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In this paper, we propose a new method to approximate operators resulted from solving the scattering Problem in electromagnetism by dielectrically coated conducting bodies, using integral equations and high order impedance boundary condition. We introduce the variational Problem and we prove that it is well-posed, we present the new theoretical approach and highlight its potential through numerical experiments.

Introduction

The problem of electromagnetic scattering by conducting objects (PEC) coated with dielectric materials has been of considerable and growing interest due to its significance in radar prediction of targets, stealth technology, geophysics, and antennas ( [START_REF] Aubakirov | High order impedance boundary condition for mom scattering[END_REF], [START_REF] Oueslati | Analytical method for the evaluation of singular integrals arising from boundary element method in electromagnetism[END_REF], [START_REF] Daveau | Mixed and hybrid formulations for the three-dimensional magnetic problem[END_REF]). This significance is also fortified by the need to enhance the computational efficiency of the existing techniques.

The exact solution is only available for special class of geometries such as the coated conducting sphere. For an arbitrary cross-section, one has to resort to a numerical technique which guarantees the accuracy ( [START_REF] Oueslati | A new variational formulation for electromagnetic scattering problem using integral method with high order impedance boundary condition -Small perturbations of an interface for Stokes system[END_REF], [START_REF] Kacem | Méthode intégrale avec une condition d'impédance d'ordre élevé pour résoudre le problème de Maxwell en régime harmonique[END_REF], [START_REF] Daveau | Higher order impedance boundary condition with integral method for the scattering problem in electromagnetism[END_REF], [START_REF] Oueslati | Boundary element method with high order impedance boundary condition for maxwell's equations[END_REF]) and efficiency of the solution such as the Poggio-Miller formulation-Chang-Harrington-Wu-Tsai (PMCHWT) reference ( [START_REF] Medgyesi-Mitschang | Combined field integral equation formulation for scattering by dielectrically coated conducting bodies[END_REF], [START_REF] Ylä-Oijala | Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods[END_REF], [START_REF] Yan | A comparative study of calderón preconditioners for PMCHWT equations[END_REF]).

There are several numerical methods to solve the electromagnetic scattering problem (finitedifference [START_REF] Wübbeling | A finite difference method for the inverse scattering problem at fixed frequency[END_REF], finite-volume [START_REF] Nguyen | A volume integral method for solving scattering problems from locally perturbed infinite periodic layers[END_REF], method of moments MoM [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF],etc.), we are particularly interested in the method of moments.

The volumic surface integral equation (VSIE) ( [START_REF] Liepa | A volume-surface integral equation for electromagnetic scattering by inhomogeneous cylinders[END_REF], [START_REF] Soliman | An integral equation formulation for TM scattering by a conducting cylinder coated with an inhomogeneous dielectric/magnetic material[END_REF], [START_REF] Soliman | Electromagnetic TE scattering by a conducting cylinder coated with an inhomogeneous dielectric/magnetic material[END_REF], [START_REF] Koné | Équations intégrales volumiques pour la diffraction d'ondes électromagnétiques par un corps diélectrique[END_REF]) and the surface integral equation (SIE) ( [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF], [START_REF] Oueslati | A new variational formulation for electromagnetic scattering problem using integral method with high order impedance boundary condition -Small perturbations of an interface for Stokes system[END_REF], [START_REF] Aubakirov | High order impedance boundary condition for mom scattering[END_REF], [START_REF] Daveau | High order impedance boundary condition for mom scattering[END_REF], [START_REF] Fares | A boundary-element solution of the leontovich problem[END_REF], [START_REF] Glisson | An integral equation for electromagnetic scattering from homogeneous dielectric bodies[END_REF], [START_REF] Menshov | New single-source surface integral equations for scattering on penetrable cylinders and current flow modeling in 2-d conductors[END_REF], [START_REF] Poggio | Integral equation solutions of three-dimensional scattering problems[END_REF]) in conjunction with the method of moments (MoM) are the most powerful techniques to solve this problem numerically, each one has its advantages and its disadvantages depending on the considered problem ( [START_REF] Nakamura | The integral equation method for electromagnetic scattering problem at oblique incidence[END_REF], [START_REF] Naser-Moghadasi | An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution[END_REF], [START_REF] Jacques | Implementation of the boundary integral method for electromagnetic scattering problems with geometrical discontinuities[END_REF]).

The SIE is considered more advantageous than VSIE for homogeneous coating materials, because, the surface equivalence principle is used to model each homogeneous region with unknown equivalent currents placed on the surface of this region, compared to VSIE, where the unknown equivalent currents are distributed throughout the layer volume.

Different SIE formulations have been devised to solve the electromagnetic scattering problem by a coated conductive object. Among these formulations are the SIE formulation using the electric field integral equation (EFIE) [START_REF] Fares | A boundary-element solution of the leontovich problem[END_REF], the magnetic field integral equation (MFIE) [START_REF] Fares | A boundary-element solution of the leontovich problem[END_REF].

Besides, this type of objects can be modeled in SIE by an impedance boundary condition (IBC) on the surface ( [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF], [START_REF] Oueslati | A new variational formulation for electromagnetic scattering problem using integral method with high order impedance boundary condition -Small perturbations of an interface for Stokes system[END_REF], [START_REF] Kacem | Méthode intégrale avec une condition d'impédance d'ordre élevé pour résoudre le problème de Maxwell en régime harmonique[END_REF], [START_REF] Aubakirov | High order impedance boundary condition for mom scattering[END_REF], [START_REF] Daveau | High order impedance boundary condition for mom scattering[END_REF]) . Indeed, the integral electric field equation for a body having an impedance boundary condition can be developed from the equivalence principle by first removing the diffuser from the medium in which it resides and by placing equivalent electric and magnetic surface currents J and M along the surface forming the boundary of the scatterer in the original problem ( [START_REF] Roger | Time-Harmonic Electromagnetic Fields[END_REF], [START_REF] Oueslati | A new variational formulation for electromagnetic scattering problem using integral method with high order impedance boundary condition -Small perturbations of an interface for Stokes system[END_REF], [START_REF] Daveau | Higher order impedance boundary condition with integral method for the scattering problem in electromagnetism[END_REF], [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF]). Among these IBCs are the Leontovitch IBC knowing as the standard impedance boundary condition (SIBC) [START_REF] Leontovich | Investigation of propagation of radiowaves[END_REF], the higher-order IBC (HOIBC) [START_REF] Rahmat-Samii | Impedance boundary conditions in electromagnetics[END_REF], [START_REF] Senior | Approximate boundary conditions in electromagnetics[END_REF], [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF], the generalized IBC (GIBC) [START_REF] Glisson | Electromagnetic scattering by arbitrary shapes surfaces with impedance boundary conditions[END_REF], [START_REF] Sharma | An accelerated surface integral equation method for the electromagnetic modeling of dielectric and lossy objects of arbitrary conductivity[END_REF], etc.

We are interested in solving the scattering problem using SIE formulations with HOIBC [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF], which leads to solving a variational problem. The existence and uniqueness of its weak solutions are usually proved by applying arguments. In this paper, we deal with the proof of the existence and uniqueness theorem of this variational problem using Lax Milgram's theorem that depend on checking the continuity and coercivity of operators that appear in variational problem.

The plan of the paper is the following. In section 2, we present mathematical model and the function space, then we recall the variational problem derived in [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF]. We state results on existence and uniqueness of the solution under sufficient conditions to ensure the well-posedness of the variational problem ( [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF], [START_REF] Oueslati | A new variational formulation for electromagnetic scattering problem using integral method with high order impedance boundary condition -Small perturbations of an interface for Stokes system[END_REF]). In the third section, we propose a new approximation method of operators appeared in the variational problem based on theory of distribution. In a fourth section, numerical experiments are performed to verify the accuracy and efficiency of the proposed method ([6], [START_REF] Kacem | Méthode intégrale avec une condition d'impédance d'ordre élevé pour résoudre le problème de Maxwell en régime harmonique[END_REF]).

Variational approach

To present our variational approach, we will start by offering an overview of the mathematical model of physical problem. For a coated PEC object Ω immersed in an infinite homogeneous medium (ϵ0, µ0) and illuminated by an incident uniform plane wave (E inc , H inc ) with angular frequency ω = 2πf (fig. 1), scattering waves occur when incident waves impinge upon the boundary of an object Γ = ∂Ω and disperse in different directions (E sc , H sc ). The extent of scattering depends on both the wavelength λ of the incident waves and the structure of the object (geometry, thickness of coating δ ).

Figure 1: Scattering problem of dielectric coated conducting target

We provide a set of definitions and notations associated with the function spaces that will be employed in the subsequent analysis.

Notations and function space

We define the solution space as,

V := {v ∈ (H 1 (Γ)) 3 , v • n = 0, divt v ∈ L 2 (Γ), rott v ∈ L 2 (Γ)}
where divt and rott are tangential operators [START_REF] Cessenat | Mathematical Methods in Electromagnetism -Linear Theory and Applications[END_REF], n denotes the unit normal vector outward to Γ. V generates the norm

∥v∥V = (∥v∥ 2 L 2 (Ω) + ∥div(v)∥ 2 L 2 (Ω) + ∥rot(v)∥ 2 L 2 (Ω) ) 1/2 usual notation V = H 1 t (Γ) ≡ H div (Γ) ∩ Hrot(Γ)
where index 1 denotes one derivative, named after Sobolev and t denotes the tangential vector field. We recall the main properties of Sobolev spaces on Γ [START_REF] Chaulet | Modèles d'impédance généralisée en diffraction inverse[END_REF].

Lemma 2.1. The injection

H 1 t (Γ) ⊂ L 2 t (Γ) is compact. H 1 t (Γ) → L 2 t (Γ) Lemma 2.2. The injection H 1 t (Γ) ⊂ H -1/2 div (Γ) is compact. H 1 t (Γ) → H -1/2 div (Γ) with H -1/2 div (Γ) = {g ∈ H -1/2 (Γ) 3 , g • n = 0, divt(g) ∈ H -1/2 (Γ)}
which we equip with the norm

∥g∥ H -1/2 div (Γ) = ∥g∥ 2 H -1/2 (Γ) + ∥divt(g)∥ 2 H -1/2 (Γ) 1/2
For any sufficiently regular vector function A, such that A • n = 0 we define the components of Hodge operator [START_REF] Stupfel | Impedance boundary conditions for finite planar or curved frequency selective surfaces[END_REF] [13]

LD : D ′ (Γ) 3 → D ′ (Γ) 3 A → ∇t(divtA), LR : D ′ (Γ) 3 → D ′ (Γ) 3 A → rott(rottA).
After defining differential operators, integral equations are introduced as the key to establish the variational formulations of diffraction problem.

Integral equation formulations

The procedure of solving a given problem in electromagnetics typically involves several basic steps. First, it is necessary to express in mathematical form the relationship between the pertinent physical quantities involved. This mathematical description is accomplished through Maxwell's equations, expressed in either integral or differential form. We define Ω e as the space of radiating electric fields E solutions of Maxwell's equations that govern this problem.

An electric field is said to be radiating if it satisfies the Silver-Müller radiation condition [35][36]:

lim r→∞ r(E × nr + H) = 0, where r = |x| and nr = x |x| , x ∈ R 3 .
The dielectrically coated conducting objects fig. 1 can be modeled by an impedance boundary condition (IBC) at the surface, we are interested in higher-order impedance boundary conditions (HOIBC) (1), (see [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF]), various methods are presented for computing the coefficients (a0, aj, bj).

(I + b1LD -b2LR)Et = (a0I + a1LD -a2LR)(n × H). (1) 
Thus leading to the following problem:

Problem 2.1. Find (E, H) such as                  ∇ × E + iωµH = 0 in Ω e , ∇ × H -iωϵE = 0 in Ω e , (I + b1LD -b2LR)Et = (a0I + a1LD -a2LR)(n × H) in Γ, lim r→∞ r(E × nr + H) = 0.
(

) 2 
Based on the equivalence principle, the problem 2.1 can be formulated using integral equations that govern it through the fundamental theorem of Stratton-Chu representation [START_REF] Hsiao | foundations for error estimations in numerical solutions of integral equations in electromagnetics[END_REF],

known as the electric and magnetic field integral equations EFIE (3) and MFIE (4) respectively.

According to this theorem, waves can be parameterized using electromagnetic operators (B -S)

and (P + Q) and their equivalent electric and magnetic current on Γ, M = E × n|Γ and J = n × H|Γ, as follows.

< Z0(B -S)J, ΨJ > + < (P + Q)M, ΨJ >=< E inc , ΨJ >, (3) 
-

< (P + Q)J, ΨM > + < 1 Z0 (B -S)M, ΨM >=< H inc , ΨM > (4) 
where the integral operators (B -S) and (P + Q) are defined as follows:

< (B -S)ϕ, ψ >= i Γ k G ϕ • ψ - 1 k G ∇y • ϕ ∇x • ψ dydx, (5) 
< (P + Q)ϕ, ψ >= 1 2 Γ ψ • (n × ϕ) dx + Γ (ψ × ϕ) • ∇xG dydx, (6) 
In ( 5) and ( 6), G stands for the Green's function in an infinite homogeneous medium with the wavenumber k.

These representations, (3) and (4), will be useful for constructing and developing the variational formulation proposed in [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF], in which it suggests replacing the operator P and incorporating the impedance boundary condition (HOIBC) to obtain the variational problem below.

Problem 2.2. Find U = (J, M) ∈ V = [H div (Γ) ∩ Hrot(Γ)] 2 such that: A(U, Ψ) =< IE inc , ΨJ > + < IH inc , ΨM > (7) 
for all Ψ = (ΨJ , ΨM ) ∈ V , with the bilinear form A(U, Ψ) is defined by :

A(U, Ψ) =< Z0(B -S)J, ΨJ > + 1 Z0 < (B -S)M, ΨM > + < QM, ΨJ > -< QJ, ΨM > + a0 2 < J, ΨJ > + 1 2a0 < M, ΨM > - a1 2 < divΓJ, divΓΨJ > - b2 2a0 < divΓM, divΓΨM > + b1 2 < divΓ(n×M), divΓΨJ > - b2 2 < divΓM, divΓ(n×ΨJ ) > - b1 2a0 < divΓ(n×M), divΓ(n×ΨM ) > + a1 2a0 < divΓJ, divΓ(n×ΨM ) > - a2 2a0 < divΓ(n×J), divΓΨM > - a2 2 < divΓ(n×J), divΓ(n×ΨJ ) >
To tackle the problem at hand, [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF] recommends the use of Lagrange multipliers in their formulation. However, our research underscores a significant advantage achieved by eliminating these Lagrange multipliers, leading to a reduction in the number of unknowns to be resolved.

This conspicuous simplification in the model offers several scientific benefits. Firstly, it optimizes computational efficiency and reduces overall complexity, consequently preserving computational resources and time. By diminishing the count of unknowns, our approach furnishes a potentially more resilient method for tackling complex issues.

In the next section, we are going to give an alternative proof that Problem 2.2 is well-posed by analysing the bilinear form

A defined on V = [H div (Γ) ∩ Hrot(Γ)] 2 .
3 Well-posedness of variational problem 2.2

The well-posedness of problem 2.2 is guaranteed by satisfying the sufficient uniqueness conditions (SUC) outlined in both the celebrated Lax-Milgram theorem [START_REF] Drivaliaris | Generalizations of the lax-milgram theorem[END_REF] and the Rellich lemma [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF]. We will give these sufficient uniqueness conditions (SUC) under which this problem is well-posed.

Theorem 3.1. The variational problem 2.2 admits a unique solution if the coefficients satisfy the following conditions:

                               ℜ(a0) > 0, ℜ(a1) < -|q 1 | 2 , ℜ(b1a * 0 ) < -|q 1 | 2 ℜ(a2) < -|q 2 | 2 ℜ(b2a * 0 ) < -|q 2 | 2 (8) 
where :

q1 = b1|a0| + a * 1 a0/|a0| et q2 = b2|a0| + a * 2 a0/|a0|.
In variational theory, the essential tool in showing that the problem 2.2 is well-posed consists in proving both continuity and coerciveness of integral forms defined on suitable function spaces.

Continuity of the bilinear form A (7)

In order to facilitate the demonstration and application of properties, we decompose the bilinear form into two parts. The first part is associated with the (B -S) and Q operators, while the second part comprises all other higher-order impedance boundary condition (HOIBC) operators. This decomposition allows us to facilitate the demonstration and analysis process by applying properties.

Lemma 3.2. The operator A(U, Ψ) is continuous in V for all Ψ ∈ V .

Proof. Let us first establish the form of the opereator A A(U, Ψ) = A1(U, Ψ) + A2(U, Ψ).

We will show that

|A(U, Ψ)| ≤ C∥U ∥V ∥Ψ∥V .
We apply the triangle inequality to the operator A1.

|A1(U, Ψ)| ≤ ∥Z0(B -S)J∥ H -1/2 rot ∥ΨJ ∥ H -1/2 div + |Z -1 0 |∥(B -S)M∥ H -1/2 rot ∥ΨM ∥ H -1/2 div +∥QM∥ H -1/2 rot ∥ΨJ ∥ H -1/2 div + ∥QJ∥ H -1/2 rot ∥ΨM ∥ H -1/2 div ≤ C ′ 1 ∥U ∥ H -1/2 div ∥Ψ∥ H -1/2 div A1 is continuous in H -1/2 div (Γ) then in V = H div (Γ) ∩ Hrot(Γ) because V ⊂ H -1/2 div (Γ).
Consequently:

|A1(U, Ψ)| ≤ C1∥U ∥V ∥Ψ∥V Proceeding similarly as for |A1(U, Ψ)| |A2(U, Ψ)| ≤ |a0| 2 ∥J∥ H 1 t (Γ) ∥ΨJ ∥ H 1 t (Γ) + 1 2|a0| ∥M∥ H 1 t (Γ) ∥ΨM ∥ H 1 t (Γ) +∥divJ∥ L 2 t (Γ) |a1| 2 ∥divΓΨJ ∥ L 2 t (Γ) + |a1| 2|a0| ∥rotΓΨM ∥ L 2 t (Γ) +∥rotJ∥ L 2 t (Γ) |a2| 2 ∥rotΓΨJ ∥ L 2 t (Γ) + |a2| 2|a0| ∥divΓΨM ∥ L 2 t (Γ) +∥divM∥ L 2 t (Γ) |b2| 2 ∥rotΓΨJ ∥ L 2 t (Γ) + |b2| 2|a0| ∥divΓΨM ∥ L 2 t (Γ) +∥rotM∥ L 2 t (Γ) |b1| 2 ∥divΓΨJ ∥ L 2 t (Γ) + |b1| 2|a0| ∥rotΓΨM ∥ L 2 t (Γ) ≤ C2∥U ∥V ∥Ψ∥V
Hence, combining the sum of these two parts shows that :

|A(U, Ψ)| = |A1(U, Ψ) + A2(U, Ψ)| ≤ |A1(U, Ψ)| + |A2(U, Ψ)| ≤ C∥U ∥V ∥Ψ∥V with C = C1 + C2.
Now, let us show the coercivity of the operator A .

Coercivity of the operator A (7)

Lemma 3.3. The bilinear form A(U, Ψ) verifies the inequality of coecivity for all

U ∈ V = [H div (Γ) ∩ Hrot(Γ)] 4 .
Proof. We have to show that there exists α > 0 such that

ℜ[A(U, U * )] ≥ α∥U ∥ 2 V , ∀U ∈ V.
Using properties of the operators B -S and Q [START_REF] Lange | Equations intégrales espace-temps pour les équations de Maxwell: calcul du champ diffracté par un obstacle dissipatif[END_REF], we know that there exists α1 such that

ℜ(A1) = ℜ(< Z0(B-S)J, J * >)+ℜ(< Z -1 0 (B-S)M, M * >)+ℜ(< QM, J * >)-ℜ(< QJ, M * >) ℜ(A1) ≥ α1 ∥J∥ 2 H -1/2 div + ∥M∥ 2 H -1/2 div ≥ 0
On the other hand, one can easily prove that

ℜ(A2) = ℜ(a0) 2 ∥J∥ 2 L 2 t (Γ) + ℜ(a0) 2|a0| 2 ∥M∥ 2 L 2 t (Γ) - ℜ(a1) 2 ∥divΓJ∥ 2 L 2 t (Γ) - ℜ(a2) 2 ∥rotΓJ∥ 2 L 2 t (Γ) - ℜ(b1a * 0 ) 2|a0| 2 ∥rotΓM∥ 2 L 2 t (Γ) - ℜ(b2a * 0 ) 2|a0| 2 ∥divΓM∥ 2 L 2 t (Γ) -ℜ b1 2 + a * 1 2a * 0 Γ rotΓM divΓJ * ds + ℜ b2 2 + a * 2 2a * 0 Γ rotΓJ * divΓMds = ℜ(a0) 2 ∥J∥ 2 L 2 t (Γ) + ℜ(a0) 2|a0| 2 ∥M∥ 2 L 2 t (Γ) - ℜ(a1) 2 ∥divΓJ∥ 2 L 2 t (Γ) - ℜ(a2) 2 ∥rotΓJ∥ 2 L 2 t (Γ) - ℜ(b1a * 0 ) 2|a0| 2 ∥rotΓM∥ 2 L 2 t (Γ) - ℜ(b2a * 0 ) 2|a0| 2 ∥divΓM∥ 2 L 2 t (Γ) -ℜ Γ 1 |a0| 1/2 b1 2 + a * 1 a0 2|a0| 2 1/2 rotΓM • |a0| 1/2 b1 2 + a * 1 a0 2|a0| 2 1/2 divΓJ * ds +ℜ Γ |a0| 1/2 b2 2 + a * 2 a0 2|a0| 2 1/2 rotΓJ * • 1 |a0| 1/2 b2 2 + a * 2 a0 2|a0| 2 1/2 divΓMds we denote by q1 = b1|a0| + a * 1 a0/|a0| et q2 = b2|a0| + a * 2 a0/|a0|, so ℜ(A2) ≥ ℜ(a0) 2 ∥J∥ 2 L 2 t (Γ) + ℜ(a0) 2|a0| 2 ∥M∥ 2 L 2 t (Γ) + - ℜ(a1) 2 - |q1| 4 ∥divΓJ∥ 2 L 2 t (Γ) + - ℜ(a2) 2 - |q2| 4 ∥rotΓJ∥ 2 L 2 t (Γ) + - ℜ(b2a * 0 ) 2|a0| 2 - |q2| 4|a0| 2 ∥divΓM∥ 2 L 2 t (Γ) + - ℜ(b1a * 0 ) 2|a0| 2 - |q1| 4|a0| 2 ∥rotΓM∥ 2 L 2 t (Γ)
from the theorem 3.1 in which we imposed conditions on the coefficients (8), the operator A2 becomes:

ℜ(A2) ≥ α2 ∥J∥ 2 V + ∥M∥ 2 V
Finally, we have the integer operator A:

ℜ(A) = ℜ(A1) + ℜ(A2) ≥ α2 ∥J∥ 2 V + ∥M∥ 2 V
Eventually, since the bilinear form A is continuous and coercive in V under sufficient con-ditions, we then arrive at the well-posedness result for our variational formulation according to Lax-Milgram theorem.

In an effort to numerically solve the well-posed variational problem, we now turn our attention towards discretization techniques to approximate the continuous problem on a discrete problem.

Discretization and operators' approximation

The obtained variational Problem 7 is solved with the method of moments (MoM) [START_REF] Roger | Time-Harmonic Electromagnetic Fields[END_REF] using Galerkin testing procedure, which requires discretizing the contour defining the surface Γ into triangles T .

Γ h = N T n=1
Tn.

To discretize the variational problem, we employ a non-conformal approach, the Galerkin method is employed utilizing RAO-Wilton-Glisson RWG basis functions defined on the space

W = H -1/2
div , i,e. , the equivalent currents on the surface J and M are approximated on a set of Ne basis functions using RWG functions fi(x) with the unknown are the flows such as:

J(x) = N e i=1 Jifi(x), M(x) = N e i=1 Mifi(x). (9) 
On each triangle, the current is written as a linear combination of 3 functions of base associated with 3 edges of a triangle. If n is a common edge of two triangles then:

fn(x) =                ln 2|T + n | (x -a + i-1 ) if x ∈ T + n ln 2|T - n | (a - j-1 -x) if x ∈ T - n 0 if x / ∈ T + n ∪ T - n (10) 
we define also its divergence: This procedure converts the coupled set of integral equations into a matrix which may be cast into the form.

∇Γ • fn(x) =                + ln |T + n | if x ∈ T + n -ln |T - n | if x ∈ T - n 0 if x / ∈ T + n ∪ T - n . (11 
A h (U h , Ψ h ) = N e i=1 < E inc , fi > + N e i=1 < H inc , fi > (12) 
where

A h (U h , Ψ h ) = Ne i,j=1 < ZrZ0 (B -S)fj, fi > Jj + Z -1 r Z -1 0 Ne i,j=1
< (B -S)fj, fi > Mj

+ Ne i,j=1 < Qfj, fi > Mj- Ne i,j=1 < Qfj, fi > Jj+ a0 2 Ne i,j=1 < fj, fi > Jj+ 1 2a0 Ne i,j=1 < n×fj, n×fi > Mj + a1 2 Ne i,j=1 < ∇Γ∇Γ • fj, fi > Jj - a2 2 Ne i,j=1 < ∇Γ∇Γ • (n × fj), n × fi > Jj - b1 2 Ne i,j=1 < ∇Γ∇Γ • fj, n × fi > Mj + b2 2 Ne i,j=1 < ∇Γ∇Γ • (n × fj), fi > Mj + b1 2a0 Ne i,j=1 < ∇Γ∇Γ • (n × fj), n × fi > Mj - b2 2a0 Ne i,j=1 < ∇Γ∇Γ • fj, fi > Mj - a1 2a0 Ne i,j=1 < ∇Γ∇Γ • (n × fj), fi > Jj + a2 2a0 Ne i,j=1 < ∇Γ∇Γ • fj, n × fi > Jj;
We seek an approximate solution to the discrete problem [START_REF] Nguyen | A volume integral method for solving scattering problems from locally perturbed infinite periodic layers[END_REF]. To solve it, we first give notations for the integral operators arising from the Higher-Order Integral Boundary Conditions (HOIBC) involved in the discrete problem, defined as follows:

Lij = Γ h fi • fjds, (13) 
Dij = Γ h ∇Γ∇Γ • fj • fids (14) Eij = Γ h ∇Γ∇Γ • fj • n × fids, (15) 
Gij = Γ h ∇Γ∇Γ • (n × fj) • n × fids. ( 16 
)
The RWG function is not suitable for all terms present in the formulation, because the divergence of the RWG function is piecewise constant [START_REF] Wübbeling | A finite difference method for the inverse scattering problem at fixed frequency[END_REF]. Hence the tangential gradient of divergence is not defined, it gives us the Dirac function on the edges of the two elements in the operators which have ∇Γ∇Γ• in the integral like the operators D (14), E (15) and G (16).

The presence of discontinuous functions in integral operators arising from high-order impedance boundary conditions can introduce challenges in the analysis of such operators. Because of these observed drawbacks, it may be interesting to make an approximation of these operators using more elaborate approaches.

Jump formulas are indeed a valuable tool for addressing the challenges posed by these discontinuous functions, and their utilization becomes imperative as they provide an effective solution to prevent inaccuracies in computations. The normal ν to Γ is oriented inside out.

The jump formula

This definition leads to the formulas of the gradient and the divergence in the sense of distribution for functions which are discontinuous at this interface:

Proposition 4.2.
With the regularity hypotheses of the function F , we have:

The gradient and the divergence in the sense of the distributions defined for functions which are discontinuous at an interface Γ are given by:

∇F = (∇F ) -SΓ([F ]ν) ( 17 
)
∇ • F = (∇ • F ) -SΓ([F • ν]) (18) 
where (∇F ) and (∇ • F ) are respectively the usual gradient and divergence of the function where they exist and SΓ is the operator defined by:

< SΓ(F ), φ >= Γ F (x)φ(x) dx.
One observes the presence of discontinuity through the edges which deteriorates the conditioning of the operators, an approximation method is thus necessary.

According to [START_REF] Koné | Équations intégrales volumiques pour la diffraction d'ondes électromagnétiques par un corps diélectrique[END_REF] the gradient of piecewise constant functions F is written in this form:

< ∇ΓF, φ >= -[F ] /Γ Γ ν(x) • φ(x) dx , ∀φ ∈ D(R 3 ) 3 ( 19 
)
one has upon the application of F = ∇Γ • f in [START_REF] Fares | A boundary-element solution of the leontovich problem[END_REF], so that < ∇Γ∇Γ • f, φ > can be written as

< ∇Γ∇Γ • f, φ >= -[∇Γ • f] /Γ Γ ν(x) • φ(x) dx , ∀φ ∈ D(R 3 ) 3 (20) 
By taking the triangles as the domain of calculation, we have Dirac masses which will appear on the edges of the edges of the triangles because the divergence of the functions of RWG are constant per triangle [START_REF] Wübbeling | A finite difference method for the inverse scattering problem at fixed frequency[END_REF].

The subtitution of this equation ( 20) into integral HOIBC operators will yield a well-conditionned integrals.

Integral operators' approximation

To have an explicit expression of the operators, we first define the jump of a piecewise constant function f with respect to an edge i [START_REF] Oueslati | A new variational formulation for electromagnetic scattering problem using integral method with high order impedance boundary condition -Small perturbations of an interface for Stokes system[END_REF].

Definition 4.3. The jump of a piecewise constant function f with respect to an edge i:

[f] /i = (εif ) T + i + (εif ) T - i = ε T + i i f T + i + ε T - i i f T - i = f T + i -f T - i with the trace of f on T + i and T - i denoted by f T + i and f T - i respectively.
The function εi is defined by:

εi(x) =                1 on T + i , -1 on T - i , 0 otherwise. 13 

Approximation of operator D

We will explain the method of calculating the elements of matrices Dij. By applying the differential operators property [START_REF] Glisson | An integral equation for electromagnetic scattering from homogeneous dielectric bodies[END_REF] to the D operator [START_REF] Oueslati | A new variational formulation for electromagnetic scattering problem using integral method with high order impedance boundary condition -Small perturbations of an interface for Stokes system[END_REF]:

Dij = Γ h ∇Γ∇Γ • fj • fi dS = -li[∇ • fj] /l l ν l • fi ds with ν + l (respectively ν - l )
is the outgoing normal to edge l which goes from T + l to T - l (respectively from T - l to T + l ) in the plane of the triangle.

We deduce the expression of the operator Dij:

Dij = -li[∇ • fj] /i . (21) 
Using definition 4.1, the divergence jump of RWG functions (10):

∇ • fj /i = [(εi∇ • fj) T + i + (εi∇.fj) T - i ] ( 22 
) = εi T + i ∇ • fj T + i + εi T - i ∇ • fj T - i (23) = ε T + i i ε T + i j lj |Tj| T + i + ε T - i i ε T - i j lj |Tj| T - i ( 24 
)
so the Dij (21) can therefore be written as

Dij = -li ε T + i i ε T + i j lj |Tj| T + i + ε T - i i ε T - i j lj |Tj| T - i .

Approximation of operator E

Similarly as for the operator D, using the definition of the gradient of piecewise constant function, the operator E can be written as :

Eij = Γ h ∇Γ∇Γ • fj • n × fi ds = - N e l=1 ∇ • fj /l l ν l • n × fi ds
In this section, several examples will be presented to show the accuracy of the proposed method and correctness of the developed formulation after implementing it into MoM code ( [START_REF] Kacem | Méthode intégrale avec une condition d'impédance d'ordre élevé pour résoudre le problème de Maxwell en régime harmonique[END_REF], [START_REF] Daveau | Higher order impedance boundary condition with integral method for the scattering problem in electromagnetism[END_REF]). A standard spherical coordinate system is used for the body of revolution model with the z axis being the axis of revolution. Several geometries and different types of dielectric material (electric permittivity ϵr and magnetic permeability µr) are also presented. The first example is considered for validating the accuracy of the code developed while the remaining examples are regarded to produce some new results which cannot be found elsewhere in literature.

First, we consider a coated conductive sphere having a radius of r2 = 1.8λ, thickness of coating layer is 0.05m (fig. 2) with a relative permittivity of ϵr = 5 and a relative permeability of µr = 1.

The exact series-solution of this geometry is available and is used here to validate the results of the proposed formulation. The bistatic RCS for the θθ-polarization at 0.45GHz are computed and the results obtained (fig. 3) are compared with Mie series solutions. Figure 3 illustrates three results, Mie's analytical result and different mesh densities using the new approximation method. Good agreements have been observed in the comparisons. Now, we will choose a complex configurations of permittivity and permeability. In fig. 4a and fig. 4b, when we substitute the complex values for permeability and permittivity, we observe a very good agreement between the analytical solution of Mie and the numerical results obtained using the HOIBC method. In our study, we compared our method to the Lagrange multiplier method proposed in [START_REF] Aubakirov | Electromagnetic Scattering Problem with Higher Order Impedance Boundary Conditions and Integral Methods[END_REF]. Since the analytical solution is available for comparison, we computed the error for different meshes using the infinity norm for both methods. Additionally, we measured the CPU time (in seconds) for system resolution and the total memory occupation of the matrix (in Go). We begin by considering the case where ϵr = 5 and µr = 1. In fig. 5a, it is evident that the results of both methods compare well with the exact solution.

Dielectric coating

But, from the above discussion in fig. 5b, we can see that the other method suffers a drastic increase in the computation cost as the number of unknowns increases. The matrix size, and hence, both the filling and solving times grow substantially. On the other hand, our method has a better performance regarding the CPU times where the computation cost is substantially lower. In the light of these factors, our method is more appealing than the other formulation for simulating large-scale problems where the reduction of CPU times becomes an essential and crucial issue. Now we compute the error with complex permitivity and permeability ϵr = 2 -3i and µr = 1 -i. According to the tests presented above, it can be concluded that Lagrange approximation has a good accuracy independently with respect to the number of unknowns, while our approximation has the best performance in terms of computational cost.

We will now transition to a different geometry where no analytical scattering solution is available as a reference. To obtain the reference results, we compare our method to the reference PMCHWT formulation ([8], [START_REF] Ylä-Oijala | Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods[END_REF], [START_REF] Yan | A comparative study of calderón preconditioners for PMCHWT equations[END_REF]). We move on to the case of an ellipsoid is with dielectric parameters as depicted in fig. 7a, we choose a coating thickness δ = 0.1λ. compare it to PMCHWT reference. We notice that we obtain a good accuracy compared with the reference PMCHWT when we use a finer mesh.

In the sequel, sharp-edged targets will be simulated by the suggested method to verify the stability of the proposed formulation. We consider the case of coated PEC almond. Its total length is 4.169λ0, where λ0 is the vacuum wavelength, and the dielectric parameters are ϵr = 4

and µr = 1. A 0.5-GHz monostatic RCS, θθ-polarized incident wave is incident from the tip of the almond. Figure 8a shows the mesh configuration of this problem fig. 8b. We choose now another conic geometry (fig. 11) that is coated with a complex homogeneous material layer ϵr = 1 -i and µr = 1.

Figure 11a shows the mesh configuration of cone and fig. 11b display the results obtained. We can observe that as the mesh density increases, the HOIBC solutions exhibit a strong agreement with the reference PMCHWT. This can be attributed to the excellent performance of the HOIBC operators employed in the formulation. 

Conclusion

In this paper, we have proposed and analyzed a new method for approximating operators resulting from the formulation of the scattering problem by coated 3-D arbitrary shaped objects. We have demonstrated that this formulation is well-posed and implemented it in a MoM code coupled with our method. Numerical comparisons with the commonly used PMCHWT formulation have highlighted the efficiency of our new approach.

In conclusion, our method presents a promising alternative to classical formulations (SIBC) in the context of coated obstacles, offering improved efficiency and accuracy.

)

  By arbitrary definition, the current flows from the first triangle of the zone T + n to the second triangle of the zone T - n . a + i-1 and a - j-1 are the opposite vertices of the edge n in T + n and T - n respectively. |T ± n | designates the area of the triangle T ± n and the length of the common edge is ln. Through the use of the decomposition of surface electric and magnetic densities (9), we inject them into the variational problem (2.2).

Definition 4 . 1 .

 41 Formula for the jump across a bounded surface Let Ω be an open set of R 3 , with a Lipschitz boundary Γ, F a regular function in R 3 , such that C 1 -regular on either side of Γ. Then the jump of the discontinuous function F through Γ is denoted by: [F ]Γ = F int -F ext with F int , F ext are the values of F inside and outside the domain bounded by Γ respectively.
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 212243 Figure 2: geometry of a coated conductive sphere
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 5 Figure 5: Values of error computed using two approximations of integral operators with the different mesh with ϵ r = 5 and µ r = 1.
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 6 Figure 6: Values of relative error computed using two approximations of integral operators with the different mesh with ϵ r = 2 -3i and µ r = 1 -i.

  (a) Surfacic mesh of the ellipsoid. ϵr = 5 and µr = 1. (b) θθ component of the monostatic RCS with frequncy f = 0.3GHz. Reference PMCHWT and HOIBC solutions.

Figure 7a presents surface

  Figure 7a presents surface mesh of ellipsoid geometry and fig. 7b plots θθ component of the monostatic RCS with the solution using SIBC and two mesh densities λ/10 and λ/25 and we

  description (b) Surface mesh for nasa almond geometry. Plot of SIBC , HOIBC with different mesh density and PMCHWT reference
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 8 Figure 8: Scattering analysis for the NASA almond with ϵ r = 4 and µ r = 1. A 0.5-GHz monostatic RCS, θθ-polarized incident wave is incident from the tip of the almond

Figure 9 :

 9 Figure 9: Scattering analysis for different types of ogives (double fig. 9a and simple fig. 9b). A monostatic RCS, ϕϕ-polarized incident wave is incident from the tip of the ogives
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 10 Figure 10: Performance comparison of different mesh of HOIBC formulation with respect to PM-CHWT reference of conic geometries

  (a) Monostatic RCS of a 1.312m × 1.312m × 0.798m of a coated PEC cone body (δ = 0.05m, ϵr = 1 -i and µr = 1) at 0.19GHz. (b) θθ RCS component. Reference PMCHWT and HOIBC solutions.
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 11 Figure 11: Performance comparison of different mesh of HOIBC formulation with respect to PM-CHWT reference

  

We make an approximation of l ν l • n × fi ds to translate the discontinuity of the normals which is:

To determine this integral, it is necessary to distinguish several geometric configurations.

The expression of the operator E is then written:

The integral operator which is defined by:

is the adjoint operator of operator Eij.

Approximation of the G operator

Employing the definition of the operator G and the jump formula, we deduce the result for the operator E using similar procedure, we find [START_REF] Kacem | Méthode intégrale avec une condition d'impédance d'ordre élevé pour résoudre le problème de Maxwell en régime harmonique[END_REF]: