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Oscillations and Potentials of Mesons and Baryons

In the following, the oscillations and potentials of mesons and baryons are examined and analyzed in detail.

The oscillations result from a simple formula that describes the resonance energy at which the corresponding particle can absorb energy and thus appear.

The potentials describe three mechanisms that describe the fine splitting of the masses of the elementary particles. These potentials can be read off and derived from the experimentally determined masses of the elementary particles as coefficients.

Introduction

Until now, it has not been clear how the energies and therefore the masses of the elementary particles are to be calculated (ref 1).

It seems as if the energies and thus the masses of the mesons and the baryons are composed of vibrations or resonances on the one hand and potentials on the other.

The vibrations or resonances are calculated using a simple general formula. The resulting resonance energy or basal energy is then modulated by several different superimposed potentials.

One of these potentials is the internal mass of charge binding energy, another potential is the external mass-charge binding energy, and the third potential is the Coulomb potential. Only all three potentials taken together give the elementary particles the masses that we actually measure experimentally.

The formula for calculating the resonance masses and/or the resonance energies of the elementary particles

There is a deep physical connection between the most important natural constants: The Rydberg constant corresponds to one half times the square of the fine structure constant (Sommerfeld) times one through the Compton wavelength of the electron. With the help of this expression, the restmass of the electron can be expressed very nicely with the help of the natural constants Rydberg constant, fine structure constant, Planck constant and the speed of light. The usual derivation of this relationship is based on Bohr's atomic model. But there are also several modern derivations from quantum mechanics.

The next thought was to describe the fine structure constant by means of the circle number pi. The fine structure constant can be described as a power term of pi as 4th root of (1 -1/3*pi) and this times 2pi and this divided by (3*pi) to the third. And then there was the consideration that this deep connection between the natural constants and the mass of the electron should not only apply to the electron. Rather, there should be a more general form of this formula that should then apply to all known elementary particles. This formula should also contain natural constants only. These considerations then lead to the following equation:
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In table 1 the coefficients a,b,c and d are listed for the most prominent particles. The formula for calculating the resonance masses and/or the resonance energies of the elementary particles is astonishingly simple. These formulas have a number of constants a, b, c, and d that are specific for each particle type. The most important tuples (a, b, c, d) are listed in table 1.

According to this formula, particles such as electrons and muons could also be composed of smaller particles, which would be in line with the theory of Haim Harari (ref 2).

At the same time, the formula suggests that there is a smallest quantum of mass production. This is the mass corresponding to the Rydberg energy.

It appears interesting that in both octets, i.e., in both the meson-octet and the baryon-octet, not all masses of all baryons can be determined by using the resonance formula given above.

Rather, it seems to be the case that only one mass of one baryon per line of the octet is determined by the resonance formula.

In the case of the first line of the baryon-octet, this is the mass of the proton. In the case of the first line of the meson-octet, this is the mass of the K plus particle. Therefore, we start at the top right corner. In the second line, it is the sigma 0 particle and the eta zero particle in the case of the mesonoctet. Therefore, in the second line, the particle lies in the middle of the octet. In the third line, it is the chi-minus particle and/or the k-minus particle. The formula thus provides the resonance energy for the ground state of a particle along a diagonal through the octet. The diagonal starts at the top right corner and ends at the bottom left corner.

Figure 1

Figure 1 shows the way by which the resonance formula delivers the masses and/or energies of the particles. The other particles need to be calculated including the mass charge binding energies.

What do the particles that are connected by this diagonal have in common?

A common feature of these particles is a relatively constant mass-charge binding energy. The mass increases from line to line due to the strangeness, but the charge decreases due to the simultaneous movement from right to left. The product remains relatively constant.

In contrast, when looking at the baryon decuplet, the selection of the particles that are determined by the formula seems to be determined by the fact that the particles that are determined by the formula have to be different particles than the particles determined in the octet or their analogs.

Therefore, there seems to be an exclusion principle in the form that the formula can deliver only one particle one time. Therefore, each particle can be chosen only once, either in the spin 1/2 state or in the spin 3/2 state.

Determination of the radii and the coefficients of the internal and external mass-charge binding energy

To determine the radii of the interactions and to determine the coefficients of the internal and external mass-charge binding energy, the following procedure is used:

Quadratic equations using the experimentally determined masses

First we define charge-quadratic equations for the experimental mass with coefficients k 2 ,k 1 , and k o
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(eq 2)

First, quadratic equations are determined, which correspond to the experimentally known baryon triplets. The energy and/or mass taken for these correlations are taken from the particle data group (ref 2). The results of these correlations can be seen in the table 2 column "charge parabola".

Table 2

Table 2 gives the charge parabolas and the coefficients e and f (inner and outer mass charge binding energy coefficients) and the derived radii for the most important particles The charge is viewed as the variable x. With regard to the charge, the energies (masses) of the baryons describe quadratic equations with the charge as the unknown quantity x.

Therefore, we can determine the coefficients of these quadratic correlations between energy (mass)

and charge for each baryon type (triplet).

Many baryon particles are known to have triplets that differ primarily in their charge and mass. The masses of these triplets are known very well experimentally.

The masses are points on parabolas or quadratic equations with the charge as the variable quantity x.

It is now possible to set up and solve these quadratic equations that are designed in such a way that the corresponding parabolas go through the known mass-charge pairs. The mass-charge pairs are the triplets of the known elementary particles (baryons).

General quadratic equations
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a external and b internal mass-charge coefficient, m q : mass of quarks, m res : resonance-mass

In the next step, we set up a general quadratic equation again to describe the charge dependence of the masses of the elementary particles.

These general quadratic equations are based on the masses of the particles and first subtract the internal mass-charge binding energy.

Then, the external mass of charge binding energy is subtracted. This is calculated from the "remaining mass" after subtracting the internal binding energy times the charge. A general quadratic equation results from this.

In the next step, both quadratic equations are set equal to each other. This is done component by component, i.e., the two quadratic terms are set equal to each other, and the two linear factors are set equal to each other. Now, the coefficients of the internal and external mass of charge binding energy are calculated from these equations.

There are complex numbers that result from this approach for the coefficients of the internal and external mass-charge binding energy.

These coefficients consist of the same real number plus or minus the same imaginary root of a number divided by a smaller radius (internal binding energy) or by a larger radius (external binding energy). Each baryon triplet has its own set of coefficients.

If we now again reconstruct what it means that the coefficients of the internal and external binding energies are complex numbers, we come to the following conclusions.

When we multiply the complex numbers inserted into the quadratic equation for the mass calculation, we obtain:

In addition to the two mass and charge binding energies, i.e., in addition to the internal mass-charge binding energy and in addition to the external mass-charge binding energy and in addition to the quadratic term 22 q c q m rR , there is a second, so far unexplained, quadratic term 2 q dq m rR , that results.

While the first quadratic term results from the above-described dependence of the external masscharge binding energy on the mass and thus on the internal mass-charge binding energy, the second quadratic term has a completely different constant and thus a completely different origin.

It can be assumed that this second quadratic term

2 q
dq m rR consists of the Coulomb potential of the elementary particle and is to be interpreted as such. Since the elementary particle accumulates large amounts of equal charge, the Coulomb potential of the respective elementary particle also increases.

In addition, the Coulomb potential acts to destabilize and accordingly has a positive sign. This increases the energy level of the particle and thus also the mass of the elementary particle.

In our calculation, the Coulomb potential appears as an imaginary part of the complex coefficients of the internal and external mass-charge binding energy. The coefficients are of course not complex per se, and the complex part consequently represents the coefficient of the Coulomb potential.

This also explains why a root expression appears because the Coulomb potential naturally corresponds to the square of the root expression divided by the product of the two radii (the radius of the inner mass-charge binding energy times the radius of the outer mass-charge binding energy).

The theory of quantum chromodynamics so far has not led to an explanation of the masses of the elementary particles (ref 4). This would be explainable if the masses of the elementary particles are determined by other mechanisms, as explained here above.

The formulas show how the Coulomb potential results from the complex numbers derived from ansatz above for coefficients a and b.

Table 2 gives the experimental values for a and b (= e and f) for the inner and/or outer coefficients for several prominent particles. Then, the charge parabola is given for these particles, and the resonance mass is given as derived from eq 1. The denominators of e and f are interpreted as the inner radius (smaller number) and/or outer radius (larger number). Therefore, the inner (outer)

radius is thought to be the radius of the inner (outer) mass-charge potential.

By using the corrections shown in eqs 8 and 9, corrected values for the coefficients of the three potentials are calculated and given in the columns for e (the inner mass-charge potential) and f (the outer mass-charge potential) and for the Coulomb potential (last column).

As shown here, the mass of the particles can be interpreted as a result of the resonance mass derived from eq 1 modified by three elementary potentials. These potentials are the inner masscharge potential, the outer mass-charge potential and the Coulomb potential.

Formulas ()

res q res q m m b m q a m b m q q           (eq 3)

Modeling as m q m m q q r R r

            (eq 5) 2 2 2 q q q q c q m cqm dq m i d qm cqm i d qm m rR R r rR R r       
(eq 6)

2 2 2 q q q c q m cqm dq m cqm m rR R r rR      (eq 7)
Together, these aspects lead to the following equation: 

  charge = q and with the experimental masses for the triplets for each particle leads to the determination of a and b, resulting in complex numbers for a and b as listed as e and f in table 2) Insertion in the ansatz above leads to

  

Table 1

 1 

Table 1

 1 gives the masses of the elementary particles in MeV (energy at rest) and the coefficients for the most important well known elementary particles according to the resonance formula. All these are theoretically derived calculated masses and/or energies.

	resonance formula				
	leptons,a	b	c	d		
	-1	2	4	4 0.5109	electron	TTT
	-3	2	7	3 105.44	muon	TTT*
	1	2	7	7 1784.49	tauon	TTT**

table 2

 2 

						resonance					
			e (inner) in complex	f (outer) in complex	charge parabola	at local	radius inner	radius outer	e	f	Coulomb
						m(res)			inner	outer	
	pi 0	(uu-dd)/2									
	K+	us	(4467+23isqr(896359))/95000 (4467-23isqr(896359))/494128	x^2 -8,934x + 511,479	511	95000	494128 0.047021053	0,009040168	1.9095E-05
	eta 0	uu+dd-2ss									
	eta prime	uu+dd+ss									
	D+	cd	(591+isqr(18337819))/127500 (591-isqr(18337819))/186871	x^2 -11,82x + 1896,11	1896	127500	186871 0.004635294	0,00316261	0.000769654
	Ds+	cs									
	B meson	ub	(177+isqr(23448671))/279000 (177-isqr(23448671))/352200	x^2-5,31x+5286,2613	5286	279000	352200 0.000634409	0,000502555	0.00023863
	proton	uud	1/80(50+isqr(91315))	2/18763(50-isqr(91315))	x^2-10x+963	963	80	18763	0.625	0,002664819	0.060834488
	lambda	uds									
	sigma 0	uds	3/194(4+i*sqr(514))	1/795*(4-i*sqr(514))	x^2 -12x + 1224	1224	194	795 0.020618557	0,005031447	0.003332685
	delta	ddd									
	xi 0	uss									
	sigma-*	dds	1/1020*(63+isqr(176419))	1/13876(63-isqr(176419))	1,3x^2 -12,6x + 1413,3	1413	1020	13876 0.061764706	0,004540213	0.012464673
	N(1440)	udd									
	xi 0 reson	uss									
	omega-	sss									
	lambda-c	udc									
	c-sigma	ddc	(79+3iSQR(72551))/21250	(79-3iSQR(72551))/41200	0.96x2-9.48x+2476.3	2476,3	21250	41200 0,003717647	0,001917476	8,28681E-05

When incorporating these aspects, the whole formula is calculated as follows:

Thereby q is the difference in charge between the particle defined by the resonance mass formula (way through the diagram) and the actual particle.