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Figure 1: Magnitude of the Discrete Fourier Transform of a ×4 magnification of the diffuse part of Ukulele model
for (a) fixed grid training (b) our continuous training and (c) the ground-truth magnification with bicubic filter.

1 High-frequency behavior

Training large neural networks on a discrete grid may yield high-frequency artifacts when sampling in-between the
points of the grid. Indeed, when no additional regularization is added, overfitting a highly non-linear model on a
discrete set of point does not constraint the behavior outside these locations. This may cause undesired behavior
in a rendering context, such as flickering effects or high-frequency artifact when close. In order to mitigate this
issue, [VSW∗23] rely on post-process filtering. Our approach however does not suffer from this issue for three main
reasons

1. Our training that aims at minimizing L2 functional norm between the filtered ground truth and the model acts
as a regularizer as illustrated in Figure 1.

2. MLP are K-Lipschitz, and point 1. together with the fact that our decoder is very small keep K small. As a
result this limits its high-frequency response. This is illustrated in Table 1, that shows the computed spectral
norm upper bound of the MLP in various scenarios.

3. We are not using positional encoding, and the bilinear interpolations of fixed resolution features we use as
input of the decoder are frequency limited by the highest resolution feature.

Figure 2 together with Lipschitz bound from Table 1 illustrate these points with a ×16 magnification of an 8× 8
area. With our continuous training approach, both 64×2 and 16×1 hidden layers MLP show limited high-frequency
responses whereas with a fixed-grid training, the 64× 2 MLP has more high-frequency (visible in the top-left to
bottom-right diagonal of the Fourier spectrum). Another point to note is that adding positional embedding together
with the fixed grid training as in [VSW∗23] drastically increase the high-frequency response. This allows the method
from [VSW∗23] to reconstruct better some high frequency details at a cost of artifacts in extreme magnification cases.

*Equal Contribution, order determined by coin toss
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Figure 2: 16× magnification zoom on an 8×8 pixel area of Ukulele model. (a) Magnitude of the Discrete Fourier
Transform (b) Diffuse. From left to right, the ground truth bicubic interpolation (×16), our BCf-1k method as
described in the paper, the same with a larger 64×2 MLP, a fixed-grid training with same parameters, the result of
NTC 0.5 if directly sampled at 1 spp and NTC 0.5 with stochastic filtering.

Regularization effect of training on continuous uv The training process using uniformly sampled uv coordinates
rather than regularly-spaced uv grids acts as a regularizer. The regularizing effect can be measured by estimating
an upper-bound of the Lipschitz constants of the decoder MLP. In our experiments, training on uniformly sampled
uvs produced MLPs with a lower upper-bound of the Lipschitz constant. In practice, an MLP with a lower Lipschitz
constant would produce a smoother output as the rate of change is bounded by a lower value. Table 1 shows
measured upper bounds for different training processes. The upper-bound is computed by multiplying the largest
singular-value of each layer of the MLP.

Table 1: Evaluation of a spectral-norm derived upper-bound of the MLP Lipschitz coefficient K for different scenar-
ios.

Spectral Bound

BCf-1k 16×1 5.75
BCf-1k 64×2 241.54
BCf-1k 64×2 + fixed grid 1029.02
NTC 0.5 5213.04

2 Optimal BC Partition selection

In order to supplement the experiment from the paper about partition selection method, we constructed a toy image
designed to have an optimal BC partition set. We then learned a custom model of one BC neural feature of the
same resolution than the target toy image and ran our method with our partition selection heuristic then with random
partition selection. The results are presented in Figure 4. This illustrates that our heuristic is able to retrieve the right
partition set when it exists, and that choosing a bad partition set can downgrade the quality of the reconstruction
(more than 16dB difference in PSNR in this case).

3 Larger Network

We also experimented with pairing our neural BC features with a larger network with 2 hidden layers of size 64 and
positional encoding similar to the ones in [VSW∗23], making the size of the input grow to 20. While this larger
architecture yielded better results (see. table 4), the increase in performance is marginal, not to mention the potential
impact on temporal stability (as descussed in section 1). We found that having a neural texture set according to the
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Figure 3: Left, Designed toy image (a) with its optimal BC partition brute force computed (b). Compressed image
(a) with partitions (b) found with our propose heuristic. Compressed image (a) with random partitions (b).

Table 2: Evaluation of the reconstruction metrics (PSNR, SSIM and FLIP) on the whole dataset when pairing the
BCf-feature with a 64×2 MLP and grid positional encodings [VSW∗23]

BCf-0.5K BCf-1K BCf-2K BCf-2K++

PSNR (↑) 28.79 32.30 36.29 38.13
SSIM (↑) 0.80 0.88 0.95 0.97
FLIP (↓) 0.148 0.096 0.066 0.057

BCf-2k++ configuration, emulating having 6 channels in the first layer of neural features, have more impact on the
reconstruction quality than increasing the size of the network. This suggests that, only having a larger network is not
sufficient to increase the quality and that having higher dimensional features is key here.

4 Non-Power-of-Two Neural Features

In the paper, we propose to use only power of two shaped neural features for convenience when using mipmaps and
to be aligned with the texture standards of most game engines. However, our training pipeline allows neural features
of any shape. For sake of completeness, we experimented with sets of features with non power of two shape. For
instance we have tested the following profiles with 4 set of features and resolution : BCf-1K [1024,512,256,128], P1
[644,636,544,460], P2 [1084,344,164,72], P3 [976,596,112,100], P4 [856,636,352,260]. All these configurations
have the same compression rate and are equivalent to our BCf–1K Table 3 shows that when using various profiles
with 4 textures having the same total number of pixel than the BCf–1K profile does not drastically change. For that
reason, we only focused on power of two shaped features in this work.

5 Detailed dataset performance

Table 4 contains the PSNR, SSIM and FLIP metrics for the entire dataset for both the 16×1 and 64×2 MLPs.

Table 3: Final PSNR of five feature shape profiles on Ukulele2K data from dataset.
BCf-1K P1 P2 P3 P4

PSNR (↑) 34.12 33.78 33.7 33.73 34.03
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Table 4: Evaluation of the reconstruction metrics (PSNR, SSIM and FLIP) on the whole dataset
16×1 MLP 64×2 MLP

PSNR (↑) SSIM (↑) FLIP (↓) PSNR (↑) SSIM (↑) FLIP (↓)

antique katana

BCf-2K++ 39.22 0.97 0.043 40.14 0.98 0.04
BCf-2K 38.33 0.97 0.047 38.84 0.98 0.043
BCf-1K 33.88 0.94 0.066 34.39 0.95 0.063
BCf-0.5K 30.58 0.91 0.091 30.6 0.9 0.099
BCf-2K++ 34.87 0.95 0.068 35.62 0.93 0.067
BCf-2K 32.51 0.91 0.077 32.93 0.93 0.074
BCf-1K 29.22 0.84 0.108 29.39 0.83 0.105

bench vice

BCf-0.5K 27.28 0.77 0.136 27.11 0.73 0.155

cannon

BCf-2K++ 38.83 0.96 0.065 39.46 0.97 0.063
BCf-2K 36.64 0.94 0.079 37.35 0.95 0.074
BCf-1K 32.95 0.88 0.112 33.49 0.89 0.113
BCf-0.5K 30.62 0.84 0.16 30.37 0.8 0.18
BCf-2K++ 41.26 0.98 0.044 41.33 0.98 0.039
BCf-2K 39.42 0.97 0.051 39.65 0.97 0.044
BCf-1K 35.96 0.94 0.068 36.47 0.94 0.06

cardboard box

BCf-0.5K 33.05 0.91 0.084 32.86 0.88 0.09

ceramic roof

BCf-2K++ 39.8 0.97 0.049 40.56 0.98 0.044
BCf-2K 37.75 0.96 0.056 38.3 0.97 0.046
BCf-1K 34.15 0.91 0.085 34.75 0.92 0.075
BCf-0.5K 30.01 0.82 0.142 30.65 0.84 0.13
BCf-2K++ 41.47 0.98 0.033 42.11 0.98 0.032
BCf-2K 39.88 0.97 0.04 40.51 0.97 0.038
BCf-1K 36.46 0.95 0.054 36.82 0.95 0.054

Chandelier

BCf-0.5K 32.67 0.93 0.082 32.17 0.9 0.087

denim fabric

BCf-2K++ 37.71 0.97 0.057 33.63 0.95 0.073
BCf-2K 37.09 0.95 0.061 32.29 0.94 0.075
BCf-1K 25.23 0.76 0.136 26 0.77 0.118
BCf-0.5K 22.9 0.63 0.173 23.67 0.68 0.168
BCf-2K++ 32.17 0.94 0.102 32.83 0.95 0.096
BCf-2K 29.83 0.9 0.133 30.37 0.92 0.117
BCf-1K 26.58 0.82 0.165 26.7 0.8 0.176

garden gloves

BCf-0.5K 23.69 0.7 0.251 23.75 0.67 0.268

garden gnome

BCf-2K++ 41.59 0.98 0.035 42.09 0.98 0.036
BCf-2K 40.1 0.97 0.046 41.15 0.98 0.039
BCf-1K 37.49 0.96 0.052 38.16 0.96 0.053
BCf-0.5K 34.57 0.94 0.074 33.8 0.92 0.083
BCf-2K++ 36.47 0.96 0.084 37.04 0.97 0.082
BCf-2K 34.25 0.94 0.102 34.79 0.95 0.102
BCf-1K 30.37 0.89 0.135 30.6 0.88 0.145

garden sprinkler

BCf-0.5K 27.73 0.82 0.199 27.57 0.79 0.236

lubricant spray

BCf-2K++ 39.9 0.97 0.033 41.05 0.98 0.031
BCf-2K 38.84 0.97 0.044 39.79 0.98 0.036
BCf-1K 34.13 0.93 0.049 35.3 0.95 0.045
BCf-0.5K 30.67 0.89 0.066 30.8 0.9 0.069
BCf-2K++ 39.14 0.97 0.054 40.46 0.97 0.018
BCf-2K 36.94 0.96 0.076 39.05 0.96 0.021
BCf-1K 33.61 0.93 0.086 34.82 0.92 0.031

metal tool chest

BCf-0.5K 30.17 0.89 0.123 31.13 0.85 0.047

MetalPlates

BCf-2K++ 40.22 0.97 0.023 39.44 0.98 0.051
BCf-2K 38.82 0.96 0.021 37.67 0.97 0.06
BCf-1K 34.37 0.91 0.032 33.98 0.93 0.083
BCf-0.5K 30.62 0.84 0.052 30.23 0.88 0.132
BCf-2K++ 36.6 0.96 0.051 36.88 0.96 0.048
BCf-2K 34.41 0.93 0.06 34.64 0.94 0.065
BCf-1K 29.86 0.85 0.086 30.13 0.85 0.085

painted concrete

BCf-0.5K 27.59 0.76 0.123 27.73 0.77 0.12

PavingStones

BCf-2K++ 31.92 0.95 0.121 32.3 0.95 0.096
BCf-2K 29.52 0.92 0.106 29.78 0.92 0.106
BCf-1K 25.81 0.76 0.166 26 0.77 0.159
BCf-0.5K 23.39 0.59 0.239 23.53 0.61 0.231
BCf-2K++ 40.5 0.98 0.04 40.42 0.99 0.047
BCf-2K 39.26 0.98 0.048 40.04 0.98 0.042
BCf-1K 35.63 0.95 0.069 36.1 0.95 0.063

Terrazzo

BCf-0.5K 29.16 0.86 0.142 30.16 0.88 0.119

treasure chest

BCf-2K++ 36.06 0.95 0.072 36.41 0.96 0.069
BCf-2K 33.9 0.92 0.087 34.29 0.94 0.086
BCf-1K 30.24 0.85 0.124 30.56 0.85 0.12
BCf-0.5K 27.28 0.78 0.164 26.82 0.75 0.192
BCf-2K++ 40.35 0.97 0.051 40.88 0.98 0.047
BCf-2K 38.41 0.95 0.066 39.32 0.97 0.054
BCf-1K 34.17 0.91 0.09 34.98 0.91 0.083

Ukulele

BCf-0.5K 31.41 0.87 0.116 31.7 0.85 0.126

Wood

BCf-2K++ 31.29 0.94 0.112 31.77 0.95 0.099
BCf-2K 28.53 0.9 0.123 28.79 0.91 0.123
BCf-1K 24.63 0.68 0.208 25.1 0.71 0.2
BCf-0.5K 22 0.5 0.291 22.34 0.53 0.281
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Figure 4: Pairing NTC with a small network diminishes its performance. The high dimensional of the input (81 in
this case) makes the small MLP with a hidden layer of size 16 less efficient.
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