0 . (4.36)
Using the composition inequality in Lebesgue spaces and the embeddings

Ḃ d p 2,1 → Ḃσ0 p,1 → L p * , we get I(a) L p * a L p * a Ḃ d p 2,1 + a h Ḃσ 0 p,1 a Ḃ d 2 -1 2,1 + a h Ḃ d p p,1
.

(4.37)

Consequently, we have

F h 3 Ḃσ 1 +1-σ 2,∞ a Ḃ d 2 -1 2,1 + a h Ḃ d p p,1 m h Ḃ d p -1 p,1 X 2 p,0 . (4.38)
Therefore, the proof of Lemma 4.1 is complete.

For the nontrivial case t > 2, we shall proceed differently depending on whether 

σ 1 < σ ≤ d 2 -1 or d 2 -1 < σ < d 2 . For the case σ 1 < σ ≤ d 2 -1, we choose σ = 1 in (4.
0 ≤ σ 1 < d 2 -1. It holds that t 0 t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞ dτ t -1 2 (σ-σ1+σ2) (X p,0 + X 2 p,0 )( (a, m) L ∞ 1 ( Ḃσ 1 2,∞ ) + X p,0 ) + t -1 2 (σ-σ1+σ2) (1 + X p,0 )( (a L , m L , a, m) L ∞ t ( Ḃσ 1 +σ 2 2,∞ ) + X p,0 ) D p (t) (4.39)
for t > 2 and σ 1 < σ ≤ d 2 -1, where

σ 2 =            1, if σ 1 < d 2 -2, 1-, if σ 1 = d 2 -2, d 2 -1 -σ 1 , if d 2 -2 < σ 1 < d 2 -1.
Proof. For t > 2, we write

t 0 t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞ dτ = 1 0 t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞ dτ + t 1 t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞ dτ. (4.40)
It follows from the same computations in Lemma 4.1 that

1 0 t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞ dτ t -1 2 (σ-σ1+σ2) (X p,0 + X 2 p,0 )( (a, m) L ∞ 1 ( Ḃσ 1 2,∞ ) + X p,0 ).
To handle with the second integral on [1, t] for t > 2, we decompose F in terms of linear part and difference part of solutions: We first claim that

F = F L + F L + F with F L (1 -I(a))m L ⊗ m L + (P (1) + G(a))a 2 L I d + µ∇((1 + Ĩ(a))a L m L ) + (µ + λ)div ((1 + Ĩ(a))a L m L ) F 1L + F 2L + F 3L , (4.41) 
F L (1 -I(a)) m ⊗ m L + (P (1) + G(a)) aa L I d + µ∇((1 + Ĩ(a)) am L ) + (µ + λ)div ((1 + Ĩ(a)) am L ) F 1L + F 2L + F 3L , ( 4 
F L Ḃσ 1 2,∞ (1 + X p,0 + X 2 p,0 ) t -1 2 ( d 2 -σ1) , t > 1. (4.44) Indeed, decompose m L ⊗ m L = m L ⊗ m L + m h L ⊗ m L + m L ⊗ m h L . It follows from Lemma 6.3 that m L ⊗ m L Ḃσ 1 2,∞ m L Ḃ d 2 -1 2,1 m L Ḃσ 1 +1 2,∞ , (4.45) 
where we used the fact that σ 1 < d 2 -1 and σ 1 + d 2 ≥ d -2d p ≥ 0. Thanks to Lemma 6.5, we get

m h L ⊗ m L Ḃσ 1 2,∞ m h L ⊗ m L Ḃ d p -d 2 +σ 1 2,∞ m h L Ḃ d p -d 2 +σ 1 p,1 m L Ḃ d p 2,1 m h L Ḃ d p -1 p,1 m L Ḃ d 2 -1 2,1 . (4.46)
To handle the term corresponding to m L ⊗ m h L , we observe that applying Lemma 6.8 and tracking those lines from (4.29) to (4.33) yields

m L ⊗ m h L Ḃσ 1 2,∞ m L Ḃ d 2 -1 2,1 + m h L Ḃ d p p,1 m h L Ḃ d p -1 p,1 . (4.47)
Hence, in view of (4.1) and (4.2), we deduce that

m L ⊗ m L Ḃσ 1 2,∞ (1 + X p,0 ) t -1 2 ( d 2 -σ1) , t > 1. (4.48)
Similarly, we write

I(a)m L ⊗ m L = I(a)m L ⊗ m L + I(a)m h L ⊗ m L + I(a)m L ⊗ m h L .
Now, arguing as for proving (4.45), it easily follows from Lemmas 6.5 and 6.9 that

I(a)m L ⊗ m L Ḃσ 1 2,∞ I(a) Ḃ d p p,1 m L ⊗ m L Ḃσ 1 2,∞ a Ḃ d p p,1 m L Ḃ d 2 -1 2,1 m L Ḃσ 1 +1 2,∞ . (4.49)
Note also that if σ 0 < σ 1 < d 2 -1 and d 2 -1 ≤ d p , as (4.46), we have

I(a)m h L ⊗ m L Ḃσ 1 2,∞ I(a)m h L Ḃ d p -d 2 +σ 1 p,1 m L Ḃ d p 2,1 a Ḃ d p p,1 m h L Ḃ d p -d 2 +σ 1 p,1 m L Ḃ d p 2,1 a Ḃ d p p,1 m h L Ḃ d p -1 p,1 m L Ḃ d 2 -1 2,1 , (4.50)
where we used the second item of Lemma 6.3 with σ 0 + σ 1 > 0. If σ 1 = σ 0 , then by (6.4) it holds that

I(a)m h L ⊗ m L Ḃσ 1 2,∞ I(a)m h L Ḃ1-d p p,1 m L Ḃ d 2 -1 2,1 a Ḃ d p p,1 m h L Ḃ d p -1 p,1 m L Ḃ d 2 -1 2,1 . (4.51)
Keep in mind that (4.34), one can bound the term corresponding to 

I(a)m L ⊗ m h L as m L ⊗ m h L . Precisely, I(a)m L ⊗ m h L Ḃσ 1 2,∞ a Ḃ d p p,1 m L Ḃ d 2 -1 2,1 + m h L Ḃ d p p,1 m h L Ḃ d p -1 p,1 . ( 4 
I(a)m L ⊗ m L Ḃσ 1 2,∞ (X p,0 + X 2 p,0 ) t -1 2 ( d 2 -σ1) , t > 1. (4.53)
Bounding F 2L and F 3L follows from the same arguments as F 1L . As a matter of fact, it can be shown that

F 2L Ḃσ 1 2,∞ (1 + a Ḃ d p p,1
)

a L Ḃ d 2 -1 2,1 a L Ḃσ 1 +1 2,∞ + a h L Ḃ d p p,1 a L Ḃ d 2 -1 2,1 + a h L 2 Ḃ d p p,1 (1 + X p,0 ) 2 t -1 2 ( d 2 -σ1)
and

F 3L Ḃσ 1 2,∞ (1 + a Ḃ d p p,1 ) a L Ḃ d 2 -1 2,1 m L Ḃσ 1 +1 2,∞ + a h L Ḃ d p p,1 m L Ḃ d 2 -1 2,1 + ( a L Ḃ d 2 -1 2,1 + a h L Ḃ d p p,1 ) m h L Ḃ d p -1 p,1 (1 + X p,0 ) 2 t -1 2 ( d 2 -σ1) .
Therefore, the claim (4.44) is proved.

Regarding F L , our aim is to show that

( F L , F ) Ḃσ 1 2,∞ (1 + X p,0 )( (a, m, a L , m L ) Ḃσ 1 +σ 2 2,∞ + X p,0 ) t -1 2 ( d 2 -σ1) D p (t) (4.54)
for t > 1, where σ 2 ∈ (0, 1] is to be confirmed.

Firstly, we write m

L ⊗ m = m L ⊗ m + m h L ⊗ m + m L ⊗ m h . Owing to σ 1 + σ 2 ≤ σ 1 + 1 < d 2
, it follows from the third item of Lemma 6.3 and the definition of D p (t) that

m L ⊗ m Ḃσ 1 2,∞ m L Ḃσ 1 +σ 2 2,∞ m Ḃ d 2 -σ 2 2,1 t -1 2 ( d 2 -σ1) m L Ḃσ 1 +σ 2 2,∞ D p (t). (4.55) 
Arguing as (4.46), we have

m h L ⊗ m Ḃσ 1 2,∞ m h L Ḃ d p -1 p,1 m Ḃ d 2 -1 2,1 t -1 2 ( d 2 -σ1) X p,0 D p (t), (4.56) 
where we used (4.1) and that t - 

1 2 ( d 2 -1-σ1+σ2) e -Rt ≤ t -1 2 ( d 2 -
m L ⊗ m h Ḃσ 1 2,∞ ( m L Ḃ d 2 -1 2,1 + m h L Ḃ d p p,1 ) m h Ḃ d p -1 p,1 t -1 2 ( d 2 -σ1) X p,0 D p (t) (4.57) 
for t > 1. Together with (4.55)-(4.57), we thus get

m L ⊗ m Ḃσ 1 2,∞ t -1 2 ( d 2 -σ1) ( m L Ḃσ 1 +σ 2 2,∞ + X p,0 ) D p (t), t > 1. (4.58) 
Bounding the composite term with I(a)m L ⊗ m follows essentially from (4.49)-(4.51) and yields

I(a) m ⊗ m L Ḃσ 1 2,∞ t -1 2 ( d 2 -σ1) ( m L Ḃσ 1 +σ 2 2,∞ + X p,0 )X p,0 D p (t), t > 1. (4.59) 
Similarly, we have

F 2L Ḃσ 1 2,∞ (1 + a Ḃ d p p,1 
)

a L Ḃσ 1 +σ 2 2,∞ a Ḃ d 2 -σ 2 2,1 + a h L Ḃ d p p,1 a Ḃ d 2 -1 2,1 + ( a L Ḃ d 2 -1 2,1 + a h L Ḃ d p p,1 ) a h Ḃ d p -1 p,1 t -1 2 ( d 2 -σ1) (1 + X p,0 )( a L Ḃσ 1 +σ 2 2,∞ + X p,0 ) D p (t) (4.60) 
and

F 3L Ḃσ 1 2,∞ (1 + a Ḃ d p p,1 ) m L Ḃσ 1 +σ 2 2,∞ a Ḃ d 2 -σ 2 2,1 + m h L Ḃ d p p,1 a Ḃ d 2 -1 2,1 + ( m L Ḃ d 2 -1 2,1 + a h L Ḃ d p p,1 ) a h Ḃ d p -1 p,1 t -1 2 ( d 2 -σ1) (1 + X p,0 )( m L Ḃσ 1 +σ 2 2,∞ + X p,0 ) D p (t), t > 1. (4.61) 
In addition, those terms in F can be treated along the same lines as F L , and is thus omitted. Consequently, (4.54) holds. It follows from (4.44) and (4.54) that

t 1 t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞ dτ t -1 2 (σ-σ1+σ2) (1 + X p,0 )( (a L , m L , a, m) L ∞ t ( Ḃσ 1 +σ 2 2,∞ ) + X p,0 ) D p (t) ,
where σ 2 is given by (4.22). In fact, we performed the following inequality that due to (4.25),

t 0 t -τ -1 2 (σ-σ1+1) τ -1 2 ( d 2 -σ1) dτ            t -1 2 (σ-σ1+1) , if 1 2 ( d 2 -σ 1 ) > 1, t -1 2 (σ-σ1+1)-, if 1 2 ( d 2 -σ 1 ) = 1, t -1 2 (σ-σ1+ d 2 -1-σ1) , if 1 2 ( d 2 -σ 1 ) < 1 for σ 1 < σ ≤ d 2 -1.
The proof of Lemma 4.2 is complete.

The case d 2 -1 < σ < d 2 requires more elaborate estimates. In (4.27), we take σ = σ 2 on the part of F L and σ = 1 on the part of F L + F and prove the following lemma. 

0 ≤ σ 1 < d 2 -1. For all t > 2 and d 2 -1 < σ < d 2 , it holds that t 0 t -τ -1 2 (σ-σ1+σ2) F L Ḃσ 1 +1-σ 2 2,∞ dτ + t 0 t -τ -1 2 (σ-σ1+1) ( F L , F ) Ḃσ 1 2,∞ dτ t -1 2 (σ-σ1+σ2) (X p,0 + X 2 p,0 )( (a, m) L ∞ 1 ( Ḃσ 1 2,∞ ) + X p,0 ) + t -1 2 (σ-σ1+σ2) (1 + X p,0 )( (a L , m L , a, m) L ∞ t ( Ḃσ 1 +σ 3 2,∞ ) + X p,0 ) D p (t) ,
where F L , F L and F are defined by (4.41), (4.42) and (4.43), respectively, and σ 2 , σ 3 > 0 are given by

σ 2 = min 1 2 , d 2 -1 -σ 1 -, σ 3 = min d 2 -σ, d 2 -1 -σ 1 -σ 2 .
Proof. We deal with the first term on the left-hand side of (4.62). Since the integral on [0, 1] can be handled similarly as in Lemma 4.1, we deal with the following integral with t > 2 only:

t 1 t -τ -1 2 (σ-σ1+σ2) F L Ḃσ 1 +1-σ 2 2,∞ dτ,
where σ 2 ∈ (0, 1) is to be confirmed. According to Lemmas 4.1 and 6.3, we arrive at

m L ⊗ m L Ḃσ 1 +1-σ 2 2,∞ m L Ḃ d 2 2,1 m L Ḃσ 1 +1-σ 2 2,∞ t -1 2 ( d 2 -σ1+1-σ2) . (4.62) 
Here we noticed that

σ 1 ≤ σ 1 + 1 -σ 2 < d 2 and σ 1 + 1 -σ 2 + d 2 ≥ d -2d p + 1 -σ 2 ≥ 0.
Combining with (4.46)-(4.47), one can get

m L ⊗ m L Ḃσ 1 +1-σ 2 2,∞ (1 + X p,0 ) t -1 2 ( d 2 -σ1+1-σ2) , t > 1. (4.63) 
Let us next look at the composite term with I(a)m L ⊗ m L , which resorts to the more elaborate analysis.

We consider cases

σ 1 + 1 -σ 2 < d 2 -1 and d 2 -1 ≤ σ 1 + 1 -σ 2 < d 2 separately. The case σ 1 + 1 -σ 2 < d 2 -1 implies that σ 1 + 1 -σ 2 < d p . Note that σ 1 + 1 -σ 2 + d p > 0,
it follows from Lemmas 6.6 and 6.9 that

I(a)m L ⊗ m L Ḃσ 1 +1-σ 2 2,∞ a Ḃ d p p,1 m L ⊗ m L Ḃσ 1 +1-σ 2 2,∞ t -1 2 ( d 2 -σ1+1-σ2) . (4.64) If d 2 -1 ≤ σ 1 + 1 -σ 2 < d 2 , thanks to d 2 -1 ≤ d p , we end up with I(a)m L ⊗ m L Ḃσ 1 +1-σ 2 2,∞ I(a)m L ⊗ m L Ḃ d 2 -1 2,∞ a Ḃ d p p,1 m L ⊗ m L Ḃ d 2 -1 2,1 a Ḃ d p p,1 m L Ḃ d 2 -1 2,1 m L Ḃ d 2 2,1 t -1 2 ( d 2 -σ1) a Ḃ d p p,1 . (4.65) 
Furthermore, due to the decomposition a = a L + a, it follows from Proposition 4.1 and the definition of

D p (t) that a Ḃ d p p,1 ≤ a L Ḃ d p p,1 + a Ḃ d p p,1 t -1 2 ( d 2 -σ1) (1 + D p (t)). (4.66) Noticing that 1 2 ( d 2 -σ 1 + 1 -σ 2 ) < 1 2 ( d 2 -σ 1 + 1) < d 2 -σ 1 , from (4.65)-(4.66) we obtain I(a)m L ⊗ m L Ḃσ 1 +1-σ 2 2,∞ t -1 2 ( d 2 -σ1+1-σ2) (1 + D p (t)). (4.67) 
To handle those terms involving I(a)m h L ⊗ m L and I(a)m L ⊗ m h L , by repeating the procedure leading to (4.50)-(4.52), we conclude that

I(a)m L ⊗ m L Ḃσ 1 +1-σ 2 2,∞ t -1 2 ( d 2 -σ1+1-σ2) (1 + D p (t)), t > 1.
(4.68)

The nonlinear terms F 2L and F 3L can be essentially estimated at the same way. Consequently, one can arrive at

t 1 t -τ -1 2 (σ-σ1+σ2) F L Ḃσ 1 +1-σ 2 2,∞ dτ (1 + X p,0 + D p (t)) t 0 t -τ -1 2 (σ-σ1+σ2) τ -1 2 ( d 2 -σ1+1-σ2) dτ t -1 2 (σ-σ1+σ2) (1 + X p,0 + D p (t)), (4.69) 
if choosing

σ 2 min 1 2 , d 2 -1 -σ 1 -, which leads to that σ -σ 1 + σ 2 ≤ d 2 -σ 1 + 1 -σ 2 and 1 2 ( d 2 -σ 1 + 1 -σ 2 ) > 1 for d 2 -1 < σ < d 2 .
Then, we bound the second term on the left-hand side of (4.62) concerning the integral with the difference ( a, m). Without loss of generalization, we only estimate

t 1 t -τ -1 2 (σ-σ1+1) ( FL , F ) Ḃσ 1 2,∞ dτ.
Let σ 3 ∈ (0, 1) be sufficiently small (to be confirmed). Applying the product law in Lemma 6.3 gives

m L ⊗ m Ḃσ 1 2,∞ m L Ḃσ 1 +σ 3 2,∞ m Ḃ d 2 -σ 3 2,1 t -1 2 ( d 2 -σ1+σ2-σ3) m L Ḃσ 1 +σ 3 2,∞ D p (t), (4.70) 
where we noticed that σ 1 + σ 3 < d 2 and σ 1 + d 2 ≥ 0. Similar to (4.56)-(4.57), we obtain

m h L ⊗ m Ḃσ 1 2,∞ m h L Ḃ d p -1 p,1 m Ḃ d 2 -1 2,1 t -1 2 ( d 2 -σ1+σ2-σ3) X p,0 D p (t) (4.71) 
and

m L ⊗ m h Ḃσ 1 2,∞ ( m L Ḃ d 2 -1 2,1 + m h L Ḃ d p p,1 ) m h Ḃ d p -1 p,1 t -1 2 ( d 2 -σ1+σ2-σ3) X p,0 D p (t), t > 1. (4.72)
Likewise, we see that, using those inequalities for composition in Lemma 6.9,

I(a)m L ⊗ m Ḃσ 1 2,∞ t -1 2 ( d 2 -σ1+σ2-σ3) ( m L Ḃσ 1 +σ 3 2,∞ + X p,0 )X p,0 D p (t), t > 1. (4.73) 
Bounding F 2L , F 3L and F can be proceeded along the same lines as F 1L . The details are left to the interested reader. Thus, we conclude that

t 1 t -τ -1 2 (σ-σ1+1) ( FL , F ) Ḃσ 1 2,∞ dτ t 0 t -τ -1 2 (σ-σ1+1) τ -1 2 ( d 2 -σ1+σ2-σ3) dτ (1 + X p,0 )( (a L , m L , a, m) Ḃσ 1 +σ 3 2,∞ + X p,0 ) D p (t).
It follows from (4.25) that

t 0 t -τ -1 2 (σ-σ1+1) τ -1 2 ( d 2 -σ1+σ2-σ3) dτ            t -1 2 (σ-σ1+1) , if 1 2 ( d 2 -σ 1 + σ 2 -σ 3 ) > 1, t -1 2 (σ-σ1+1)-, if 1 2 ( d 2 -σ 1 + σ 2 -σ 3 ) = 1, t -1 2 (σ-σ1+ d 2 -1-σ1-σ3) , if 1 2 ( d 2 -σ 1 + σ 2 -σ 3 ) < 1, if 1 2 (σ -σ 1 + 1) ≤ 1 2 ( d 2 -σ 1 + σ 2 -σ 3 ) or that t 0 t -τ -1 2 (σ-σ1+1) τ -1 2 ( d 2 -σ1+σ2-σ3) dτ            t -1 2 ( d 2 -σ1+σ2-σ3) , if 1 2 (σ -σ 1 + 1) > 1, t -1 2 ( d 2 -σ1+σ2-σ3)-, if 1 2 (σ -σ 1 + 1) = 1, t -1 2 (σ-σ1+ d 2 -1-σ1-σ3) , if 1 2 (σ -σ 1 + 1) < 1, if 1 2 ( d 2 -σ 1 + σ 2 -σ 3 ) ≤ 1 2 (σ -σ 1 + 1). Recalling that σ 2 = min{ 1 2 , ( d 2 -1 -σ 1 )-} < d 2 -1 -σ 1 and d 2 -1 < σ < d 2 ,
it is shown that above two integrals can be both controlled by t -1 2 (σ-σ1+σ2) provided that σ 3 > 0 is chosen small enough such that

σ 3 = min d 2 -σ, d 2 -1 -σ 1 -σ 2 .
Hence, the proof of Lemma 4.3 is finished.

Combining those time-weighted estimates in Lemmas 4.1-4.3, we conclude from (4.27) that

sup σ1<σ< d 2 τ 1 2 (σ-σ1+σ2) ( a, m) L ∞ t ( Ḃσ 2,1 ) (X p,0 + X 2 p,0 )( (a, m) L ∞ t ( Ḃσ 1 2,∞ ) + X p,0 ) + (1 + X p,0 )( (a L , m L , a, m) L ∞ t ( Ḃσ 1 +σ * 2,∞ ) + X p,0 ) D p (t), (4.74) 
where the exponent σ * > 0 is given by σ

* = σ 2 for σ 1 < σ ≤ d 2 -1 and σ * = σ 3 for d 2 -1 < σ < d 2 .

Bounds for the high frequencies

To achieve the high-frequency estimates of ( a, m) in Proposition 4.2, it is natural to look at the difference system (1.25) with the nonlinear term div F . The problem is that div F (for example A(I(a)u))

will cause a loss of one derivative. In the critical regularity framework, however, one cannot afford any loss of regularity for the high frequency part of a. To overcome the difficulty, we observe that the decomposition

a = a -a L , m = (1 + a)u -m L ,
which implies that it suffices to estimate (a, u) instead of ( a, m). The proof is proceeded into two steps.

Firstly, we consider the system (1.9)-(1.10) and track the decay exponent for high frequencies according to the definition of D p (t), by the energy approach in terms of effective velocity w = ∇(-∆) -1 (a -div u)

that has been successfully developed by Haspot [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fluids[END_REF] to prove Theorem 1.1 (see also [START_REF] Danchin | Fourier Analysis Methods for the Compressible Navier-Stokes Equations[END_REF]). Precisely, we have the following lemma about weighted estimate of (a, u) in high frequencies.

Lemma 4.4. If p satisfy (1.8), then it holds that

τ α * (∇a, u) h L ∞ t ( Ḃ d p -1 p,1 ) + τ α * u h L ∞ (1,t; Ḃ d p +1 p,1 ) 1 + X p,0 + X 2 p,0 + τ 1 2 ( d 2 -σ1)-u L ∞ (1,t; Ḃ d p p,1 ) + X p,0 τ α * u L ∞ (1,t; Ḃ d p +1 p,1 ) + D p (t) (4.75 
)

with α * = 1 2 ( d 2 -σ 1 + σ 2 )-.
Proof. We shall modify the L p time-weighted energy argument performed in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF] slightly. With the aid of the effective velocity, one can end up with

τ α * (∇a, u) h L ∞ t ( Ḃ d p -1 p,1 ) (∇a 0 , u 0 ) h Ḃ d p -1 p,1 + j≥j0-1 2 j( d p -1) sup 0≤τ ≤t τ α * τ 0 e -c(τ -s) Z j (s)ds (4.76) with Z j = Z 1 j + • • • + Z 5 j and Z 1 j ∆j (au) L p , Z 2 j ∇ ∆j (adiv u) L p , Z 3 j div u L ∞ ∇ ∆j a L p , Z 4 j i,k [u i , ∆j ]∂ 2 ik a L 2 , Z 5 j ∆j g L p .
Without loss of generality, one can assume that t > 2. First, let us handle the time-weighted integral in (4.76) for 0 ≤ τ ≤ 2. It is easy to see that

I 1 sup 0≤τ ≤2 τ α * τ 0 e -c(τ -s) Z j (s)ds ≤ 2 0 Z j (s)ds.
For the integral with 2 ≤ τ ≤ t, it is convenient to split it into two parts: [0, 1] and [1, τ ]. It is also simple to handle: Consequently, by employing Lemmas 6.9 and 6.10, we obtain j≥j0-1

2 j( d p -1) (I 1 + I 2 ) a L 2 t ( Ḃ d p p,1 ) u L 2 t ( Ḃ d p p,1 ) + a 2 L 2 t ( Ḃ d p p,1 )
+ a

L ∞ t ( Ḃ d p p,1 )
u

L 1 t ( Ḃ d p +1 p,1 ) X 2 p,0 , (4.77) 
where the interpolation inequalities are also used. Next, we focus on the nontrivial case j≥j0-1

2 j( d p -1) I 3 j≥j0-1 2 j( d p -1) sup 1≤τ ≤t (τ α * Z j (τ )).
We shall use repeatedly the following inequalities:

τ 1 2 ( d 2 -σ1)-a L L ∞ t ( Ḃ d p p,1 ) 1 + X p,0 ; τ α * a L ∞ t ( Ḃ d p p,1 ) D p (t). (4.78) 
Indeed, it follows from the embedding, the definition of D p and tilde norms that

τ 1 2 ( d 2 -σ1)-a L L ∞ t ( Ḃ d p p,1 ) τ 1 2 ( d 2 -σ1)-a L L ∞ t ( Ḃ d 2 - 2,1
)

+ e Rτ a L h L ∞ t ( Ḃ d p p,1 )
1 + X p,0 and

τ α * a L ∞ t ( Ḃ d p p,1 ) τ α * a L ∞ t ( Ḃ d 2 - 2,1 ) + τ α * a h L ∞ t ( Ḃ d p p,1 )
D p (t).

Noticing that α * < d 2 -σ 1 , it is clear that j≥j0-1 2 j( d p -1) sup 1≤τ ≤t (τ α * Z 1 j (τ )) = τ α * au h L ∞ (1,t; Ḃ d p -1 p,1 ) τ α * a L u h L ∞ (1,t; Ḃ d p p,1 ) + τ α * au h L ∞ (1,t; Ḃ d p -1 p,1 ) τ 1 2 ( d 2 -σ1)-a L L ∞ t ( Ḃ d p p,1 ) τ 1 2 ( d 2 -σ1)-u L ∞ (1,t; Ḃ d p p,1 ) + u L ∞ (1,t; Ḃ d p -1 p,1 ) τ α * a L ∞ t ( Ḃ d p p,1 ) τ 1 2 ( d 2 -σ1)-u L ∞ (1,t; Ḃ d p p,1 ) + X p,0 D p (t), (4.79) 
where we used the decomposition au = a L u + au and (4.78). Furthermore, it follows from the embedding Ḃ d p p,1 → L ∞ and Lemma 6.10 that j≥j0-1

2 j( d p -1) sup 1≤τ ≤t (τ α * (Z 2 j + Z 3 j + Z 4 j )(τ )) a L ∞ t ( Ḃ d p p,1 ) τ α * u L ∞ (1,t; Ḃ d p +1 p,1 ) X p,0 τ α * u L ∞ (1,t; Ḃ d p +1 p,1 )
.

(4.80)

Next, let us pay attention to the term Z 5 j associated with g = -u • ∇u -k(a)∇a -I(a)Au. It follows from product laws in Lemma 6.3 adapted to the tilde spaces that

τ α * u • ∇u h L ∞ (1,t; Ḃ d p -1 p,1 ) u L ∞ t ( Ḃ d p -1 p,1 ) τ α * u L ∞ (1,t; Ḃ d p +1 p,1 ) X p,0 τ α * u L ∞ (1,t; Ḃ d p +1 p,1 )
and

τ α * I(a)Au h L ∞ (1,t; Ḃ d p -1 p,1 )
a

L ∞ t ( Ḃ d p p,1 ) τ α * u L ∞ (1,t; Ḃ d p +1 p,1 ) X p,0 τ α * u L ∞ (1,t; Ḃ d p +1 p,1 )
.

Regarding to the pressure term with k(a)∇a, we use the following decomposition:

k(a)∇a = k(a L )∇a L + (k(a) -k(a L ))∇a L + k(a)∇ a.
Then Lemma 6.3, Lemma 6.9 and (4.78) ensure that

τ α * k(a L )∇a L L ∞ (1,t; Ḃ d p -1 p,1 ) τ 1 2 ( d 2 -σ1)-a L 2 L ∞ t ( Ḃ d p p,1 ) 1 + X 2 p,0 , τ α * (k(a) -k(a L ))∇a L L ∞ (1,t; Ḃ d p -1 p,1 ) a L L ∞ t ( Ḃ d p p,1 ) τ α * a L ∞ t ( Ḃ d p p,1 ) X p,0 D p (t)
and

τ α * k(a)∇ a L ∞ (1,t; Ḃ d p -1 p,1 )
a

L ∞ t ( Ḃ d p p,1 ) τ α * a L ∞ t ( Ḃ d p p,1 )
X p,0 D p (t).

Therefore, we obtain j≥j0-1 

τ α * (∇a, u) h L ∞ t ( Ḃ d p -1 p,1 ) 1 + X p,0 + X 2 p,0 + τ 1 2 ( d 2 -σ1)-u L ∞ (1,t; Ḃ d p p,1 ) + X p,0 τ α * u L ∞ (1,t; Ḃ d p +1 p,1 )
+ D p (t) .

(4.82)

Finally, we are going to establish gain of regularity and decay altogether for the high frequencies of u, which strongly depends on the parabolic maximal regularity for the Lamé semi-group (see Lemma 6.11).

It follows from the velocity equation in (1.9) that (u, ∇a)

     ∂ t (tu) -A(tu) = u -t∇a + tg, tu| t=0 = 0 with 0 ≤ t ≤ 1.
L ∞ (0,1; Ḃ d p -1 p,1 )
+ tg

L ∞ (0,1; Ḃ d p -1 p,1 ) X p,0 + X 2 p,0 + X p,0 tu L ∞ (0,1; Ḃ d p +1 p,1 )
which, together with X p,0

1, leads to u(1)

Ḃ d p +1 p,1 X p,0 . (4.83)
To obtain decay estimates of u for t > 1, we reformulate the velocity equation in (1.9) as follows

∂ t (τ α * u) -A(τ α * u) = α * τ α * -1 u -τ α * (∇a -g)
with 1 ≤ τ ≤ t. Thus, employing Lemma 6.11 again implies that

τ α * u h L ∞ (1,t; Ḃ d p +1 p,1 )
u( 1)

Ḃ d p +1 p,1 + τ α * -1 u h L ∞ (1,t; Ḃ d p -1 p,1 ) + τ α * a h L ∞ (1,t; Ḃ d p p,1 ) + τ α * g h L ∞ (1,t; Ḃ d p -1 p,1 )
.

(4.84)

Due to that fact τ ≥ 1, we see that

τ α * -1 u h L ∞ (1,t; Ḃ d p -1 p,1 ) τ α * u h L ∞ t ( Ḃ d p -1 p,1 ) , τ α * a h L ∞ (1,t; Ḃ d p p,1 ) τ α * a h L ∞ t ( Ḃ d p p,1 )
.

Bounding the norm τ α * g h L ∞ (1,t; Ḃ d p -1 p,1 )
is exactly same as (4.81), and one thus arrive at (4.75) readily.

Secondly, we establish several calculus inequalities to deduce desired the high-frequency decay of ( a, m) in Proposition 4.2.

Lemma 4.5. If p satisfy (1.8), then it holds that 

                           τ α * m h L ∞ t ( Ḃ d p -1 p,1 ) τ α * u h L ∞ t ( Ḃ d p -1 p,1 ) + 1 + X p,0 + X 2 p,0 + X p,0 D p (t), τ α * m h L ∞ (1,t; Ḃ d p p,1 ) τ α * u h L ∞ (1,t; Ḃ d p +1 p,1 ) + 1 + X p,0 + X 2 p,0 + X p,0 D p (t), τ α * u L ∞ (1,t; Ḃ d p +1 p,1 ) 1 + X p,0 + X 2 p,0 + (1 + X p,0 ) D p (t), τ 1 2 ( d 2 -σ1)-u L ∞ (1,t; Ḃ d p p,1 ) 1 + X p,0 + X 2 p,0 + (1 + X p,0 ) D p (t).
τ α * m L h L ∞ t ( Ḃ d p -1 p,1 ) ≤ e Rτ m L h L ∞ t ( Ḃ d p -1 p,1 )
X p,0 . (4.87)

The definition of D p , product laws and composite estimates in Lemmas 6.3 and 6.9 allow to get

τ α * I(a) m h L ∞ t ( Ḃ d p -1 p,1 ) ≤ τ α * I(a) m h L ∞ t ( Ḃ d p p,1 ) + τ α * I(a) m h h L ∞ t ( Ḃ d p -1 p,1 ) a L ∞ t ( Ḃ d p p,1 ) ( τ α * m L ∞ t ( Ḃ d 2 - 2,1 ) + τ α * m h L ∞ t ( Ḃ d p -1 p,1 )
) X p,0 D p (t).

(4.88)

Similarly, by (4.78), we have

τ α * I(a L )m L h L ∞ t ( Ḃ d p -1 p,1 ) ≤ τ α * I(a L )m L h L ∞ t ( Ḃ d p p,1 ) + τ α * I(a L )m h L h L ∞ t ( Ḃ d p -1 p,1 ) τ 1 2 ( d 2 -σ1)-a L L ∞ t ( Ḃ d p p,1 ) τ 1 2 ( d 2 -σ1)-m L L ∞ t ( Ḃ d 2 - 2,1 ) + τ 1 2 ( d 2 -σ1)-m h L L ∞ t ( Ḃ d p -1 p,1 )
(1 + X p,0 ) 2 .

(4.89) Also, it follows from (4.1), (4.78) and Lemma 6.9 that

τ α * (I(a) -I(a L ))m L h L ∞ t ( Ḃ d p -1 p,1 ) τ α * a L ∞ t ( Ḃ d p p,1 ) m L L ∞ t ( Ḃ d p -1 p,1 )
X p,0 D p (t). 

τ α * u L ∞ (1,t; Ḃ d p +1 p,1 ) τ α * m L ∞ (1,t; Ḃ d 2 - 2,1 ) + τ 1 2 ( d 2 +1-σ1)-m L L ∞ (1,t; Ḃ d 2 +1- 2,1 ) + τ α * I(a) m L ∞ (1,t; Ḃ d p p,1 ) + τ α * I(a)m L L ∞ (1,t; Ḃ d p p,1 ) 1 + X p,0 + X 2 p,0 + (1 + X p,0 ) D p (t).
τ α * (∇ a, m) h L ∞ t ( Ḃ d p -1 p,1 ) + τ α * m h L ∞ (1,t; Ḃ d p p,1 ) 1 + X p,0 D(t). (4.92) 
Finally, adding up (4.92) to (4.74), we conclude that there exists a constant σ * ∈ (0, 1] such that

D p (t) 1 + (a, m) L ∞ t ( Ḃσ 1 2,∞ ) + ( (a L , m L , a, m) L ∞ t ( Ḃσ 1 +σ * 2,∞ ) + X p,0 ) D p (t), t > 0. ( 4 

.93)

As shown by the priori work [START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF] (see Lemma 5.1), there is the nonlinear evolution to the solution (a, u) at low frequencies:

(a, u) L ∞ t ( Ḃσ 1 2,∞ ) ≤ C 0 (4.94)
for t > 0, where the constant C 0 depends on the norm (a 0 , u

0 ) Ḃσ 1 2,∞ with σ 0 ≤ σ 1 < d 2 -1.
Arguing similarly as those lines (4.12), (4.13), (4.16) and (4.18), one can deduce from (4.94) that

(a, m) L ∞ t ( Ḃσ 1 
2,∞ ) ≤ C 0 , provided that Theorem 1.1 holds. Combining this with the interpolation (6.1), the fact σ 1 < σ 1 + σ * ≤ d 2 and (a, m)

L ∞ t ( Ḃ d 2 2,1 ) ≤ (a, m) L ∞ t ( Ḃ d 2 -1 2,1 )
X p,0 , we deduce

(a, m) L ∞ t ( Ḃσ 1 +σ * 2,∞ ) (a, m) θ * L ∞ t ( Ḃσ 1 2,∞ ) (a, m) 1-θ * L ∞ t ( Ḃ d 2 2,1 ) C θ * 0 X 1-θ * p,0 << 1, (4.95) 
with θ * ∈ (0, 1) satisfying σ

1 θ * + (1 -θ) d 2 = σ 1 + σ * . Since (a L , m L ) Ḃσ 2,1
is uniformly bounded for all σ > σ 1 due to (4.2), a similar interpolation argument implies that 

(a L , m L ) L ∞ t ( Ḃσ 1 +σ * 2,∞ ) << 1. ( 4 

Lower and upper bounds for decay rates

The subsection is devoted to the proof of "if" part of Theorem 1.2. We first prove (1.12)-(1.13) under

the assumption (a 0 , u 0 ) ∈ Ḃσ1 2,∞ with σ 0 ≤ σ 1 < d 2 -1. Indeed, (1.12) is exactly the same as (4.94), which has been shown by [START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF]. From Lemmas 4.4-4.5, we have

(a, u)(t) h Ḃ d p p,1 t -1 2 ( d 2 -σ1+σ2)- (4.97) 
for t > 1 and σ 2 ∈ (0, 1] given by (4.22), so we only need to show the decay of the low-frequency part of (a, u). Indeed, it follows from Propositions 4.1 and 4.2 that

(a, m) (t) Ḃσ 2,1 ≤ (a L , m L ) (t) Ḃσ 2,1 + (a -a L , m -m L )(t) Ḃσ 2,1 t -1 2 (σ-σ1) + t -1 2 (σ-σ1+σ2) t -1 2 (σ-σ1) (4.98) 
for σ 1 < σ ≤ d 2 and t > 0. The endpoint case σ = d 2 can be handled with due to the low-frequency localization and the faster decay rates of difference (a -a L , m -m L ). To derive the decay of u , we resort to the decomposition that u = m -I(a)m -I(a)m h again. By employing product laws and composite in Lemmas (6.4) and (6.9), we deduce that 

I(a)m Ḃσ 2,1 I(a) Ḃ d p p,1 m Ḃσ 2,1 ( a Ḃ d 2 2,1 + a h Ḃ d p p,1 ) m Ḃσ 2,1 t -1 2 (σ-σ1+ d 2 -σ1) , σ 1 < σ ≤ d p , (4.99) 
I(a)m Ḃσ 2,1 I(a)m Ḃ d p 2,1 a Ḃ d p p,1 m Ḃ d p 2,1 t -1 2 ( d p -σ1+ d 2 -σ1) t -1 2 (σ-σ1) , d p ≤ σ ≤ d 2 , ( 4 
I(a)m h Ḃσ 1 2,∞ ( a Ḃ d 2 -1 2,1 + a h Ḃ d p p,1 ) m h Ḃ d p -1 p,1 t -1 2 ( d 2 -σ1+σ2) . ( 4 
(a, m) (t) Ḃσ 2,1 ≥ (a L , m L ) (t) Ḃσ 2,1 -(a -a L , m -m L )(t) Ḃσ 2,1 ≥ 1 C 0 t -1 2 (σ-σ1) -C 0 t -1 2 (σ-σ1+σ2) ≥ 1 2C 0 t -1 2 (σ-σ1) (4.103)
for σ 1 < σ ≤ d 2 and suitably large time t ≥ t 0 , where C 0 > 1 is chosen into a greater constant if necessary. The endpoint case σ = d 2 is due to faster rates of (a -a L , m -m L ) under some low-frequency cut-off. Since the product I(a)m decays at faster rates (see (4.99)-(4.101)), one can get (a, u) (t) Ḃσ for σ 1 < σ ≤ d 2 and suitably large time t ≥ t 0 . This completes the proof of the two-side time-decay estimate (1.14).

Necessary condition

The section is devoted to the proof of "only if" part of Theorem 1.2. That is, if the solution (a, u) admits the upper bounds (1.13) (resp., two-side bounds (1.14)), then (a 0 , u 0 ) ∈ Ḃσ1 2,∞ (resp., (a 0 , u 0 ) ∈ Ḃσ1 2,∞ ) with σ 0 ≤ σ 1 < d 2 -1. The crucial ingredient of this claim is to develop the inverse Wiegner's argument from incompressible Navier-Stokes equations (as shown by Skalák [START_REF] Skalák | On the characterization of the Navier-Stokes flows with the power-like energy decay[END_REF] and the first author et al. [START_REF] Brandolese | On the topological size of the class of Leray solutions with algebraic decay[END_REF]) to compressible Navier-Stokes equations.

Inverse Wiegner's argument for compressible Navier-Stokes equations

Our aim is to derive the following result, which can be regarded as the analogue of inverse Wiegner's Theorem in [START_REF] Brandolese | On the topological size of the class of Leray solutions with algebraic decay[END_REF][START_REF] Skalák | On the characterization of the Navier-Stokes flows with the power-like energy decay[END_REF]. Proof. The proof follows from the similar procedure leading to Lemmas 4.1-4.3 in fact. We recall (4.27) that ( a, m)(t) Ḃσ for σ ∈ (0, 1] and t > 0. We focus on the integral on the right-hand side of (5.2) and consider cases 0 < t ≤ t 0 and t > t 0 separately. The case 0 < t ≤ t 0 implies that t ≈ 1 and t -τ ≈ 1 for 0 ≤ τ ≤ t ≤ t 0 . The nonlinear term F in (1.22) can be rewritten as 

F Ḃσ 1 +1-σ 2,∞ F Ḃσ 1 2,∞ (1 + 
F G Ḃ-s q,∞ F Ḃs p 1 ,1 G Ḃ-s p 2 ,∞ .
In particular, we have the following non product inequalities with respect to the regularity requirement in main results, which are employed in time-weighted energy methods. Lemma 6.5. Let σ 0 ≤ σ 1 < d 2 -1 with σ 0 = d 2 -2d p and p satisfy (1.8). It holds that On the other hand, the third estimate in Lemma 6.3 can be also extended to the non classical form (see [START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF]). Lemma 6.6. Let the real numbers s 1 , s 2 , p 1 and p 2 be such that However, only resorting to Lemmas 6.4 and 6.6 is not enough to establish the desired decay estimates in particular in case of the oscillation case p > d, non standard product estimates with high frequencies are also needed (see [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]).

F G Ḃσ 1 2,∞ F Ḃ d p p,1 G Ḃσ 1 2,1 , (6.2) 
F G Ḃσ 1 + d p -d 2 
s 1 + s 2 ≥ 0,
Lemma 6.8. There exists a universal integer N 0 such that for any 2 ≤ p ≤ 4 and s > 0, we have System (1.9) also involves composite of functions (through I(a) and k(a)) and they are bounded according to the following conclusion (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]). Lemma 6.9. Let F : R → R be smooth with F (0) = 0. For all 1 ≤ p, r ≤ ∞ and s > 0, it holds that Finally, we present the endpoint maximal regularity property for the Lamé system below (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]). 

F G h Ḃσ 0 2,∞ ≤ C( F Ḃs p,1 + Ṡj0+N0 F L p * ) G h Ḃ-s p,∞ (6.8) 
F (u) ∈ Ḃs p,

Theorem 1 . 1 .

 11 Let d ≥ 2 and p satisfy 2 ≤ p ≤ min(4, d * ) and, additionally, p = 4 if d = 2, (1.8) where d * 2d/(d-2). If assumptions (H 1 )-(H 2 ) are fulfilled, then the Cauchy problem (1.1)-(1.

M

  (ξ) P (ξ) -1 D(ξ)P (ξ), a.e. ξ ∈ R d . D(ξ) and P (ξ) are, respectively, diagonal and orthogonal matrices of order n, with D(ξ) ij = -c i |ξ| α δ ij and c i ≥ c > 0 for all i = 1, ..., n and α > 0. P (ξ) i,j are homogeneous smooth functions outside ξ = 0. Basic examples include the heat equation (in this case L = ∆ with P (ξ) = I n and D(ξ) = -|ξ| 2 I n ) or the fractional diffusion equation (P (ξ) = I n and D(ξ) = -|ξ| 2α I n ). Bjorland-Schonbek [2] and

( 3 . 2 b 2 |ξ| 2 = 1 +

 32221 10) disappear if adding them together. Indeed, from b = |ξ| + O(|ξ| 3 ) and | cos(bt)| 2 + | sin(bt)| O(|ξ| 4 ) as |ξ| → 0, we deduce that

  ,∞ . The proof of Proposition 3.2 is complete.By employing the similar argument used in the proof of Propositions 3.1-3.2, one can present the sharp decay characterization with the Besov regularity for a large class of dissipative systems (including incompressible Stokes flows) studied in[START_REF] Bjorland | Poincaré's inequality and diffusive evolution equations[END_REF][START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF][START_REF] Niche | Decay characterization to dissipative equations[END_REF].

Proposition 4 . 1 .

 41 Our argument depends on the momentum formation of compressible Navier-Stokes equations(1.1) and is to establish the decay estimate of difference ( a, m) (a -a L , m -m L ), where (a L , m L ) is the solution to the linear problem (1.24) subject to the initial data (a 0 , m 0 ) with m 0 = (1 + a 0 )u 0 . First of all, we have the following sharp decay characterization of (a L , m L ). Let p satisfy (1.8). It holds that

13 )

 13 Bounding a 0 u h 0 is divided into cases 2 ≤ p ≤ d and p > d. If 2 ≤ p < d, then (6.8) with σ = d p -1 yields

(4. 23 )

 23 As shown by Proposition 4.1, the assumption (a 0 , u 0 ) ∈ Ḃσ1 2,∞ is equivalent to the upper bound of decay of solutions to (1.24):

Lemma 4 . 1 .

 41 Let p satisfy (1.8) and σ

( 4 .

 4 11) and arrive at (I(a)m) L p * (I(a)m)

. 42 )F ( 1 -

 421 I(a))m ⊗ m + (P (1) + G(a))a aI d + µ∇((1 + Ĩ(a))a m) + (µ + λ)div ((1 + Ĩ(a))a m),(4.43)where Ĩ(a) is a smooth function Ĩ vanishing at zero and satisfies I(a) = (1 + Ĩ(a))a.

  σ1) in the last inequality. From (4.47), (4.1)-(4.2), we get

Lemma 4 . 3 .

 43 Let p satisfy (1.8) and σ

I 2 sup 2≤τ ≤t τ α * 1 0eτ 1 0 1 0 1 e 1 e

 11111 -c(τ -s) Z j (s)ds ≤ sup2≤τ ≤t τ α * e -c 2 Z j (s)ds ≤ Z j (s)dssince 2 ≤ τ ≤ t and 0 ≤ s ≤ 1. On the other hand, note that s ≈ 1 + s ≈ s , the integral on the part [1, τ ] can be dealt with as follows: -c(τ -s) Z j (s)ds sup 2≤τ ≤t sup 1≤s≤τ (s α * Z j (s)) τ α * τ -c(τ -s) s -α * ds sup 1≤τ ≤t (τ α * Z j (τ )).

( 4 .

 4 85)Proof. Bounding the first and second inequalities in (4.85) are almost the same, which both depends on the decompositionm = (1 + a)u -m L = u -m L + I(a) m + I(a L )m L + (I(a) -I(a L ))m L with I(a) = a 1 + a .(4.86)Let us take a look at (4.85) 1 for example. It follows from Proposition 4.1 that

  with (4.86), (4.87), (4.88), (4.89) and (4.90) lead to (4.85) 1 directly. To show (4.85) 3 -(4.85) 4 , it suffices to use the decomposition that u = m-I(a)m = m+m L -I(a)( m+ m L ). Keeping in mind that σ 2 ≤ 1, by Proposition 4.1, we arrive at

  85) 4 is totally similar, and thus those details can be omitted. Plugging (4.85) in (4.75), and remembering the smallness of X p,0 and the fact that the high-frequency part of a L decays exponentially in the norm of L ∞ t ( Ḃ d p p,1 ), we eventually conclude that

  .100) where (4.97) and (4.98) were used. Concerning I(a)m h , we take advantage of the low-frequency cut-off and argue similarly as in (4.14)-(4.18) to get

2 , 1 ≥ 1 -

 211 (a, m) (t) Ḃσ 2,
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 512111 Let σ 0 ≤ σ 1 < d If the solution (a, u) to the Cauchy problem (1.9) satisfies (1.12) and (1.13), then ( a, m) (a -a L , m -m L ) has faster decay rates at low frequencies:( a, m)(t) Ḃσ 2,(σ-σ1+σ2) (5.1)for σ 1 < σ ≤ d 2 and t > 0, where σ 2 ∈ (0, 1] is the exactly same as (4.22).

F = ( 1 +

 1 a)u ⊗ u + (P (1) + G(a))a 2 I d + µ∇(au) + (µ + λ)div (au)I d with (P (1) + G(a))a 2 = P (1 + a) -P (1) -P (1)a satisfying G(0) = 0. It follows from the proof of Lemma 4.1 that

for 2

 2 ≤ p ≤ d.

F h G Ḃσ 0 2 1 p

 21 , and C depending only on j 0 , d and s.

.Lemma 6 . 10 . 1 , i = 1 , 2 ,

 610112 r ∩ L ∞ for u ∈ Ḃs p,r ∩ L ∞ , andF (u) Ḃs p,r ≤ C u Ḃs p,rwith C depending only on u L ∞ , F (and higher derivatives), s, p and d.In the case s > -min d p ,The following commutator estimates is useful to control nonlinearities in high frequencies ([START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]):Let 1 ≤ p ≤ ∞ andd p -1 ≤ s ≤ 1 + d p .Then it holds j∈Z 2 js [u, ∆j ]∂ xi a L p u ..., d, with the commutator [A, B] AB -BA.

Lemma 6 . 11 .)

 611 Let T > 0, µ > 0, 2µ + λ > 0, s ∈ R, 1 ≤ p, r ≤ ∞ and 1 ≤ 2 ≤ 1 ≤ ∞. Assume that u 0 ∈ Ḃs p,r and f ∈ L ρ2 (0, hold. If u is a solution of    ∂ t u -µ∆u -(µ + λ)∇div u = f, x ∈ R d , t ∈ (0, T ), u(x, 0) = u 0 (x), x ∈ R d ,

  [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] 

		g Ḃs p,1	if s > 1 -min	d p	,	d p	and 1 ≤ p ≤ 4	(4.10)
	with 1/p + 1/p = 1 and d *	2d d-2 . By using Bony's para-product decomposition, one has

  Hence, by (4.97), (4.98) and (4.102), we get the upper bound (1.13) immediately. Furthermore, we establish the two-side decay (1.14) under the stronger assumption that (a 0 , u 0 ) ∈

	Ḃσ1 2,∞ with σ 0 ≤ σ 1 < d 2 -1. It suffices to show the lower bound in (1.14), since Ḃσ1 2,∞ is a subset of Ḃσ1 2,∞ .
	For that end, by virtue of Propositions 4.1 and 4.2, we arrive at			
					.101)
	Together with (4.98)-(4.101), it is shown that			
	u (t) Ḃσ 2,1	m (t) Ḃσ 2,1 t -1 2 (σ-σ1) , + I(a)m Ḃσ 2,1 σ 1 < σ ≤	+ I(a)m h 2 . d	Ḃσ 2,1	(4.102)

  a ≤ t 0 , where we have used(1.12). To handle with the integral in (5.2) for t > t 0 , we split it intotwo cases σ 1 < σ ≤ d 2 -1 and d 2 -1 < σ ≤ d 2 . Case 1: σ 1 < σ ≤ d 2 -1 We write (choosing σ = 1 in (4.27)) Lemma 6.3. Let 1 ≤ p, r ≤ ∞. ThenIn order to match different Lebesgue indices at low frequencies and high frequencies, non classical product estimates are further developed in the L p framework (see[START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF]). Precisely, Lemma 6.4. Let the real numbers s 1 , s 2 , p 1 and p 2 be such thats 1 + s 2 > 0, s 1 ≤Additionally, for exponents s > 0 and 1 ≤ p 1 , p 2 , q ≤ ∞ satisfying

		F G Ḃs p,r			F L ∞ G Ḃs p,r	+ G L ∞ F Ḃs p,r	,	if s > 0;
	F G	Ḃs 1 +s 2 -d p p,1			F Ḃs 1 p,1	G Ḃs 2 p,1	,	if s 1 , s 2 ≤	d p	and s 1 + s 2 > d max 0,	2 p	-1 ;
	F G	Ḃs 1 +s 2 -d p p,∞			F Ḃs 1 p,1	G Ḃs 2 p,∞ ,	if s 1 ≤	d p	, s 2 <	d p	and s 1 + s 2 ≥ d max 0,	2 p	-1 .
	Then it holds that									d p 1	Ḃ d p p,1 , s 2 ≤ )( a	Ḃ d p p,1 d p 2 , s 1 ≥ s 2 , + u Ḃ d p -1 p,1	1 p 1 ) (a, u) Ḃσ 1 + 1 ≤ 1. p 2 2,∞
					F G Ḃs 2 q,1	+ (1 + a F Ḃs 1 p 1 ,1	Ḃ d p p,1 G Ḃs 2 )( (a, u) p 2 ,1 with	Ḃ d 2 2,1 -1 1 q = + (a, u) h 1 p 1 + 1 p 2	Ḃ d p p,1 -s 1 d	) (a, u) h •	Ḃ d p p,1 -1	(5.3)
	Hence, we arrive at								
	one has	0	t	t -τ -1 d p 1 + d p 2 -d ≤ s ≤ min 2 (σ-σ1+σ ) F Ḃσ 1 +1-σ d p 1 , d p 2 dτ X p,0 (1 + X p,0 ) 2 t -1 2 ( d 2 -σ1) and 1 q = 1 p 1 + 1 p 2 -s , d 2,∞	(5.4)
	for 0 < t t 0	t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞	dτ
		=		0	t0	t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞	dτ +	t t0	t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞	dτ.	(5.5)
	Arguing as (5.4) yields						
			0	t0	t -τ -1 2 (σ-σ1+1) F Ḃσ 1 2,∞	dτ X p,0 (1 + X p,0 ) 2 t -1 2 ( d 2 -σ1) .	(5.6)
	On the other hand, employing the similar estimates as (4.45)-(4.52) gives that
		F Ḃσ 1 2,∞	(1 + a	Ḃ d p p,1	) (a, u)	Ḃ d 2 2,1 -1	(a, u) Ḃσ 1 +1 2,1
								+ (1 + a	Ḃ d p p,1	)( (a, u)	Ḃ d 2 2,1 -1	+ (a, u) h	Ḃ d p p,1	) (a, u) h	p,1 Ḃ d p -1	(5.7)
								(1 + X p,0 ) t -1 2 ( d 2 -σ1)

(X p,0 + X 2 p,0 )( (a, u) L ∞ t ( Ḃσ 1 2,∞ ) + X p,0 ).

  Lemma 6.7. Let σ 0 ≤ σ 1 < d 2 -1 and p satisfy (1.8). It holds that

	s 1 ≤	d p 1	, s 2 < min	d p 1	,	d p 2	and	1 p 1	+	1 p 2	≤ 1.
	Then it holds that										
	F G	Ḃs 1 +s 2 -d p 1 p 2 ,∞	F Ḃs 1 p 1 ,1		G Ḃs 2 p 2 ,∞ .	(6.5)
	Actually, we mainly employed the following product estimates.
	F G Ḃσ 1 2,∞	F	p,1 Ḃ d p	G Ḃσ 1 2,∞	,	(6.6)
	F G	Ḃσ 1 + d p 2,∞	-d 2	F	Ḃ d p p,1 -1	G	2,∞ Ḃσ 1 + d p	-d 2	+1	.	(6.7)
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for t > t 0 , where (1.13) and the fact that σ 1 < d 2 -1 were used. Consequently, it follows from (5.5) and (5.7) that

where we have performed the time-weighted inequality due to (4.25):

For brevity, we only deal with the integral on [t 0 , t] with t > t 0 . We rewrite the nonlinear term F by

For those terms with low-frequencies, following from the line from (4.62), we choose σ = σ 2 ∈ (0, 1) in (5.2) and get

Consequently, we are led to

On the other hand, we take σ = 1 in (5.2) in order to bound those terms with high frequencies. Performing similar computations leading to (4.71)-(4.72) gives

which enables us to obtain

Indeed, owing to (4.25), we performed the following integral inequalities

, which are both controlled by t -1 2 (σ-σ1+σ2) due to the choice of σ 2

. Hence, the proof of Proposition 5.1 is complete.

The implication of low-frequency assumptions

As the second step of Inverse Wiegner's argument is to show that the solution (a L , m L ) to the linear problem (1.24), actually, has the same decay rates as the global-in-time solution (a, u) to the Cauchy problem (1.9) given by Theorem 1.1.

By employing the similar estimates as (4.99)-(4.101), we see that au Ḃσ decays in time at the faster rate t -1 2 (σ-σ1+ σ) with some σ > 0. This then gives, together with (1.13), that

(5.8)

In accordance with Proposition 5.1, we obtain that ( a, m) fulfills the faster decay (5.1). Furthermore, it follows from (1.13), (5.1) and (5.8) that

Hence, the upper bound of decay estimates of (a L , m L ) implies that (a 0 , u 0 ) ∈ Ḃσ1 2,∞ with σ 0 ≤ σ 1 < d 2 -1 with the aid of Proposition 4.1.

Next, we justify that (a 0 , u 0 ) ∈ Ḃσ1 2,∞ with σ 0 ≤ σ 1 < d 2 -1 provided that (a, u) satisfies (1.12) and (1.14). Notice that, for

for t 1 > t 0 , where C 2 > 1 is chosen into a greater constant if necessary.

By using (5.1) and (5.9), we obtain

, where C 3 > 0 is some constant. Therefore, applying Proposition 4.1 again, we have (a 0 , u 0 ) ∈ Ḃσ1 2,∞ . This concludes the proof of Theorem 1.2.

Appendix

In the last section, we would like to collect useful analysis tools, which make the paper as self-contained as possible. The first lemma is devoted to the classical Bernstein's inequality.

Lemma 6.1. Let 0 < r < R, 1 ≤ p ≤ q ≤ ∞ and k ∈ N. Then for any function u ∈ L p and λ

We state the interpolation inequality that are repeatedly used throughout the paper.

Lemma 6.2 ([1]

). The following real interpolation property is satisfied for 1 ≤ p ≤ ∞, s 1 < s 2 and θ ∈ (0, 1):