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On slice measures of Green currents on CP
2

Christophe Dupont and Virgile Tapiero

18th june 2023

Abstract

Let f be a holomorphic map of CP2 of degree d ≥ 2, let T be its Green current

and µ = T ∧ T be its equilibrium measure. We give a new proof of a theorem due

to Dujardin asserting that µ ≪ T ∧ ωP2 implies λ2 = 1

2
Log d, where λ1 ≥ λ2 are

the Lyapunov exponents of µ. Then, assuming µ ≪ T ∧ ωP2, we study slice measures

ν := T ∧ ddc|W |2, where W is a holomorphic local submersion. We give sufficient

conditions on the Radon-Nikodym derivative of µ with respect to the trace measure

T ∧ ωP2 ensuring µ = ν. The involved submersion W comes from normal coordinates

for the inverse branches of the iterates of f .

Keywords— Holomorphic dynamics, Equilibrium measure, Green current, Lyapunov exponents,

normal forms. MSC 2020 : 32H50, 32U40, 37C40, 37D25

1 Introduction

Let f be a holomorphic map of P2 of degree d ≥ 2. The Green current T and the equi-
librium measure µ are invariant objects encoding the dynamical properties of f , we refer
to the books [9], [18] by Dinh and Sibony. We recall that T := limn

1
dn
fn∗ωP2 , where ωP2 is

the normalized Fubini-Study (1, 1)−form of P2, this is a closed positive current, with local
Hölder potentials. It satisfies f∗T = dT and its auto-intersection µ := T ∧ T defines an
invariant probability measure on P

2, which is mixing and satisfies f∗µ = d2µ.

Berteloot-Loeb [5] proved that T is a smooth and non degenerate positive (1, 1)-form
on an open subset of P2 if and only if f is a Lattès map. Berteloot-Dupont [1] established
later that Berteloot-Loeb’s condition on T characterizes the condition µ≪ LebP2 . Another
characterization of Lattès maps involves the Lyapunov exponents λ1 ≥ λ2 of µ (see Theo-
rem 2.1 for their definitions). Briend-Duval [6] proved that λ2 ≥ 1

2 Log d. The equality
λ1 = λ2 =

1
2 Log d holds if and only if µ≪ LebP2 , see [12].

It is now natural to characterize the mappings satisfying λ1 > λ2 =
1
2 Log d. Hopefully,

the presence of a minimal Lyapunov exponent should be equivalent to regular properties
for T and µ, and perhaps (in some sense) to the existence of a one dimensional Lattès-like
factor. The following result, due to Dujardin, nicely fits into this program.

Theorem 1.1 (Dujardin [10, Theorem 3.6]). If µ≪ σT := T ∧ ωP2 then λ2 =
1
2 Log d.

He also asked the question of the reverse implication, a partial answer is provided in
[19]. The measure σT is called the trace of T and carries its mass. The proof of Dujardin’s
theorem is based on a construction of a df−invariant sub-bundle T ⊂ TP2 (called Fatou
directions) of rank ≥ 1 that satisfies for σT−almost every x and for any ~v ∈ Tx\{0} :

lim sup
n→+∞

1

n
Log ||dxfn(~v)|| ≤

1

2
Log d. (1)
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Indeed, using µ ≪ σT and Oseledec’s Theorem 2.1, for µ−almost every x, the lim sup in
(1) tends to λ1 or λ2, which implies in both cases λ2 ≤ 1

2 Log d. Briend-Duval inequality
λ2 ≥ 1

2 Log d then implies the equality. We note that these arguments only require that
µ≪ σT on an open sub-set U charged by µ.

On a chart U ⊂ P
2 equipped with holomorphic coordinates (Z,W ) we have :

σT ≍ (T ∧ ddc|Z|2 + T ∧ ddc|W |2).

By construction Supp(µ) ⊂ Supp(σT ), hence if µ(U) > 0 then (T ∧ ddc|Z|2)(U) > 0 or
(T ∧ ddc|W |2)(U) > 0. Actually in this case T ∧ ddc|Z|2 and T ∧ ddc|W |2 both charge
U . The idea is that if T ∧ ddc|Z|2 ≡ 0 on U , then the potentials of T would be harmonic
on almost every vertical disc contained in U , which implies that µ is null on U , see [13, §3.3].

The measures T ∧ ddc|Z|2 and T ∧ ddc|W |2 are called slices of T . Dujardin’s theorem
gives an information on λ2 when µ≪ σT , the proof is obtained by applying general results
concerning Fatou directions [10]. Our purpose in this article is to analyse more deeply the
relations between µ and slices of T when µ≪ σT .

We first provide another proof of Dujardin’s Theorem by using normal forms

for the generic inverse branches of fn and forward recurrent properties. We then
provide another proof (of a weaker version of) Theorem 1.1 using backward recurrent pro-
perties (we indeed assume that the density of µ with respect to T is bounded). The interest
of this second proof is to introduce a decomposition of µ using normal coordinates. This
decomposition is the cornerstone of the proof of Theorem 1.2 that we now introduce.

Relations between µ and slices of T can be obtained when f preserves a pencil of lines,
given for instance by the meromorphic function π[z : w : t] = [z : w]. Dupont-Taflin [14]
proved that in this situation µ and T are related by the formula :

µ = T ∧ π∗µθ (which implies µ≪ σT ), (2)

where θ is the rational map satisfying π ◦ f = θ ◦ π. On another hand, Berteloot-Loeb [4]
proved that if θ is a Lattès map, then for every a ∈ P

1 outside a finite sub-set, there exists
a holomorphic coordinate ζa such that µθ = ddc|ζa|2 on a neighborhood Va of a (µθ is the
equilibrium measure of θ). Combining this result with (2), we obtain on π−1(Va) :

µ = T ∧ ddc|W |2, with W := ζa ◦ π. (3)

This gives an example where a slice of T is equal to µ. Theorem 1.2 shows a similar formula.
We assume µ≪ σT and denote ψ ∈ L1(σT ) the Radon-Nikodym derivative of µ with respect
to σT . Let J := Supp(µ) and ψ|J be the restriction of ψ on J . Note that the measurable
function ψ is defined on P

2, it is not unique since one can modify it outside J by still
preserving µ = ψσT . However, one has µ = (ψ11J)σT on P

2 for every version of ψ. We
denote ψΩ := ψ11Ω for every borel sub-set Ω of P2. In our statement, the local submersion
Wx̂ : B(x0, ηε(x̂)) → C is provided by the normal form Theorem 2.2.

Theorem 1.2. Assume that µ = ψJσT for some measurable function ψ on P
2 (in particular

λ2 =
1
2 Log d) and that λ1 is strictly larger than λ2.

1. If ψ|J is continuous, then for µ̂−almost every x̂ there exist r1(x̂) ≤ ηε(x̂) and Cx̂ > 0
such that :

µ = Cx̂

(
T ∧ ddc|Wx̂|2

)
|J on B(x0, r1(x̂)).
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2. If ψ is continuous on an open neighborhood V of J and if µ = ψV σT , then there
exist r2(x̂) ≤ ηε(x̂) and Cx̂ > 0 such that :

µ = Cx̂ T ∧ ddc|Wx̂|2 on B(x0, r2(x̂)).

The first Item implies that for µ̂−almost every x̂, ŷ satisfying π0(x̂) = π0(ŷ), the
measures

(
T ∧ ddc|Wx̂|2

)
|J and

(
T ∧ ddc|Wŷ|2

)
|J coincide on a small ball centered at π0(x̂).

In particular, the germ of measure
(
T ∧ ddc|Wx̂|2

)
|J does not depend on the full orbit x̂

but only on the π0-projection of x̂. A similar remark holds for the second Item.
Let us also observe that the hypothesis λ1 > λ2 in Theorem 1.2 is not restrictive.

Assume indeed that µ = ψJσT and that λ1 = λ2. Then the Lyapunov exponents are both
minimal (equal to 1

2 Log d) and f is a Lattès mapping on P
2. In this case there exists a finite

ramified covering σ : C2/Λ → P
2 such that σ∗T is equal to a positive definite hermitian

form H with constant coefficients (Λ being a cocompact real lattice in C
2), see [11]. This

implies that, around every point p outside an algebraic sub-set of P
2 (the critical values

of σ), the current T coincides with H in local coordinates given by σ. It follows that, for
every local submersion W defined near p, the measure µ = T ∧ T is equal to T ∧ ddc|W |2
multiplied by a smooth positive function.

Let us finally note that the assumption of Item 2 morally replaces the function ψJ = ψ11J
of the first Item (which is singular due to the multiplication by 11J) by a continuous function
on a neighborhood V of J . More precisely, it requires the existence of an open neighborhood
V of J such that ψ|V is continuous and such that Supp(ψσT )|V = J . This assumption is
fulfilled if one assumes that the restriction ψ|J is continuous and that SuppT = J , by
applying Tietze-Urysohn theorem to ψ|J .

Question 1.3. Is it sufficient to assume ψ|J continuous to get µ = T ∧ ddc|Wx̂|2 locally ?

We remark that the continuity of ψ|J is satisfied by suspensions of Lattès maps on P
1,

we provide explicit computations of T , µ and ψ in Section 8.

Acknowledgements : The first author thanks the Simons Foundation, Laura DeMarco
and Mattias Jonsson for the invitation at the Simons Symposium on Algebraic, Complex
and Arithmetic Dynamics, in Schloss Elmau in August 2022. His research is partially funded
by the European Research Council (ERC GOAT 101053021). The authors benefited from
the support of the French government "Investissements d’Avenir" program integrated to
France 2030 (ANR-11-LABX-0020-01).

2 Classical results

2.1 Lyapunov exponents

Let f be a holomorphic mapping of P
2 of degree d ≥ 2. Let T be its Green current

and µ = T ∧ T be its equilibrium measure, it is f -invariant and ergodic. Since T has local
continuous psh potentials, µ integrates local psh functions. In particular µ does not charge
analytic sub-sets of P2 and µ(C) = 0, where C :=

⋃
n∈Z f

n(Crit f). It also allows to define
the Lyapunov exponents λ1 ≥ λ2 :

λ1 = lim
n→+∞

1

n

ˆ

P2

Log ||dfn|| dµ and λ1 + λ2 =

ˆ

P2

Log |detC df | dµ.

Briend-Duval [6] proved that λ2 ≥ 1
2 Log d. The Oseledec theorem states as follows.

Theorem 2.1 (Oseledec).
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1. If λ1 = λ2 = λ, then there exists an invariant borel subset Aos of full µ-measure and
disjoint from C such that for every x ∈ Aos :

∀~v ∈ TxP2 \ {0} , lim
n→+∞

1

n
Log ||dxfn(~v)|| = λ.

2. If λ1 > λ2, then there exists an invariant borel subset Aos of full µ-measure and
disjoint from C such that for every x ∈ Aos, there exists vs(x) ∈ P(TxP

2) satisfying :

∀~v ∈ TxP
2 \ vs(x) , lim

n→+∞
1

n
Log ||dxfn(~v)|| = λ1.

∀~v ∈ vs(x) \ {0} , lim
n→+∞

1

n
Log ||dxfn(~v)|| = λ2.

Moreover vs is measurable and satisfies [dxf ](vs(x)) = vs(f(x)) for every x ∈ Aos,
where [dxf ] is the projectivization of the tangent map dxf .

2.2 Normal forms for inverse branches

We denote X := P
2\C which is totally invariant by f , and we denote X̂ the set of

all sequences x̂ = (xn)n∈Z of X that are orbits under the action of f i.e. xn+1 = f(xn).
Equipped with the natural projection π0 : X̂ −→ X defined by π0(x̂) = x0, the dynamical
system (X, f, µ) admits a natural extension (X̂, f̂ , µ̂), where f̂ is the left shift on X̂ and µ̂
is the unique probability measure on X̂ invariant by f̂ such that (π0)∗µ̂ = µ. The measure
µ̂ is ergodic as µ, see [8, Chapter 10].

Given an orbit x̂ ∈ X̂, there exists a family of inverse branches (f−n
x̂

)n∈N such that f−n
x̂

is defined on B(x0, ηε(x̂)) for every n ≥ 0, and such that Lip(f−n
x̂

) ≤ βε(x̂)e
−n(λ2−ε). The

functions x̂ 7→ ηε(x̂) and x̂ 7→ βε(x̂) are ε−tempered, they satisfy :

∀n ∈ Z , e−|n|εϕ(x̂) ≤ ϕ(f̂n(x̂)) ≤ e+|n|εϕ(x̂).

We refer to Briend-Duval [6] (see also [7, 12]) for details about the construction of the inverse
branches. The following result provides normal forms for those mappings, see [2, 3, 15].

Theorem 2.2. For every ε > 0 small enough with respect to the Lyapunov exponents
λ1 ≥ λ2, there exists an invariant borel sub-set Λε of full µ̂-measure, ε-tempered functions
ρε : Λε → ]0, 1], βε, Lε,Mε : Λε → [1,+∞[ and a function N : Λε → N satisfying the
following properties. For every x̂ ∈ Λε, there exist injective holomorphic mappings

ξx̂ : B(x0, ηε(x̂)) −→ D
2(ρε(x̂))

satisfying :

1. ξx̂(x0) = 0 and dx0
ξx̂(vs(x0)) is the vertical axis in C

2,

2. ∀p, q ∈ B(x0, ηε(x̂)) , 1
2dist(p, q) ≤ ||ξx̂(p)− ξx̂(q)|| ≤ βε(x̂) dist(p, q) ,

3. the following diagram commutes for every n ≥ N(x̂) :

B(x−n, ηε(x̂−n))

ξx̂
−n

��

B(x0, ηε(x̂))
f−n
x̂oo

ξx̂
��

D
2(ρε(x̂−n)) D

2(ρε(x̂))
Rn,x̂

oo

(4)

The mappings Rn,x̂ have the following form depending on (λ1, λ2) :
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(i) If λ1 = λ2 = λ, then Rn,x̂ is a linear and satisfies

e−n(λ+ε)||(z, w)|| ≤ ||Rn,x̂(z, w)|| ≤ e−n(λ−ε)||(z, w)||.

(ii) If λ1 = kλ2 for some k ≥ 2 (we say that λ1 and λ2 are resonant), then Rn,x̂(z, w) =
(αn,x̂z, βn,x̂w) + (γn,x̂w

k, 0).

(iii) If λ1 6∈ {kλ2, k ≥ 1}, then Rn,x̂(z, w) = (αn,x̂z, βn,x̂w).

Moreover, in the cases (ii) and (iii), we have

e−n(λ1+ε) ≤ |αn,x̂| ≤ e−n(λ1−ε) , |γn,x̂| ≤Mε(x̂)e
−n(λ1−ε)

and
e−n(λ2+ε) ≤ |βn,x̂| ≤ e−n(λ2−ε).

Remark 2.3. The diagram (4) commutes for every fixed n ≥ 0 by reducing the radius of the
balls. The property n ≥ N(x̂) actually ensures that f−n

x̂
(B(x0, ηε(x̂))) ⊂ B(x−n, ηε(x̂−n)).

We shall need the following control of (fn)∗ωP2 in Section 3.

Lemma 2.4. For every x̂ ∈ Λε and n ≥ 0, there exists 0 < rn ≤ ηε(x̂) such that

(fn)∗ωP2 ≥ βε(x̂)
−2e2n(λ2−2ε)ωP2 on B(x0, rn).

Proof : We assume to simplify that λ1 > λ2 and that λ1, λ2 are not resonant, the case of
equality and the resonant case can be treated similarly (up to modify the function βε). Let
ε > 0 be small enough such that λ1 − λ2 > 2ε, ensuring |αn,x̂n

|−1 ≥ |βn,x̂n
|−1. According

to Remark 2.3, there exists rn > 0 and 0 < r′n ≤ ηε(x̂n) such that f−n
x̂n

= ξ−1
x̂

◦Rn,x̂n
◦ ξx̂n

on B(xn, r
′
n) and B(x0, rn) ⊂ f−n

x̂n
(B(xn, r

′
n)). Since we have on B(x0, rn) :

(fn)∗ωP2 ≥ ||(dfn)−1||−2ωP2

and
||(dfn)−1||−2 = ||df−n

x̂n
||−2 ≥ ||dξ−1

x̂
||−2||dRn,x̂n

||−2||dξx̂n
||−2,

Theorem 2.2 implies

(fn)∗ωP2 ≥ 4||dRn,x̂n
||−2βε(x̂n)

−2ωP2 on B(x0, rn).

Since |αn,x̂n
|−1 ≥ |βn,x̂n

|−1 and βε is ε-tempered, we deduce on B(x0, rn) :

(fn)∗ωP2 ≥ 4|βn,x̂n
|−2βε(x̂)

−2e−2nεωP2.

The conclusion follows from |βn,x̂n
|−2 ≥ e2n(λ2−ε).

We shall also need the following lemma in Section 5.

Lemma 2.5. Assume that µ = ψJσT for some measurable function ψ on P
2. Let x̂ ∈ Λε

and B := B(x0, ηε(x̂)). Let An := {p ∈ B ∩ J , ψ ◦ f−n
x̂

(p) > 0}.
1. For every n ≥ 0, the measures σT and (f−n

x̂
)∗σT are equivalent on B, and An = A0

modulo a borel sub-set of zero σT−measure.

2. If A ⊂ B ∩ J satisfies µ(A) = 0, then σT (A ∩A0) = 0. In particular, for a, b ≥ 0,

(i) If ψ ◦ f−n
x̂

≤ b µ-a.e. on B ∩ J , then ψ ◦ f−n
x̂

≤ b σT -a.e. on B ∩ J .

(ii) If ψ ◦ f−n
x̂

≥ a µ-a.e. on B ∩ J , then ψ ◦ f−n
x̂

≥ a σT -a.e. on B ∩ J ∩A0.
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Proof : Since f−n
x̂

: B → f−n
x̂

(B) is a biholomorphism (and up to shrink B), there exists
0 < α < β such that

αωP2 ≤ (f−n
x̂

)∗ωP2 ≤ β ωP2 on B.

Using that T is f−invariant, we deduce that σT and (f−n
x̂

)∗σT are equivalent on B. Now
for every p ∈ B ∩ J and every r small enough such that B(p, r) ⊂ B,

µ(B(p, r)) =

ˆ

B(p,r)
ψJσT .

But µ(B(p, r)) = d2nµ(f−n
x̂

(B(p, r))) and

µ(f−n
x̂

(B(p, r))) =

ˆ

B(p,r)
ψJ ◦ f−n

x̂
(f−n

x̂
)∗σT ≃α,β d

−n

ˆ

B(p,r)
ψJ ◦ f−n

x̂
σT ,

where ≃αβ means that the equality holds up to a multiplicative constant between α and β.
We deduce by dividing by σT (B(p, r)) (which is positive since p ∈ J ⊂ SuppT ) :

 

B(p,r)
ψJ σT ≃α,β d

−n

 

B(p,r)
ψJ ◦ f−n

x̂
σT .

By Lebesgue Theorem [16, Theorem 2.12] (taking limits when r tends to zero), we get
for σT−a.e. p ∈ B ∩ J that ψ(p) > 0 if and only if ψ ◦ f−n

x̂
(p) > 0. The second item

comes from 0 = µ(A) =
´

A∩A0
ψJ σT , which gives σT (A ∩ A0) = 0 since ψJ is positive on

A ∩ A0. To obtain (i) and (ii), we apply this fact to {p ∈ B ∩ J , ψ ◦ f−n
x̂

(p) > b} and to
{p ∈ B∩J , ψ ◦f−n

x̂
(p) < a} (which both have zero µ-measure by assumption) and the fact

that An = A0 modulo a borel sub-set of zero σT−measure (provided by the first item).

3 A new proof of Dujardin’s theorem

We provide another proof of Theorem 1.1. We shall use Theorem 2.2 and forward
dynamics. Let ψ ∈ L1(σT ) be such that µ = ψJσT . We recall that λ2 ≥ 1

2 Log d for every
endomorphism of P2, it remains to prove the reverse inequality λ2 ≤ 1

2 Log d in our case
of absolute continuity. For every n ≥ 0, the set

En :=

{
x ∈ P

2 : lim
ρ→0+

 

B(x,ρ)
ψJ ◦ fn σT = ψJ ◦ fn(x)

}

is a borel sub-set of full σT−measure (and so of full µ−measure) by the Lebesgue Theorem.
We define the borel set

E :=

(
⋂

n∈N
En

)
\


⋃

n≥1

Crit(fn)


 ,

which is also of full µ−measure (µ does not charge analytic sub-sets). Let us define

F := E ∩
{
1

τ
≤ ψJ ≤ τ

}
⊂ J,

where τ > 0 is chosen large enough to have µ(F ) > 0. According to Poincaré recurrence
theorem, for µ̂−almost every x̂ ∈ π−1

0 (F ), there exists a sub-sequence x̂nk
which satisfies

x̂nk
∈ π−1

0 (F ). Let us fix ε > 0 and apply the normal form Theorem 2.2, it yields a borel

6



sub-set Λε of full µ̂-measure of good orbits. Let us fix x̂ ∈ π−1
0 (F )∩Λε and a sub-sequence

(nk)k as before. Let us also fix an integer k. Since x0 ∈ E avoids the critical set of fnk ,
there exists ρk > 0 small enough such that fnk is injective on the ball B(x0, ρk). Then we
have for any ρ ∈]0, ρk] :

µ(Aρ) = d−2nkµ(fnk(Aρ)), (5)

where Aρ := B(x0, ρ). Up to take a smaller ρk, we can assume that

fnk(Aρk) ⊂ B(xnk
, ηε(x̂nk

)) and Aρ ⊂ B(x0, rnk
),

where rnk
comes from Lemma 2.4. From µ = ψJσT , Formula (5) yields for every ρ ∈]0, ρk] :

ˆ

Aρ

ψJ σT = d−2nk

ˆ

fnk (Aρ)
ψJ σT

= d−2nk

ˆ

Aρ

(ψJ ◦ fnk)dnk T ∧ (fnk)∗ωP2

where the second equality uses the invariance of the Green current (fnk)∗T = dnkT and
the fact that fnk is injective on Aρ. Since Aρ ⊂ B(x0, rnk

), we can use the estimate given
by Lemma 2.4 with n = nk to deduce

ˆ

Aρ

ψJ σT ≥ d−nk

ˆ

Aρ

(ψJ ◦ fnk)βε(x̂)
−2e2nk(λ2−2ε) T ∧ ωP2

= d−nkβε(x̂)
−2e2nk(λ2−2ε)

ˆ

Aρ

(ψJ ◦ fnk) σT .

We chose x0 ∈ J , thus σT (Aρ) > 0 and we have :

 

Aρ

ψJ σT ≥ d−nkβε(x̂)
−2e2nk(λ2−2ε)

 

Aρ

(ψJ ◦ fnk) σT .

But we also have x0 ∈ E ⊂ E0 ∩ Enk
, thus we can take limits when ρ→ 0+ to get

ψJ(x0) ≥ d−nkβε(x̂)
−2e2nk(λ2−2ε) × ψJ(f

nk(x0)).

Since x0 and xnk
= fnk(x0) belongs to F ⊂ { 1

τ
≤ ψJ ≤ τ}, we deduce that :

τ ≥ 1

τ
βε(x̂)

−2e−2nk(
1

2
Log d−λ2+2ε).

Since this is true for every integer k, we get 1
2 Log d−λ2+2ε ≥ 0. We obtain λ2 ≤ 1

2 Log d
as desired, since ε > 0 is arbitrary small.

4 Decomposition of µ

4.1 Normal coordinates and absolute continuity

According to Theorem 2.2, there exists an invariant sub-set of full µ̂−measure Λε such
that for any x̂ ∈ Λε, there exist inverse branches

f−n
x̂

: B(x0, ηε(x̂)) −→ B(x−n, ηε(x̂−n)), n ≥ N(x̂),

and holomorphic charts

ξx̂ = (Zx̂,Wx̂) : B(x0, ηε(x̂)) −→ D
2(ρε(x̂)) (6)

7



such that 1
2 ≤ ||dξx̂|| ≤ βε(x̂) on B(x0, ηε(x̂)) and

f−n
x̂

= ξ−1
x̂−n

◦Rn,x̂ ◦ ξx̂

for any n ≥ N(x̂), where Rn,x̂ is a polynomial map (C2, (Zx̂,Wx̂)) → (C2, (Zx̂−n
,Wx̂−n

)).
When λ1, λ2 are not resonant, Rn,x̂ is a linear diagonal map with eigenvalues |αn,x̂| ≃
e−n(λ1±ε) and |βn,x̂| ≃ e−n(λ2±ε). Let (ωx̂,AB)A,B∈{Z,W} be the smooth functions defined by
the formula

ωP2 =
∑

A,B∈{Z,W}
ωx̂,AB

i

2

(
dAx̂ ∧ dBx̂

)
on B(x0, ηε(x̂)). (7)

For every A,B in {Z,W} and for every n ≥ N(x̂) we define the following functions :

FAB
x̂,n := ωx̂−n,AB ◦ f−n

x̂
: B(x0, ηε(x̂)) −→ C.

Proposition 4.1. Assume that µ ≪ σT and let ψJ be the Radon-Nikodym derivative of µ
with respect to σT . We assume that the Lyapunov exponents λ1 > λ2 are not resonant. For
every x̂ ∈ Λε, for every borel set U ⊂ B(x0, ηε(x̂)) and for every n ≥ N(x̂) we have :

µ(U) = dn
ˆ

U

(ψJ ◦ f−n
x̂

)
∑

A,B∈{Z,W}
FAB
x̂,n α

A
n,x̂ α

B
n,x̂

T ∧ i

2
dAx̂ ∧ dBx̂,

where αZ
n,x̂ := αn,x̂ and αW

n,x̂ := βn,x̂.

Proof : From the equalities µ(U) = d2nµ(f−n
x̂

(U)) and µ = ψJ(T ∧ ωP2), we obtain

µ(U) = d2n
ˆ

U

(ψJ ◦ f−n
x̂

) (f−n
x̂

)∗T ∧ (f−n
x̂

)∗ωP2 .

By invariance of the Green current, we get (f−n
x̂

)∗T = d−nT on B(x0, ηε(x̂)) and

µ(U) = dn
ˆ

U

(ψJ ◦ f−n
x̂

) T ∧ (f−n
x̂

)∗ωP2 .

We conclude by pulling back Formula (7) (x̂ being replaced by x̂−n) by f−n
x̂

and using the
fact that Rn,x̂ is linear and diagonal with eigenvalues αn,x̂ and βn,x̂.

Definition 4.2. Assume that µ≪ σT and let ψJ = ψ11J be the Radon-Nikodym derivative
of µ with respect to σT . We assume that the Lyapunov exponents λ1 > λ2 are not resonant.
For every U ⊂ B(x0, ηε(x̂)) and n ≥ 0, we have according to Proposition 4.1 :

µ(U) = In(U ∩ J) + Jn(U ∩ J),

where for every D ⊂ B(x0, ηε(x̂)) :

In(D) := dn|βn,x̂|2
ˆ

D

(ψ ◦ f−n
x̂

)FWW
x̂,n T ∧ i

2
(dWx̂ ∧ dW x̂)

and

Jn(D) := dn
∑

(A,B)6=(W,W )

αA
nk,x̂

αB
n,x̂

ˆ

D

(ψ ◦ f−n
x̂

)FAB
x̂,n T ∧ i

2
(dAx̂ ∧ dBx̂)

where αZ
n,x̂ := αn,x̂ and αW

n,x̂ := βn,x̂.

Remark 4.3. We observe that if µ = ψV σT as in the second item of Theorem 1.2, then

µ(U) = In(U ∩ V ) + Jn(U ∩ V )

for every U ⊂ B(x0, ηε(x̂)).
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4.2 Recurrence in Aτ

Definition 4.4. For τ > 0 let Aτ ⊂ Λε be the subset consisting of elements ŷ satisfying

1. |ωŷ,AB| ≤ τ ,

2. 1
τ
≤ ωŷ,AA ≤ τ ,

3. SAB(ŷ) := supB(y0,ηε(ŷ)) ||dωŷ,AB|| ≤ τ ,

4. ψJ ◦ π0(ŷ) ≥ 1
τ
,

the two first items holding on B(y0, ηε(ŷ)), the three first ones for every A,B ∈ {Z,W}.

Since the distortion of the coordinates ξx̂ = (Zx̂,Wx̂) is controlled by Theorem 2.2,
there exists τ large enough such that Aτ has positive µ̂-measure. By Poincaré recurrence
theorem, for µ̂−almost every x̂, there exists (nk)k∈N such that nk ≥ N(x̂) and

x̂−nk
∈ Aτ .

We have specified nk ≥ N(x̂) to have f−nk

x̂
(B(x0, ηε(x̂)) ⊂ B(x−nk

, ηε(x̂−nk
)). In this way

the functions FAB
x̂,nk

are well defined on B(x0, ηε(x̂)). By definition of FAB
x̂,n , we get from the

first item of Definition 4.4 :

|FAB
x̂,nk

| ≤ τ on B(x0, ηε(x̂)). (8)

Moreover, using the third item of Definition 4.4 and Lip(f−nk

x̂
) ≤ βε(x̂)e

−nk(λ2−ε) (given
by Theorem 2.2), we get

||dFAB
x̂,nk

|| ≤ τβε(x̂)e
−nk(λ2−ε) on B(x0, ηε(x̂)).

We deduce that

FAB
x̂,nk

uniformly converges on B(x0, ηε(x̂)) to a constant FAB
x̂ up to a subsequence (9)

and that (according to the second item of Definition 4.4) :

FAA
x̂,nk

≥ 1

τ
on B(x0, ηε(x̂)). (10)

4.3 A weaker version of Dujardin’s theorem

We give another proof of Theorem 1.1 assuming that the Radon-Nikodym derivative
ψJ ∈ L∞(σT ). Our motivation is to use backward iterates, namely the inverse branches
f−nk

x̂
, in order to prepare the proof of Theorem 1.2 in Section 6.1. As in Section 3, it

suffices to prove that λ2 ≤ 1
2 Log d.

For sake of simplicity, we assume that the Lyapunov exponents λ1 > λ2 are not resonant.
This implies that the polynomial map Rn,x̂ appearing in the diagram (4) is linear and
diagonal. The proof can be adapted in the resonant case, see Section 7.

We apply the normal form Theorem 2.2 with ε > 0, it yields a borel sub-set Λǫ of full
µ̂-measure of good orbits. We use the set Aτ defined in Section 4.2. Let us fix a µ̂−generic
element x̂ ∈ Λǫ, in particular x0 ∈ J . Let (nk)k∈N be such that x̂−nk

∈ Aτ .
Let δ > 0 be such that µ(B(x0, ηε(x̂))) > 2δ. By Lusin’s theorem there exists a compact

set C0 ⊂ B(x0, ηε(x̂)) such that µ(B(x0, ηε(x̂))\C0) < δ and ψJ is continuous on C0. Using
again Lusin’s theorem we construct by induction a sequence (Cn)n of compact sub-sets of
B(x0, ηε(x̂)) such that

Cn+1 ⊂ Cn and µ(Cn\Cn+1) < 2−(n+1)δ

9



and
ψJ ◦ f−(n+1)

x̂
∈ C0(Cn+1).

Then µ(Cn) > µ(Cn−1)− 2−nδ > · · · > µ(C0)− δ > µ(B(x0, ηε(x̂)))− 2δ > 0. Thus

C :=
⋂

n∈N
Cn

satisfies µ(C) > 0. Let G be a borel sub-set of full σT−measure (and so of full µ−measure)
such that :

∀p ∈ G, 0 ≤ ψJ (p) ≤ ||ψJ ||L∞(σT ).

Let Gk be the Borel set :

Gk := f−nk

x̂
(B(x0, ηε(x̂)))

⋂
G.

Because fnk is injective on f−nk

x̂
(B(x0, ηε(x̂))), which contains Gk, one has µ(fnk(Gk)) =

d2nkµ(Gk) = µ(B(x0, ηε(x̂))), which is positive since x0 ∈ J . Thus µ(∩k∈Nfnk(Gk)) =
µ(B(x0, ηε(x̂))) > 0. Let

x′0 ∈
⋂

k∈N
fnk(Gk) ∩

{
1

τ ′
≤ ψJ

}
∩ C ∩ J, (11)

where τ ′ > 1 is large enough so that the set defined in (11) is not empty. Observe that
f−nk

x̂
(x′0) ∈ G for every k ∈ N. For a given k, let ρk > 0 be small enough so that for any

0 < ρ < ρk :
Aρ :=

(
B(x′0, ρ) ∩ C

)
⊂ B(x0, ηε(x̂)).

Since ||dξx̂|| ≤ βε(x̂) we can assume that
∑

A,B |T∧ i
2dAx̂∧dBx̂| ≤ βε(x̂)

2σT on B(x0, ηε(x̂)).

According to Proposition 4.1, |FAB
x̂,nk

| ≤ τ (Equation (8)) and |αn,x̂| ≤ |βn,x̂|, we deduce
that :

ˆ

Aρ

ψJ dσT = µ(Aρ) ≤ dnk |βnk ,x̂|2τβε(x̂)2
ˆ

Aρ

(ψJ ◦ f−nk

x̂
) dσT .

According to Equation (11) we have x′0 ∈ J , thus σT (Aρ) > 0 and

 

Aρ

ψJ dσT ≤ dnk |βnk,x̂|2τβε(x̂)2
 

Aρ

(ψJ ◦ f−nk

x̂
) dσT .

Equation (11) also gives 1
τ ′

≤ ψJ(x
′
0) and x′0 ∈ C ⊂ C0 ∩Cnk

. We also recall that Aρ ⊂ C.

Hence, if ρ tends to 0, we get by continuity of ψJ (resp. ψJ ◦ f−nk

x̂
) on C0 (resp. Cnk

) :

1

τ ′
≤ ψJ(x

′
0) ≤ dnk |βnk ,x̂|2τβε(x̂)2(ψJ ◦ f−nk

x̂
)(x′0) ≤ dnk |βnk,x̂|2τβε(x̂)2||ψJ ||L∞(σT ),

the last inequality coming from f−nk

x̂
(x′0) ∈ G. We finally get for every k :

(
τ ′τβε(x̂)

2||ψJ ||L∞(σT )

)−1 ≤ dnk |βnk ,x̂|2 ≤ e2nk( 1

2
Log d−λ2+ε).

Hence λ2 ≤ 1
2 Log d+ ε, which gives λ2 ≤ 1

2 Log d when ε tends to zero, as desired.
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5 Estimates on In and Jn in the decomposition of µ

5.1 Study of In and Jn

Proposition 5.1. Assume that µ ≪ σT and let ψ11J be the Radon-Nikodym derivative
of µ with respect to σT . Assume that λ1 > λ2 and let ε > 0 small enough such that
λ1 + λ2 − 2ε > Log d and λ1 >

1
2 Log d + ε. Let x̂ be a µ̂-generic orbit and let (nk)k be

a sub-sequence such that x̂−nk
∈ Aτ . Let σx̂ := T ∧ ddc|Wx̂|2. Let B := B(x0, ηε(x̂)) and

A0 := {p ∈ B ∩ J , ψ(p) > 0}. Let U ⊂ B be a borel set.

1. If ψ ◦ f−nk

x̂
≤ b µ− a.e. on B for every k ≥ 0, then

Jnk
(U ∩ J) ≤ Cx̂ e

−nk(λ1+λ2−Log d)e2nkε −→
k→∞

0.

2. If ψ ◦ f−nk

x̂
≤ b µ− a.e. on B and if µ(U) > 0, then σx̂(U ∩ J ∩A0) > 0.

3. If 0 < a ≤ ψ ◦ f−nk

x̂
≤ b µ− a.e. on B, then

dnk |βnk ,x̂|2aτ−1σx̂(U ∩ J ∩A0) ≤ Ink
(U ∩ J) ≤ dnk |βnk ,x̂|2bτσx̂(U ∩ J).

In particular (dnk |βnk,x̂|2)k converges, up to a sub-sequence, to some u > 0.

Proof : Let us prove the first item. We assume that λ1, λ2 are not resonant, we refer to
Section 7 to fix the resonant case. By Definition 4.2,

Jnk
(U ∩ J) =

∑

(A,B)6=(W,W )

dnk αA
nk,x̂

αB
nk,x̂

ˆ

U∩J
(ψ ◦ f−nk

x̂
)FAB

x̂,nk
T ∧ dAx̂ ∧ dBx̂.

Using |αn,x̂| ≤ |βn,x̂|, the (assumed) upper bound on ψ ◦ f−nk

x̂
, the upper bound on FAB

x̂,nk

provided by (8), the item (i) of Lemma 2.5 and Cauchy-Schwarz inequality, we get with
σx̂ := T ∧ ddc|Wx̂|2 and λx̂ := T ∧ ddc|Zx̂|2 (which are ≪ σT ) :

|Jnk
(U ∩ J)| ≤ dnk |αnk ,x̂βnk,x̂| b τ (σx̂ + λx̂)(U ∩ J).

The first item then follows from |αn,x̂| ≤ e−n(λ1−ε) and |βn,x̂| ≤ e−n(λ2−ε).

We show the second item. By using Item 1 of Lemma 2.5 (for the last equality), we get

µ(U) = µ(U ∩ J) = d2nµ(f−n
x̂

(U ∩ J)) = d2n
ˆ

U∩J∩A0

(ψ ◦ f−n
x̂

) (f−n
x̂

)∗(T ∧ ωP2).

Cauchy-Schwarz inequality implies (up to multiplication by a constant) :

T ∧ ωP2 ≤ ωx̂−n,WW σx̂−n
+ ωx̂−n,ZZ λx̂−n

on B(x̂−n, ηε(x̂−n)).

We now fix n = nk. Using the (assumed) upper bound on ψ◦f−nk

x̂
on B combined with item

(i) of Lemma 2.5, and the upper bounds on FWW
x̂,nk

= ωx̂−n,WW ◦f−nk

x̂
, FZZ

x̂,nk
= ωx̂−n,ZZ◦f−nk

x̂

provided by Equation (8), we get

µ(U) ≤ bd2nkτ

(
ˆ

U∩J∩A0

(f−nk

x̂
)∗(σx̂−nk

) +

ˆ

U∩J∩A0

(f−nk

x̂
)∗(λx̂−nk

)

)
.

We deduce

µ(U) ≤ bd2nkτ

(
ˆ

U∩J∩A0

d−nk |βnk,x̂|2 σx̂ +
ˆ

U∩J∩A0

d−nk |αnk,x̂|2 λx̂
)
,
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hence
0 < µ(U) ≤ bdnkτ

(
|βnk ,x̂|2σx̂(U ∩ J ∩A0) + |αnk ,x̂|2λx̂(U ∩ J ∩A0)

)
.

To conclude we observe that

dnk |αnk,x̂|2 ≤ enk(Log d −2λ1 +2ε),

which tends to 0 when k tends to infinity. Hence σx̂(U ∩ J ∩A0) > 0.

Let us prove the third item. According to item (ii) of Lemma 2.5, we have

ψ ◦ f−nk

x̂
≥ a, σx̂ − a.e. on B ∩ J ∩A0.

Hence, according to Definition 4.2, we get

Ink
(U ∩ J ∩A0) ≥ dnk |βnk ,x̂|2a

ˆ

U∩J∩A0

FWW
x̂,n σx̂ ≥ dnk |βnk,x̂|2a

1

τ
σx̂(U ∩ J ∩A0),

where the last inequality comes from Equation (10). Similarly, by using item (i) of Lemma
2.5 and Equation (8), we get

Ink
(U ∩ J) ≤ dnk |βnk ,x̂|2bτσx̂(U ∩ J)

This proves the two stated inequalities on Ink
(U ∩ J). Let us verify the last fact. Since

0 < µ(B) = Ink
(B ∩ J) + Jnk

(B ∩ J) and since Jnk
(B) tends to 0 by the first item, we get

1
2µ(B) ≤ Ink

(B ∩ J) ≤ 2µ(B) for k large enough, which implies

0 <
1

2bτ

µ(B)

σx̂(B ∩ J) ≤ dnk |βnk,x̂|2 ≤
2τ

a

µ(B)

σx̂(B ∩ J ∩A0)
< +∞,

since σx̂(B ∩ J ∩A0) > 0 by the second item.

5.2 Application : an equivalence between µ and a slice of T

We prove that µ can be approximated by a slice of T under absolute continuity assump-
tions. The proof is a direct application of the decomposition of µ fixed in Definition 4.2 and
of Proposition 5.1.

Proposition 5.2. Assume that µ ≪ σT and λ1 > λ2 = 1
2 Log d. Let ψ11J be the Radon-

Nikodym derivative of µ with respect to σT . Let x̂ be a µ̂-generic element and let (nk)k be a
sub-sequence such that x̂−nk

∈ Aτ . Let B := B(x0, ηε(x̂)) and A0 := {p ∈ B∩J , ψ(p) > 0}.
If

0 < a ≤ ψ ◦ f−nk

x̂
≤ b µ− a.e. on B for every k ≥ 0,

then there exists Cx̂ > 0 such that on B :

C−1
x̂

(T ∧ ddc|Wx̂|2)|J∩A0
≤ µ ≤ Cx̂(T ∧ ddc|Wx̂|2)|J .

Proof : Let U ⊂ B be a borel set and let Ik := Ink
(U ∩J), Jk := Jnk

(U ∩J). According to
Definition 4.2, we have µ(U) = Ik+Jk. The first item of Proposition 5.1 yields Jk → 0. Using
the third item of Proposition 5.1 (which in particular provides limk d

nk |βnk,x̂|2 = u > 0),
Equation (8) and item (i) of Lemma 2.5, we get

µ(U) ≤ u b τ σx̂(U ∩ J).
Similarly, by using Equation (10) and item (ii) of Lemma 2.5, we get

µ(U) ≥ ua

τ
σx̂(U ∩ J ∩A0).

We conclude by setting Cx̂ := max{τ/ua, ubτ}.
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6 Proof of Theorem 1.2

6.1 Proof of the first item

Lemma 6.1. Assume that µ≪ σT and λ1 > λ2 =
1
2 Log d. Let ψ11J be the Radon-Nikodym

derivative of µ with respect to σT , and assume that ψ|J is continuous. Let x̂ be a µ̂-generic
element and let (nk)k be a sub-sequence such that x̂−nk

∈ Aτ with and nk ≥ N(x̂). There
exists r1(x̂) ≤ ηε(x̂) and x−∞ ∈ J such that, up to a sub-sequence :

1. limk d
nk |βnk ,x̂|2 = u > 0 and limk Jnk

(U ∩J) = 0 for any borel set U ⊂ B(x0, r1(x̂)),

2. ψ ◦ f−nk

x̂
uniformly converges to ψ(x−∞) on B(x0, r1(x̂)) ∩ J .

Proof : To prove the first item of the Lemma, in view of Proposition 5.1, it suffices to
verify

1

2τ
≤ ψ ◦ f−nk

x̂

on some B(x0, r1(x̂)) ∩ J . By uniform continuity, there exists δ(τ) > 0 such that

∀a, b ∈ J, dist(a, b) ≤ δ(τ) =⇒ |ψ(a) − ψ(b)| ≤ 1

2τ
.

Defining r1(x̂) := min
{
ηε(x̂),

δ(τ)
βε(x̂)

}
, we have for every p ∈ B(x0, r1(x̂)) :

dist
(
f−nk

x̂
(p), f−nk

x̂
(x0)

)
≤ Lip(f−nk

x̂
)r1(x̂) ≤ βε(x̂)r1(x̂) ≤ δ(τ).

Using ψ(x−nk
) ≥ 1

τ
(coming from x̂−nk

∈ Aτ ), we get ψ ◦ f−nk

x̂
≥ 1

2τ on B(x0, r1(x̂)) ∩ J .
For the second item, the sequence (x−nk

)k ∈ J converges by compactness to some
x−∞ ∈ J . Since Lip f−nk

x̂
tends to 0,

(
f−nk

x̂

)
k

converges uniformly on B(x0, r1(x̂)) to the
constant mapping x−∞. The conclusion follows from the continuity of ψ on J .

We now prove the first item of Theorem 1.2. Let U ⊂ B(x0, r1(x̂)) be a borel set. We
recall that σx̂ = T ∧ ddc|Wx̂|2 and that by Definition 4.2 :

µ(U) = µ(U ∩ J) = dnk |βnk ,x̂|2
ˆ

U∩J

(
ψ ◦ f−nk

x̂

)
FWW
x̂,nk

σx̂ + Jnk
(U ∩ J).

According to Equation (9), FWW
x̂,nk

uniformly converges on B(x0, r1(x̂)) to some constant
Fx̂, up to a sub-sequence. We conclude by using the two items of Lemma 6.1, which yield
µ(U) = Cx̂ σx̂(U ∩ J), where Cx̂ := uFx̂ ψ(x−∞). Note that Cx̂ does not depend on U and
is positive by taking U = B(x0, r1(x̂)).

6.2 Proof of the second item

The following lemma is the counterpart of Lemma 6.1, the function ψ being now conti-
nuous on a neighborhood V of J . The two items hold without any restriction to J . The
proof is similar using Remark 4.3 (decomposition of µ on V ), the uniform continuity
of ψ on V , and by introducing a radius r2(x̂) satisfying B(x0, r2(x̂)) ⊂ V . Note that
f−nk

x̂
(B(x0, r2(x̂))) ⊂ V for k large enough.

Lemma 6.2. Assume that µ ≪ σT and λ1 > λ2 = 1
2 Log d. We assume that there exists

a neighborhood V of J and a function ψ ∈ L1(σT ) such that ψ is continuous on V and
satifies µ = ψV σT (we recall that ψV = ψ11V ). Let x̂ be a µ̂−generic element and let (nk)k
be a sub-sequence such that x̂−nk

∈ Aτ with n ≥ N(x̂). There exists r2(x̂) ≤ ηε(x̂) (small
enough to have B(x0, r2(x̂)) ⊂ V ) and x−∞ ∈ J such that, up to a sub-sequence :

13



1. limk d
nk |βnk ,x̂|2 = u > 0 and limk Jnk

(U) = 0 for any borel set U ⊂ B(x0, r2(x̂)),

2. ψ ◦ f−nk

x̂
uniformly converges to ψ(x−∞) on B(x0, r2(x̂)).

The second item of Theorem 1.2 follows as in the end of Section 6.1, by using

µ(U) = dnk |βnk,x̂|2
ˆ

U

(
ψ ◦ f−nk

x̂

)
FWW
x̂,nk

σx̂ + Jnk
(U)

for every U ⊂ B(x0, r2(x̂)) ⊂ V , this formula is provided by Definition 4.2 and Remark 4.3.

7 About the resonant case

We assume that λ1, λ2 are resonant : λ1 = qλ2 for some q ≥ 2. We assume that
µ≪ σT , let ψ denote the Radon-Nikodym derivative of µ with respect to σT . Let us explain
how Proposition 4.1 is affected. We shall compute the corresponding Jn(D) appearing in
Definition 4.2. According to Theorem 2.2, the map Rn,x̂ is equal to :

Rn,x̂(z, w) = (αn,x̂z, βn,x̂w) + (γn,x̂w
q, 0),

where |γn,x̂| ≤Mε(x̂)e
−n(λ1−ε). Let U ⊂ B(x0, ηε(x̂)) be a borel set. Denoting ψn := ψ◦f−n

x̂
,

we have µ(U) = In(U ∩J)+Jn(U ∩J), where In(D) has the same expression as in the non
resonant case :

In(D) = dn|βn,x̂|2
ˆ

D

ψnF
WW
x̂,n T ∧ i

2
(dWx̂ ∧ dW x̂).

In the resonant case, the formula giving Jn(D) is modified as follows :

Jn(D) = dn|αn,x̂|2
ˆ

D

ψnF
ZZ
x̂,n T ∧ i

2
(dZx̂ ∧ dZ x̂)

+ 2dn
ˆ

D

ψn Re

[(
(qFZZ

x̂,n αn,x̂γn,x̂W
q−1
x̂ + FZW

x̂,n αn,x̂βn,x̂

)
T ∧ i

2
(dZx̂ ∧ dW x̂)

]

+ dn
ˆ

D

ψn

[
q2FZZ

x̂,n |γn,x̂|2|Wx̂|2(q−1) + 2Re
(
qFZW

x̂,n γn,x̂βn,x̂W
q−1
x̂

)]
T ∧ i

2
(dWx̂ ∧ dW x̂).

Let us verify that the first item of Proposition 5.1 remains valid in the resonant case. Let
x̂ be a µ̂-generic element and let (nk)k be a sub-sequence such that x̂−nk

∈ Aτ . Assume

ψn = ψ ◦ f−nk

x̂
≤ b, µ− a.e. on B

and let us verify that there exists C ′(x̂) such that for every borel set U ⊂ B :

Jnk
(U) ≤ C ′(x̂)e−nk(λ1+λ2− Log d)e2nkε.

We use the formula on Jn(D) given above and Cauchy-Schwarz inequality. We also use
|FAB

x̂,n | ≤ τ given by Equation (8), item (i) of Lemma 2.5 and |Wx̂| ≤ ρε := ρε(x̂) on B

provided by Equation (6). If σx̂ := T ∧ ddc|Wx̂|2, λx̂ := T ∧ ddc|Zx̂|2, we indeed obtain

Jnk
(U) ≤ dnk |αnk,x̂|2 bτλx̂(U)

+2dnk |αnk ,x̂| bτ
(
q|γnk,x̂|ρq−1

ε + |βnk,x̂|
)
(λx̂ + σx̂)(U)

+ qdnk |γnk,x̂| bτ
(
q|γnk,x̂|ρ2(q−1)

ε + 2|βnk ,x̂|ρq−1
ε

)
σx̂(U).

The existence of C ′(x̂) then comes from the upper bounds |αn,x̂| ≤ e−n(λ1−ε), |βn,x̂| ≤
e−n(λ2−ε), |γn,x̂| ≤Mε(x̂)e

−n(λ1−ε) and from λ1 > λ2.
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8 Suspensions of one-dimensional Lattès maps

Let θ = [P : Q] be Lattès map on P
1 of degree d ≥ 2 and let f := [P : Q : td] be

its suspension on P
2. These maps were studied by Berteloot-Loeb [4]. We identify the first

affine chart with C2. Let

Gθ := lim
n→+∞

1

dn
Log ||(Pn, Qn)|| : C2 → R ∪ {−∞}

be the Green function of the polynomial mapping (P,Q) and let G := max{Gθ, 0}. The
attracting basin A of (0, 0) is bounded and equal to {G = 0}. The Green current of f
satisfies T = ddcG on C

2, the support of µ coincides with the boundary ∂A of A.
By [4, Proposition 3.1] (see also [11] in higher dimensions), for every p outside a finite

number of circles drawn on ∂A, there exists a biholomorphism p : (D2, 0) −→ (D2, p) such
that

G0(z, w) := Gθ ◦ p(z, w) = Re(z) + |w|2 on (D2, 0).

We denote
T0 := p

∗T = ddc(max{G0, 0}) and µ0 := p
∗µ.

The closed positive current T0 has the following matrix representation

T0 =

[
T11 0
0 T22

]
,

where T11 := T0 ∧ ddc|w|2 and T22 := T ∧ ddc|z|2. We describe below T0 and µ0 on (D2, 0).
We assume to simplify that the germ (D2, 0) is the open set D :=]− 1, 1[2×D. Let

Ω := {Re(z) + |w|2 > 0} ∩D and M0 := {Re(z) + |w|2 = 0} ∩D.

Observe that M0 is the image (intersected with D) of the euclidian 3-sphere of C2 by the
classical Cayley transformation, see [17, Chapter 2.3]. Let us parametrize M0 by

Φ :]− 1, 0]×] − 1, 1[×]0, 2π[→ M0 , (u, v, θ) 7→ (u+ iv,
√
−ueiθ) (12)

and let LebM0
:= Φ∗LebR3 . Let also ω0 be the standard hermitian (1, 1)−form of C2.

Proposition 8.1. With the preceding notations,

T0 =

[
1
8LebM0

0

0 LebΩ + |w|2
2 LebM0

]
,

and

µ0 =
1

8
LebM0

= T0 ∧ ddc |w|2 .

In particular,

µ0 = ψ0 (T0 ∧ ω0) , where ψ0(z, w) :=
1

1 + 4|w|2 11M0
.

The remainder of this Section is devoted to the proof of Proposition 8.1.

Computation of T11.– Let ϕ be a test function with compact support in D. We denote
ϕzz :=

∂
∂z

∂
∂z
ϕ, similarly for ϕww. By definition we have :

〈T11, ϕ〉 =
ˆ

Ω
G0(z, w)ϕzz(z, w) dLeb(z, w).
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Let ∆w denote the subset ]− 1, 1[×]− 1, 1[×{w} intersected with Ω, so that

〈T11, ϕ〉 =
ˆ

D

[
ˆ

∆w

G0(z, w)ϕzz(z, w) dLeb(z)

]
dLeb(w) =:

ˆ

D

Iw(ϕ) dLeb(w). (13)

We write z = u + iv, hence ϕzz = 1
4∆u,vϕ. Observe also that G0 only depends on (u,w).

The number 4Iw(ϕ) is then equal to

ˆ 1

−1

[
ˆ 1

−|w|2
G0(u,w)

∂2ϕ

∂u2
(u+ iv, w) du

]
dv +

ˆ 1

−|w|2
G0(u,w)

[
ˆ 1

−1

∂2ϕ

∂v2
(u+ iv, w) dv

]
du.

The second term vanishes since Supp(ϕ(·, w)) ⊂]− 1, 1[×]− 1, 1[. Integrating by parts and
using ∂uG0 = 1, ∂vG0 = 0 for the first one, we get

4Iw(ϕ) = −
ˆ 1

−1

[
ˆ 1

−|w|2

∂ϕ

∂u
(u+ iv, w) du

]
dv .

Using again Supp(ϕ(·, w)) ⊂]− 1, 1[×] − 1, 1[, we get

Iw(ϕ) =
1

4

ˆ 1

−1
ϕ(−|w|2 + iv, w) dv.

We therefore obtain by (13) :

〈T11, ϕ〉 =
1

4

ˆ

D

ˆ 1

−1
ϕ(−|w|2 + iv, w) dv dLeb(w)

Observe that (w, v) 7→ (−|w|2 + iv, w) is another parametrization of M0 different from Φ
defined in (12). Let us write this integral with polar coordinates :

〈T11, ϕ〉 =
1

8

ˆ 1

−1

ˆ 2π

0

ˆ 1

0
ϕ(−ρ2 + iv, ρeiθ) 2ρdρ dθ dv.

Applying the change of variable u = −ρ2 one gets back to the parametrization Φ :

〈T11, ϕ〉 =
1

8

ˆ

]−1,0]×]−1,1[×]0,2π[
ϕ(u+ iv,

√
−ueiθ) dLeb(u, v, θ) = 1

8

ˆ

M0

ϕ dLebM0
.

Computation of T22.– Let ∆z be the vertical disc {z}×D intersected with Ω. One has :

〈T22, ϕ〉 =
ˆ

]−1,1[×]−1,1[

[
ˆ

∆z

G0(z, w)ϕww(z, w)dLeb(w)

]
dLeb(z).

Writing z = u+ iv, we get

〈T22, ϕ〉 =
ˆ 1

−1

[
ˆ 0

−1
Ju,v(ϕ) du

]
dv +

ˆ 1

−1

[
ˆ 1

0
Ju,v(ϕ) du

]
dv,

where

Ju,v(ϕ) :=

ˆ

D\D(
√
−u)

G0(u+ iv, w)ϕww(u+ iv, w) dLeb(w),

with the convention D(
√−u) = ∅ if 0 ≤ u ≤ 1.
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Lemma 8.2.

1. Ju,v(ϕ) =
´

D
ϕ(u+ iv, w) dLeb(w) for 0 ≤ u ≤ 1.

2. Ju,v(ϕ) =
´

D\D(
√
−u) ϕ(z, w) dLeb(w)− u

2

´ 2π
0 ϕ(z,

√−ueiθ) dθ for −1 ≤ u ≤ 0.

Proof : We write w = s + it and use ϕww = 1
4∆s,tϕ. Since ϕ has compact support in D,

one gets by Green-Stokes formula :

4Ju,v(ϕ) :=

ˆ

D

G0(u+ iv, w)∆s,tϕ dLeb(w) =

ˆ

D

∆s,tG0(u+ iv, w)ϕ dLeb(w)

The first item follows since ∂2sG0 = ∂2tG0 = 2. In the case −1 ≤ u ≤ 0, we have :

Ju,v(ϕ) =

ˆ

D\D(
√
−u)

G0(u+ iv, w)ϕww(u+ iv, w) dLeb(w). (14)

Let us denote z = u + iv and w = s + it ∈ D\D(√−u). Using Supp(ϕ(z, ·)) ⊂ D and
G0(z, ·)|∂D(√−u) = 0, Green-Stokes formula gives :

ˆ

D\D(
√
−u)

G0(z, s + it)∆s,tϕ(z, s + it)−∆s,tG0(z, s + it)ϕ(z, s + it) dLeb(s, t)

=

ˆ

∂D(
√
−u)

ϕ(z, s + it)
(
∇(s,t)G0(z, s + it)

)
· (s, t) dσ(s, t),

where σ is the Lebesgue measure on the circle ∂D(
√−u). Since ∆s,tG0(z, s + it) = 4 and(

∇(s,t)G0(z, s + it)
)
· (s, t) = 2|w|2 = −2u, we infer

4

ˆ

D\D(
√
−u)

ϕ(z, w) −G0(z, w)ϕww(z, w) dLeb(w) =

ˆ

∂D(
√
−u)

2uϕ(z, w) dσ(w).

The second item follows by combining this formula with (14).

Let us now return to the computation of 〈T22, ϕ〉. Let Ω+ := Ω ∩ {u > 0} and Ω− :=
Ω ∩ {u < 0}. According to Lemma 8.2, we get

ˆ 1

−1

ˆ 1

0
Ju,v(ϕ) du dv =

ˆ

Ω+

ϕ(z, w) dLeb(z, w),

and that
´ 1
−1

´ 0
−1 Ju,v(ϕ) du dv is equal to

ˆ

Ω−

ϕ(z, w) dLeb(z, w) +

ˆ 1

−1

[
ˆ 0

−1

[
ˆ 2π

0
−u
2
ϕ(u+ iv,

√
−ue−iθ) dθ

]
du

]
dv.

If h(z, w) := |w|2
2 the second integral is equal to :

ˆ

]−1,0[×]−1,1[×]0,2π[
(hϕ) ◦ Φ(u, v, θ) d(u, v, θ) =

ˆ

M0

hϕ dLebM0
.

We deduce as desired

〈T22, ϕ〉 =
ˆ 1

−1

ˆ 1

−1
Ju,v(ϕ) du dv =

ˆ

Ω
ϕ(z, w) dLeb(z, w) +

ˆ

M0

hϕ dLebM0
.
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Computation of µ0.– Writing G+
0 := max{G0, 0}, we have T0 = ddcG+

0 and µ0 =
ddc(G+

0 dd
cG+

0 ). Hence

〈µ0, ϕ〉 = 〈T0, G+
0 dd

cϕ〉 = 〈T11ddc|z|2 + T22dd
c|w|2, G+

0 dd
cϕ〉

=
1

8

ˆ

M0

G0ϕww dLebM0
+

ˆ

Ω
G0ϕzz dLeb +

ˆ

M0

G0ϕzzh dLebM0
.

Since G0 = 0 on M0, we get 〈µ0, ϕ〉 =
´

ΩG0ϕzz dLebΩ = 〈T11, ϕ〉 as desired (observe
that this is the Lebesgue part on Ω in T22 which provides µ = T11). The formula µ0 =

1
1+8h11M0

T0 ∧ ω0 immediately follows.
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