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We present a many-body GW formalism for quantum subsystems embedded in discrete

polarizable environments containing up to several hundred thousand atoms described at a

fully ab initio random phase approximation level. Our approach is based on a fragment

approximation in the construction of the Green’s function and independent-electron suscep-

tibilities. Further, the environing fragments susceptibility matrices are reduced to a minimal

but accurate representation preserving low order polarizability tensors through a constrained

minimization scheme. This approach dramatically reduces the cost associated with inverting

the Dyson equation for the screened Coulomb potential W, while preserving the description

of short to long-range screening effects. The efficiency and accuracy of the present scheme

is exemplified in the paradigmatic cases of fullerene bulk, surface, subsurface, and slabs

with varying number of layers.

a)Electronic mail: ivan.duchemin@cea.fr
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I. INTRODUCTION

The description of the electronic properties of a quantum subsystem embedded in a polarizable,

or dielectric, environment (a molecular interface, a solvant, an electrode, etc.) remains a central

issue in many fields pertaining to solid-state physics, chemistry or biology. Starting from the

historical image charge models for electronic distributions close to a metallic surface or within a

dielectric cavity,1,2 the need to describe the response of a polarizable environment to a charged

(photoemission) or neutral (optical) excitation in a specific subsystem is still triggering significant

developments to combine accuracy with numerical efficiency. In particular, the stabilization of

an added hole or electron by the induced electronic rearrangements in a surrounding polarizable

environment can be as large as several electronvolts. This so-called polarization energy, together

with the additional effects of the electrostatic environment and wavefunction delocalization, strongly

renormalize the electronic properties. In many situations, the environment is a complex, potentially

infinite, system that cannot be fully described at the same quantum level as the subsystem of

interest.

Conceptually close to the historical models of image charges, the polarizable continuum model

(PCM)3,4 considers a quantum subsystem located in a cavity carved into a medium described

by an homogeneous macroscopic dielectric constant. As a more expensive alternative, discrete

polarizable models, where atoms are described as polarizable centers, allow for a more realistic

description of screening inhomogeneities at short range in response to an electronic excitation in the

quantum subsystem.5–9 Polarization energies converging slowly with environment size, thousands

of polarizable centers may be needed in order to enter a regime where long-range extrapolation

can be achieved on the basis of the calculated values. This comes as a challenge to fully ab

initio approaches, triggering in practice the description of the environment at a semiclassical

empirical level. In such semi-empirical discrete approaches, labeled generically QM/MM, or

QM/MMpol to emphasize the polarizable nature of the environment, atoms are provided with

effective polarizabilities that reproduce the correct molecular polarizability tensor and/or the

macroscopic dielectric tensor of the material.10,11

Concerning the quantum mechanical formalism used to describe electronic excitations in the

central subsystem, a specific class of many-body perturbation theories, the GW12–16 and Bethe-

Salpeter equation (BSE)17–21 formalisms for the study of charged and neutral electronic excitations,

have been recently combined with polarizable models of environment, both at the continuum22–24
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and discrete25–28 levels. Indeed, while recent studies demonstrated that GW calculations with

cubic or even lower scaling could be achieved,29–40 the slow convergence of electrostatic and

dielectric (screening) effects with respect to system size forbids a brute force treatment of complex

environments within such approaches.

The cost associated with the building of the irreducible electronic susceptibility is usually the

bottleneck in time-dependent density-functional theory (TD-DFT) and GW calculations. As a

cure, fragments approximations can dramatically reduce such a cost by neglecting wavefunction

overlaps between weakly interacting subsystems. These fragment or subsystem approaches have

been recently implemented at the GW and BSE levels in the case of systems presenting weakly

interacting subunits, including molecular systems,41–46 interfaces,47–50 2D materials,51,52 but also in

the less obvious case of covalent 2D systems.53 It remains that obtaining the screened Coulomb

potential W from the irreducible susceptibility, requiring a matrix inversion, restricts the number of

fragments that can be dealt with at the fully ab initio level. As such, the largest fragment-based

GW calculations were obtained for a system containing about 800 benzene molecules (4800 non-H

atoms) in the case of molecular systems, an already remarkable achievement.43 Similarly, we

recently used a fragment GW approach to partition a multilayer h-BN system in up to 259 h-BN

fragments containing 66 non-hydrogen atoms each.53 The limiting factor to the simulation of larger

systems was then the inversion of the Dyson equation to obtain W.

In the present study, we introduce and assess a fully ab initio scheme for embedded GW

calculations with hundreds of thousand atoms in the environment. Besides adopting the fragment

approximation, we search for an efficient low-rank representation of the susceptibility matrix

associated with each fragment, projecting them on-the-fly onto a minimal polarization basis

preserving the dipolar, quadrupolar, etc. fragments polarizability tensors. As a result, the size of the

Dyson equation for W is dramatically reduced, while preserving the accuracy for the polarization

energies at the meV level. We explore the trade-off between accuracy and efficiency in the case of a

fullerene crystal, both in the bulk, surface, subsurface and few-layers-slab limits.

II. THEORY

We very briefly outline the GW formalism, directing the reader to thorough reviews and books for

a more detailed account on the subject.54–59 We further introduce our embedding scheme associated

with the definition of the environmental screening, or reaction field. Finally, we describe our fitting
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scheme allowing to dramatically reduce the size of the fragments dielectric matrix expressed in an

effective polarization basis that preserves short to long-range screening effects.

A. The GW formalism

Departing from the use of the electronic density in DFT, the GW formalism takes as a cen-

tral variable the time-ordered one-body Green’s function built from input {εn, ϕn} Kohn-Sham

eigenstates, namely:

G(r, r′;ω) =
∑

n

ϕn(r) ϕ∗n(r′)
ω − εn + iη × sgn(εn − EF)

(1)

where η is a positive infinitesimal and EF the Fermi energy. Relying on perturbation theory to low

order in the screened Coulomb potential W, the energy-dependent exchange-correlation self-energy

Σ(r, r′; E) can be approximated by the GW operator under the form:

ΣGW(r, r′; E) =
i

2π

∫ +∞

−∞

dω eiηωG(r, r′; E + ω) W(r, r′;ω) (2)

with v the bare Coulomb potential and W the dynamically screened Coulomb potential built within

the random phase approximation (RPA):

W(r, r′;ω) = v(r, r′)

+

∫
dr1 dr2 v(r, r1) χ0(r1, r2;ω) W(r2, r′;ω). (3)

Such an equation adopts a self-consistent Dyson-like form that needs to be inverted once the

independent-electron susceptibility has been built from Kohn-Sham one-body eigenstates:

χ0(r, r′;ω) =∑
m,n

( fm − fn)
ϕ∗m(r) ϕn(r) ϕm(r′) ϕ∗n(r′)

ω − (εn − εm) + iη × sgn(εn − εm)
(4)

with { fm/n} level occupation numbers. The cost of calculating this independent-electron susceptibil-

ity grows as O(N4) with respect to the number of electrons N in the system. Equivalently, dropping

the space variables for compactness, the Dyson equation can be formulated as:

W(ω) = v + v χ(ω) v, (5)

with χ the RPA interacting susceptibility:

χ(ω) = χ0(ω) + χ0(ω) v χ(ω). (6)
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FIG. 1. Symbolic representation of the fragment approximation. The standard fragment approximation on

the independent-electron susceptibility (the X(I)
0 blocks in Eq. 9) can be strictly reformulated by constructing

first the block diagonal matrix made of the gas phase interacting susceptibility of the isolated fragments (the

X(I)
g in Eq. 10). It is such an object that we represent here. The resulting fully interacting susceptibility is

non-diagonal due to the coupling of the blocks by the off-diagonal V(I,J) Coulomb matrix elements (see Eq.

10).

The knowledge of ΣGW allows to correct the Kohn-Sham eigenvalues, replacing the density-based

exchange-correlation potential vXC by the GW self-energy:

εGW
n = εKS

n + ⟨ϕn|Σ
GW(εGW

n ) − vXC |ϕn⟩

with εGW
n the so-called quasiparticle energies at which the self-energy operator must be calculated.

B. Fragment approximation

Our implementation60,61 of the GW approach adopts a resolution-of-the-identity (RI) formalism62–64

where the density and its variations are expressed over a Gaussian auxiliary basis set {P}. The

auxiliary basis functions must thus approximate the space generated by the products of molecular

orbitals (MO) {ϕn}:

ϕn(r) ϕm(r)
RI
≃
∑

P

FP(ϕnϕm) P(r)

leading in particular to fitting coefficients FP(ϕnϕm) = 0 when the ϕn and ϕm molecular orbitals are

non-overlapping. Within this representation, Eqn. 4 rewrites:

χ0(r, r′;ω)
RI
≃
∑
P,Q

X0(P,Q ;ω) P(r) Q(r′) (7)
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with coefficients

X0(P,Q ;ω) =
∑
m,n

( fm − fn)
FP(ϕ∗mϕn) FQ(ϕmϕ

∗
n)

ω − (εn − εm) + iη × sgn(εn − εm)
. (8)

In the fragment approximation, the full system auxiliary basis is simply the union of the

subsystem basis sets, while each subsystem density can be expressed in its own corresponding basis.

In such a case, the analysis of Eqn. 8 indicates that the joint contribution of two non overlapping

subsystems to the representation of the independent-electron susceptibility χ0(r, r′;ω) should

be zero. Within that limit, the RI-fitted independent-electron susceptibility matrix is thus block

diagonal, with blocks corresponding to the constituting subsystems gas phase (isolated) irreducible

susceptibilities.

Labelling X(I)
0 the block of fit coefficients corresponding to the independent-electron susceptibil-

ity of subsystem (I), the Dyson equation for the full system interacting susceptibility coefficients

matrix X(ω) (eqn. 6) reads:

X(ω)−1 =
∑

I

X(I)
0 (ω)−1 −

∑
I,J

V(IJ) (9)

with V(IJ) the block corresponding to the Coulomb interactions between auxiliary basis elements of

fragments (I) and (J). This equation can also be conveniently rewritten:

X(ω)−1 =
∑

I

X(I)
g (ω)−1 −

∑
I,J

V(IJ) (10)

with X(I)
g (ω) the block of coefficients for the isolated (gas phase) interacting susceptibility of

fragment (I). In this latter formulation, only the off-diagonal Coulomb interactions V(I,J) that

accounts for inter-fragments coupling are considered (see Fig. 1). Similar equations can be found

in the framework of subsystem TD-DFT.65,66

In the fragment approximation, the cost of calculating all fragments X(I)
0 and X(I)

g blocks scales

linearly with respect to the number of fragments. This is a considerable saving and it is now the

inversion of the Dyson equation (Eqns. 3 or 10), with cubic scaling with respect to the total number

of fragments, that becomes the bottleneck in the limit of a very large number of subsystems. Due

to the V(IJ) inter-blocks Coulomb matrix elements, the full interacting susceptibility X(ω), and

resulting screened Coulomb potential: W(ω) = V + VX(ω)V, are no longer diagonal by blocks. As

such, the inversion of the Dyson equation for X(ω), rewriting Eq. 10 as:

X(ω) = Xg(ω) + Xg(ω)VoffX(ω), (11)
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where Xg(ω) =
∑

I

X(I)
g (ω) and Voff =

∑
I,J

V(IJ), becomes a huge effort in terms of computation time

and memory in the limit of large systems. It is such a problem that we address below by optimally

reducing the size of each X(I)
g (ω) susceptibility representation.

C. Constrained reduction of the fragment susceptibilities

A typical calculation that expands MOs over a triple-zeta def2-TZVP basis set67 involves the

corresponding optimized auxiliary def2-TZVP-RI basis set68 that is composed of 95 orbitals for e.g.

B, C, N, O atoms. In this situation, an environment containing of the order of 105 atoms will result

in susceptibility matrices of the order of 107 in size to be dealt with in the Dyson equation.

For the fragment of interest, for which we want to actually perform a GW correction, we preserve

the full auxiliary basis optimized for the corresponding MO basis sets. However, concerning the

fragments in the environment, we emphasize that we are mainly interested in their contribution to

the reaction field, namely to the induced dipoles, quadrupoles, etc., developed as a response to an

electronic excitation in the central subsystem. As such, the full details of the susceptibility in the

auxiliary {P} basis may not be necessary.

In order to reduce the computational effort of the Dyson equation, we therefore look for

an efficient and compact way to represent the interacting susceptibility of the fragments in the

environment. We seek a lower-rank approximation to the gas phase interacting susceptibilities

χ(I)
g (ω):

χ(I)
g (r, r′;ω)

RI
≃

∑
P,Q

X(I)
g (P,Q ;ω) P(r) Q(r′) (12)

MODEL
≃

∑
γ,γ′

X̃(I)
g (γ, γ′ ;ω) γ(r) γ′(r′) (13)

where we use a small basis sets {γ}, which could be for example a minimal Gaussian (sp3) 4-orbitals

basis per atom in order to mimic the induced charges-and-dipoles models developed in QM/MM

techniques.10

For the isolated fragment (I), the resulting errors in the interacting susceptibility and its corre-

sponding contribution to the screening, or reaction, field respectively read:

∆χ(I)
g (r, r′;ω) =

∑
γ,γ′

X̃(I)
g (γ, γ′ ;ω) γ(r) γ′(r′)

−
∑
P,Q

X(I)
g (P,Q ;ω) P(r) Q(r′)

(14)
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and

∆v(I)
screen(r, r′;ω)

=

"
dr1 dr2 v(r, r1) ∆χ(I)

g (r1, r2;ω) v(r2, r′).
(15)

Once the model “polarization” basis {γ} is fixed, the associated X̃(I)
g set of coefficients can thus

be simply deduced by minimizing the error in the screening field ∆v(I)
screen through a set {t} of test

functions:

X̃(I)
g (ω) = argmin{

X̃(I)
g (γ,γ′ ;ω)

}∑
t,t′

∣∣∣⟨t |∆v(I)
screen(ω)| t′⟩

∣∣∣2 . (16)

The salient features of this equation is that, since we measure the difference in the reaction field on

a set of test functions, we are free to focus on the specific components of the screening field vχv

that we want to preserve. Details about the resolution of this equation are given in Appendix A.

A naive choice for the test functions {t} could be the set of auxiliary functions {P} used to

construct the reference χ(I)
g response function. As shown below, this strategy is rather inefficient.

The reason for this failure is that we do not intend to use the model susceptibility to perform a

GW calculation on fragment (I) itself. Instead, we need it to build the fully interacting screening

potential vχv through the Dyson equation (Eq. 10) that couples (I , J) fragments, focusing in the

end on the central fragment (I = 0 in Fig. 2) on which we perform the GW calculation. As such,

priority should be given to the interactions between the different model fragments, starting from

neighboring fragments up to the long range interactions dominated by low order momenta of their

polarizability tensors.

A very simple yet successful strategy consists in keeping the test functions localized on the

atoms of the fragment (I) for which we seek the model susceptibility, but building the test set {t} out

of very diffuse orbitals that will sample the surrounding fragments. The basic idea is that using

such diffuse test functions allows to “reach out” for the effect of vχ(I)v on neighboring molecules.

The test set can then be completed with the auxiliary basis {P} associated with fragment (I), but

down-weighted, in order to keep the emphasis on the diffuse orbitals during the minimization

process. More details about this test basis can be found in Appendix B.

Simultaneously, the preservation of long range interactions can be guaranteed by enforcing low

order Cartesian momenta of the susceptibility through Lagrange multipliers:〈
xm yn zp

∣∣∣ ∆χ(I)
g (ω)

∣∣∣ xm′ yn′ zp′
〉
= 0. (17)
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FIG. 2. Sketch of the susceptibility blocks compression associated with the fragments in the environment

(shaded C60). The susceptibility of the central fragment of interest (fragment I=0), on which will be

performed the embedded GW calculation, is not reduced.

In the following, we label lmax the maximum order m + n + p enforced for a specific model

susceptibility. For example, lmax = 1 corresponds to the preservation of the fragment neutral

monopole, as well as the dipolar polarizability tensor. Imposing such a constraint, along with the

use of diffuse test functions, ensures that the reaction field will be well reproduced not only in the

vicinity of fragment (I), but in the long-range as well. Imposing higher order polarizability tensors

momenta (e.g. lmax = 2), can be achieved but with a mild impact as discussed below.

D. Minimal effective polarizability basis

So far the choice of the {γ} has been left arbitrary. Contrary to the induced charge-and-dipole

models used in semi-empirical QM/MM techniques, we follow here a more automated route. The

polarization basis can be obtained as the result of a generalized minimization process, that is we

include the {γ} in the minimization process:

argmin
{γ}

 min{
X̃(I)

g (γ,γ′ ;ω)
}∑

t,t′

∣∣∣⟨t |∆v(I)
screen(ω)| t′⟩

∣∣∣2  (18)

where the only input choice is now the number NP of γ polarization vectors. In practice, the γ

functions are expressed in the {P} auxiliary basis set associated with fragment (I), namely

γ(r) =
∑

P

CγP P(r) , (19)

so that the {CγP} coefficients are now the minimization variables. Formally, setting Np to the

dimension of the original auxiliary basis leads to a model susceptibility X̃g strictly equal to the

reference Xg. Such an equality holds independently of the choice of the test basis or the constraints.
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We tackle this somewhat complex minimization problem by iterating over two distinct steps: i)

inner optimization of the X̃(I)
g (ω) matrix elements at fixed {γ} (see equation 16), which is solved

exactly through linear algebra; ii) outer optimization of the {CγP} coefficients at fixed X̃(I)
g (ω) matrix

elements which is done using gradient descent techniques. More details about this last step can be

found in Appendix C.

In the simplest case where test functions {t} only span the auxiliary {P} set, and in the absence

of constraint, the Eckart–Young–Mirsky theorem states that the NP optimal {γ} polarization vectors

are similar to those defined in Refs. 69,70, namely the leading eigenvectors of the so-called

symmetrized susceptibility. The present minimization formulation allows further flexibility with

the introduction of test functions and constraints, allowing on-the-fly design of model dielectric

functions for specific purposes, emphasizing short-to-long-range or on-site accuracy.

We conclude this Section by emphasizing again that the operations described above (calculations

of the reference X(I)
g (ω) and X̃(I)

g (ω) matrices, SVD decomposition of related operators, etc.) are

performed on isolated fragments, leading to a computational cost that is linear in the number of

distinct fragments. In turn, the number of operations related to inverting the Dyson equation for

the total screened Coulomb potential, involving interactions between all fragments, is dramatically

reduced through reduction of the associated prefactor. As shown below, the optimal polarization

basis can be made typically 102 times smaller than the original auxiliary basis set, preserving

the polarization energy in the meV range, leading to a reduction of the order of 106 of the cost

associated with obtaining an accurate W operator on the central fragment (I=0).

E. Technical details

The present subsystem approach with minimal representation of the fragments electronic suscep-

tibility has been implemented in the beDeft (beyondDFT) package.60,61 Input Kohn-Sham eigen-

states are generated at the def2-TZVP PBE071,72 level with the Orca package.73,74 We adopt the

corresponding def2-TZVP-RI auxiliary basis sets associated with the Coulomb-fitting resolution-of-

the-identity (RI-V) approach.62,75 The molecular geometries for C60 and the pentacene are obtained

at the def2-TZVP PBE0 level. The face-centered cubic (fcc) C60 dense phase is constructed taking

experimental lattice parameters76 (a = 14.17 Å), neglecting orientational disorder. The C60 surface

we consider is the (111) surface.

Even though the present scheme allows to compute reaction fields at finite (imaginary) frequen-
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cies, following the analytic continuation approach to the dynamical GW self-energy implemented

in beDeft,60 we calculate here the polarization energies at the static Coulomb-Hole plus Screened-

Exchange (COHSEX) level,12 with:

ΣSEX(r, r′) = −
occp∑

n

ϕn(r) ϕ∗n(r′) W(r, r′;ω = 0) (20)

ΣCOH(r, r′) =
1
2
δ(r − r′)

[
W(r, r′;ω = 0) − v(r, r′)

]
(21)

with the screened-exchange term involving a summation over occupied (occp) levels only. Following

previous studies,26,27,41–44 our polarization energy Pn for a given energy level is taken to be the

difference between the static COHSEX energy level in the presence of a polarizable environment

and its analog in the gas phase, namely:

Pn = ε
GWe
n − ε

GWg
n ≃ εCOHSEXe

n − ε
COHSEXg
n︸                   ︷︷                   ︸

=P∆COHSEX
n

where the index (e) and (g) in GWe/g and COHSEXe/g stand for embedded (e) and gas (g) phases.

The static COHSEX formalism can be understood as an approximation to the GW operator in the

limit where the dielectric response is taken to be energy-independent, as indicated by the (ω = 0)

restriction in Eqs. 20 and 21. Since only the static susceptibility needs to be calculated, it is one order

of magnitude cheaper than a full GW approach requiring the calculation of nω ≃ 12 independent-

electron χ0(iω) susceptibilities along the imaginary axis in our analytic continuation scheme.

The accuracy of using such a static limit for the polarisation energies induced by a neighboring

dielectric medium was first analyzed in the case of molecules close to a metallic substrate.47

Such an approximation, that considers only the low-frequency limit of the environment electronic

dielectric response, is consistent with standard PCM implementations where the macroscopic

dielectric constant originating from electronic degrees of freedom is taken to be the optical one

in the low frequency limit (square of the refractive index). Similarly, in standard QM/MM

implementations, the semi-empirical atomic polarizabilities are designed to reproduce the fragment

electronic polarizability in the static limit.10 Extension to dynamical reaction fields will be discussed

in subsequent studies.

From the knowledge of such a polarization energy Pn, calculated at the static ∆COHSEX level,

the absolute quasiparticle energy can be obtained as:

εGWe
n = ε

GWg
n + P∆COHSEX

n .
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In the fragment approximation, and in the absence of wavefunction hybridization, such a value yields

the energy of the corresponding band center.77 In particular, one can recover the experimental peak-

to-peak gap in the dense phase, namely the difference of energy between the highest-occupied and

lowest-unoccupied molecular orbital (HOMO/LUMO) band centers. In the following, when needed,

the gas phase εGWg
n quasiparticle energy levels will be calculated at the partially self-consistent

evGW@PBE0 level, that has been shown78,79 to be more accurate than non-self-consistent calcula-

tions, unless an optimally tuned functional is used for the starting DFT Kohn-Sham calculation.78,80

Finally, we only need to perform an explicit GW correction for the fragment of interest (I = 0).

In other words, while the interacting susceptibility matrix X(ω = 0) of Eq. 10 is defined for the full

system, the screened Coulomb potential matrix W = V + VXV entering Eqs. 20 and 21 is only

computed explicitly for the corrected fragment. This enables us to save both on memory footprint

and CPU time aspects.

III. RESULTS

A. Validation

We start by looking at the evolution of the static dipolar polarizability tensor for a given fullerene,

in the gas phase, obtained with the model susceptibility matrix as a function of NP (the number of

polarization vectors we keep). Namely, we compute

[α]i j = −

∫
dr dr′ ri

 NP∑
γ,γ′

γ(r)X̃g(γ, γ′;ω = 0)γ′(r′)

 r′j. (22)

This tensor is a key quantity for the long-range screening effects originating from a given fragment

and represents thus a direct measure of the accuracy of the fitted susceptibility. First, we explore the

strategy where the test functions {t} are taken to span the auxiliary basis {P} located on the fragment

(a fullerene) for which we build the model susceptibility. Relative errors on the (Frobenius) norm

of the dipolar polarizability tensor, with respect to a reference calculation using the full auxiliary

basis (5700 vectors), are represented in Fig. 3 (blue dots). As expected, this error decreases as the

number of polarization vectors increases. For NP = 240, the relative error is of the order of 10%,

that is still rather large. This number NP = 240 corresponds to a typical minimal sp3 basis per atom

of the kind used in semi-empirical induced charges-and-dipoles polarizable models.

We now perform the same exercise but adding to the test functions {t} a set of atom-centered
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∥∥∥ (in percentage) of a fullerene RPA dipolar

polarizability tensor [α] (see Eq. 22) as a function of the number NP of polarization vectors (maximum

number 5700). || · || corresponds to the Frobenius norm. [α]ref is computed with the susceptibility described

in the full auxiliary basis (with 5700 vectors), while [α]fit is calculated using only Np polarization vectors.

Results for different choices of test functions are plotted.

diffuse Gaussian orbitals. Such diffuse functions are typically one set of (s,p,d,f,g) orbitals per atom

with, for sake of simplicity, the same e−ζr
2

radial part. Results for different values of ζ are reported

on Fig. 3. A value of ζ = 0.1 bohr−2 (green down triangles), comparable to 0.2 bohr−2 for the most

diffuse carbon atomic orbital in the def2-TZVP-RI basis set, does not improve the quality of the

fit. Increasing the diffuse character of these functions, with ζ = 0.01 bohr−2 (orange up triangles)

improves significantly the quality of the results. For Np = 120, namely ≃ 2% of the dimension of

the original auxiliary {P} basis set, the relative error is below 0.01%. Increasing too much the extent

of the diffuse orbitals, with e.g. ζ = 0.001 bohr−2 (red squares) degrades the quality of the results.

Even if relative errors are smaller with such a small ζ value in the limit of a very small number of

polarization vectors (Np = 4 or 60), ζ = 0.001 bohr−2 leads to greater errors than ζ = 0.01 bohr−2

for larger values of Np.

The quality of the polarizability tensor obtained with the low-rank susceptibility insures that long-

range interactions will be accurately reproduced. We now focus on nearest-neighbor interactions.
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We study in particular the HOMO/LUMO energy gap associated with a fullerene (in red in Fig. 4

Inset) surrounded by its first shell of 12 nearest-neighbors (in blue).

In a standard fragment calculation at the full def2-TZVP/def2-TZVP-RI level, the central C60

HOMO-LUMO gap closes by ∼0.98 eV due to the enhanced screening induced by the first shell

of neighbors. This represents about 60% of the total polarization energy (see Section III B) as

compared to a fullerene in a fullerite, namely an infinite fullerene crystal.
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FIG. 4. Error on the central C60 [red, Inset] gap as a function of the number NP of polarization vectors per

C60 in the first-neighbors shell [blue, Inset]. Energies on the ordinates are in meV and log-scale. Results for

test functions with and without diffuse orbitals, with and without constraints (see section II C), are shown.

Diffuse functions use ζ = 0.01 bohr−2. The reference ∆Gap = −0.98 eV corresponds to the gap reduction

from the gas phase to the 13-C60 cluster when all fragments are described by their full basis (Np = 5700).

We now study the effect of reducing the size NP of the polarization basis on the 12 surrounding

C60. As previously, we start by using test functions taken only in the span of the auxiliary basis

{P} of the fragment (a fullerene) whose model susceptibility is fitted. The results are provided on

Fig. 4 (blue dots). As expected, the error on the central C60 HOMO-LUMO gap, as compared to

the reference calculation, decreases with the number of polarization vectors. For NP = 240, the

error is of the order of 100 meV, allowing to have a qualitative result but representing still an error

of the order of 10% with respect to the targeted polarization energy. As discussed above, this error
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converges to zero with Np equal to the size of the original atom-centered Gaussian auxiliary basis

set (5700 vectors), but the convergence is too slow.

Similarly to the previous study of the polarizability, we now add diffuse functions in the test

basis, with ζ = 0.01 bohr−2. The related evolution of the error on the polarization energy for the gap

is represented in Fig. 4 (orange dots). Clearly, the addition of diffuse functions, allowing to test the

quality of the model VX̃(I)
g V reaction field in the vicinity of molecule (I), dramatically accelerates

the convergence of the polarization energy with respect to the size of the model susceptibility

matrix. For NP = 180, namely ≃ 3% of the original susceptibility matrix size (5700) for one C60,

the error is now of the order of 1 meV, reaching quantitative accuracy.

We further add the constraints (equation 17), with and without diffuse functions, to enforce

the exact dipolar polarizability tensor with lmax = 1 (up triangles in Fig. 4), or up to second order

moments with lmax = 2 (crosses in Fig. 4). In all cases, the constraints improve the accuracy, in

particular in the small NP limit, even though their impact is not as important as adding diffuse test

functions. Such a behaviour can be understood by looking, e.g., at Fig. 3 for ζ = 0.01 bohr−2 and

NP = 120. The dipolar polarizability is already quite well reproduced so that the constraint leads to

a small improvement. Fig. 4 reveals that the constraint lmax = 2 improves very slightly the error on

the gap, in comparison to the constraint lmax = 1. When diffuse function are added to the test basis,

the differences between lmax = 1 (orange up triangles) and lmax = 2 (oranges crosses) are less than

0.1 meV for Np ≥ 120. Since imposing the constraint comes at no cost, we keep lmax = 1 in the

forthcoming calculations.

We provide in the Supplementary Material (Fig. S1) the same study but for the HOMO and

LUMO energies. Very similar results are obtained as compared to the gap study. In particular,

including diffuse orbitals in the test set, together with the lmax = 1, 2 constraints, the errors on the

HOMO and LUMO are of the order of 3 to 4 meV, namely just slightly larger than the sub-meV

error obtained on the gap.

Very similar results can also be obtained by considering Kohn-Sham basis sets, and associated

auxiliary basis sets, containing diffuse orbitals. As a matter of fact, it is well documented that

the description of response properties, such as the polarizability, converges faster when diffuse

channels are included for the description of molecular orbitals and associated density.81,82 For sake

of consistence with our def2-TZVP/def2-TZVP-RI calculations, we adopt the def2-TZVPD/def2-

TZVPD basis sets82 that add diffuse channels for better response properties. The resulting data

are presented in the Supplementary Material (Fig. S2). Due to the addition of diffuse orbitals in
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the Kohn-Sham basis, the closing of the gap increases by about 2%, from ∆Gap= -0.98 eV to

∆Gap= -1.00 eV, indicating a slightly enhanced screening, consistent with an enhanced molecular

polarizability. The evolution of the error with the number Np of polarization vectors is also very

similar to what we obtained in Fig. 4, demonstrating that our scheme (diffuse test functions and

constraints) is universal, that is rather independent of the chosen input Kohn-Sham basis set.

The test provided above for the polarization energy originating from the first-nearest-neighbors

is the most stringent test. For fragments located farther away, the dipolar component of the reaction

field, that we strictly impose, becomes more and more dominant. This is illustrated in Fig. 5 where

we study the HOMO-LUMO gap of a C60 surrounded now by its two nearest-neighbor shells (see

Inset Fig. 5). The size of this cluster amounts to 55 fullerenes. When all fullerenes are described at

their full def2-TZVP/def2-TZVP-RI level (in the fragment approximation), the gap of the central

fullerene closes by 1.25 eV from the gas phase to the 55-C60 cluster geometry. We study the

effect of reducing the size Np of the polarization basis used to describe the susceptibility of the 42

surrounding C60 in the second shell, keeping the full auxiliary basis to describe the central fullerene

and its first-nearest neighbors shell. As such, we mainly focus on the error induced by the fitting

process on fragments located at middle to long-range of the central subsystem of interest.

Consistently with the results obtained for the first shell of neighbors (Fig. 4), these calculations

confirm that the addition of diffuse orbitals in the test set dramatically helps in reducing the

error below the meV with a small number of NP polarization vectors (compare orange and blue

data in Fig. 5). Further, as compared to the first-nearest neighbors case, a smaller number NP

of polarization vectors is needed to go below the meV error when the constraint on the dipolar

polarizability (lmax = 1) is imposed. This is the signature that in the long-range, the dipolar response

dominates the screening potential, or reaction field. The combination of diffuse test orbitals with

ζ = 0.01 bohr−2 with the constraint lmax = 1 leads to an error of the order of 0.1 meV for NP = 60,

namely one polarization vector per atom. This is a dramatic reduction of the size of the polarization

basis needed to describe the susceptibility blocks entering the Dyson equation.

As an additional validation, we plot in Fig. 6 the screening potential, or reaction field,

vscreen(r, r0) = [vχv](r, r0) associated with an elementary positive source point-charge located

in r0, in the vicinity of a single pentacene molecule. Namely, for a test charge located in r0, we plot

vscreen(r, r0) as a function of r in the pentacene plane. In the case of a single fragment molecule, the

reaction field reduces to vχ(I)v, with (I) the index of that molecule. The reference reaction field is

provided in Fig. 6(a) while the error associated with the model susceptibility, for a fixed NP = 70
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FIG. 5. Error on the gap for a fullerene surrounded by its two first-shells of neighbors. The susceptibility of

the central (in red, Inset) and 12 first-nearest-neighbors (in blue, Inset) C60 are described by the full auxiliary

basis (5700 orbitals), while the susceptibility for each of the 42 C60 in the second shell of neighbors (in

grey, Inset) is described by NP polarization vectors. Energies on the ordinates are in meV and log-scale.

Results for test functions with and without diffuse orbitals, with and without constraints (see section II C),

are shown. Diffuse functions use ζ = 0.01 bohr−2 (see text). The value ∆Gap = −1.25 eV corresponds to

the reference gap reduction for the central C60 from the gas phase to this 55-fullerenes cluster configuration

when all fragments are described with their full basis sets.

number of retained polarization vectors among the 2314 vectors of the original def2-TZVP-RI basis,

is represented in the other subfigures. Fig. 6(b) shows the case where the test basis set does not

contain diffuse functions. In Fig. 6(c) we add diffuse functions (ζ = 0.01 bohr−2), while Fig. 6(d)

illustrates the fit of χ with the same diffuse functions and the constraint lmax = 1. Clearly, the error

associated with the reaction field around a given pentacene molecule (in meV units) is dramatically

reduced upon adding diffuse test functions and the constraint on the dipolar polarizability. We

purposely replaced the fullerene molecule by a pentacene to indicate that the accuracy of the present

scheme is hardly system dependent.
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FIG. 6. In plane [vχv](r, r0;ω = 0) static reaction field generated by a pentacene molecule in response to a

positive unit source charge (grey dot indicated by +e) in r0. In (a), the full reaction potential. In (b), (c) and

(d) the error ∆vscreen(r, r0;ω = 0) (see Eq. 15) with respect to the full reaction potential upon substituting

the full χ by its low-rank approximation (with 70 polarization vectors). In (b), low-rank χ model obtained

without diffuse functions in the {t} test set; in (c) adding diffuse orbitals to the {t} test set, and in (d) adding

further the constraint on the dipolar molecular polarizability. Positions are in angstroms, and units of the

reaction field are in meV and in log scale. Equipotentials at (±1,±10,±100) meV in figure (a), and at

(±0.1,±1,±10) meV in figures (b), (c) and (d) are represented by white lines. The value of the reference and

of the error associated with the reaction field at the position of the source is indicated.

B. The C60 crystal and surface environments

Beyond the small cluster models, we now study the evolution of the gap of a fullerene from

the gas phase to a C60 face-centered-cubic crystal (fcc) environment. We thus want to calculate

the closing of the gap by screening effects in the limit of an infinite environment. Such a quantity,

labeled ∆Gap below, is also coined the polarization energy. We will consider the cases of bulk C60

(fullerite) and further of a C60 at the (111) surface and sub-surface. Experimental photoemission

experiments are very much surface sensitive for organic systems, with a limited penetration depth of

the input photons or electrons, so that comparison with the surface location is more appropriate. The

bulk limit is obtained by immersing a C60 molecule in a sphere of fullerenes with increasing radius.
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The surface and subsurface limits are obtained by using half-a-sphere of polarizable fullerenes in

the environment. In the absence of wavefunction delocalization (or band dispersion) in the fragment

approach, we focus on the peak-to-peak gap, namely the gap between the center of the HOMO and

LUMO bands. We emphasize that the absence of permanent ground-state dipole, quadrupole, etc.,

in fullerene molecules, precludes the influence of any electrostatic crystal field in the ground-state.

In the present case of fullerene crystals, the reference X(I)
g susceptibility can be constructed for a

single fullerene and the resulting fitted X̃(I)
g matrix can be “copied” to form the model susceptibility

block associated with each fullerene in the environment. Even though rotational disorder was

not explored in this study, rotating the X̃(I)
g matrix, to follow the rotation of a given fullerene, can

be easily implemented. Beyond rotations, the effect on the polarization energy of changes in the

susceptibility matrix associated with slight atomic distortions around some average equilibrium

geometry, is expected to be small but may be explored in future studies.

The calculations are performed with the parameters described above, namely keeping the full

auxiliary def2-TZVP-RI basis set to describe the susceptibility of the C60 of interest for which we

perform our embedded GW calculation. The same full auxiliary basis set is used for its first-nearest

neighbors. For the rest of the environment, namely the second-nearest neighbors and those located

farther away, we keep NP = 60 optimized polarization vectors for each fullerene. Diffuse test

functions with ζ = 0.01 bohr−2 are adopted with the lmax = 1 constraint. We focus on the gap closing

(∆Gap) from the gas to the dense phase. Such a polarization energy, originating from the screening

by the environment, is described at the ∆COHSEX level as emphasized above.

We plot in Fig. 7 the evolution of the polarization energy, or ∆Gap, associated with the peak-to-

peak gap for a bulk C60 (orange dots), a surface C60 (blue dots) and a C60 at sub-surface (red dots),

as a function of 1/N1/3
C60

, where NC60 represents the number of fullerenes retained in the sphere or

half-sphere we use for the environment. Analytic derivations show indeed that such a polarization

energy converges slowly with a 1/N1/3
C60

behavior in the asymptotic regime. This asymptotic behavior

is confirmed numerically in Fig. 7 by the straight dashed-line fits, one for each type of system,

going through the calculated energies in the large NC60 limit.

In the asymptotic infinite bulk size limit, the gap of the central C60 is closing by 1.69 eV (orange

dashed line) with respect to the gas phase. This can be compared to the polarization energy of

the biggest studied system. Our calculations are performed for spheres containing up to 3367 C60,

representing 202 020 carbon atoms. The gap of such a system closes by 1.58 eV, which represents

a difference of 0.11 eV with respect to the extrapolated infinite size value. This highlights the
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FIG. 7. Evolution of the gap closing ∆Gap, at the static ∆COHSEX level, between a gas phase fullerene and

NC60 systems, as a function of 1/N1/3
C60

. The orange/blue/red dots show calculations for one C60 embedded

at the center of a sphere [Inset (a)], at the surface of a half-sphere [Inset (b)], and at the subsurface of a

half-sphere [Inset (c)], respectively. Dashed lines represent [a/N1/3
C60
+ b] fits.

difficulty to capture the polarization energy with an accuracy within the 0.1 eV threshold when

limited size environments are considered.

In order to compare to the G0W0@LDA 3.0 eV peak-to-peak gap in a fully periodic bulk

calculation performed by Shirley and Louie in their pioneering study,83 we compute the def2-TZVP

G0W0@LDA gap for an isolated fullerene. Subtracting the 1.69 eV polarization energy in the

bulk limit to our gas phase 4.46 eV G0W0@LDA HOMO-LUMO gap, we end up with a 2.8 eV

peak-to-peak gap, in fair agreement with the periodic G0W0@LDA value.

We also compute the asymptotic infinite limit for the gap of one C60 located at the (111) surface

(see Inset Fig. 7(b)). The blue dashed line gives an asymptotic closing of the gap amounting

to 1.40 eV, which is in good agreement with the experimental values of 1.1 eV,84 1.2 eV85,86 or

1.4 eV.87,88 Such values were obtained by taking the provided experimental peak-to-peak gaps

subtracted to the experimental 4.9 eV gap value for a fullerene in gas phase.89 Alternatively, using

the analytic continuation approach to the dynamical GW self-energy implemented in beDeft,60 we

compute the def2-TZVP evGW@PBE0 gap value for one C60 in the gas phase. In the partially

self-consistent evGW approach, the HOMO and LUMO energy levels are converged at the 0.1
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meV level at the 7th cycle. Taking the computed 5.1 eV gas phase gap value, and adding the

calculated polarization energy at the surface, one obtains a surface peak-to-peak gap of 3.7 eV,

within the 3.5-3.8 eV experimental range. The presence of a metallic substrate when performing

photo-emission experiments, potentially enhancing the screening in the limit of few C60 layers, and

alternatively the limited screening from the fullerene crystal in the few layer limits, may explain

variations between experimental values. On the theoretical side, the influence of the fragment

approximation, together with treating screening effects in the static COHSEX limit, remains to be

studied.

We further compute the polarization energy for one C60 at the sub-surface (see Inset Fig. 7(c)).

The red dashed fit provides an asymptotic infinite size polarization energy of 1.63 eV. This value,

closer to the bulk limit (difference of 0.06 eV) than the surface limit (difference of 0.23 eV), tends

to show a rapid convergence of the polarization energy with respect to the depth of the considered

fullerene. Namely, a fullerene in the subsurface presents properties already close to bulk case.
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FIG. 8. Gap evolution for one surface C60 [in red, Inset (a)], as a function of the inverse number n of C60

layers. Here the reference is the gap of a fullerene in an infinite C60 monolayer [see Inset (b)]. The infinite

size layer(s) limit is obtained by extrapolating disk(s) to their infinite R2D radius. The dashed line represents

the [a/n + b] fit.

We finally conclude this study by making a connection to periodic slab calculations, namely

the traditional approach for the study of surfaces with periodic boundary conditions. Along that

line, we converge the polarization energy through the addition of C60 infinite sublayers, rather than

by increasing the radius R of a half-sphere of polarizable molecules. Such a representation can be

obtained by creating stacks of disks with increasing lateral radius R2D, as represented in the Inset

Fig. 8(a), extrapolating the polarization energy to infinity for a given number (n) of layers with an

asymptotic scaling low in 1/R2
2D (see Ref. 53). Taking as a reference an infinite size monolayer,

as illustrated in the Inset Fig. 8(b), the polarization energy scales as (1/n). We emphasize that for

21



(n=5), only 85% of the polarization energy is captured. Summing the 0.85 eV polarization energy

of one C60 embedded in an infinite size monolayer, and the asymptotic polarization energy of 0.54

eV coming from an infinite number of layers with respect to a single monolayer, we find a total

polarization energy of 1.39 eV. This value is nearly identical to the 1.40 eV value obtained with the

“half-sphere” surface approach.

C. Discussion on CPU and memory requirements

The calculation for the biggest studied system made of 3367 C60, amounting to 202 020 atoms

as discussed in section III B, required around 8000 total CPU hours distributed on 720 cores.

Alternatively, this represent a typical wall-time (time to completion of the run) of approximately

11 hours. Such a calculation was performed using the Irene SKL partition (Intel Skylake 8168

processors, with a base frequency of 2.70 GHz) of the IRENE supercomputer from GENCI-

IDRIS. Only 2.5 terabytes of memory were used to study this system, making possible to run

such calculation on smaller size computer clusters. Such a small memory footprint was made

possible thanks to the small dimension (60) of the polarization basis for each fragment in the

environment. Let’s stress out here that describing each fullerene by its full def2-TZVP-RI basis,

of dimension 5700, would lead to a memory footprint of 2.6 petabytes for each related matrices,

with similar requirements for the total Coulomb potential V or the total susceptibility matrix X.

It would have been impossible to store any of these big matrices on the 310 terabytes available

on the supercomputer used for this study. The present numbers are certainly indicative and may

change depending on the chosen parameters, but they illustrate how efficient QM/QM (GW/RPA)

calculations can be when using compressed susceptibility blocks for the environment.

IV. CONCLUSION

We have presented a fully ab initio QM/QM embedded GW calculation with a polarizable

environment containing up to 200 000 atoms, with total typical CPU timings below 10 000 hours at

the def2-TZVP level. Such calculations are made possible by adopting a fragment, or sub-system,

approximation. Further, the susceptibility matrices associated with the fragments in the environment

are reduced on-the-fly to a very low-rank representation, with block dimensions equivalent to the

number of atoms in the fragment. This approach yields to representations even more compact than
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standard semi-empirical approaches based on polarizable atoms described by onsite {px, py, pz} local

induced dipoles, namely 1 degree of freedom per site as compared to the 3 degrees of polarizable

atoms. Such a reduction allows inverting the Dyson equation for the screened Coulomb potential

W with very limited CPU and memory requirements.

The present scheme is certainly far from being optimal. The choice of the same localization

parameter (ζ) for all (s,p,d,f,g) diffuse channels in the ensemble of test functions can e.g. lead to

forthcoming improvements. Our main point was however to show that very simple choices could

already dramatically help in constructing model susceptibility operators both extremely compact

and accurate in reproducing medium-to-long-range reaction fields.

As future directions, the scheme described here above can be merged with subsystem-DFT

techniques90–92 used to improve the input Kohn-Sham eigenstates, allowing to exploit fragment

approximations while accounting for the frozen density of the neighboring molecules. In particular,

the electrostatic field generated by the environment in the ground-state, of crucial importance in

organic media composed of molecules with a permanent dipole, quadrupole, etc.10,11,93–95 can be

further accounted for at the DFT level.

Further, the block-diagonal form of the susceptibility can also be improved within a cluster

expansion technique,43 calculating the gas phase susceptibility of pairs of interacting neighboring

fragments, building a susceptibility matrix that is tridiagonal by blocks rather than strictly diagonal.

Within the scope of the present study, we tentatively assess the quality of the fragment approximation

in the Supplementary Material, section III, where we compare, in the limit of a small number of

fullerenes, the impact of neglecting the overlap of molecular orbitals between fragments. Allowing

the delocalization of molecular orbitals over up to 4 fullerenes in the environment, we find that the

fragment approximation does not induce errors larger than the percent on the calculated polarization

energy. While we cannot study much larger systems at the many-body level without the fragment

approximation, the 4-fullerenes environment induces a polarization correction to the central C60

gap that represents already ∼30% of the true infinite surface limit.

Finally, the GW formalism allows to define a dynamical dielectric response, going beyond the

standard low-frequency limit in the optical range of common PCM or QM/MM approaches. The

importance of such dynamical corrections needs to be assessed, calculating the polarization energies

within the full GW formalism rather than its static COHSEX limit, generalizing the recent merging

of the GW formalism with a dynamical PCM.24
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SUPPLEMENTARY MATERIAL

See the Supplementary Material for a study of (I) the error induced by the fit method on the

HOMO and LUMO energies, (II) the impact of adding diffuse functions in the Kohn-Sham and

associated auxiliary basis sets, and (III) a test of the fragment approach validity.
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Appendix A: Computation of the model susceptibility

In this Appendix, we compute the model susceptibility X̃(I)
g (ω) solution of the equation 16. From

now on and for compactness, we dropped the exponent (I) because we focus only on one fragment,

and the frequency index ω. Results can be computed separately for each required frequency.

Keeping the same notations as the ones used in section II, we denote B the Coulomb matrix

between the auxiliary basis and the test basis, such that its coefficients are (Q||t), where (·||·) indicates

a Coulomb integral. We define Γ the Coulomb matrix between the polarization basis and the test

basis, with coefficients (γ||t), and E (respectively R) the overlap matrix between the auxiliary

basis set (respectively the polarization basis) and the constraint basis, with coefficients ⟨Q|xmynzp⟩

(respectively ⟨γ|xmynzp⟩). The equation 16 can be rewritten

X̃g = argmin
X̃

∣∣∣∣∣∣∣∣∣∣B†XgB − Γ†X̃Γ
∣∣∣∣∣∣∣∣∣∣2, (A1)

with || · || the Frobenius norm, under constraints like the equation 17, which can also be rewritten

R†X̃R = E†XgE. (A2)
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To find this N × N matrix X̃g, we build feasible solutions, namely matrices which satisfy all

constraints enforced by the equation A2. Then, among all such feasible solutions, we compute the

optimal one, which minimizes Eq. A1.

For compactness, we define O = E†XgE and Z = B†XgB. Writing the compact singular value

decomposition (SVD) of R = URΣRV†R, and assuming that the rank of R is equal to the number of

constraints Ncstr, we search for solutions such that

U†RX̃UR = Σ
−1
R V†ROVRΣ

−1
R .

Inverting UR requires to consider the nullspace of U†R, of which we write an orthonormal basis as

the columns of the N × (N − Ncstr) matrix K such that U†RK = 0. Under these considerations, X̃ has

the form

X̃ = URΣ
−1
R V†ROVRΣ

−1
R U†R +KM1 +M2K†.

So far, there are some redundancy in the M1 and M2 terms which can be lifted by projection on U

and K supplementary subspaces. At the end, defining C = Σ−1
R V†ROVRΣ

−1
R , and using the fact that

both O and Z are symmetric, we find that

X̃ = URCU†R +KA1K† + URA2K† +KA†2U†R, (A3)

where A1 and A2 are computed via the equation A1.

To solve this equation, let write M⊕ the pseudo-inverse of the matrix M. Let P be the matrix

such that P =
(
K†Γ
)⊕

K†, let IN be the identity matrix of size N × N and let L be the matrix such

that L = R⊕[IN − (ΓP)]. Using the formula of X̃ of Eq. A3 in Eq. A1, and keeping in mind that U

and K span supplementary subspaces, the derivation condition with respect to A1 and A2 leads to

X̃g = L†OL + P†ZΓ⊕ + (Γ⊕)†ZP − P†ZP . (A4)

If no constraints is enforced, we have R = L = 0, K = IN and P = Γ⊕. The formula simplifies thus

into

X̃g = (Γ⊕)†ZΓ⊕. (A5)

Appendix B: Definition of the test basis

We detail here how the test basis {t} is set-up. It is in particular designed to reproduce as best as

possible the effects of the susceptibility of reference at short to middle range. To do so, we rely on
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test sets that sample uniformly the Coulomb interaction: starting from a set of functions {t0}, we

orthonormalize this set with respect to the Coulomb norm, leading to the test basis {t1}. Namely,

writing V0 the Coulomb matrix such that its coefficients are equal to (t0||t
′
0), where (·||·) indicates a

Coulomb integral, the ith vector’s coordinates of {t1}, in the basis set {t0}, is given by the ith column

of V−1/2
0 . This basis set is such that (t1∥t

′
1) = δt1,t

′
1
.

We create two of such sets: i) one spanning the auxiliary basis, namely using the notations of

the section II {t0} = {P}, and ii) another test basis {td
1} based on the set of diffuse orbitals {td

0}. In this

study, we used for {td
0} a set of atom-centered (s,p,d,f,g) diffuse Gaussian orbitals with, for sake of

simplicity, the same e−ζr
2

radial part.

The final test basis {t} is the direct sum of {t1} and {td
1}. The first set is down-weighted with

respect to the second one, here by a factor 1/50, to strengthen the influence of the diffuse functions

during the fitting process.

Appendix C: Optimization of the polarization basis

In this Appendix, we explain how we compute the polarization basis {γ} (see notation of section

II), in which is computed X̃g. More exactly, we develop our method to compute the {CγP} coefficient

set of Eq. 19. Starting from the equation A3, these coefficients were computed through two

sub-problems.

1. Optimization for N = Ncstr

Keeping the same notation as in Appendix A, we started by studying the specific problem of

N = Ncstr, with {γ0} = {P}. To be more explicit, we re-index by 0 all matrices which depends

directly on {γ0}. C0 being invertible, with rank(C0) = Ncstr, there is a matrix S such that A1 = SC0S†,

and A2 = C0S†. We search for S such that

S(1)
opt = argmin

S

∣∣∣∣∣∣Z − Γ†0(UR0
+K0S)C0(UR0

+K0S)†Γ0

∣∣∣∣∣∣ .
The solution S(1)

opt of this non-linear optimization problem is computed by a gradient descent

algorithm.

We keep UR = UR0
+K0S(1)

opt as a subset of the researched optimal directions {γ}. More exactly,

the ith column of UR corresponds to the coefficients {CγP} of the ith vector of the required basis set

{γ}.
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2. Optimization problem for A2 = 0

To find the other coefficients {CγP}, we use a greedy strategy. We consider only the first and

second terms of the left-hand side of the equation A3, so namely A2 = 0, and write the factorized

form of the general symmetric matrix A1 = S∆S†, with ∆ a diagonal matrix. Independently

of ∆, the required coefficients {CγP} defining the optimal directions are only determined by the

S matrix. Using the Ncstr first directions we have found, given Zcstr = Z − Γ†0URC0U†RΓ0, and

m = max(0,N − Ncstr), we thus search for solutions S(2)
opt of the low rank sub-problem

S(2)
opt = argmin

S,∆ / rank(S)≤m

∣∣∣∣∣∣Zcstr − Γ
†

0K0S∆S†K†0Γ0

∣∣∣∣∣∣ .
Defining J = K†0Γ0, and using its SVD J = UJΣJV†J, this problem is equivalent to

S(2)
opt = argmin

S,∆ / rank(S)≤m

∣∣∣∣∣∣V†JZcstrVJ − ΣJU†JS∆S†UJΣJ

∣∣∣∣∣∣ . (C1)

Using the SVD of V†JZcstrVJ = U1Σ1V†1, and defining Σ(m)
1 the diagonal matrix made of the first m

singular values of Σ1, the Eckart–Young–Mirsky theorem leads to a solution S(2)
opt of Eq. C1 such

that

S(2)
opt =

[√
Σ

(m)
1 V†1Σ

−1
J U†J

]†
, ∆ = V†1U1.

The required coefficients {CγP} are given by the columns of K0S(2)
opt.

At the end of the process, the coordinates of the N polarization vectors {γ} in the auxiliary

basis, corresponding to the {CγP} coefficients, are given by the columns of UR and of K0S(2)
opt. In the

specific case where no constraints is enforced, R0 is not defined, nor UR0
, and K0 is the identity

matrix. So the basis {γ} is given by the columns of S(2)
opt, with Zcstr = Z and J = Γ0.

We emphasize that such a method can be easily adapted to another choice of the first guess {γ0},

different of the auxiliary basis.
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46G. Weng, A. Pang, and V. Vlček, J. Phys. Chem. Lett. 14, 2473 (2023), pMID: 36867592,

https://doi.org/10.1021/acs.jpclett.3c00208.
47J. B. Neaton, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett. 97, 216405 (2006).
48Z.-F. Liu, F. H. da Jornada, S. G. Louie, and J. B. Neaton, J. Chem. Theory Comput. 15, 4218

(2019), pMID: 31194538, https://doi.org/10.1021/acs.jctc.9b00326.
49Z.-F. Liu, J. Chem. Phys. 152, 054103 (2020), https://pubs.aip.org/aip/jcp/article-

pdf/doi/10.1063/1.5140972/15569206/054103_1_online.pdf.
50F. Xuan, Y. Chen, and S. Y. Quek, J. Chem. Theory Comput. 15, 3824 (2019), pMID: 31084031,

https://doi.org/10.1021/acs.jctc.9b00229.
51K. Andersen, S. Latini, and K. S. Thygesen, Nano Lett. 15, 4616 (2015), pMID: 26047386,

https://doi.org/10.1021/acs.nanolett.5b01251.
52K. T. Winther and K. S. Thygesen, 2D Mater. 4, 025059 (2017).
53D. Amblard, G. D’Avino, I. Duchemin, and X. Blase, Phys. Rev. Materials 6, 064008 (2022).
54F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
55B. Farid, Electron Correlation in the Solid State - Chapter 3, edited by N. March (Imperial

College Press, London, 1999).
56G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
57R. Martin, L. Reining, and D. Ceperley, Interacting Electrons: Theory and Computational

Approaches (Cambridge University Press, 2016).
58Y. Ping, D. Rocca, and G. Galli, Chem. Soc. Rev. 42, 2437 (2013).
59D. Golze, M. Dvorak, and P. Rinke, Front. Chem. 7, 377 (2019).
60I. Duchemin and X. Blase, J. Chem. Theory Comput. 16, 1742 (2020), pMID: 32023052,

https://doi.org/10.1021/acs.jctc.9b01235.
61I. Duchemin and X. Blase, J. Chem. Theory Comput. 17, 2383 (2021), pMID: 33797245,

https://doi.org/10.1021/acs.jctc.1c00101.
62O. Vahtras, J. Almlöf, and M. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).
63X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, and M. Scheffler,

New J. Phys. 14, 053020 (2012).

30

https://doi.org/10.1021/acs.jctc.0c01307
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.0c01307
https://doi.org/10.1063/5.0058410
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0058410/14111299/054104_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0058410/14111299/054104_1_online.pdf
https://doi.org/10.1021/acs.jpclett.3c00208
https://arxiv.org/abs/https://doi.org/10.1021/acs.jpclett.3c00208
https://doi.org/10.1103/PhysRevLett.97.216405
https://doi.org/10.1021/acs.jctc.9b00326
https://doi.org/10.1021/acs.jctc.9b00326
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.9b00326
https://doi.org/10.1063/1.5140972
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.5140972/15569206/054103_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.5140972/15569206/054103_1_online.pdf
https://doi.org/10.1021/acs.jctc.9b00229
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.9b00229
https://doi.org/10.1021/acs.nanolett.5b01251
https://arxiv.org/abs/https://doi.org/10.1021/acs.nanolett.5b01251
https://doi.org/10.1088/2053-1583/aa6531
https://doi.org/10.1103/PhysRevMaterials.6.064008
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1039/C3CS00007A
https://doi.org/10.3389/fchem.2019.00377
https://doi.org/10.1021/acs.jctc.9b01235
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.9b01235
https://doi.org/10.1021/acs.jctc.1c00101
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.1c00101
https://doi.org/https://doi.org/10.1016/0009-2614(93)89151-7
https://doi.org/10.1088/1367-2630/14/5/053020


64I. Duchemin, J. Li, and X. Blase, J. Chem. Theory Comput. 13, 1199 (2017), pMID: 28094983,

https://doi.org/10.1021/acs.jctc.6b01215.
65M. Pavanello, J. Chem. Phys. 138, 204118 (2013), https://pubs.aip.org/aip/jcp/article-

pdf/doi/10.1063/1.4807059/13279854/204118_1_online.pdf.
66J. Tölle and J. Neugebauer, J. Phys. Chem. Lett. 13, 1003 (2022), pMID: 35061387,

https://doi.org/10.1021/acs.jpclett.1c04023.
67F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
68F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294, 143 (1998).
69H. F. Wilson, F. Gygi, and G. Galli, Phys. Rev. B 78, 113303 (2008).
70M. Govoni and G. Galli, J. Chem. Theory Comput. 11, 2680 (2015), pMID: 26575564,

https://doi.org/10.1021/ct500958p.
71J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996),

https://doi.org/10.1063/1.472933.
72C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999), https://doi.org/10.1063/1.478522.
73F. Neese, F. Wennmohs, U. Becker, and C. Riplinger, J. Chem. Phys. 152, 224108 (2020),

https://doi.org/10.1063/5.0004608.
74F. Neese, WIREs Comput. Mol. Sci. 12, e1606 (2022),

https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1606.
75I. Duchemin, J. Li, and X. Blase, J. Chem. Theory Comput. 13, 1199 (2017), pMID: 28094983,

https://doi.org/10.1021/acs.jctc.6b01215.
76P. A. Heiney, J. E. Fischer, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley Jr.,

A. B. Smith, and D. E. Cox, Phys. Rev. Lett. 66, 2911 (1991).
77In the fragment approximation, band dispersion originating from wavefunction hybridization

between fragments cannot be accounted for.
78T. Rangel, S. M. Hamed, F. Bruneval, and J. B. Neaton, J. Chem. Theory Comput. 12, 2834

(2016), pMID: 27123935, https://doi.org/10.1021/acs.jctc.6b00163.
79F. Kaplan, M. E. Harding, C. Seiler, F. Weigend, F. Evers, and M. J. van Setten, J. Chem. Theory

Comput. 12, 2528 (2016), pMID: 27168352, https://doi.org/10.1021/acs.jctc.5b01238.
80F. Bruneval and M. A. L. Marques, J. Chem. Theory Comput. 9, 324 (2013), pMID: 26589035,

https://doi.org/10.1021/ct300835h.
81F. Jensen, J. Chem. Phys. 117, 9234 (2002), https://pubs.aip.org/aip/jcp/article-

pdf/117/20/9234/10843810/9234_1_online.pdf.

31

https://doi.org/10.1021/acs.jctc.6b01215
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.6b01215
https://doi.org/10.1063/1.4807059
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4807059/13279854/204118_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4807059/13279854/204118_1_online.pdf
https://doi.org/10.1021/acs.jpclett.1c04023
https://arxiv.org/abs/https://doi.org/10.1021/acs.jpclett.1c04023
https://doi.org/10.1039/b508541a
https://doi.org/10.1016/S0009-2614(98)00862-8
https://doi.org/10.1103/PhysRevB.78.113303
https://doi.org/10.1021/ct500958p
https://arxiv.org/abs/https://doi.org/10.1021/ct500958p
https://doi.org/10.1063/1.472933
https://arxiv.org/abs/https://doi.org/10.1063/1.472933
https://doi.org/10.1063/1.478522
https://arxiv.org/abs/https://doi.org/10.1063/1.478522
https://doi.org/10.1063/5.0004608
https://arxiv.org/abs/https://doi.org/10.1063/5.0004608
https://doi.org/https://doi.org/10.1002/wcms.1606
https://arxiv.org/abs/https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1606
https://doi.org/10.1021/acs.jctc.6b01215
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.6b01215
https://doi.org/10.1103/PhysRevLett.66.2911
https://doi.org/10.1021/acs.jctc.6b00163
https://doi.org/10.1021/acs.jctc.6b00163
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.6b00163
https://doi.org/10.1021/acs.jctc.5b01238
https://doi.org/10.1021/acs.jctc.5b01238
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.5b01238
https://doi.org/10.1021/ct300835h
https://arxiv.org/abs/https://doi.org/10.1021/ct300835h
https://doi.org/10.1063/1.1515484
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/117/20/9234/10843810/9234_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/117/20/9234/10843810/9234_1_online.pdf


82D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010),

https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3484283/15431477/134105_1_online.pdf.
83E. L. Shirley and S. G. Louie, Phys. Rev. Lett. 71, 133 (1993).
84B. Reihl, Mater Res Soc Symp Proc 359, 377 (1994).
85J. Weaver, J. Phys. Chem. Solids 53, 1433 (1992).
86P. J. Benning, D. M. Poirier, T. R. Ohno, Y. Chen, M. B. Jost, F. Stepniak, G. H. Kroll, J. H.

Weaver, J. Fure, and R. E. Smalley, Phys. Rev. B 45, 6899 (1992).
87R. W. Lof, M. A. van Veenendaal, B. Koopmans, H. T. Jonkman, and G. A. Sawatzky, Phys. Rev.

Lett. 68, 3924 (1992).
88T. Takahashi, S. Suzuki, T. Morikawa, H. Katayama-Yoshida, S. Hasegawa, H. Inokuchi, K. Seki,

K. Kikuchi, S. Suzuki, K. Ikemoto, and Y. Achiba, Phys. Rev. Lett. 68, 1232 (1992).
89See the NIST website: https://webbook.nist.gov/chemistry/.
90C. R. Jacob and J. Neugebauer, WIREs Comput. Mol. Sci. 4, 325 (2014),

https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1175.
91L. E. Ratcliff, W. Dawson, G. Fisicaro, D. Caliste, S. Mohr, A. Degomme, B. Videau,

V. Cristiglio, M. Stella, M. D’Alessandro, S. Goedecker, T. Nakajima, T. Deutsch,

and L. Genovese, J. Chem. Phys. 152, 194110 (2020), https://pubs.aip.org/aip/jcp/article-

pdf/doi/10.1063/5.0004792/16718083/194110_1_online.pdf.
92W. Dawson, S. Mohr, L. E. Ratcliff, T. Nakajima, and L. Genovese, J. Chem. Theory Comput. 16,

2952 (2020), pMID: 32216343, https://doi.org/10.1021/acs.jctc.9b01152.
93D. Varsano, E. Coccia, O. Pulci, A. M. Conte, and L. Guidoni, Comput. Theor. Chem. 1040-1041,

338 (2014).
94C. Poelking, M. Tietze, C. Elschner, S. Olthof, D. Hertel, B. Baumeier, F. Würthner, K. Meerholz,

K. Leo, and D. Andrienko, Nat. Mater 14, 434 (2015).
95J. Li, I. Duchemin, O. M. Roscioni, P. Friederich, M. Anderson, E. Da Como, G. Kociok-Köhn,

W. Wenzel, C. Zannoni, D. Beljonne, X. Blase, and G. D’Avino, Mater. Horiz. 6, 107 (2019).

32

https://doi.org/10.1063/1.3484283
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3484283/15431477/134105_1_online.pdf
https://doi.org/10.1103/PhysRevLett.71.133
https://doi.org/10.1557/PROC-359-377
https://doi.org/https://doi.org/10.1016/0022-3697(92)90237-8
https://doi.org/10.1103/PhysRevB.45.6899
https://doi.org/10.1103/PhysRevLett.68.3924
https://doi.org/10.1103/PhysRevLett.68.3924
https://doi.org/10.1103/PhysRevLett.68.1232
https://webbook.nist.gov/chemistry/
https://doi.org/https://doi.org/10.1002/wcms.1175
https://arxiv.org/abs/https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1175
https://doi.org/10.1063/5.0004792
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0004792/16718083/194110_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0004792/16718083/194110_1_online.pdf
https://doi.org/10.1021/acs.jctc.9b01152
https://doi.org/10.1021/acs.jctc.9b01152
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.9b01152
https://doi.org/https://doi.org/10.1016/j.comptc.2014.03.011
https://doi.org/https://doi.org/10.1016/j.comptc.2014.03.011
https://doi.org/10.1038/nmat4167
https://doi.org/10.1039/C8MH00921J


Supplementary Material : Many-body GW calculations with very large scale

polarizable environments made affordable: a fully ab initio QM/QM approach

David Amblard,1 Xavier Blase,1 and Ivan Duchemin2

1)Univ. Grenoble Alpes, CNRS, Inst NEEL, F-38042 Grenoble,

France
2)Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054 Grenoble,

Francea)

a)Electronic mail: ivan.duchemin@cea.fr

1

mailto:ivan.duchemin@cea.fr


I. ERROR INDUCED BY THE FIT METHOD FOR THE HOMO AND LUMO

ABSOLUTE ENERGIES

In section III.A. of the main manuscript (Fig. 4), we study the error, as a function of the size

Np of the polarization basis per C60, associated with the gap of one C60 embedded in a sphere

of 12 neighbors. We focus now on the related HOMO and LUMO energies (Fig. S1). To allow

a log-scale representation, only the absolute value of the errors are plotted. Negative errors are

indicated by markers surrounded by black bold edges. Taking Np = 180 polarization vectors, the

value at which the error on the gap becomes lower than 1 meV, we find that the error on the

absolute HOMO and LUMO energies is only slightly larger, at the 3-4 meV scale. As such, not

only energy differences, but also absolute energy levels, are described quite accurately with very

few optimal polarization vectors to describe the environment susceptibility.
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FIG. S1: Same as Fig. 4 (main manuscript) but for the ∆LUMO and ∆HOMO energies, where

the ∆ means the evolution between the gas phase and the first-shell-of-neighbors environment [see

Inset in (a)]. Data with black bold edges indicate negative values.
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II. IMPACT OF AUGMENTING THE KOHN-SHAM AND AUXILIARY BASIS SETS

In the main manuscript, the def2-TZVP/def2-TZVP-RI Kohn-Sham and auxiliary basis sets

have been used. We explore the impact of using basis sets containing more diffuse channels known

to provide improved polarizability values for a given basis size.S1,S2 To remain consistent with the

def2-triple-zeta basis sets used in the main manuscript, we now adopt the def2-TZVPD/def2-

TZVPD-RI basis sets that includes additional diffuse channels designed for the calculation of

response properties.S2 We reproduce in Fig. S2 the equivalent of the Fig. 4 of the main manuscript,

showing very similar results. In the presence of diffuse orbitals (ζ = 0.01 bohr−2) in the test

set, together with imposing the lmax = 1,2 constraints, the error reaches the meV error for Np

larger than ∼120. The converged reduction of the gap ∆Gap = −1.0 eV is slightly larger than

the ∆Gap =−0.98 eV obtained with the def2-TZVP/def2-TZVP-RI basis sets, indicating a slight

enhancement of the polarizability in the presence of diffuse channels.
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FIG. S2: Error on the central C60 [red, Inset] gap as a function of the number NP of polarization

vectors per C60 in the first-neighbors shell [blue, Inset]. Energies on the ordinates are in meV

and log-scale. Results for test functions with and without diffuse orbitals, with and without con-

straints (see section II.C. of the main manuscript), are shown. The reference ∆Gap = −1.00 eV

corresponds to the gap reduction from the gas phase to the 13-C60 cluster when all fragments are

described by their full auxiliary basis def2-TZVPD-RI (Np = 6900).
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III. VALIDITY OF THE FRAGMENT APPROACH

In this section, we compare calculations performed using the fragment approximation to ref-

erence calculations where all fullerenes in the environment are treated as a single subsystem,

allowing wavefunction delocalization over all molecules in the environment. We again focus on

the closing of the HOMO-LUMO gap of a “central” C60 (in red, Fig. S3) induced by the screening

originating from the environment (blue molecules, Fig. S3). Due to the cost of calculating the

susceptibility beyond the fragment approximation, the number of fullerenes in the environment is

limited to four. To compare data on the same footing, we leave the central (red) fullerene as an

isolated fragment to prevent delocalization of the associated HOMO and LUMO. What we want

to explore is thus the impact of fragmenting the environment.

(a) 3 C60 (b) 4 C60

(c) 5 C60 (d) HOMO−1

FIG. S3: Representations of the systems with (a) 3 C60, (b) 4 C60 and (c) 5 C60 used to test the

fragment approach. In red, the fullerene for which we calculate the difference ∆Gap between the

gap phase and the systems represented here. In (d) we represent the delocalized (HOMO− 1)

molecular orbital associated with the 4 C60 in the environment of system (c) beyond the fragment

approximation.
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The results are provided in Table S1. The impact of the fragment approximation, namely

not allowing the delocalization of the molecular orbitals over all fullerenes in the environment,

increases from 0.5 meV to 1.5 mev, remaining below the percent error. Even though limited

to rather small systems, such an exploration provides a better understanding of the quality of

the fragment approximation. Note that the ∆Gap associated with the 4 C60 system (-0.45 eV)

represents ∼32% of the infinite surface limit (∆Gap =−1.4 eV; see Fig. 7 main manuscript, blue

symbols).

TABLE S1: Variation ∆Gap, from the gas phase to the 3, 4, and 5 C60 systems, for the central

C60 (in red in Fig. S3) allowing wavefunction delocalization over all C60 in the environment. The

error induced by fragmenting the environment is provided in absolute value and in percentage.

Calculations performed at the def2-TZVP/def2-TZVP-RI level (see details in the main text).

System ∆Gap (meV) Error (meV) Relative error (%)

3 C60 -245 0.5 0.2

4 C60 -350 2.2 0.6

5 C60 -447 1.5 0.3

REFERENCES

[S1]F. Jensen, “Polarization consistent basis sets. III. The importance of diffuse func-

tions,” J. Chem. Phys. 117, 9234–9240 (2002), https://pubs.aip.org/aip/jcp/article-

pdf/117/20/9234/10843810/9234_1_online.pdf.

[S2]D. Rappoport and F. Furche, “Property-optimized Gaussian basis sets for molecular re-

sponse calculations,” J. Chem. Phys. 133, 134105 (2010), https://pubs.aip.org/aip/jcp/article-

pdf/doi/10.1063/1.3484283/15431477/134105_1_online.pdf.

5

https://doi.org/10.1063/1.1515484
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/117/20/9234/10843810/9234_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/117/20/9234/10843810/9234_1_online.pdf
https://doi.org/10.1063/1.3484283
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3484283/15431477/134105_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3484283/15431477/134105_1_online.pdf

	 Many-body GW calculations with very large scale polarizable environments made affordable: a fully ab initio QM/QM approach 
	Abstract
	Introduction
	 Theory
	 The GW formalism 
	 Fragment approximation
	 Constrained reduction of the fragment susceptibilities 
	 Minimal effective polarizability basis 
	 Technical details 

	Results
	 Validation 
	 The C60 crystal and surface environments 
	 Discussion on CPU and memory requirements 

	Conclusion
	 SUPPLEMENTARY MATERIAL 
	Acknowledgments
	Data Availability Statement
	Computation of the model susceptibility
	Definition of the test basis
	Optimization of the polarization basis
	Optimization for N=Ncstr
	Optimization problem for A2=0

	References


