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Let f be a holomorphic map of CP 2 of degree d ≥ 2, let T be its Green current and µ = T ∧ T be its equilibrium measure. We give a new proof of a theorem due to Dujardin asserting that µ T ∧ ω P 2 implies λ 2 = 1 2 Log d, where λ 1 ≥ λ 2 are the Lyapunov exponents of µ. Then, assuming µ T ∧ ω P 2 , we study slice measures ν := T ∧ dd c |W | 2 , where W is a holomorphic local submersion. We give sufficient conditions on the Radon-Nikodym derivative of µ with respect to the trace measure T ∧ ω P 2 ensuring µ = ν. The involved submersion W comes from normal coordinates for the inverse branches of the iterates of f .

Introduction

Let f be a holomorphic map of P 2 of degree d ≥ 2. The Green current T and the equilibrium measure µ are invariant objects encoding the dynamical properties of f , we refer to the books [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF], [START_REF] Sibony | Dynamique des applications rationnelles de P k . In Dynamique et géométrie complexes[END_REF] by Dinh and Sibony. We recall that T := lim n 1 d n f n * ω P 2 , where ω P 2 is the normalized Fubini-Study (1, 1)-form of P 2 , this is a closed positive current, with local Hölder potentials. It satisfies f * T = dT and its auto-intersection µ := T ∧ T defines an invariant probability measure on P 2 , which is mixing and satisfies f * µ = d 2 µ.

Berteloot-Loeb [START_REF] Berteloot | Une caractérisation géométrique des exemples de Lattès de P k[END_REF] proved that T is a smooth and non degenerate positive (1, 1)-form on a non empty open subset of P 2 if and only if f is a Lattès map. Berteloot-Dupont [START_REF] Berteloot | Une caractérisation des endomorphismes de Lattès par leur mesure de Green[END_REF] established later that Berteloot-Loeb's condition on T characterizes the condition µ Leb P 2 . Another characterization of Lattès maps involves the Lyapunov exponents λ 1 ≥ λ 2 of µ (see Theorem 2.1 for their definitions). Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF] proved that λ 2 ≥ 1 2 Log d. The equality λ 1 = λ 2 = 1 2 Log d holds if and only if µ Leb P 2 , see [START_REF] Dupont | Formule de Pesin et applications méromorphes[END_REF].

It is now natural to characterize the mappings satisfying λ 1 > λ 2 = 1 2 Log d. Hopefully, the presence of a minimal Lyapunov exponent should be equivalent to regular properties for T and µ, and perhaps (in some sense) to the existence of a one dimensional Lattès-like factor. The following result, due to Dujardin, nicely fits into this program.

Theorem 1.1 (Dujardin [START_REF] Dujardin | Fatou directions along the Julia set for endomorphisms of CP k[END_REF]Theorem 3.6]). If µ σ T := T ∧ ω P 2 then λ 2 = 1 2 Log d. He also asked the question of the reverse implication, a partial answer is provided in [START_REF] Tapiero | Absolute continuity for semi-extremal holomorphic mappings[END_REF]. The measure σ T is called the trace of T and carries its mass. The proof of Dujardin's theorem is based on a construction of a df -invariant sub-bundle T ⊂ T P 2 (called Fatou directions) of rank ≥ 1 that satisfies for σ T -almost every x and for any v ∈ T x \{0} :

lim sup n→+∞ 1 n Log ||d x f n ( v)|| ≤ 1 2 Log d. (1) 
Indeed, using µ σ T and Oseledec's Theorem 2.1, for µ-almost every x, the lim sup in (1) tends to λ 1 or λ 2 , which implies in both cases λ 2 ≤ 1 2 Log d. Briend-Duval inequality λ 2 ≥ 1 2 Log d then implies the equality. We note that these arguments only require that µ σ T on an open subset U charged by µ.

On a chart U ⊂ P 2 equipped with holomorphic coordinates (Z, W ) we have :

σ T (T ∧ dd c |Z| 2 + T ∧ dd c |W | 2 ).
By construction Supp(µ) ⊂ Supp(σ T ), hence if µ(U ) > 0 then (T ∧ dd c |Z| 2 )(U ) > 0 or (T ∧ dd c |W | 2 )(U ) > 0. Actually in this case T ∧ dd c |Z| 2 and T ∧ dd c |W | 2 both charge U . The idea is that if T ∧ dd c |Z| 2 ≡ 0 on U , then the potentials of T would be harmonic on almost every vertical disc contained in U , which implies that µ is null on U , see [13, §3.3].

The measures T ∧ dd c |Z| 2 and T ∧ dd c |W | 2 are called slices of T . Dujardin's theorem gives an information on λ 2 when µ σ T , the proof is obtained by applying general results concerning Fatou directions [START_REF] Dujardin | Fatou directions along the Julia set for endomorphisms of CP k[END_REF]. Our purpose in this article is to analyse more deeply the relations between µ and slices of T when µ σ T .

We first provide another proof of Dujardin's Theorem by using normal forms for the generic inverse branches of f n and forward recurrent properties. We then provide another proof (of a weaker version of) Theorem 1.1 using backward recurrent properties (we indeed assume that the density of µ with respect to T is bounded). The interest of this second proof is to introduce a decomposition of µ using normal coordinates. This decomposition is the cornerstone of the proof of Theorem 1.2 that we now introduce.

Relations between µ and slices of T can be obtained when f preserves a pencil of lines, given for instance by the meromorphic function π[z : w : t] = [z : w]. Dupont-Taflin [START_REF] Dupont | Dynamics of fibered endomorphisms of P k[END_REF] proved that in this situation µ and T are related by the formula :

µ = T ∧ π * µ θ (which implies µ σ T ), (2) 
where θ is the rational map satisfying π • f = θ • π. We note that Jonsson [START_REF] Jonsson | Dynamics of polynomial skew products on C 2[END_REF] previously established an analogous formula for polynomial skew products on C 2 . On another hand, Berteloot-Loeb [START_REF] Berteloot | Spherical hypersurfaces and Lattès rational maps[END_REF] proved that if θ is a Lattès map, then for every a ∈ P 1 outside a finite subset, there exists a holomorphic coordinate ζ a such that µ θ = dd c |ζ a | 2 on a neighborhood V a of a (µ θ is the equilibrium measure of θ). Combining this result with (2), we obtain on

π -1 (V a ) : µ = T ∧ dd c |W | 2 , with W := ζ a • π. (3) 
This gives an example where a slice of T is equal to µ. Theorem 1.2 shows a similar formula. We assume µ σ T and denote ψ ∈ L 1 (σ T ) the Radon-Nikodym derivative of µ with respect to σ T . Let J := Supp(µ) and ψ| J be the restriction of ψ on J. Note that the measurable function ψ is defined on P 2 , it is not unique since one can modify it outside J by still preserving µ = ψσ T . However, one has µ = (ψ1 1 J ) σ T on P 2 for every version of ψ. We denote ψ Ω := ψ1 1 Ω for every borel subset Ω of P 2 . We also denote by x = (x n ) n∈Z the full orbits of the mapping f , by π 0 : x → x 0 the projection map and by µ the π 0 -pullback of µ on the set of full orbits, see Section 2.2. In the next statement, the local submersion W x : B(x 0 , η ε ( x)) → C is provided by the normal form Theorem 2.2. Theorem 1.2. Assume that µ = ψ J σ T for some measurable function ψ on P 2 (in particular λ 2 = 1 2 Log d) and that λ 1 is strictly larger than λ 2 .

1. If ψ| J is continuous, then for µ-almost every x there exist r 1 ( x) ≤ η ε ( x) and C x > 0 such that :

µ = C x T ∧ dd c |W x | 2 | J on B(x 0 , r 1 ( x)).
2. If ψ is continuous on an open neighborhood V of J and if µ = ψ V σ T , then there exist r 2 ( x) ≤ η ε ( x) and C x > 0 such that :

µ = C x T ∧ dd c |W x | 2 on B(x 0 , r 2 ( x)).
The first Item implies that for µ-almost every x, y satisfying π 0 ( x) = π 0 ( y), the measures T ∧ dd c |W x | 2 | J and T ∧ dd c |W y | 2 | J coincide on a small ball centered at π 0 ( x). In particular, the germ of measure T ∧ dd c |W x | 2 | J does not depend on the full orbit x but only on the π 0 -projection of x. A similar remark holds for the second Item.

Let us also observe that the hypothesis λ 1 > λ 2 in Theorem 1.2 is not restrictive. Assume indeed that µ = ψ J σ T and that λ 1 = λ 2 . Then the Lyapunov exponents are both minimal (equal to 1 2 Log d) and f is a Lattès mapping on P 2 . In this case there exists a finite ramified covering σ : C 2 /Λ → P 2 such that σ * T is equal to a positive definite hermitian form H with constant coefficients (Λ being a cocompact real lattice in C 2 ), see [START_REF] Dupont | Exemples de Lattès et domaines faiblement sphériques de C n[END_REF]. This implies that, around every point p outside an algebraic subset of P 2 (the critical values of σ), the current T coincides with H in local coordinates given by σ. It follows that, for every local submersion W defined near p, the measure µ = T ∧ T is equal to T ∧ dd c |W | 2 multiplied by a smooth positive function.

Let us finally note that the assumption of Item 2 morally replaces the function ψ J = ψ1 1 J of the first Item (which is singular due to the multiplication by 1 1 J ) by a continuous function on a neighborhood V of J. More precisely, it requires the existence of an open neighborhood V of J such that ψ| V is continuous and such that Supp(ψσ T )| V = J. This assumption is fulfilled if one assumes that the restriction ψ| J is continuous and that Supp T = J, by applying Tietze-Urysohn theorem to ψ| J . Question 1.3. Is it sufficient to assume ψ| J continuous to get µ = T ∧ dd c |W x | 2 locally ?

We remark that the continuity of ψ| J is satisfied by suspensions of Lattès maps on P 1 , we provide explicit computations of T , µ and ψ in Section 8.

Classical results

Lyapunov exponents

Let f be a holomorphic mapping of P 2 of degree d ≥ 2. Let T be its Green current and µ = T ∧ T be its equilibrium measure, it is f -invariant and ergodic. Since T has local continuous psh potentials, µ integrates local psh functions. In particular µ does not charge analytic subsets of P 2 and µ(C) = 0, where C := n∈Z f n (Crit f ). It also allows to define the Lyapunov exponents λ 1 ≥ λ 2 :

λ 1 = lim n→+∞ 1 n ˆP2 Log ||df n || dµ and λ 1 + λ 2 = ˆP2 Log |det C df | dµ.
Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF] proved that λ 2 ≥ 1 2 Log d. The Oseledec theorem states as follows. Theorem 2.1 (Oseledec).

1. If λ 1 = λ 2 = λ, then there exists an invariant borel subset A os of full µ-measure and disjoint from C such that for every x ∈ A os :

∀ v ∈ T x P 2 \ {0} , lim n→+∞ 1 n Log ||d x f n ( v)|| = λ.
2. If λ 1 > λ 2 , then there exists an invariant borel subset A os of full µ-measure and disjoint from C such that for every x ∈ A os , there exists v s (x) ∈ P(T x P 2 ) satisfying :

∀ v ∈ T x P 2 \ v s (x) , lim n→+∞ 1 n Log ||d x f n ( v)|| = λ 1 . ∀ v ∈ v s (x) \ {0} , lim n→+∞ 1 n Log ||d x f n ( v)|| = λ 2 .
Moreover v s is measurable and satisfies

[d x f ](v s (x)) = v s (f (x)) for every x ∈ A os , where [d x f
] is the projectivization of the tangent map d x f .

Normal forms for inverse branches

We denote X := P 2 \C which is totally invariant by f , and we denote X the set of all sequences x = (x n ) n∈Z of elements of X that are orbits under the action of f i.e. x n+1 = f (x n ). Equipped with the natural projection π 0 : X -→ X defined by π 0 ( x) = x 0 , the dynamical system (X, f, µ) admits a natural extension ( X, f , µ), where f is the left shift on X and µ is the unique probability measure on X invariant by f such that (π 0 ) * µ = µ. The measure µ is ergodic as µ, see [START_REF] Cornfeld | Ergodic Theory. Grundlehren der mathematischen Wissenschaften[END_REF]Chapter 10].

Given an orbit x ∈ X, there exists a family of inverse branches (f -n x ) n∈N such that f -n

x is defined on B(x 0 , η ε ( x)) for every n ≥ 0, and such that Lip(f -n x ) ≤ β ε ( x)e -n(λ 2 -ε) . The functions x → η ε ( x) and x → β ε ( x) are ε-tempered, i.e. they satisfy : ∀n ∈ Z , e -|n|ε ϕ( x) ≤ ϕ( f n ( x)) ≤ e +|n|ε ϕ( x).

We refer to Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF] (see also [START_REF] Buzzi | The coding of non-uniformly expanding maps with application to endomorphisms of CP k[END_REF][START_REF] Dupont | Formule de Pesin et applications méromorphes[END_REF]) for details about the construction of the inverse branches. The following result provides normal forms for those mappings, see [START_REF] Berteloot | A distortion theorem for the iterated inverse branches of a holomorphic endomorphism of CP(k)[END_REF][START_REF] Berteloot | Normalization of bundle holomorphic contractions and applications to dynamics[END_REF][START_REF] Jonsson | Stable manifolds of holomorphic diffeomorphisms[END_REF]. Theorem 2.2. For every ε > 0 small enough with respect to the Lyapunov exponents λ 1 ≥ λ 2 , there exists an invariant borel subset Λ ε of full µ-measure, ε-tempered functions

ρ ε : Λ ε → ]0, 1], β ε , L ε , M ε : Λ ε → [1, +∞[
and a function N : Λ ε → N satisfying the following properties. For every x ∈ Λ ε , there exist injective holomorphic mappings

ξ x : B(x 0 , η ε ( x)) -→ D 2 (ρ ε (x)) satisfying : 1. ξ x (x 0 ) = 0 and d x 0 ξ x (v s (x 0 )) is the vertical axis in C 2 , 2. ∀p, q ∈ B(x 0 , η ε ( x)) , 1 2 dist(p, q) ≤ ||ξ x (p) -ξ x (q)|| ≤ β ε ( x) dist(p, q) , 3. the following diagram commutes for every n ≥ N ( x) : B(x -n , η ε ( x -n )) ξ x -n B(x 0 , η ε ( x)) f -n x o o ξ x D 2 (ρ ε ( x -n )) D 2 (ρ ε ( x)) R n, x o o (4) 
The mappings R n, x have the following form depending on (λ 1 , λ 2 ) :

(i) If λ 1 = λ 2 = λ, then R n,
x is a linear and satisfies

e -n(λ+ε) ||(z, w)|| ≤ ||R n, x (z, w)|| ≤ e -n(λ-ε) ||(z, w)||.
(ii) If λ 1 = kλ 2 for some k ≥ 2 (we say that λ 1 and λ 2 are resonant), then R n, x (z, w) = (α n, x z, β n, x w) + (γ n, x w k , 0).

(iii) If λ 1 ∈ {kλ 2 , k ≥ 1}, then R n, x (z, w) = (α n, x z, β n, x w).
Moreover, in the cases (ii) and (iii), we have

e -n(λ 1 +ε) ≤ |α n, x | ≤ e -n(λ 1 -ε) , |γ n,x | ≤ M ε ( x)e -n(λ 1 -ε) and e -n(λ 2 +ε) ≤ |β n,x | ≤ e -n(λ 2 -ε) .
Remark 2.3. The diagram (4) commutes for every fixed n ≥ 0 by reducing the radius of the balls. The property n ≥ N ( x) actually ensures that

f -n x (B(x 0 , η ε ( x))) ⊂ B(x -n , η ε ( x -n ))
. We shall need the following control of (f n ) * ω P 2 in Section 3.

Lemma 2.4. For every x ∈ Λ ε and n ≥ 0, there exists 0 < r n ≤ η ε ( x) such that

(f n ) * ω P 2 ≥ 4β ε ( x) -2 e 2n(λ 2 -2ε) ω P 2 on B(x 0 , r n ).
Proof : We assume to simplify that λ 1 > λ 2 and that λ 1 , λ 2 are not resonant, the case of equality and the resonant case can be treated similarly (up to modifying the function

β ε ). Let ε > 0 be small enough such that λ 1 -λ 2 > 2ε, ensuring |α n, xn | -1 ≥ |β n, xn | -1 . According to Remark 2.3, there exists r n > 0 and 0 < r n ≤ η ε ( x n ) such that f -n xn = ξ -1 x • R n, xn • ξ xn on B(x n , r n ) and B(x 0 , r n ) ⊂ f -n xn (B(x n , r n )).
Since we have on B(x 0 , r n ) :

(f n ) * ω P 2 ≥ ||(df n ) -1 || -2 ω P 2 and ||(df n ) -1 || -2 = ||df -n xn || -2 ≥ ||dξ -1 x || -2 ||dR n, xn || -2 ||dξ xn || -2 , Theorem 2.2 implies (f n ) * ω P 2 ≥ 4||dR n, xn || -2 β ε ( x n ) -2 ω P 2 on B(x 0 , r n ). Since |α n, xn | -1 ≥ |β n, xn | -1 and β ε is ε-tempered, we deduce on B(x 0 , r n ) : (f n ) * ω P 2 ≥ 4|β n, xn | -2 β ε ( x) -2 e -2nε ω P 2 .

The conclusion follows from |β

n, xn | -2 ≥ e 2n(λ 2 -ε) .
We shall also need the following lemma in Section 5.

Lemma 2.5. Assume that µ = ψ J σ T for some measurable function ψ on P

2 . Let x ∈ Λ ε and B := B(x 0 , η ε ( x)). Let A n := {p ∈ B ∩ J , ψ • f -n
x (p) > 0}. 1. For every n ≥ 0, the measures σ T and (f -n

x ) * σ T are equivalent on B, and

A n = A 0 modulo a borel subset of zero σ T -measure. (ii) If ψ • f -n x ≥ a µ-a.e. on B ∩ J, then ψ • f -n x ≥ a σ T -a.e. on B ∩ J ∩ A 0 . Proof : Since f -n x : B → f -n
x (B) is a biholomorphism (and up to shrinking B), there exists 0 < α < β such that

α ω P 2 ≤ (f -n x ) * ω P 2 ≤ β ω P 2 on B.
Using that T is f -invariant, we deduce that σ T and (f -n x ) * σ T are equivalent on B. Now for every p ∈ B ∩ J and every r small enough such that B(p, r) ⊂ B,

µ(B(p, r)) = ˆB(p,r) ψ J σ T . But µ(B(p, r)) = d 2n µ(f -n x (B(p, r))) and µ(f -n x (B(p, r))) = ˆB(p,r) ψ J • f -n x (f -n x ) * σ T α,β d -n ˆB(p,r) ψ J • f -n x σ T ,
where α,β means that the equality holds up to a multiplicative constant between α and β. We deduce by dividing by σ T (B(p, r)) (which is positive since p ∈ J ⊂ Supp T ) :

B(p,r) ψ J σ T α,β d -n B(p,r) ψ J • f -n x σ T .
By Lebesgue Theorem [17, Theorem 2.12] (taking limits when r tends to zero), we get

for σ T -a.e. p ∈ B ∩ J that ψ(p) > 0 if and only if ψ • f -n x (p) > 0. The second item comes from 0 = µ(A) = ´A∩A 0 ψ J σ T , which gives σ T (A ∩ A 0 ) = 0 since ψ J is positive on A ∩ A 0 . To obtain (i) and (ii), we apply this fact to {p ∈ B ∩ J , ψ • f -n x (p) > b} and to {p ∈ B ∩ J , ψ • f -n
x (p) < a} (which both have zero µ-measure by assumption) and the fact that A n = A 0 modulo a borel subset of zero σ T -measure (provided by the first item).

A new proof of Dujardin's theorem

We provide another proof of Theorem 1.1. We shall use Theorem 2.2 and forward dynamics. We assume that µ σ T = T ∧ ω P 2 . This implies that there exists ψ ∈ L 1 (σ T ) such that µ = ψ J σ T . We recall that λ 2 ≥ 1 2 Log d for every endomorphism of P 2 , it remains to prove the reverse inequality λ 2 ≤ 1 2 Log d in our case of absolute continuity. For every n ≥ 0, the set

E n := x ∈ P 2 : lim ρ→0 + B(x,ρ) ψ J • f n σ T = ψ J • f n (x)
is a borel subset of full σ T -measure (and so of full µ-measure) by Lebesgue Theorem. We define the borel set

E := n∈N E n \   n≥1 Crit(f n )   ,
which is also of full µ-measure (µ does not charge analytic subsets). Let us define

F := E ∩ 1 τ ≤ ψ J ≤ τ ⊂ J,
where τ > 0 is chosen large enough to have µ(F ) > 0. According to Poincaré recurrence theorem, for µ-almost every x ∈ π -1 0 (F ), there exists a sub-sequence x n k which satisfies

x n k ∈ π -1 0 (F ).
Let us fix ε > 0 and apply the normal form Theorem 2.2, it yields a borel subset Λ ε of full µ-measure of good orbits. Let us fix x ∈ π -1 0 (F ) ∩ Λ ε and a sub-sequence (n k ) k as before. Let us also fix an integer k. Since x 0 ∈ E avoids the critical set of f n k , there exists ρ k > 0 small enough such that f n k is injective on the ball B(x 0 , ρ k ). Then we have for any ρ ∈]0, ρ k ] :

µ(A ρ ) = d -2n k µ(f n k (A ρ )), (5) 
where A ρ := B(x 0 , ρ). Up to taking a smaller ρ k , we can assume that

f n k (A ρ ) ⊂ B(x n k , η ε ( x n k )) and A ρ ⊂ B(x 0 , r n k ),
where r n k comes from Lemma 2.4. From µ = ψ J σ T , Formula (5) yields for every ρ ∈]0, ρ k ] :

ˆAρ ψ J σ T = d -2n k ˆfn k (Aρ) ψ J σ T = d -2n k ˆAρ (ψ J • f n k ) d n k T ∧ (f n k ) * ω P 2
where the second equality uses the invariance of the Green current

(f n k ) * T = d n k T and the fact that f n k is injective on A ρ . Since A ρ ⊂ B(x 0 , r n k ), we can use the estimate given by Lemma 2.4 with n = n k to deduce ˆAρ ψ J σ T ≥ d -n k ˆAρ (ψ J • f n k )4β ε ( x) -2 e 2n k (λ 2 -2ε) T ∧ ω P 2 = 4d -n k β ε ( x) -2 e 2n k (λ 2 -2ε) ˆAρ (ψ J • f n k ) σ T .
We chose x 0 ∈ J, thus σ T (A ρ ) > 0 and we have :

Aρ ψ J σ T ≥ 4d -n k β ε ( x) -2 e 2n k (λ 2 -2ε) Aρ (ψ J • f n k ) σ T .
But we also have x 0 ∈ E ⊂ E 0 ∩ E n k , thus we can take limits when ρ → 0 + to get

ψ J (x 0 ) ≥ 4d -n k β ε ( x) -2 e 2n k (λ 2 -2ε) × ψ J (f n k (x 0 )). Since x 0 and x n k = f n k (x 0 ) belongs to F ⊂ { 1 τ ≤ ψ J ≤ τ }, we deduce that : τ ≥ 4 τ β ε ( x) -2 e -2n k ( 1 2 Log d-λ 2 +2ε) .
Since this is true for every integer k, we get 1 2 Log d -λ 2 + 2ε ≥ 0. We obtain λ 2 ≤ 1 2 Log d as desired, since ε > 0 is arbitrary small.

Decomposition of µ

Normal coordinates and absolute continuity

According to Theorem 2.2, there exists an invariant subset of full µ-measure Λ ε such that for any x ∈ Λ ε , there exist inverse branches

f -n x : B(x 0 , η ε ( x)) -→ B(x -n , η ε ( x -n )), n ≥ N ( x),
and holomorphic charts

ξ x = (Z x , W x ) : B(x 0 , η ε ( x)) -→ D 2 (ρ ε (x)) (6) such that 1 2 ≤ ||dξ x || ≤ β ε ( x) on B(x 0 , η ε ( x)) and f -n x = ξ -1 x -n • R n, x • ξ x for any n ≥ N ( x), where R n, x is a polynomial map (C 2 , (Z x , W x )) → (C 2 , (Z x -n , W x -n )).
When λ 1 > λ 2 are not resonant, R n, x is a linear diagonal map with eigenvalues |α n, x | e -n(λ 1 ±ε) and |β n, x | e -n(λ 2 ±ε) . Let (ω x,AB ) A,B∈{Z,W } be the smooth functions defined by the formula

ω P 2 = A,B∈{Z,W } ω x,AB i 2 dA x ∧ dB x on B(x 0 , η ε ( x)). (7) 
For every A, B in {Z, W } and for every n ≥ N ( x) we define the following functions :

F AB x,n := ω x -n ,AB • f -n x : B(x 0 , η ε ( x)) -→ C. Proposition 4.1.
Assume that µ σ T and let ψ J be the Radon-Nikodym derivative of µ with respect to σ T . We assume that the Lyapunov exponents λ 1 > λ 2 are not resonant. For every x ∈ Λ ε , for every borel set U ⊂ B(x 0 , η ε ( x)) and for every n ≥ N ( x) we have :

µ(U ) = d n ˆU (ψ J • f -n x ) A,B∈{Z,W } F AB x,n α A n, x α B n, x T ∧ i 2 dA x ∧ dB x ,
where α Z n, x := α n, x and α W n, x := β n, x . Proof : From the equalities µ(U ) = d 2n µ(f -n

x (U )) and µ = ψ J (T ∧ ω P 2 ), we obtain

µ(U ) = d 2n ˆU (ψ J • f -n x ) (f -n x ) * T ∧ (f -n x ) * ω P 2 .
By invariance of the Green current, we get (f -n x ) * T = d -n T on B(x 0 , η ε ( x)) and

µ(U ) = d n ˆU (ψ J • f -n x ) T ∧ (f -n x ) * ω P 2 .
We conclude by pulling back Formula (7) ( x being replaced by x -n ) by f -n

x and using the fact that R n, x is linear and diagonal with eigenvalues α n, x and β n, x . Definition 4.2. Assume that µ σ T and let ψ J = ψ1 1 J be the Radon-Nikodym derivative of µ with respect to σ T . We assume that the Lyapunov exponents λ 1 > λ 2 are not resonant. For every U ⊂ B(x 0 , η ε ( x)) and n ≥ 0, we have according to Proposition 4.1 :

µ(U ) = I n (U ∩ J) + J n (U ∩ J),
where for every D ⊂ B(x 0 , η ε ( x)) :

I n (D) := d n |β n, x | 2 ˆD(ψ • f -n x )F W W x,n T ∧ i 2 (dW x ∧ dW x ) and J n (D) := d n (A,B) =(W,W ) α A n k , x α B n, x ˆD(ψ • f -n x )F AB x,n T ∧ i 2 (dA x ∧ dB x )
where α Z n, x := α n, x and α W n, x := β n, x . Remark 4.3. We observe that if µ = ψ V σ T as in the second item of Theorem 1.2, then τ , the two first items holding on B(y 0 , η ε ( y)), the three first ones for every A, B ∈ {Z, W }.

µ(U ) = I n (U ∩ V ) + J n (U ∩ V ) for every U ⊂ B(x 0 , η ε ( x)).
Since the distortion of the coordinates ξ x = (Z x , W x ) is controlled by Theorem 2.2, there exists τ large enough such that A τ has positive µ-measure. By Poincaré recurrence theorem, for µ-almost every x, there exists (n k ) k∈N such that n k ≥ N ( x) and

x -n k ∈ A τ . We have specified n k ≥ N ( x) to have f -n k x (B(x 0 , η ε ( x)) ⊂ B(x -n k , η ε ( x -n k )).
In this way the functions F AB x,n k are well defined on B(x 0 , η ε ( x)). By definition of F AB x,n , we get from the first item of Definition 4.4 :

|F AB x,n k | ≤ τ on B(x 0 , η ε ( x)). (8) 
Moreover, using the third item of Definition 4.4 and Lip(f

-n k x ) ≤ β ε ( x)e -n k (λ 2 -ε) (given by Theorem 2.2), we get ||dF AB x,n k || ≤ τ β ε ( x)e -n k (λ 2 -ε) on B(x 0 , η ε ( x)).
We deduce that F AB x,n k uniformly converges on B(x 0 , η ε ( x)) to a constant F AB x up to a subsequence [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] and that (according to the second item of Definition 4.4) :

F AA x,n k ≥ 1 τ on B(x 0 , η ε ( x)). (10) 

A weaker version of Dujardin's theorem

We give another proof of Theorem 1.1 assuming that the Radon-Nikodym derivative ψ J ∈ L ∞ (σ T ). Our motivation is to use backward iterates, namely the inverse branches f -n k x , in order to prepare the proof of Theorem 1.2 in Section 6.1. As in Section 3, it suffices to prove that λ 2 ≤ 1 2 Log d. For sake of simplicity, we assume that the Lyapunov exponents λ 1 > λ 2 are not resonant. This implies that the polynomial map R n, x appearing in the diagram (4) is linear and diagonal. The proof can be adapted in the resonant case, see Section 7.

We apply the normal form Theorem 2.2 with ε > 0, it yields a borel subset Λ of full μ-measure of good orbits. We use the set A τ defined in Section 4.2. Let us fix a µ-generic element x ∈ Λ , in particular x 0 ∈ J. Let (n k ) k∈N be such that x -n k ∈ A τ .

1) Construction of a set of continuity C.

Let δ > 0 be such that µ(B(x 0 , η ε ( x))) > 2δ. By Lusin's theorem there exists a compact set C 0 ⊂ B(x 0 , η ε ( x)) such that µ(B(x 0 , η ε ( x))\C 0 ) < δ and ψ J is continuous on C 0 . Using again Lusin's theorem we construct by induction a sequence (C n ) n of compact subsets of B(x 0 , η ε ( x)) such that

C n+1 ⊂ C n and µ(C n \C n+1 ) < 2 -(n+1) δ and ψ J • f -(n+1) x ∈ C 0 (C n+1 ). Then µ(C n ) > µ(C n-1 ) -2 -n δ > • • • > µ(C 0 ) -δ > µ(B(x 0 , η ε ( x))) -2δ > 0. Thus C := n∈N C n ⊂ B(x 0 , η ε ( x))
satisfies µ(C) > 0. Let µ C be the measure on B(x 0 , η ε ( x)) defined by

µ C (•) := µ(• ∩ C). Its support supp µ C is included in C ∩ J because C is a closed subset of B(x 0 , η ε ( x)).
2) Construction of x 0 in supp µ C , with boundedness properties.

Let G be a borel subset of full σ T -measure (and so of full µ-measure) satisfying

∀p ∈ G, 0 ≤ ψ J (p) ≤ ||ψ J || L ∞ (σ T ) ,
and let G k be the borel set

G k := f -n k x (B(x 0 , η ε ( x))) G.
Let us verify that µ(f

n k (G k )) = µ(B(x 0 , η ε ( x))). Since µ(G) = 1, we have µ(G k ) = µ(f -n k x (B(x 0 , η ε ( x)))) = d -2n k µ(B(x 0 , η ε ( x))). But f n k is injective on f -n k x (B(x 0 , η ε ( x))), which contains G k , hence µ(f n k (G k )) = d 2n k µ(G k ), completing our verification. Therefore µ( k∈N f n k (G k )) = µ(B(x 0 , η ε ( x))),
which is positive since x 0 ∈ J. Let

x 0 ∈ k∈N f n k (G k ) ∩ 1 τ ≤ ψ J ∩ supp µ C , (11) 
where τ > 1 is large enough so that the set defined in ( 11) is not empty. Using the fact that f

-n k x • (f n k ) |G k = Id G k , we observe that ∀k ∈ N , f -n k x (x 0 ) ∈ G k ⊂ G. (12) 

3) Conclusion.

For a given k, let ρ k > 0 be small enough so that for any 0 < ρ < ρ k :

A ρ := B(x 0 , ρ) ∩ C ⊂ B(x 0 , η ε ( x)). Since ||dξ x || ≤ β ε ( x) we can assume that A,B |T ∧ i 2 dA x ∧dB x | ≤ β ε ( x) 2 σ T on B(x 0 , η ε ( x)). According to Proposition 4.1, |F AB x,n k | ≤ τ (see Equation (8)) and |α n, x | ≤ |β n, x |, we deduce ˆAρ ψ J dσ T = µ(A ρ ) ≤ d n k |β n k , x | 2 τ β ε ( x) 2 ˆAρ (ψ J • f -n k x ) dσ T .
According to Equation ( 11), we have

x 0 ∈ supp µ C , thus σ T (A ρ ) > 0 and Aρ ψ J dσ T ≤ d n k |β n k , x | 2 τ β ε ( x) 2 Aρ (ψ J • f -n k x ) dσ T .
Equation ( 11) also gives 1 τ ≤ ψ J (x 0 ) and x 0 ∈ supp µ C ⊂ C ⊂ C 0 ∩ C n k . We moreover have A ρ ⊂ C by definition. Hence, if ρ tends to 0, we get by continuity of ψ J (resp.

ψ J • f -n k x ) on C 0 (resp. on C n k ) : 1 τ ≤ ψ J (x 0 ) ≤ d n k |β n k , x | 2 τ β ε ( x) 2 (ψ J • f -n k x )(x 0 ) ≤ d n k |β n k , x | 2 τ β ε ( x) 2 ||ψ J || L ∞ (σ T ) ,
the last inequality coming from the choice of x 0 , see Equation [START_REF] Dupont | Formule de Pesin et applications méromorphes[END_REF]. We obtain for every k :

τ τ β ε ( x) 2 ||ψ J || L ∞ (σ T ) -1 ≤ d n k |β n k , x | 2 ≤ e 2n k ( 1 2 Log d-λ 2 +ε) .
Hence λ 2 ≤ 1 2 Log d + ε, which gives λ 2 ≤ 1 2 Log d when ε tends to zero, as desired.

5 Estimates on I n and J n in the decomposition of µ

Study of I n and J n

We recall that I n and J n were introduced in Definition 4.2.

Proposition 5.1. Assume that µ σ T and let ψ1 1 J be the Radon-Nikodym derivative of µ with respect to σ T . Assume that λ 1 > λ 2 are not resonant and let ε > 0 be small enough such that

λ 1 + λ 2 -2ε > Log d , λ 1 > 1 2 Log d + ε.
Let x be a µ-generic orbit and let (n k ) k be a sub-sequence such that x -n k ∈ A τ . Let

σ x := T ∧ dd c |W x | 2 .
Let B := B(x 0 , η ε ( x)), A 0 := {p ∈ B ∩ J , ψ(p) > 0} and U ⊂ B be a borel set.

1. If ψ • f -n k
x ≤ b µ -a.e. on B for every k ≥ 0, then there exists C x > 0 which does not depend on U ⊂ B such that

J n k (U ∩ J) ≤ C x e -n k (λ 1 +λ 2 -Log d) e 2n k ε -→ k→∞ 0. 2. If ψ • f -n k x ≤ b µ -a.e. on B for every k ≥ 0 and if µ(U ) > 0, then σ x (U ∩ J ∩ A 0 ) > 0. 3. If 0 < a ≤ ψ • f -n k x ≤ b µ -a.e. on B for every k ≥ 0, then d n k |β n k , x | 2 aτ -1 σ x (U ∩ J ∩ A 0 ) ≤ I n k (U ∩ J) ≤ d n k |β n k , x | 2 bτ σ x (U ∩ J).
In particular (d n k |β n k , x | 2 ) k converges, up to a sub-sequence, to some u > 0.

Remark 5.2. We assume in Proposition 5.1 that λ 1 , λ 2 are not resonant. The same statement actually holds in the resonant case, this is explained in Section 7.

Proof of Proposition 5.1 : Let us prove the first item. By Definition 4.2,

J n k (U ∩ J) = (A,B) =(W,W ) d n k α A n k , x α B n k , x ˆU∩J (ψ • f -n k x )F AB x,n k T ∧ dA x ∧ dB x .
Let us introduce the measures (which are σ T ) :

σ x := T ∧ dd c |W x | 2 , λ x := T ∧ dd c |Z x | 2 . Using |α n, x | ≤ |β n, x |, the (assumed) upper bound on ψ • f -n k x
, the upper bound on F AB

x,n k provided by [START_REF] Cornfeld | Ergodic Theory. Grundlehren der mathematischen Wissenschaften[END_REF], the item 2.(i) of Lemma 2.5 and Cauchy-Schwarz inequality, we get

|J n k (U ∩ J)| ≤ d n k |α n k , x β n k , x | b τ (σ x + λ x )(U ∩ J).
The first item then follows from |α n, x | ≤ e -n(λ 1 -ε) and |β n,x | ≤ e -n(λ 2 -ε) .

We show the second item. By using Item 1 of Lemma 2.5 (for the last equality), we get

µ(U ) = µ(U ∩ J) = d 2n µ(f -n x (U ∩ J)) = d 2n ˆU∩J∩A 0 (ψ • f -n x ) (f -n x ) * (T ∧ ω P 2 ).
Cauchy-Schwarz inequality implies (up to multiplication by a constant) :

T ∧ ω P 2 ≤ ω x -n ,W W σ x -n + ω x -n ,ZZ λ x -n on B( x -n , η ε ( x -n )).
We now fix n = n k . Using the (assumed) upper bound on ψ • f -n k

x on B combined with item 2.(i) of Lemma 2.5, and the upper bounds on

F W W x,n k = ω x -n ,W W • f -n k x , F ZZ x,n k = ω x -n ,ZZ • f -n k x
provided by Equation ( 8), we get

µ(U ) ≤ bd 2n k τ ˆU∩J∩A 0 (f -n k x ) * (σ x -n k ) + ˆU∩J∩A 0 (f -n k x ) * (λ x -n k ) .
We deduce

µ(U ) ≤ bd 2n k τ ˆU∩J∩A 0 d -n k |β n k , x | 2 σ x + ˆU∩J∩A 0 d -n k |α n k , x | 2 λ x , hence 0 < µ(U ) ≤ bd n k τ |β n k , x | 2 σ x (U ∩ J ∩ A 0 ) + |α n k , x | 2 λ x (U ∩ J ∩ A 0 ) .
To conclude we observe that

d n k |α n k , x | 2 ≤ e n k (Log d -2λ 1 +2ε) ,
which tends to 0 when k tends to infinity. Hence σ x (U ∩ J ∩ A 0 ) > 0.

Let us prove the third item. According to item 2.(ii) of Lemma 2.5, we have

ψ • f -n k x ≥ a, σ x -a.e. on B ∩ J ∩ A 0 .
Hence, according to Definition 4.2, we get

I n k (U ∩ J ∩ A 0 ) ≥ d n k |β n k , x | 2 a ˆU∩J∩A 0 F W W x,n k σ x ≥ d n k |β n k , x | 2 a 1 τ σ x (U ∩ J ∩ A 0 ),
where the last inequality comes from Equation [START_REF] Dujardin | Fatou directions along the Julia set for endomorphisms of CP k[END_REF]. Similarly, by using item 2.(i) of Lemma 2.5 and Equation ( 8), we get

I n k (U ∩ J) ≤ d n k |β n k , x | 2 bτ σ x (U ∩ J)
This proves the two stated inequalities on I n k (U ∩ J). Let us verify the last fact. Since 0 < µ(B) = I n k (B ∩ J) + J n k (B ∩ J) and since J n k (B) tends to 0 by the first item, we get

1 2 µ(B) ≤ I n k (B ∩ J) ≤ 2µ(B) for k large enough, which implies 0 < 1 2bτ µ(B) σ x (B ∩ J) ≤ d n k |β n k , x | 2 ≤ 2τ a µ(B) σ x (B ∩ J ∩ A 0 ) < +∞, since σ x (B ∩ J ∩ A 0 ) > 0 by the second item.

Application : an equivalence between µ and a slice of T

We prove that µ can be approximated by a slice of T under absolute continuity assumptions. The proof is a direct application of the decomposition of µ fixed in Definition 4.2 and of Proposition 5.1.

Proposition 5.3. Assume that µ σ T and λ 1 > λ 2 = 1 2 Log d. Let ψ1 1 J be the Radon-Nikodym derivative of µ with respect to σ T . Let x be a µ-generic element and let

(n k ) k be a sub-sequence such that x -n k ∈ A τ . Let B := B(x 0 , η ε ( x)) and A 0 := {p ∈ B ∩J , ψ(p) > 0}. If 0 < a ≤ ψ • f -n k x ≤ b µ -a.e. on B for every k ≥ 0,
then there exists C x > 0 such that on B :

C -1 x (T ∧ dd c |W x | 2 )| J∩A 0 ≤ µ ≤ C x (T ∧ dd c |W x | 2 )| J .
Proof : Let U ⊂ B be a borel set and let 

I k := I n k (U ∩ J), J k := J n k (U ∩ J).
d n k |β n k , x | 2 = u > 0), Equation (8) 
and item 2.(i) of Lemma 2.5, we get

µ(U ) ≤ u b τ σ x (U ∩ J).
Similarly, by using Equation ( 10) and item 2.(ii) of Lemma 2.5, we get

µ(U ) ≥ u a τ σ x (U ∩ J ∩ A 0 ).
We conclude by setting C x := max{τ /ua, ubτ }.

6 Proof of Theorem 1.2

6.1 Proof of the first item Lemma 6.1. Assume that µ σ T and λ 1 > λ 2 = 1 2 Log d. Let ψ1 1 J be the Radon-Nikodym derivative of µ with respect to σ T , and assume that ψ| J is continuous. Let x be a µ-generic element and let (n k ) k be a sub-sequence such that x -n k ∈ A τ with n k ≥ N ( x). There exists r 1 ( x) ≤ η ε ( x) and x -∞ ∈ J such that, up to a sub-sequence :

1. lim k d n k |β n k , x | 2 = u > 0 and lim k J n k (U ∩ J) = 0 for any borel set U ⊂ B(x 0 , r 1 ( x)), 2. ψ • f -n k x uniformly converges to ψ(x -∞ ) on B(x 0 , r 1 ( x)) ∩ J.
Proof : To prove the first item, in view of Proposition 5.1, it suffices to verify

1 2τ ≤ ψ • f -n k
x on some B(x 0 , r 1 ( x)) ∩ J. By uniform continuity, there exists δ(τ

) > 0 such that ∀a, b ∈ J, dist(a, b) ≤ δ(τ ) =⇒ |ψ(a) -ψ(b)| ≤ 1 2τ .
Defining r 1 ( x) := min η ε ( x), δ(τ ) βε( x) , we have for every p ∈ B(x 0 , r 1 ( x)) :

dist f -n k x (p), f -n k x (x 0 ) ≤ Lip(f -n k x )r 1 ( x) ≤ β ε ( x)r 1 ( x) ≤ δ(τ ). Using ψ(x -n k ) ≥ 1 τ (coming from x -n k ∈ A τ ), we get ψ • f -n k x ≥ 1 2τ on B(x 0 , r 1 ( x)) ∩ J.
For the second item, the sequence (x -n k ) k ∈ J converges by compactness to some x -∞ ∈ J. Since Lip f -n k x tends to 0, f -n k x k converges uniformly on B(x 0 , r 1 ( x)) to the constant mapping x -∞ . The conclusion follows from the continuity of ψ on J.

We now prove the first item of Theorem 1.2. Let U ⊂ B(x 0 , r 1 ( x)) be a borel set. We recall that σ x = T ∧ dd c |W x | 2 and that by Definition 4.2 :

µ(U ) = µ(U ∩ J) = d n k |β n k , x | 2 ˆU∩J ψ • f -n k x F W W x,n k σ x + J n k (U ∩ J).
According to Equation ( 9), F W W x,n k uniformly converges on B(x 0 , r 1 ( x)) to some constant F x , up to a sub-sequence. We conclude by using the two items of Lemma 6.1, which yield µ(U ) = C x σ x (U ∩ J), where C x := u F x ψ(x -∞ ). Note that C x does not depend on U and is positive by taking U = B(x 0 , r 1 ( x)).

Proof of the second item

The following lemma is the counterpart of Lemma 6.1, the function ψ being now continuous on a neighborhood V of J. The two items hold without any restriction to J. The proof is similar using Remark 4.3 (decomposition of µ on V ), the uniform continuity of ψ on V , and by introducing a radius r 2 ( x) satisfying B(x 0 , r 2 ( x)) ⊂ V . Note that f -n k x (B(x 0 , r 2 ( x))) ⊂ V for k large enough. Lemma 6.2. Assume that µ σ T and λ 1 > λ 2 = 1 2 Log d. We assume that there exists a neighborhood V of J and a function ψ ∈ L 1 (σ T ) such that ψ is continuous on V and satifies µ = ψ V σ T (we recall that ψ V = ψ1 1 V ). Let x be a µ-generic element and let (n k ) k be a sub-sequence such that x -n k ∈ A τ with n ≥ N ( x). There exists r 2 ( x) ≤ η ε ( x) (small enough to have B(x 0 , r 2 ( x)) ⊂ V ) and x -∞ ∈ J such that, up to a sub-sequence :

1. lim k d n k |β n k , x | 2 = u > 0 and lim k J n k (U ) = 0 for any borel set U ⊂ B(x 0 , r 2 ( x)), 2. ψ • f -n k x uniformly converges to ψ(x -∞ ) on B(x 0 , r 2 ( x)).
The second item of Theorem 1.2 follows as in the end of Section 6.1, by using

µ(U ) = d n k |β n k , x | 2 ˆU ψ • f -n k x F W W x,n k σ x + J n k (U )
for every U ⊂ B(x 0 , r 2 ( x)) ⊂ V , this formula is provided by Definition 4.2 and Remark 4.3.

About the resonant case

We assume that λ 1 , λ 2 are resonant : λ 1 = qλ 2 for some q ≥ 2. We assume that µ σ T , let ψ denote the Radon-Nikodym derivative of µ with respect to σ T . Let us first explain how Proposition 4.1 is affected. We shall compute the corresponding J n (D) appearing in Definition 4.2. According to Theorem 2.2, the map R n, x is equal to : R n, x (z, w) = (α n, x z, β n, x w) + (γ n, x w q , 0), where |γ n,x | ≤ M ε ( x)e -n(λ 1 -ε) . Let U ⊂ B(x 0 , η ε ( x)) be a borel set. Denoting ψ n := ψ•f -n

x , we have µ(U ) = I n (U ∩ J) + J n (U ∩ J), where I n (D) has the same expression as in the non resonant case :

I n (D) = d n |β n, x | 2 ˆD ψ n F W W x,n T ∧ i 2 (dW x ∧ dW x ).
In the resonant case, the formula giving J n (D) is modified as follows :

J n (D) = d n |α n, x | 2 ˆD ψ n F ZZ x,n T ∧ i 2 (dZ x ∧ dZ x ) + 2d n ˆD ψ n Re (qF ZZ x,n α n, x γ n, x W q-1 x + F ZW x,n α n, x β n, x T ∧ i 2 (dZ x ∧ dW x ) + d n ˆD ψ n q 2 F ZZ x,n |γ n, x | 2 |W x | 2(q-1) T ∧ i 2 (dW x ∧ dW x ) + d n ˆD 2Re qF ZW x,n γ n, x β n, x W q-1 x T ∧ i 2 (dW x ∧ dW x ).
Let us verify that the first item of Proposition 5.1 remains valid in the resonant case. Let x be a µ-generic element and let (n k ) k be a sub-sequence such that x -n k ∈ A τ . Assume

ψ n = ψ • f -n k x ≤ b, µ -a.e. on B
and let us verify that there exists C ( x) such that for every borel set U ⊂ B :

J n k (U ) ≤ C ( x)e -n k (λ 1 +λ 2 -Log d) e 2n k ε .
We use the formula on J n (D) given above and Cauchy-Schwarz inequality. We also use |F AB x,n | ≤ τ given by Equation ( 8), item (i) of Lemma 2.5 and

|W x | ≤ ρ ε := ρ ε (x) on B provided by Equation (6). If σ x := T ∧ dd c |W x | 2 , λ x := T ∧ dd c |Z x | 2 , we indeed obtain J n k (U ) ≤ d n k |α n k , x | 2 bτ λ x (U ) + 2d n k |α n k , x | bτ q|γ n k , x |ρ q-1 ε + |β n k , x | (λ x + σ x )(U ) + qd n k |γ n k , x | bτ q|γ n k , x |ρ 2(q-1) ε + 2|β n k , x |ρ q-1 ε σ x (U ).
The existence of C ( x) then comes from the upper bounds |α

n,x | ≤ e -n(λ 1 -ε) , |β n,x | ≤ e -n(λ 2 -ε) , |γ n,x | ≤ M ε ( x)e -n(λ 1 -ε) and from λ 1 > λ 2 .

Suspensions of one-dimensional Lattès maps

Let θ = [P : Q] be Lattès map on P 1 of degree d ≥ 2 and let f := [P : Q : t d ] be its suspension on P 2 . These maps were studied by Berteloot-Loeb [START_REF] Berteloot | Spherical hypersurfaces and Lattès rational maps[END_REF]. We identify the first affine chart with C 2 . Let

G θ := lim n→+∞ 1 d n Log ||(P n , Q n )|| : C 2 → R ∪ {-∞}
be the Green function of the polynomial mapping (P, Q) and let G := max{G θ , 0}. The attracting basin A of (0, 0) is bounded and equal to {G θ < 0}. The Green current of f satisfies T = dd c G on C 2 , the support of µ coincides with the boundary ∂A of A.

By [4, Proposition 3.1] (see also [START_REF] Dupont | Exemples de Lattès et domaines faiblement sphériques de C n[END_REF] in higher dimensions), for every p outside a finite number of circles drawn on ∂A, there exists a biholomorphism p :

(D 2 , 0) -→ (D 2 , p) such that G 0 (z, w) := G θ • p(z, w) = Re(z) + |w| 2 on (D 2 , 0).
We denote T 0 := p * T = dd c (max{G 0 , 0}) and µ 0 := p * µ.

The closed positive current T 0 has the following matrix representation

T 0 = T 11 0 0 T 22 ,
where T 11 := T 0 ∧ dd c |w| 2 and T 22 := T ∧ dd c |z| 2 . We describe below T 0 and µ 0 on (D 2 , 0). We assume to simplify that the germ

(D 2 , 0) is the open set D :=] -1, 1[ 2 ×D. Let Ω := {Re(z) + |w| 2 > 0} ∩ D and M 0 := {Re(z) + |w| 2 = 0} ∩ D.
Observe that M 0 is the image (intersected with D) of the euclidian 3-sphere of C 2 by the classical Cayley transformation, see [START_REF] Rudin | Function theory in the unit ball of C n . Classics in Mathematics[END_REF]Chapter 2.3]. Let us parametrize M 0 by

Φ :] -1, 0]×] -1, 1[×]0, 2π[→ M 0 , (u, v, θ) → (u + iv, √ -ue iθ ) (13) 
and let Leb M 0 := Φ * Leb R 3 . Let also ω 0 be the standard hermitian (1, 1)-form of C 2 .

Proposition 8.1. With the preceding notations,

T 0 = 1 8 Leb M 0 0 0 Leb Ω + |w| 2 2 Leb M 0 , and µ 0 = 1 8 Leb M 0 = T 0 ∧ dd c |w| 2 .
In particular,

µ 0 = ψ 0 (T 0 ∧ ω 0 ) , where ψ 0 (z, w) := 1 1 + 4|w| 2 1 1 M 0 .
The remainder of this Section is devoted to the proof of Proposition 8.1.

Computation of T 11 .-Let ϕ be a test function with compact support in D. We denote ϕ zz := ∂ ∂z ∂ ∂z ϕ, similarly for ϕ ww . By definition we have :

T 11 , ϕ = ˆΩ G 0 (z, w)ϕ zz (z, w) dLeb(z, w). Let ∆ w denote the subset ] -1, 1[×] -1, 1[×{w} intersected with Ω, so that T 11 , ϕ = ˆD ˆ∆w G 0 (z, w)ϕ zz (z, w) dLeb(z) dLeb(w) =: ˆD I w (ϕ) dLeb(w). (14) 
We write z = u + iv, hence ϕ zz = 1 4 ∆ u,v ϕ. Observe also that G 0 only depends on (u, w). The number 4I w (ϕ) is then equal to We therefore obtain by ( 14) :

ˆ1 -1 ˆ1 -|w| 2 G 0 (u, w) ∂ 2 ϕ ∂u 2 (u + iv, w) du dv + ˆ1 -|w| 2 G 0 (u, w) ˆ1 -1 ∂ 2 ϕ ∂v 2 (u + iv, w) dv du.
T 11 , ϕ = 1 4
ˆD ˆ1 -1 ϕ(-|w| 2 + iv, w) dv dLeb(w)

Observe that (w, v) → (-|w| 2 + iv, w) is another parametrization of M 0 different from Φ defined in [START_REF] Dupont | Dimension of ergodic measures and currents on CP(2)[END_REF]. Let us write this integral with polar coordinates : G 0 (u + iv, w)ϕ ww (u + iv, w) dLeb(w),

with the convention D( √ -u) = ∅ if 0 ≤ u ≤ 1.
Lemma 8.2.

1. J u,v (ϕ) = ´D ϕ(u + iv, w) dLeb(w) for 0 ≤ u ≤ 1. The first item follows since ∂ 2 s G 0 = ∂ 2 t G 0 = 2. In the case -1 ≤ u ≤ 0, we have :

J u,v (ϕ) = ˆD\D( √ -u)
G 0 (u + iv, w)ϕ ww (u + iv, w) dLeb(w). The second item follows by combining this formula with [START_REF] Jonsson | Dynamics of polynomial skew products on C 2[END_REF]. We deduce as desired Since G 0 = 0 on M 0 , we get µ 0 , ϕ = ´Ω G 0 ϕ zz dLeb Ω = T 11 , ϕ as desired (observe that this is the Lebesgue part on Ω in T 22 which provides µ = T 11 ). The formula µ 0 = 1 1+8h 1 1 M 0 T 0 ∧ ω 0 immediately follows.

T 22 , ϕ = ˆ1 -1 ˆ1 -1 J u,v ( 
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 2 Recurrence in A τ Definition 4.4. For τ > 0 let A τ ⊂ Λ ε be the subset consisting of elements y satisfying 1. |ω y,AB | ≤ τ , 2. 1 τ ≤ ω y,AA ≤ τ , 3. S AB ( y) := sup B(y 0 ,ηε( y)) ||dω y,AB || ≤ τ , 4. ψ J • π 0 ( y) ≥ 1

According to Definition 4 . 2 ,

 42 we have µ(U ) = I k +J k . The first item of Proposition 5.1 yields J k → 0. Using the third item of Proposition 5.1 (which in particular provides lim k

  The second term vanishes since Supp(ϕ(•, w)) ⊂] -1, 1[×] -1, 1[. Integrating by parts and using ∂ u G 0 = 1, ∂ v G 0 = 0 for the first one, we get4I w (ϕ) = -ˆ1 -1 ˆ1 -|w| 2 ∂ϕ ∂u (u + iv, w) du dv . Using again Supp(ϕ(•, w)) ⊂] -1, 1[×] -1, 1[, we get I w (ϕ) = 1 4 ˆ1 -1ϕ(-|w| 2 + iv, w) dv.

T 11

 11 ρ 2 + iv, ρe iθ ) 2ρdρ dθ dv.Applying the change of variable u = -ρ 2 one gets back to the parametrization Φ :T 11 , ϕ = 1 8 ˆ]-1,0]×]-1,1[×]0,2π[ ϕ(u + iv, √ -ue iθ ) dLeb(u, v, θ) = 1 8 ˆM0 ϕ dLeb M 0 .Computation of T 22 .-Let ∆ z be the vertical disc {z} × D intersected with Ω. One has :T 22 , ϕ = ˆ]-1,1[×]-1,1[ ˆ∆z G 0 (z, w)ϕ ww (z, w)dLeb(w) dLeb(z).Writing z = u + iv, we getT 22 , ϕ = ˆ1 -1 ˆ0 -1 J u,v (ϕ) du dv + ˆ1 -1 ˆ1 0 J u,v (ϕ) du dv,where J u,v (ϕ) :=

2 .

 2 J u,v (ϕ) = ´D\D( √ -u) ϕ(z, w) dLeb(w) -iθ ) dθ for -1 ≤ u ≤ 0.Proof : We write w = s + it and use ϕ ww = 1 4 ∆ s,t ϕ. Since ϕ has compact support in D, one gets by Green-Stokes formula : 4J u,v (ϕ) := ˆD G 0 (u + iv, w)∆ s,t ϕ dLeb(w) = ˆD ∆ s,t G 0 (u + iv, w)ϕ dLeb(w)

( 15 )

 15 Let us denote z = u + iv and w = s+ it ∈ D\D( √ -u). Using Supp(ϕ(z, •)) ⊂ D and G 0 (z, •)| ∂D( √ -u) = 0, Green-Stokes formula gives : ˆD\D( √ -u) G 0 (z, s + it)∆ s,t ϕ(z, s + it) -∆ s,t G 0 (z, s + it)ϕ(z, s + it) dLeb(s, t) , s + it) ∇ (s,t) G 0 (z, s + it) • (s, t) dσ(s, t),where σ is the Lebesgue measure on the circle ∂D( √ -u). Since ∆ s,t G 0 (z, s + it) = 4 and ∇ (s,t) G 0 (z, s + it) • (s, t) = 2|w| 2 = -2u, we infer w) -G 0 (z, w)ϕ ww (z, w) dLeb(w) = w) dσ(w).

0 - u 2 ϕ

 02 Let us now return to the computation of T 22 , ϕ . Let Ω + := Ω ∩ {u > 0} and Ω -:= Ω ∩ {u < 0}. According to Lemma 8.2, we getˆ1 -1 ˆ1 0 J u,v (ϕ) du dv = ˆΩ+ ϕ(z, w) dLeb(z, w),and that´1 -1 ´0 -1 J u,v (ϕ) du dv is equal to ˆΩϕ(z, w) dLeb(z, w) + ˆ1 -1 ˆ0 -1 ˆ2π (u + iv, √ -ue -iθ ) dθ du dv. If h(z, w) := |w| 2 2 the second integral is equal to : ˆ]-1,0[×]-1,1[×]0,2π[ (hϕ) • Φ(u, v, θ) d(u, v, θ) = ˆM0 hϕ dLeb M 0 .

dd c ϕ = 1 8

 8 ϕ) du dv = ˆΩ ϕ(z, w) dLeb(z, w) +ˆM0hϕ dLeb M 0 .Computation of µ 0 .-Writing G + 0 := max{G 0 , 0}, we haveT 0 = dd c G + 0 and µ 0 = dd c (G + 0 dd c G + 0 ). Hence µ 0 , ϕ = T 0 , G + 0 dd c ϕ = T 11 dd c |z| 2 + T 22 dd c |w| 2 , G + 0 ˆM0 G 0 ϕ ww dLeb M 0 + ˆΩ G 0 ϕ zz dLeb + ˆM0 G 0 ϕ zz h dLeb M 0 .

 

If A ⊂ B ∩ J satisfies µ(A) = 0, then σ T (A ∩ A 0 ) = 0. In particular, for a, b ≥ 0, (i) If ψ • f -n x ≤ b µ-a.e. on B ∩ J, then ψ • f -n x ≤ b σ T -a.e. on B ∩ J.
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