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Abstract

In this paper, we propose a new method to approximate operators resulted from solving the scat-

tering Problem in electromagnetism by dielectrically coated conducting bodies, using integral

equations and high order impedance boundary condition. We introduce the variational Problem

and we prove that it is well-posed, we present the new theoretical approach and highlight its

potential through numerical experiments.
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1 Introduction

The problem of electromagnetic scattering by conducting objects (PEC) coated with di-

electric materials has been of considerable and growing interest due to its significance in radar

prediction of targets, stealth technology, geophysics, and antennas ([1],[2],[3]). This significance

is also fortified by the need to enhance the computational efficiency of the existing techniques.

The exact solution is only available for special class of geometries such as the coated conduct-

ing sphere. For an arbitrary cross-section, one has to resort to a numerical technique which

guarantees the accuracy ([4],[5],[6],[7]) and efficiency of the solution such as the Poggio-Miller

formulation- Chang-Harrington-Wu-Tsai (PMCHWT) reference ([8],[9],[10]).

There are several numerical methods to solve the electromagnetic scattering problem (finite-

difference [11], finite-volume [12], method of moments MoM [13],etc.), we are particularly inter-

ested in the method of moments.

The volumic surface integral equation (VSIE) ([14],[15],[16],[17]) and the surface integral equa-

tion (SIE) ([13], [4],[1],[18],[19],[20],[21],[22]) in conjunction with the method of moments (MoM)

are the most powerful techniques to solve this problem numerically, each one has its advantages

and its disadvantages depending on the considered problem ([23],[24],[25]).

The SIE is considered more advantageous than VSIE for homogeneous coating materials, be-

cause, the surface equivalence principle is used to model each homogeneous region with unknown

equivalent currents placed on the surface of this region, compared to VSIE, where the unknown

equivalent currents are distributed throughout the layer volume.

Different SIE formulations have been devised to solve the electromagnetic scattering problem

by a coated conductive object. Among these formulations are the SIE formulation using the

electric field integral equation (EFIE) [19], the magnetic field integral equation (MFIE) [19].

Besides, this type of objects can be modeled in SIE by an impedance boundary condition (IBC)

on the surface ([13],[4],[5],[1],[18]) . Indeed, the integral electric field equation for a body hav-

ing an impedance boundary condition can be developed from the equivalence principle by first

removing the diffuser from the medium in which it resides and by placing equivalent electric

and magnetic surface currents J and M along the surface forming the boundary of the scatterer

in the original problem ([26],[4],[6],[13]). Among these IBCs are the Leontovitch IBC knowing

as the standard impedance boundary condition (SIBC) [27], the higher-order IBC (HOIBC)

[28],[29], [13], the generalized IBC (GIBC) [30], [31], etc.

We are interested in solving the scattering problem using SIE formulations with HOIBC [13],

which leads to solving a variational problem. The existence and uniqueness of its weak solutions

are usually proved by applying arguments. In this paper, we deal with the proof of the existence
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and uniqueness theorem of this variational problem using Lax Milgram’s theorem that depend

on checking the continuity and coercivity of operators that appear in variational problem.

The plan of the paper is the following. In section 2, we present mathematical model and the

function space, then we recall the variational problem derived in [13]. We state results on ex-

istence and uniqueness of the solution under sufficient conditions to ensure the well-posedness

of the variational problem ([13],[4]). In the third section, we propose a new approximation

method of operators appeared in the variational problem based on theory of distribution. In a

fourth section, numerical experiments are performed to verify the accuracy and efficiency of the

proposed method ([6],[5]).

2 Variational approach

To present our variational approach, we will start by offering an overview of the mathematical

model of physical problem. For a coated PEC object Ω immersed in an infinite homogeneous

medium (ϵ0, µ0) and illuminated by an incident uniform plane wave (Einc,Hinc) with angular

frequency ω = 2πf (fig. 1), scattering waves occur when incident waves impinge upon the

boundary of an object Γ = ∂Ω and disperse in different directions (Esc,Hsc). The extent of

scattering depends on both the wavelength λ of the incident waves and the structure of the

object (geometry, thickness of coating δ ).

Figure 1: Scattering problem of dielectric coated conducting target

We provide a set of definitions and notations associated with the function spaces that will
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be employed in the subsequent analysis.

2.1 Notations and function space

We define the solution space as,

V := {v ∈ (H1(Γ))3, v · n = 0, divt v ∈ L2(Γ), rott v ∈ L2(Γ)}

where divt and rott are tangential operators [32], n denotes the unit normal vector outward to

Γ. V generates the norm

∥v∥V = (∥v∥2L2(Ω) + ∥div(v)∥2L2(Ω) + ∥rot(v)∥2L2(Ω))
1/2

usual notation

V = H1
t (Γ) ≡ Hdiv(Γ) ∩Hrot(Γ)

where index 1 denotes one derivative, named after Sobolev and t denotes the tangential vector

field. We recall the main properties of Sobolev spaces on Γ [33].

Lemma 2.1. The injection H1
t (Γ) ⊂ L2

t (Γ) is compact.

H1
t (Γ) ↪→ L2

t (Γ)

Lemma 2.2. The injection H1
t (Γ) ⊂ H

−1/2
div (Γ) is compact.

H1
t (Γ) ↪→ H

−1/2
div (Γ)

with

H
−1/2
div (Γ) = {g ∈ H−1/2(Γ)3, g · n = 0, divt(g) ∈ H−1/2(Γ)}

which we equip with the norm

∥g∥
H

−1/2
div

(Γ)
=
(
∥g∥2H−1/2(Γ) + ∥divt(g)∥2H−1/2(Γ)

)1/2
For any sufficiently regular vector function A, such that A · n = 0 we define the components of

Hodge operator [34] [13]

LD : D′(Γ)3 → D′(Γ)3

A 7→ ∇t(divtA),
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LR : D′(Γ)3 → D′(Γ)3

A 7→ rott(rottA).

After defining differential operators, integral equations are introduced as the key to establish

the variational formulations of diffraction problem.

2.2 Integral equation formulations

The procedure of solving a given problem in electromagnetics typically involves several basic

steps. First, it is necessary to express in mathematical form the relationship between the

pertinent physical quantities involved. This mathematical description is accomplished through

Maxwell’s equations, expressed in either integral or differential form. We define Ωe as the space

of radiating electric fields E solutions of Maxwell’s equations that govern this problem.

An electric field is said to be radiating if it satisfies the Silver-Müller radiation condition [35][36]:

lim
r→∞

r(E× nr +H) = 0,

where r = |x| and nr =
x

|x| , x ∈ R3.

The dielectrically coated conducting objects fig. 1 can be modeled by an impedance boundary

condition (IBC) at the surface, we are interested in higher-order impedance boundary conditions

(HOIBC) (1), (see [13]), various methods are presented for computing the coefficients (a0, aj , bj).

(I + b1LD − b2LR)Et = (a0I + a1LD − a2LR)(n×H). (1)

Thus leading to the following problem:

Problem 2.1. Find (E,H) such as



∇× E+ iωµH = 0 in Ωe,

∇×H− iωϵE = 0 in Ωe,

(I + b1LD − b2LR)Et = (a0I + a1LD − a2LR)(n×H) in Γ,

lim
r→∞

r(E× nr +H) = 0.

(2)

Based on the equivalence principle, the problem 2.1 can be formulated using integral equa-

tions that govern it through the fundamental theorem of Stratton-Chu representation [37],

known as the electric and magnetic field integral equations EFIE (3) and MFIE (4) respectively.

According to this theorem, waves can be parameterized using electromagnetic operators (B−S)

and (P +Q) and their equivalent electric and magnetic current on Γ, M = E× n|Γ and J =
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n×H|Γ, as follows.

< Z0(B − S)J,ΨJ > + < (P +Q)M,ΨJ >=< Einc,ΨJ >, (3)

− < (P +Q)J,ΨM > + <
1

Z0
(B − S)M,ΨM >=< Hinc,ΨM > (4)

where the integral operators (B − S) and (P +Q) are defined as follows:

< (B − S)ϕ,ψ >= i

∫∫
Γ

k Gϕ ·ψ − 1

k
G∇y · ϕ∇x ·ψ dydx, (5)

< (P +Q)ϕ,ψ >=
1

2

∫
Γ

ψ · (n× ϕ) dx+

∫∫
Γ

(ψ × ϕ) · ∇xG dydx, (6)

In (5) and (6), G stands for the Green’s function in an infinite homogeneous medium with the

wavenumber k.

These representations, (3) and (4), will be useful for constructing and developing the variational

formulation proposed in [13], in which it suggests replacing the operator P and incorporating

the impedance boundary condition (HOIBC) to obtain the variational problem below.

Problem 2.2. Find U = (J,M) ∈ V = [Hdiv(Γ) ∩Hrot(Γ)]
2 such that:

A(U,Ψ) =< IEinc,ΨJ > + < IHinc,ΨM > (7)

for all Ψ = (ΨJ ,ΨM ) ∈ V , with the bilinear form A(U,Ψ) is defined by :

A(U,Ψ) =< Z0(B − S)J,ΨJ > +
1

Z0
< (B − S)M,ΨM > + < QM,ΨJ > − < QJ,ΨM >

+
a0

2
< J,ΨJ > +

1

2a0
< M,ΨM > −a1

2
< divΓJ,divΓΨJ > − b2

2a0
< divΓM, divΓΨM >

+
b1
2

< divΓ(n×M), divΓΨJ > − b2
2

< divΓM, divΓ(n×ΨJ) > − b1
2a0

< divΓ(n×M), divΓ(n×ΨM ) >

+
a1

2a0
< divΓJ, divΓ(n×ΨM ) > − a2

2a0
< divΓ(n×J),divΓΨM > −a2

2
< divΓ(n×J), divΓ(n×ΨJ) >

To tackle the problem at hand, [13] recommends the use of Lagrange multipliers in their

formulation. However, our research underscores a significant advantage achieved by eliminating

these Lagrange multipliers, leading to a reduction in the number of unknowns to be resolved.

This conspicuous simplification in the model offers several scientific benefits. Firstly, it optimizes

computational efficiency and reduces overall complexity, consequently preserving computational

resources and time. By diminishing the count of unknowns, our approach furnishes a potentially

more resilient method for tackling complex issues.

In the next section, we are going to give an alternative proof that Problem 2.2 is well-posed by
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analysing the bilinear form A defined on V = [Hdiv(Γ) ∩Hrot(Γ)]
2.

3 Well-posedness of variational problem 2.2

The well-posedness of problem 2.2 is guaranteed by satisfying the sufficient uniqueness con-

ditions (SUC) outlined in both the celebrated Lax-Milgram theorem [38] and the Rellich lemma

[13]. We will give these sufficient uniqueness conditions (SUC) under which this problem is

well-posed.

Theorem 3.1. The variational problem 2.2 admits a unique solution if the coefficients satisfy

the following conditions:



ℜ(a0) > 0,

ℜ(a1) < − |q1|
2
,

ℜ(b1a∗
0) < − |q1|

2

ℜ(a2) < − |q2|
2

ℜ(b2a∗
0) < − |q2|

2

(8)

where : q1 = b1|a0|+ a∗
1a0/|a0| et q2 = b2|a0|+ a∗

2a0/|a0|.

In variational theory, the essential tool in showing that the problem 2.2 is well-posed consists in

proving both continuity and coerciveness of integral forms defined on suitable function spaces.

3.1 Continuity of the bilinear form A (7)

In order to facilitate the demonstration and application of properties, we decompose the

bilinear form into two parts. The first part is associated with the (B − S) and Q operators,

while the second part comprises all other higher-order impedance boundary condition (HOIBC)

operators. This decomposition allows us to facilitate the demonstration and analysis process by

applying properties.

Lemma 3.2. The operator A(U,Ψ) is continuous in V for all Ψ ∈ V .

Proof. Let us first establish the form of the opereator A

A(U,Ψ) = A1(U,Ψ) +A2(U,Ψ).

We will show that

|A(U,Ψ)| ≤ C∥U∥V ∥Ψ∥V .
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We apply the triangle inequality to the operator A1.

|A1(U,Ψ)| ≤ ∥Z0(B − S)J∥
H

−1/2
rot

∥ΨJ∥H−1/2
div

+ |Z−1
0 |∥(B − S)M∥

H
−1/2
rot

∥ΨM∥
H

−1/2
div

+∥QM∥
H

−1/2
rot

∥ΨJ∥H−1/2
div

+ ∥QJ∥
H

−1/2
rot

∥ΨM∥
H

−1/2
div

≤ C′
1∥U∥

H
−1/2
div

∥Ψ∥
H

−1/2
div

A1 is continuous in H
−1/2
div (Γ) then in V = Hdiv(Γ) ∩Hrot(Γ) because V ⊂ H

−1/2
div (Γ).

Consequently:

|A1(U,Ψ)| ≤ C1∥U∥V ∥Ψ∥V

Proceeding similarly as for |A1(U,Ψ)|

|A2(U,Ψ)| ≤ |a0|
2

∥J∥H1
t (Γ)∥ΨJ∥H1

t (Γ) +
1

2|a0|
∥M∥H1

t (Γ)∥ΨM∥H1
t (Γ)

+∥divJ∥L2
t (Γ)

[
|a1|
2

∥divΓΨJ∥L2
t (Γ) +

|a1|
2|a0|

∥rotΓΨM∥L2
t (Γ)

]
+∥rotJ∥L2

t (Γ)

[
|a2|
2

∥rotΓΨJ∥L2
t (Γ) +

|a2|
2|a0|

∥divΓΨM∥L2
t (Γ)

]
+∥divM∥L2

t (Γ)

[
|b2|
2

∥rotΓΨJ∥L2
t (Γ) +

|b2|
2|a0|

∥divΓΨM∥L2
t (Γ)

]
+∥rotM∥L2

t (Γ)

[
|b1|
2

∥divΓΨJ∥L2
t (Γ) +

|b1|
2|a0|

∥rotΓΨM∥L2
t (Γ)

]
≤ C2∥U∥V ∥Ψ∥V

Hence, combining the sum of these two parts shows that :

|A(U,Ψ)| = |A1(U,Ψ) + A2(U,Ψ)| ≤ |A1(U,Ψ)| + |A2(U,Ψ)| ≤ C∥U∥V ∥Ψ∥V with C = C1 +

C2.

Now, let us show the coercivity of the operator A .

3.2 Coercivity of the operator A (7)

Lemma 3.3. The bilinear form A(U,Ψ) verifies the inequality of coecivity for all U ∈ V =

[Hdiv(Γ) ∩Hrot(Γ)]
4.

Proof. We have to show that there exists α > 0 such that

ℜ[A(U,U∗)] ≥ α∥U∥2V , ∀U ∈ V.
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Using properties of the operators B − S and Q [39], we know that there exists α1 such that

ℜ(A1) = ℜ(< Z0(B−S)J,J∗ >)+ℜ(< Z−1
0 (B−S)M,M∗ >)+ℜ(< QM,J∗ >)−ℜ(< QJ,M∗ >)

ℜ(A1) ≥ α1

(
∥J∥2

H
−1/2
div

+ ∥M∥2
H

−1/2
div

)
≥ 0

On the other hand, one can easily prove that

ℜ(A2) =
ℜ(a0)

2
∥J∥2L2

t (Γ) +
ℜ(a0)

2|a0|2
∥M∥2L2

t (Γ) −
ℜ(a1)

2
∥divΓJ∥2L2

t (Γ) −
ℜ(a2)

2
∥rotΓJ∥2L2

t (Γ)

−ℜ(b1a∗
0)

2|a0|2
∥rotΓM∥2L2

t (Γ) −
ℜ(b2a∗

0)

2|a0|2
∥divΓM∥2L2

t (Γ)

−ℜ
{(

b1
2

+
a∗
1

2a∗
0

)∫
Γ

rotΓM divΓJ
∗ds

}
+ ℜ

{(
b2
2

+
a∗
2

2a∗
0

)∫
Γ

rotΓJ
∗ divΓMds

}
=

ℜ(a0)

2
∥J∥2L2

t (Γ) +
ℜ(a0)

2|a0|2
∥M∥2L2

t (Γ) −
ℜ(a1)

2
∥divΓJ∥2L2

t (Γ) −
ℜ(a2)

2
∥rotΓJ∥2L2

t (Γ)

−ℜ(b1a∗
0)

2|a0|2
∥rotΓM∥2L2

t (Γ) −
ℜ(b2a∗

0)

2|a0|2
∥divΓM∥2L2

t (Γ)

−ℜ

{∫
Γ

1

|a0|1/2

(
b1
2

+
a∗
1a0

2|a0|2

)1/2

rotΓM · |a0|1/2
(
b1
2

+
a∗
1a0

2|a0|2

)1/2

divΓJ
∗ds

}

+ℜ

{∫
Γ

|a0|1/2
(
b2
2

+
a∗
2a0

2|a0|2

)1/2

rotΓJ
∗ · 1

|a0|1/2

(
b2
2

+
a∗
2a0

2|a0|2

)1/2

divΓMds

}
we denote by q1 = b1|a0|+ a∗

1a0/|a0| et q2 = b2|a0|+ a∗
2a0/|a0|, so

ℜ(A2) ≥
ℜ(a0)

2
∥J∥2L2

t (Γ) +
ℜ(a0)

2|a0|2
∥M∥2L2

t (Γ)+

(
−ℜ(a1)

2
− |q1|

4

)
∥divΓJ∥2L2

t (Γ) +

(
−ℜ(a2)

2
− |q2|

4

)
∥rotΓJ∥2L2

t (Γ)+(
−ℜ(b2a∗

0)

2|a0|2
− |q2|

4|a0|2

)
∥divΓM∥2L2

t (Γ) +

(
−ℜ(b1a∗

0)

2|a0|2
− |q1|

4|a0|2

)
∥rotΓM∥2L2

t (Γ)

from the theorem 3.1 in which we imposed conditions on the coefficients (8), the operator A2

becomes:

ℜ(A2) ≥ α2

(
∥J∥2V + ∥M∥2V

)
Finally, we have the integer operator A:

ℜ(A) = ℜ(A1) + ℜ(A2) ≥ α2

(
∥J∥2V + ∥M∥2V

)

Eventually, since the bilinear form A is continuous and coercive in V under sufficient con-
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ditions, we then arrive at the well-posedness result for our variational formulation according to

Lax-Milgram theorem.

In an effort to numerically solve the well-posed variational problem, we now turn our attention

towards discretization techniques to approximate the continuous problem on a discrete problem.

4 Discretization and operators’ approximation

The obtained variational Problem 7 is solved with the method of moments (MoM) [26] using

Galerkin testing procedure, which requires discretizing the contour defining the surface Γ into

triangles T .

Γh =

NT⋃
n=1

Tn.

To discretize the variational problem, we employ a non-conformal approach, the Galerkin

method is employed utilizing RAO-Wilton-Glisson RWG basis functions defined on the space

W = H
−1/2
div , i,e. , the equivalent currents on the surface J and M are approximated on a set of

Ne basis functions using RWG functions fi(x) with the unknown are the flows such as:

J(x) =

Ne∑
i=1

Jifi(x), M(x) =

Ne∑
i=1

Mifi(x). (9)

On each triangle, the current is written as a linear combination of 3 functions of base associated

with 3 edges of a triangle. If n is a common edge of two triangles then:

fn(x) =



ln
2|T+

n |
(x− a+

i−1) if x ∈ T+
n

ln
2|T−

n |
(a−

j−1 − x) if x ∈ T−
n

0 if x /∈ T+
n ∪ T−

n

(10)

we define also its divergence:

∇Γ · fn(x) =


+ ln

|T+
n |

if x ∈ T+
n

− ln
|T−

n |
if x ∈ T−

n

0 if x /∈ T+
n ∪ T−

n .

(11)

By arbitrary definition, the current flows from the first triangle of the zone T+
n to the second

triangle of the zone T−
n . a+

i−1 and a−
j−1 are the opposite vertices of the edge n in T+

n and T−
n

respectively. |T±
n | designates the area of the triangle T±

n and the length of the common edge

is ln. Through the use of the decomposition of surface electric and magnetic densities (9), we
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inject them into the variational problem (2.2).

This procedure converts the coupled set of integral equations into a matrix which may be cast

into the form.

Ah(Uh,Ψh) =

Ne∑
i=1

< Einc, fi > +

Ne∑
i=1

< Hinc, fi > (12)

where

Ah(Uh,Ψh) =

Ne∑
i,j=1

< ZrZ0 (B − S)fj , fi > Jj + Z−1
r Z−1

0

Ne∑
i,j=1

< (B − S)fj , fi > Mj

+

Ne∑
i,j=1

< Qfj , fi > Mj−
Ne∑

i,j=1

< Qfj , fi > Jj+
a0

2

Ne∑
i,j=1

< fj , fi > Jj+
1

2a0

Ne∑
i,j=1

< n×fj ,n×fi > Mj

+
a1

2

Ne∑
i,j=1

< ∇Γ∇Γ · fj , fi > Jj −
a2

2

Ne∑
i,j=1

< ∇Γ∇Γ · (n× fj),n× fi > Jj

− b1
2

Ne∑
i,j=1

< ∇Γ∇Γ · fj ,n× fi > Mj +
b2
2

Ne∑
i,j=1

< ∇Γ∇Γ · (n× fj), fi > Mj

+
b1
2a0

Ne∑
i,j=1

< ∇Γ∇Γ · (n× fj),n× fi > Mj −
b2
2a0

Ne∑
i,j=1

< ∇Γ∇Γ · fj , fi > Mj

− a1

2a0

Ne∑
i,j=1

< ∇Γ∇Γ · (n× fj), fi > Jj +
a2

2a0

Ne∑
i,j=1

< ∇Γ∇Γ · fj ,n× fi > Jj ;

We seek an approximate solution to the discrete problem (12). To solve it, we first give notations

for the integral operators arising from the Higher-Order Integral Boundary Conditions (HOIBC)

involved in the discrete problem, defined as follows:

Lij =

∫
Γh

fi · fjds, (13)

Dij =

∫
Γh

∇Γ∇Γ · fj · fids (14)

Eij =

∫
Γh

∇Γ∇Γ · fj · n× fids, (15)

Gij =

∫
Γh

∇Γ∇Γ · (n× fj) · n× fids. (16)

The RWG function is not suitable for all terms present in the formulation, because the divergence

of the RWG function is piecewise constant (11). Hence the tangential gradient of divergence

is not defined, it gives us the Dirac function on the edges of the two elements in the operators

which have ∇Γ∇Γ· in the integral like the operators D (14), E (15) and G (16).

The presence of discontinuous functions in integral operators arising from high-order impedance

boundary conditions can introduce challenges in the analysis of such operators. Because of these

11



observed drawbacks, it may be interesting to make an approximation of these operators using

more elaborate approaches.

Jump formulas are indeed a valuable tool for addressing the challenges posed by these discon-

tinuous functions, and their utilization becomes imperative as they provide an effective solution

to prevent inaccuracies in computations.

4.1 The jump formula

Definition 4.1. Formula for the jump across a bounded surface

Let Ω be an open set of R3, with a Lipschitz boundary Γ, F a regular function in R3, such that

C1-regular on either side of Γ. Then the jump of the discontinuous function F through Γ is

denoted by:

[F ]Γ = F int − F ext

with F int, F ext are the values of F inside and outside the domain bounded by Γ respectively.

The normal ν to Γ is oriented inside out.

This definition leads to the formulas of the gradient and the divergence in the sense of

distribution for functions which are discontinuous at this interface:

Proposition 4.2. With the regularity hypotheses of the function F , we have:

The gradient and the divergence in the sense of the distributions defined for functions which are

discontinuous at an interface Γ are given by:

∇F = (∇F )− SΓ([F ]ν) (17)

∇ · F = (∇ · F )− SΓ([F · ν]) (18)

where (∇F ) and (∇·F ) are respectively the usual gradient and divergence of the function where

they exist and SΓ is the operator defined by:

< SΓ(F ), φ >=

∫
Γ

F (x)φ(x) dx.

12



One observes the presence of discontinuity through the edges which deteriorates the condi-

tioning of the operators, an approximation method is thus necessary.

According to (17) the gradient of piecewise constant functions F is written in this form:

< ∇ΓF,φ >= −[F ]/Γ

∫
Γ

ν(x) · φ(x) dx , ∀φ ∈ D(R3)3 (19)

one has upon the application of F = ∇Γ · f in (19), so that < ∇Γ∇Γ · f, φ > can be written as

< ∇Γ∇Γ · f, φ >= −[∇Γ · f]/Γ
∫
Γ

ν(x) · φ(x) dx , ∀φ ∈ D(R3)3 (20)

By taking the triangles as the domain of calculation, we have Dirac masses which will appear

on the edges of the edges of the triangles because the divergence of the functions of RWG are

constant per triangle (11).

The subtitution of this equation (20) into integral HOIBC operators will yield a well-conditionned

integrals.

4.2 Integral operators’ approximation

To have an explicit expression of the operators, we first define the jump of a piecewise

constant function f with respect to an edge i [4].

Definition 4.3. The jump of a piecewise constant function f with respect to an edge i:

[f]/i = (εif)
T+
i + (εif)

T−
i

= ε
T+
i

i fT+
i + ε

T−
i

i fT−
i

= fT+
i − fT−

i

with the trace of f on T+
i and T−

i denoted by fT+
i and fT−

i respectively.

The function εi is defined by:

εi(x) =


1 on T+

i ,

−1 on T−
i ,

0 otherwise.

13



4.2.1 Approximation of operator D

We will explain the method of calculating the elements of matrices Dij . By applying the

differential operators property (20) to the D operator [4]:

Dij =

∫
Γh

∇Γ∇Γ · fj · fi dS

= −li[∇ · fj ]/l
∫
l

νl · fi ds

with ν+
l (respectively ν−

l ) is the outgoing normal to edge l which goes from T+
l to T−

l (respec-

tively from T−
l to T+

l ) in the plane of the triangle.

We deduce the expression of the operator Dij :

Dij = − li[∇ · fj ]/i. (21)

Using definition 4.1, the divergence jump of RWG functions (10):

[
∇ · fj

]
/i

= [(εi∇ · fj)T
+
i + (εi∇.fj)

T−
i ] (22)

= εi
T+
i ∇ · fjT

+
i + εi

T−
i ∇ · fjT

−
i (23)

= ε
T+
i

i ε
T+
i

j

lj

|Tj |T
+
i

+ ε
T−
i

i ε
T−
i

j

lj

|Tj |T
−
i

(24)

so the Dij (21) can therefore be written as

Dij = −li

(
ε
T+
i

i ε
T+
i

j

lj

|Tj |T
+
i

+ ε
T−
i

i ε
T−
i

j

lj

|Tj |T
−
i

)
.

4.2.2 Approximation of operator E

Similarly as for the operator D, using the definition of the gradient of piecewise constant

function, the operator E can be written as :

Eij =

∫
Γh

∇Γ∇Γ · fj · n× fi ds

= −
Ne∑
l=1

[
∇ · fj

]
/l

∫
l

νl · n× fi ds

14



We make an approximation of
∫
l
νl ·n×fi ds to translate the discontinuity of the normals which

is: ∫
l

νl · n× fi ds =
1

2

(∫
l

νl · n× fi ds

)
T+
i

+
1

2

(∫
l

νl · n× fi ds

)
T−
i

(25)

To determine this integral, it is necessary to distinguish several geometric configurations.

∫
l

νl · n× fi ds =



1
2
(
∫
l
ν+
l · n

T+
i

× f+i ds+
∫
l
ν−
l · n

T−
i

× f−i , ds), if i = l

1
2

∫
l
ν+
l · n

T+
l

× f±i ds, if i ∈ T+
l

1
2

∫
l
ν−
l · n

T−
l

× f±i ds, if i ∈ T−
l

The expression of the operator E is then written:

Eij = −1

2
([∇.fj ]/i

(∫
l=i

ν+
i · n

T+
i
× f+i ds+

∫
l=i

ν−
i · n

T−
i

× f−i ds

)
+

∑
l∈T+

i =T+
l

[∇.fj ]/l

∫
l

ν+
l · n

T+
l

× f+i ds+
∑

l∈T+
i =T−

l

[∇.fj ]/l

∫
l

ν−
l · n

T−
l
× f+i ds

+
∑

l∈T−
i =T+

l

[∇.fj ]/l

∫
l

ν+
l · n

T+
l

× f−i ds+
∑

l∈T−
i =T−

l

[∇.fj ]/l

∫
l

ν−
l · n

T−
l

× f−i , ds).

The integral operator which is defined by:

∫
Γh

LD(n× fj) · fi ds

is the adjoint operator of operator Eij .

4.2.3 Approximation of the G operator

Employing the definition of the operator G and the jump formula, we deduce the result for

the operator E using similar procedure, we find [5]:

Gij =

∫
Γh

∇Γ∇Γ · (n× fj) · (n× fi) ds

= −1

2
([∇.(n× fj)]/i

(∫
l=i

ν+
i · n

T+
i
× f+i ds+

∫
l=i

ν−
i · n

T−
i

× f−i ds

)
+

∑
l∈T+

i =T+
l

[∇.(n× fj)]/l

∫
l

ν+
l · n

T+
l

× f+i ds+
∑

l∈T+
i =T−

l

[∇.(n× fj)]/l

∫
l

ν−
l · n

T−
l
× f+i ds

+
∑

l∈T−
i =T+

l

[∇.(n× fj)]/l

∫
l

ν+
l · n

T+
l

× f−i ds+
∑

l∈T−
i =T−

l

[∇.(n× fj)]/l

∫
l

ν−
l · n

T−
l

× f−i ds).
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The jump calculation [∇ · (n× fj)]/l is based on the calculation of the adjoint operator of E.

5 Numerical experiments

In this section, several examples will be presented to show the accuracy of the proposed

method and correctness of the developed formulation after implementing it into MoM code

([5],[6]). A standard spherical coordinate system is used for the body of revolution model with

the z axis being the axis of revolution. Several geometries and different types of dielectric mate-

rial (electric permittivity ϵr and magnetic permeability µr) are also presented. The first example

is considered for validating the accuracy of the code developed while the remaining examples

are regarded to produce some new results which cannot be found elsewhere in literature.

First, we consider a coated conductive sphere having a radius of r2 = 1.8λ, thickness of coating

layer is 0.05m (fig. 2) with a relative permittivity of ϵr = 5 and a relative permeability of µr = 1.

The exact series-solution of this geometry is available and is used here to validate the results of

the proposed formulation. The bistatic RCS for the θθ-polarization at 0.45GHz are computed

and the results obtained (fig. 3) are compared with Mie series solutions. Figure 3 illustrates

three results, Mie’s analytical result and different mesh densities using the new approximation

method. Good agreements have been observed in the comparisons.

Dielectric coating

Figure 2: geometry of a coated conductive sphere
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(a) ϵr = 1− i and µr = 1

0 20 40 60 80 100 120 140 160 180

BISTATIC Angle (degrees)

-20

-15

-10

-5

0

5

10

15

20

R
C

S
 (

d
B

S
m

)

Mie exact

HOIBC /12

(b) ϵr = 2− 3i and µr = 1− i

Figure 4: θθ component of the bistatic RCS for a coated conductive sphere with frequency
f = 0.190986GHz, layer thickness δ ≃ 0.05λ. Exact Mie solution and HOIBC solution
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Figure 3: θθ component of the bistatic RCS for a coated conductive sphere with frequency
f = 0.45GHz, layer thickness δ = 0.09λ. Exact Mie solution and HOIBC solutions.

Now, we will choose a complex configurations of permittivity and permeability. In fig. 4a

and fig. 4b, when we substitute the complex values for permeability and permittivity, we ob-

serve a very good agreement between the analytical solution of Mie and the numerical results

obtained using the HOIBC method. In our study, we compared our method to the Lagrange

multiplier method proposed in [13]. Since the analytical solution is available for comparison, we

computed the error for different meshes using the infinity norm for both methods. Additionally,

we measured the CPU time (in seconds) for system resolution and the total memory occupation

of the matrix (in Go). We begin by considering the case where ϵr = 5 and µr = 1.
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(a) Comparison between Lagrange solution
and distribution solution of the correspond-
ing mesh λ/8. The Mie series solution is
used as reference data.

number mesh
Distribution Lagrange

of unknowns density ∥.∥∞ CPU(s) Mem(Go) ∥.∥∞ CPU(s) Mem(Go)

55788 λ/8 0.018 343.66 27.2 0.032 385.7 27.2

101760 λ/10 0.018 1287.16 84.81 0.032 1365.9 84.81

125376 λ/11 0.0152 2326.97 118.37 0.032 2602.63 118.37

186684 λ/14 0.0104 4529.9 285.16 0.031 4736.36 285.16

(b) Comparison in terms of relative error and memory usage with respect to mesh density

Figure 5: Values of error computed using two approximations of integral operators with the different
mesh with ϵr = 5 and µr = 1.

In fig. 5a, it is evident that the results of both methods compare well with the exact solution.

But, from the above discussion in fig. 5b, we can see that the other method suffers a drastic

increase in the computation cost as the number of unknowns increases. The matrix size, and

hence, both the filling and solving times grow substantially. On the other hand, our method

has a better performance regarding the CPU times where the computation cost is substantially

lower. In the light of these factors, our method is more appealing than the other formulation

for simulating large-scale problems where the reduction of CPU times becomes an essential and

crucial issue. Now we compute the error with complex permitivity and permeability ϵr = 2− 3i

and µr = 1− i.
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(a) Comparison between Lagrange solution
and distribution solution for the mesh λ/12.

number mesh
Distribution Lagrange

of unknowns density ∥.∥∞ CPU(s) Mem(Go) ∥.∥∞ CPU(s) Mem(Go)

4956 λ/8 0.013 1.9 0.32 0.0122 1.95 0.32

10824 λ/12 0.0051 11.69 1.32 0.0039 12.75 1.32

44664 λ/25 0.005 54.28 19.26 0.0026 76.05 19.26

(b) Comparison in terms of error and memory usage with respect to mesh density

Figure 6: Values of relative error computed using two approximations of integral operators with the
different mesh with ϵr = 2− 3i and µr = 1− i.

According to the tests presented above, it can be concluded that Lagrange approximation

has a good accuracy independently with respect to the number of unknowns, while our approx-

imation has the best performance in terms of computational cost.

We will now transition to a different geometry where no analytical scattering solution is avail-

able as a reference. To obtain the reference results, we compare our method to the reference

PMCHWT formulation ([8],[9],[10]). We move on to the case of an ellipsoid is with dielectric

parameters as depicted in fig. 7a, we choose a coating thickness δ = 0.1λ.

(a) Surfacic mesh of the ellipsoid. ϵr = 5
and µr = 1.

(b) θθ component of the monostatic RCS with
frequncy f = 0.3GHz. Reference PMCHWT
and HOIBC solutions.
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Figure 7a presents surface mesh of ellipsoid geometry and fig. 7b plots θθ component of the

monostatic RCS with the solution using SIBC and two mesh densities λ/10 and λ/25 and we

compare it to PMCHWT reference. We notice that we obtain a good accuracy compared with

the reference PMCHWT when we use a finer mesh.

In the sequel, sharp-edged targets will be simulated by the suggested method to verify the

stability of the proposed formulation. We consider the case of coated PEC almond. Its total

length is 4.169λ0, where λ0 is the vacuum wavelength, and the dielectric parameters are ϵr = 4

and µr = 1. A 0.5-GHz monostatic RCS, θθ-polarized incident wave is incident from the tip of

the almond. Figure 8a shows the mesh configuration of this problem fig. 8b.

Coated PEC

PEC

(a) Problem description (b) Surface mesh for nasa almond geometry. Plot
of SIBC , HOIBC with different mesh density and
PMCHWT reference

Figure 8: Scattering analysis for the NASA almond with ϵr = 4 and µr = 1. A 0.5-GHz monostatic
RCS, θθ-polarized incident wave is incident from the tip of the almond

Figure 8b plots different HOIBC mesh densities solutions and SIBC solution. It is clear that

HOIBC converge to PMCHWT reference and more accurate compared to SIBC.

(a) Surface mesh for simple-ogival geometry.
Plot HOIBC with different mesh density and
PMCHWT reference

(b) Surface mesh for double-ogival geometry.
Plot of SIBC , HOIBC with different mesh den-
sity and PMCHWT reference

Figure 9: Scattering analysis for different types of ogives (double fig. 9a and simple fig. 9b). A
monostatic RCS, ϕϕ-polarized incident wave is incident from the tip of the ogives

Based on the tests on the sphere (see fig. 2), ellipsoid (see fig. 7a), and double-ogive (see

fig. 9b), it can be concluded that the Higher Order Impedance Boundary Condition (HOIBC)
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approximation exhibits good accuracy. However, the Standard Impedance Boundary Condition

(SIBC) approximation demonstrates poor accuracy in both simple and complex cases.

(a) Geometry of coated conductive sphere-cone-
sphere.R1 = 315mm,R2 = 50mm.
δ = 0.02m, ϵr = 5 and µr = 1.

(b) ϕϕ component of the monostatic RCS with
frequency f = 0.45GHz. Reference PMCHWT
and HOIBC solutions.

(c) Geometry of cone. h = 716mm, R = 66mm,
α = 45◦ and δ = 0.034m , ϵr = 2− i and µr = 1.

(d) ϕϕ component of the monostatic RCS with
frequency f = 0.35GHz. Reference PMCHWT
and HOIBC solutions.

Figure 10: Performance comparison of different mesh of HOIBC formulation with respect to PM-
CHWT reference of conic geometries

Figure 10a and fig. 10c presents geometrical parameters of coated conductive sphere-cone-

sphere and coated conductive cone respectively. Figure 10b and fig. 10d plots ϕϕ component of

the monostatic RCS with different mesh densities and frequencies compared with PMCHWT

reference. We observe that, in both geometries,increasing the number of unknowns yields good

accuracy regardless of the frequency. As shown in fig. 10d, the two curves of HOIBC solutions

agree excellently with each other comparing to the reference.

We choose now another conic geometry (fig. 11) that is coated with a complex homogeneous

material layer ϵr = 1− i and µr = 1.

Figure 11a shows the mesh configuration of cone and fig. 11b display the results obtained. We

can observe that as the mesh density increases, the HOIBC solutions exhibit a strong agree-

ment with the reference PMCHWT. This can be attributed to the excellent performance of the

HOIBC operators employed in the formulation.
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(a) Monostatic RCS of a 1.312m × 1.312m ×
0.798m of a coated PEC cone body (δ = 0.05m,
ϵr = 1− i and µr = 1) at 0.19GHz.

(b) θθ RCS component. Reference PMCHWT
and HOIBC solutions.

Figure 11: Performance comparison of different mesh of HOIBC formulation with respect to PM-
CHWT reference

We gave some preliminary results indicating good accuracy behavior of our method compared

to the popular PMCHWT equation. Numerical examples demonstrate that the developed new

formulation lead to clear improvements in the convergence rates.

6 Conclusion

In this paper, we have proposed and analyzed a new method for approximating operators

resulting from the formulation of the scattering problem by coated 3-D arbitrary shaped ob-

jects. We have demonstrated that this formulation is well-posed and implemented it in a MoM

code coupled with our method. Numerical comparisons with the commonly used PMCHWT

formulation have highlighted the efficiency of our new approach.

In conclusion, our method presents a promising alternative to classical formulations (SIBC) in

the context of coated obstacles, offering improved efficiency and accuracy.
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le problème de Maxwell en régime harmonique. PhD thesis, CY Cergy Paris Université,
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[18] C. Daveau A. Aubakirov and P. Soudais. High order impedance boundary condition for

mom scattering. IEEE Antennas and Propagation, 2013.

[19] M. Fares A. Bendali and J. Gay. A boundary-element solution of the leontovich problem.

IEEE Trans. Antennas Propagat., Vol. 47:pages 1597–1605, October 1999.

[20] A. W. Glisson. An integral equation for electromagnetic scattering from homogeneous

dielectric bodies. IEEE Trans. Antennas Propag., 1984.

[21] A. Menshov and V. Okhmatovski. New single-source surface integral equations for scat-

tering on penetrable cylinders and current flow modeling in 2-d conductors. IEEE Trans.

Microwave Theory Tech., 2013.

[22] A. J. Poggio and E. K. Miller. Integral equation solutions of three-dimensional scattering

problems. Computer Techniques for Electromagnetics, Chap. 4, 1973.

[23] G. Nakamura H. Wang. The integral equation method for electromagnetic scattering prob-

lem at oblique incidence. ELSEVIER, Vol.62(No 4):pages 860–873, April 2012.

[24] M. Naser-Moghadasi S. Hatamzadeh-Varmazyar. An integral equation modeling of elec-

tromagnetic scattering from the surfaces of arbitrary resistance distribution. Progress In

Electromagnetics Research, Vol.B(No 3):pages 157–172, 2008.

24



[25] L. Nicolas T. Jacques and C. Vollaire. Implementation of the boundary integral method

for electromagnetic scattering problems with geometrical discontinuities. IEEE TRANS-

ACTIONS ON MAGNETICS, Vol.38(No 2):pages 753–756, March 2002.

[26] Roger F. Harrington. Time-Harmonic Electromagnetic Fields. Wiley, 2001.

[27] M. A. Leontovich. Investigation of propagation of radiowaves. Acad. Sci, pt(II), 1948.

[28] Y. Rahmat-Samii and J.H Daniel. Impedance boundary conditions in electromagnetics.

Taylor & Francis, 1995.

[29] T.B.A. Senior and J.L. Volakis. Approximate boundary conditions in electromagnetics.

IEE Electromagnetic Waves Series, 41, 1995.

[30] A. W. Glisson. Electromagnetic scattering by arbitrary shapes surfaces with impedance

boundary conditions. Radio Sci., Vol. 27(No. 6):pages 935–943, May 1992.

[31] S. Sharma. An accelerated surface integral equation method for the electromagnetic model-

ing of dielectric and lossy objects of arbitrary conductivity. IEEE Transactions on Antennas

and Propagation, 2021.

[32] M. Cessenat. Mathematical Methods in Electromagnetism - Linear Theory and Applications.

Series on advances in Mathematics for applied science, 2016.
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