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Very soft grain assemblies have unique shape-changing capabilities that allow them to be compressed far
beyond the rigid jammed state by filling void spaces more effectively. However, accurately following the
formation of these systems by monitoring the creation of new contacts, monitoring the changes in grain shape,
and measuring grain-scale stresses is challenging. We developed an experimental method that overcomes these
challenges and connects their microscale behavior to their macroscopic response. By tracking the local strain
energy during compression, we reveal a transition from granular-like to continuous-like material. Mean contact
geometry is shown to vary linearly with the packing fraction, which is supported by a mean field approximation.
We also validate a theoretical framework which describes the compaction from a local view. Our experimental
framework provides insights into the granular micromechanisms and opens perspectives for rheological analysis
of highly deformable grain assemblies in various fields ranging from biology to engineering.

DOI: 10.1103/PhysRevE.108.044901

I. INTRODUCTION

Compressing a disordered assembly of grains is a seem-
ingly simple process that has been carried out since the dawn
of time by humanity to store, transport, or transform matter.
The objectives are quite basic: either to improve the strength
of the resulting material or to optimize space by reducing the
volume taken by the grains. In the most common case of hard
grains (i.e., grains with high stiffness relative to the applied
pressure P), the compression generally ends once the grains
can no longer rearrange, meaning a mechanically stable state
is reached unless grains break. This so-called jammed state
[1–3] mainly depends on the grain morphologies (size [4] and
shape [5,6]), the friction between them [5], and the loading
process [2]. The packing fraction φ cannot exceed that of the
random close packing (RCP), and the coordination number
Z (i.e., the average number of contacts per grain) cannot
be higher than 6 for spherical (12 for nonspherical) grain
assemblies. It is well documented that the applied stresses
are transmitted by an inhomogeneous network of forces in
which only a small proportion of grains bears the strongest
forces [7,8]. The elastic properties of the assembly, around
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the jammed state, cannot be directly deduced from grains
elasticity and result from a subtle intertwining between the
values of the packing fraction, the coordination number, and
contact properties [9–11]. The same is true for the coordina-
tion number, which evolves as a power law of the packing
fraction [12–14].

But what if we consider soft and even squishy grains [15]
(i.e., grains having a low stiffness relatively to the applied
pressure) while continuing to compress the packing? The
grains would deform, changing their shapes elastically or in
a more complex manner, without breaking to accommodate
for the internal mechanical and geometrical constraints. As
a result, the solid fraction would exceed that of the RCP,
and it would even be possible to entirely fill the space. A
new world, as yet poorly understood, is opening up with
these materials made of soft, squishy, deformable grains. Such
materials play a major role in various fields of natural sciences
(foams, colloidal suspensions, biological cells, blood clogging
in a vein, etc.) and in many industrial processes (emulsions,
metallic powders, sintered material, rubber mixtures, etc.). In
soft granular assemblies, the macro- and microscale behaviors
are no longer uniquely ruled by the steric exclusions and the
topological disorder of contacts but are also ruled by the bulk
behavior of each constitutive grain. Including the change in
grain shape in addition to the inherently multicontact nature
of a granular system in realistic three-dimensional (3D) mod-
eling is a vast emerging topic, with challenging experimental,
numerical, and theoretical issues [15,16].

From a numerical point of view, these last few years have
seen the advent of new strategies in the form of discrete ele-
ment methods coupled with different continuum approaches
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[15]. Although technical challenges still remain, especially
in terms of computational time, existing studies, mainly in
two dimensions and a few in three dimensions [17–19], have
allowed us to glimpse new microscopic mechanisms that take
place from contact scale to the inside of the grains. For exam-
ple, the power-law dependence of the coordination number on
the packing fraction is still valid far beyond the jammed state
[20–24], even for assemblies of initially noncircular grains
[25]. Local grain rearrangements, sometimes dramatic, can
still occur even after the jamming point [26–29], but at the
same time the stress distribution becomes more homogeneous
as the packing fraction increases. Friction also contributes to
a better homogenization of the contact force network [25].
By implementing some of these new microscopic descriptors
into a rigorous micromechanical framework, Cantor et al. (in
two dimensions [22]) and Cárdenas-Barrantes et al. (in two
[24,30] and three [23] dimensions) stated compaction equa-
tions fully determined by the evolution of the microstructure,
thus resolving a long-standing issue verified by the very large
number of ad hoc models that have been proposed over the
last few decades [21,31–35].

Still, there is no experimental validation, especially in three
dimensions, of all these advances. Even more important, no
clear strategies exist to explore highly deformable granular
systems far beyond the jammed state from the particle scale.
More generally, whether it is in two or three dimensions, the
measurement of contacts (position and orientation) and forces
or stresses in the grains, as well as the description of their
evolution, is mostly based on inverse problem methods. Close
to the jammed state it is always assumed that the contacts obey
a Hertz type law [36]. It is then possible to detect the con-
tacts and to extrapolate the resulting interaction forces using
different local field measurements such as the deformation of
the grain [37,38], a photoelastic [39,40] or thermoelastic [41]
signal, and raw measurements from digital image correlation
[42]. These inverse methods have also been successfully ex-
tended to two-dimensional (2D) noncircular grains assemblies
[43,44] and also to 3D analysis using x-ray tomography with
different granular materials [45]. Careful image analysis work
has also allowed some inroads into the problem [46].

Far from the jammed point, at least two challenging issues
appear: (i) Hertz’s law is no longer valid, and (ii) it is diffi-
cult to follow the shape of the particles while detecting new
contacts. This last point is particularly exacerbated in three
dimensions and at large packing fraction since it requires high
image resolution. Moreover, it is not always possible to use
a direct optical approach to measure local particle properties,
and nontrivial tomographic reconstructions may be necessary.
Most 3D experimental studies based on highly deformable,
squishy grains are macroscopic and focus on general proper-
ties such as stress release [47,48], seismic isolation [49,50],
and foundation damping [51]. To the best of our knowledge,
only the work of Mukhopadhyay and Peixinho in 2011 [52],
using fluorescent hydrogel spheres, associated with a tomo-
graphic reconstruction, was able to follow the local evolution
of compressed packing up to a density of 0.85. In particu-
lar, they described the evolution of particle connectivity, but
unlike what was obtained numerically, they did not report
power-law dependences between the coordination number and
packing fraction.

In this work, we present a 3D experimental technique
that measures the displacement field directly at the grain
scale (within grains), without any material or geometrical as-
sumptions. This is performed by combining advanced digital
volume correlation (DVC) methods together with accurate
x-ray tomography imaging. This method is applied to the
paradigmatic case of axial compression with prevented radial
strain: a cylindrical sample containing 60 bidisperse silicone
beads with diameters of 3 and 4 mm is compressed vertically.
Micrometer-scale glass beads are trapped in the particle ma-
terial to form a 3D homogeneous random pattern to facilitate
DVC. The granular medium is quasistatically compressed in
an x-ray scanner to obtain density images of the evolving sys-
tem, halting loading during scans. Experiments were repeated
four times. The major outcome of this work is the simultane-
ous measurement of the topological (contacts and shapes) and
bulk (internal strain fields) properties of each grain throughout
the whole compression process up to a very high packing
fraction. This permits the inference of the grain-scale stress
tensors from the loading history and the material rheology. In
a context where 3D simulations are still rare and highly de-
manding in terms of time, our method allows the description
of the microstructural and micromechanical properties of any
squishy granular system deep in the jammed state. This allows
validation and extension to uniaxial compression constitutive
laws recently introduced numerically and in 2D configurations
[22,23] in view of theoretical modeling.

II. EXPERIMENTAL METHOD

A. Sample preparation and in situ compression

The granular samples are made of 60 silicone beads, 24
with a diameter of 4 mm and 36 with a diameter of 3 mm
(see Fig. 1). These particles are molded with SORTA-Clear
18 silicone by Smooth-On [53], mixed with glass beads with
diameters between 40 and 70 µm that make up 35% in mass.
The silicone is viscous enough for the glass beads not to
sediment during polymerization. Just before molding, the sil-
icone is degassed to remove air bubbles. Each grain is coated
with talc powder to avoid the particles sticking together. They
end up having a friction coefficient of 0.59 ± 0.15. Young’s
modulus of the material is E = 0.663 MPa, and its Poisson
ratio is ν = 0.289.

To account for the variability of the initial state, four
independent experiments are performed. Each specimen is
prepared by placing particles individually and layer by layer
inside an oedometer 15 mm in diameter. To avoid segregation
and crystallization effects, each “layer” consists of two large
and three small particles. The particles are deposited until the
height of the assembly reaches 15 mm, yielding a specimen
aspect ratio of 1. The oedometer is then closed and mounted
on top of the rotation stage of the x-ray tomography cabin,
built by RX Solutions [54]. The loading system is located be-
low the setup; thus, the loading is applied from the lower plate
of the oedometer. The oedometric compression is performed
“in situ,” i.e., imaging the specimen while performing the test
step by step: the specimen is compressed at a loading speed
of 4 µm, using displacement steps of 250 µm, after which
the loading system is paused and the specimen is imaged.
To perform a scan, three x-ray projections are averaged for
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FIG. 1. (a) Picture of the custom-made silicone particles. The large particles are 4 mm wide, while the small ones have a diameter of 3 mm.
(b) Schematic view of the in situ uniaxial compression setup. (c) Picture of the experimental setup.

each of the 1120 different radial positions, and a 3D field
is reconstructed using the filtered back-projection algorithm
proposed in [55], as implemented within the X-ACT software
provided by RX Solutions, saved on a 16-bit data range. The
x-ray tomography scans are performed using a pixel size of
15 µm/pixel, resulting in more than 200 pixels per particle
diameter. The loading force is measured externally, and each
specimen is compressed until a packing fraction of φ ≈ 1 is
reached.

B. Numerical method for postprocessing

From each experiment we obtain about twenty-five 16-bit
density matrices of dimension 1200 × 1200 × 1800. We first
convert the matrices into 8 bits. Then we isolate the large
cluster of connected grains from the rest of the system on the
initial undeformed image by means of thresholding. Eroding
this cluster sequentially, we isolate the centers of the grains.
To segment grains in the initial image we detect voxels on
the borders of this large cluster containing all the grains. Con-
sidering these voxels one by one, we check whether the lines
going from it to the two closest particle centers stay included
in the cluster. If so, that means the voxel belongs to a contact
border. These voxels forming penny shaped clusters give the
border of the contact, where we have to separate particles. We
look for the planes in which each of these clusters is included
and cut the big cluster of grains along these planes. As shown
in Fig. 2(c), we obtain the clusters of voxels covering each
particle.

From the initial particle clustering, regular cubic meshes
are built inside each grain. They form a network of correlation
cell centers that will be tracked from one image to the next
all along the compression. The distance between the nodes
of this network is 12 voxels. From one image to the next,
the solid rigid motion of each grain is first computed: on the
first image, around the closest correlation cell center from the
particle center of mass, a cubic submatrix with a side of 36
voxels is extracted. By means of Fourier transformation it is
convolved with the submatrix at the same location in the next
image. The position of the maximum of convolution gives
the particle translation with voxel accuracy. To improve this
displacement measurement, we minimize the squared differ-
ence between the first submatrix and the second one deformed
by a first order shape function: f (x, y, z) = x0 + αxx + βxy +
γxz,0 +αyx + βyy + γyz, z0 + αzx + βzy + γzz. Once the solid
rigid motion of each particle is obtained, by applying the same

process as the one described for the particle center of mass to
each correlation cell center we obtain the displacement field
inside each particle. In this computation step, the correlation
cell size is 18 voxels, and if the correlation criterion is low
enough, then the shape function is just a translation. The
process is sequentially repeated for each consecutive pair of
images.

From the displacement field obtained from DVC, the dis-
placement of the particle borders is deduced, and the evolution
of the particle shapes is tracked along the compression pro-

FIG. 2. (a) and (b) Evolution of 3D contours of the particles as
obtained from DVC. The contact areas are shown in red. (c) and
(d) Corresponding packing showing stored energy density fields. (e)
Two-dimensional view of an x-ray slice zoomed in on the contact
between two grains. Green dots are potential contact points where
the average x-ray density is probed inside the green rectangles. The
average value of this density in these subzones constitutes a contact
detection threshold. (f) Evolution of the number of contacts in the
whole system from varying the threshold on the contact criterion.
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FIG. 3. Raw and postprocessed data. (a) Middle slice of the x-ray scanner density matrix for different levels of compression. The system
is compressed vertically from the bottom. (b) Corresponding 3D reconstruction of the particle surfaces from the DVC results obtained from
the x-ray scans. (c) Evolution of the shape and contact surfaces (in red) of a given particle when compressed.

cess. To measure contact surfaces, we first discretize the
border into a network of points separated by 18 voxels. For
each of these points, if it is close to another point belonging
to another particle, we extract a parallelepipedic submatrix
centered around this point and aligned perpendicularly from
the boundary, as shown in Fig. 2(e). We compute the average
value of this submatrix. The higher this density value is,
the higher the quantity of matter in the submatrix is, so the
higher the probability of contact is. In Fig. 2(f) we plot the
evolution of the number of contacts for different thresholds of
this density value to consider the contact real. We observe that
the density of curves increases for a threshold of 120, which is
close to the mean density (28/2). This is the threshold we pick.

III. RESULTS

A. Compaction and connectivity evolution laws

Figures 3(a) and 3(b) show tomographic slices and cor-
responding 3D reconstructions of one of our samples for
different levels of compression: from an initially jammed state
to a highly compact one. During the compression process the
voids within the assembly are progressively filled due to the
deformation of the grains. Meanwhile, the packing fraction
φ increases from φ0 ≈ 0.53 (jammed state) to φmax ≈ 0.9 for
the most compact state obtained. In Fig. 4, deep in the jammed
state, we present the evolution of the global vertical strain ε =
ln(H/H0), with H0 being the initial height of the cylinder [blue
curve in Fig. 4(a)]; the coordination number Z [black curves

in Fig. 4(a)]; and the applied vertical stress P [Fig. 4(b)] as
a function of the packing fraction φ. Basically, ε decreases
as φ increases following, with a good approximation, a log-
arithmic law: ε ∼ − ln(φ/φ0). The evolution of Z is such
that it increases in a nonlinear way with φ from Z0 ≈ 4.5 to
Zmax ≈ 8.5, as φ goes from φ0 to φmax. As shown in previous
2D numerical and experimental works [12–14,20,22,56] and,
more recently, in three dimensions [23], this increase follows
a power law with an exponent of 1/2:

Z − Z0 = ξ
√

φ − φ0, (1)

where ξ ≈ 6 is fitted from experimental data. This power-law
fits our 3D experiment [Fig. 4(a), black solid line] quite well,
but a better exponent can be found: 2/3 (black dashed line).
This implies a difference between experimental and numerical
results reminiscent of what has been observed for foam [56].
The small variations from this phenomenological prediction at
a high packing fraction are due to the experimental uncertainty
in the contact detection when the system is densely packed. In
this latter case, we note that the system most likely enters a
different regime. Thus, our experimental results confirm the
validity of the phenomenological law between Z and φ up
to a certain density. This law has often been verified only
numerically or in 2D model experiments [12–14,20,22,23].

Along with the evolution of Z , the compaction of the as-
sembly is also characterized by the P vs φ curves, shown in
Fig. 4(b). We find that P slowly increases with φ at low density
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FIG. 4. Macroscopic evolution. (a) Evolution of the global uni-
axial strain ε (dashed blue line) and of the coordination number
increase from the jamming point Z − Z0 (solid black line) as a func-
tion of the relative packing fraction φ − φ0. Points are experimental
data (different symbols stand for different experiments), while lines
are analytical models. The blue dashed line for the global strain is a
scaling of − ln(φ/φ0), while the black solid line is a plot of Eq. (1).
The black dashed line is a power law similar to Eq. (1) with an
exponent of 2/3. (b) Compaction curve: applied vertical stress P as
a function of φ − φ0. Points are experimental data, while the solid
black line is the analytical model given by Eq. (2). The dashed curve
is similar to Eq. (2), but adapted to integrate Eq. (1) with an exponent
of 2/3.

and then diverges as the packing fraction tends to φ∗
max ≈ 1,

the “theoretical” maximum packing fraction. This divergence
is expected since the assembly of soft grains begins to behave
as a rigid body when the grains almost fill all the voids. By
combining the micromechanical formulation of the granular
stress tensor [57], its limit for small deformations, and the
evolution of the particle connectivity, we deduce the following
equation for the compaction curve P vs φ − φ0 (see details in
the Appendix A):

P = E∗ 2(1 + 2μM )

3π
3/2

φ∗
max − φ0

φ
3/2
0

Zφ(φ − φ0)1/2

× ln

(
φ∗

max − φ0

φ∗
max − φ

)
, (2)

where E∗ = E/2(1 − ν2) is the reduced Young’s modulus,
μM = 0.25 is related to the macroscopic friction of an as-
sembly of spherical grains, 
 = 3.89 is a structural parameter
linearly relating the macroscopic deformation and the mean
contact deflection, and Z is the coordination number given
by Eq. (1). The power of the proposed compaction law is
that it is based only on physical parameters that are easy to
measure experimentally. As we can see, our data are very
well fitted by Eq. (2). Also, the exponent of Eq. (1) does
not significantly change the shape of this law. This validates
a recently introduced micromechanical framework allowing
us to design compaction laws for different loading conditions
and material properties [22] and extends it to the case of 3D
uniaxial compression.

B. Quantitative description of grain shape evolution

The strength of our experimental setup and data postpro-
cessing is obtaining precise information at the grain scale,
such as the evolution of grain shape as well as the evolu-
tion of the contact geometries when the whole assembly is
compacted. For example, Fig. 3(c) shows the evolution of the
shape of one of the grains located in the center of the sys-
tem, which progressively shifts from spherical to a flattened
polyhedral shape with increasing contact areas. We define the

asphericity parameter by α = a3/2
p

3
√

4πvp
, where ap and vp are the

surface area and volume of a given particle p, respectively.
By construction, α equals 1 for a sphere and is higher for
any other geometry. ᾱ is the average of this quantity over all
the grains of the packing. Figure 5(b) (green curve) displays
the evolution of ᾱ as a function of the excess of the packing
fraction φ − φ0. We find that the asphericity increases as
a power law: ᾱ = 1 + (φ − φ0)β , with β = 3/2 and 1 cor-
responding to the initial asphericity. Interestingly, a similar
trend was recently observed in 2D (3D) numerical simulations
of compaction of soft disk (sphere) assemblies [23,24]. Thus,
our experiments confirm this seemingly universal geometric
feature of soft particle compaction.

Above the loss of sphericity it is important to analyze how
particles deform. To do so, for each grain, we consider the
evolution of its aspect ratio λ and its average orientation ε. λ is
defined as the ratio of the shortest straight line over the longest
straight line joining opposite boundaries of a given grain and
crossing its center of mass. Note that, for highly deformed
grains, these two axes are not necessarily perpendicular to
each other. ε is the sinus of θ , the elevation angle of the
shortest direction [see Fig. 5(a)]. As observed in Fig. 5(b),
the average particle aspect ratio λ̄ decreases with φ from
1 (spherical shape) to values close to 0.6. Meanwhile, their
average orientation ε̄ increases from 0.5 (anisotropic) to 1
(horizontally expanded) for φ � 0.72. From these observa-
tions, a schematic picture emerges to describe the compaction
from a grain-scale perspective. The grains elongate in the
surrounding voids mainly by increasing the largest distance,
contributing to the creation of new contacts aligned along the
compression direction. In the other directions, the mean grain
aspect ratio also increases by shrinking the shortest length.
This is also well evidenced in Fig. 5(c), which shows the
average circular profile of the grains. At first this profile is
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FIG. 5. Grain shape evolution. (a) Schematic view in two di-
mensions of the major and minor directions of a particle and their
orientation with respect to the vertical direction. θ is the elevation
angle of the minor direction. (b) Evolution of the mean grain aspect
ratio λ̄ (dashed blue line), of the average of the sinus of the minor
direction elevation ε̄p (black line), and of the average grain aspheric-
ity, ᾱ (dot-dashed green line) as a function of the packing fraction
relative to the jamming point φ − φ0. Points are experimental data
(different symbols stand for different experiments). Blue and black
lines are averaged curves, and the green one is the power-law fit:
ᾱ = 1 + (φ − φ0 )3/2. (c) Evolution of the average shape of the grains
as a function of φ − φ0. Curves are circumferentially averaged over
each grain of the packing.

perfectly semicircular, and it then gets progressively larger in
width and thinner in height.

C. Linking contact geometry evolution to packing fraction

Along with the grain shape, the evolution of the con-
tact surface geometries between grains is also probed during
the compression. As an illustration, Fig. 6(a) displays the
evolution of a typical contact surface within the sample. Qual-
itatively, close to φ0 the shape of a contact can be considered
circular. However, as the compression goes deeper into the
jammed state, the contact surface gets larger and exhibits a
nontrivial concave shape. As for the grain shape, for each con-

tact, we define the mean contact surface acircularity γ = p2
c

4πsc
,

where pc and sc are the perimeter and the surface of this
contact, respectively. γ̄ is the average of this quantity over
all the contacts of the packing. In Fig. 6(b) the blue dashed
curve shows the evolution of γ̄ as a function of the excess
packing fraction φ − φ0. We find that, on average, the contact
surfaces can be considered circular up to a fairly high packing
fraction, close to 0.83. Before this density γ̄ ≈ 1, but beyond,

FIG. 6. Contact geometry evolution. (a) Evolution of the shape
of a given contact when the system is compressed. Projections of
the contact contours on three orthogonal directions are also shown.
(b) and (c) Evolution of the average contact acircularity λ̄ [blue
dashed line in (b)], the average effective contact radius κ̄ [black solid
line in (b)], the average contact nonplanarity l̄ [blue dashed line in
(c)], and the average contact direction elevation ω̄ [black solid line
in (c)] as a function of the distance of the packing fraction from
the jamming point φ − φ0. Points are experimental data (different
symbols stand for different experiments), while lines are averaged
curves, except the one for κ̄ , which is a linear fit with a slope of
2.94 ± 0.03.

γ̄ increases suddenly to values close to 1.2. This highlights the
strong deviation of the contact surfaces from a circular shape.
The shape of this curve is reminiscent of the divergence of
P observed in Fig. 4(b). Along with γ , the contact geometry
is also characterized by the mean curvature of the contact
surfaces l . The latter is defined by the contact nonplanarity, the
mean distance between the real contact surface and its average
plane. This quantity is then normalized by the mean particle
radius Rp. The evolution of its average value l̄ as a function of
the excess of the packing fraction φ − φ0 is shown in Fig. 6(c).
We observe that l̄ slightly increases with φ and remains overall
less than 1% of the mean grain radius until, like for γ̄ , a
crossover is observed at φ ≈ 0.83. Then, a rapid increase is
observed, and l̄ exceeds more than 1% of the mean grain
radius. In other words, from a certain level of compression,
the grains indent each other, and the contact surfaces are no
longer symmetrical. This leads to concave-shaped contacts,
as observed in Fig. 6(a).

To quantify the evolution of the size of the contact,
we define the relative effective contact radius κ =

√
sc/π

Rp
.

Using a mean field approach that combines the geomet-
rical properties of a Hertzian contact together with the
Z vs φ relation [Eq. (1)], we obtain (see details in
Appendix B)

κ̄ ∝ φ − φ0. (3)

We see in Fig. 6(b) that the linear dependence predicted by
Eq. (3) is well satisfied up to large φ values deep in the
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jammed state. However, from φ ≈ 0.83, the data slightly de-
viate from this prediction since the circularity and flatness
assumptions of the contact surface are no longer valid. Go-
ing further in the contact analysis, in Fig. 6(b) we show the
evolution of the mean contact direction ω̄ = 〈sin θc〉c, where
θc is the elevation angle of the angle normal to the contacts.
We find that ω̄ increases from 0.5 (anisotropy) at φ0 to ∼0.75
(mainly vertical) for φ → φ∗

max. This indicates that the contact
surfaces are preferentially oriented perpendicular to the direc-
tion of compression as the packing fraction is increased. This
is consistent with the preferential direction of grain elongation
discussed in the previous section.

D. Deeper within the grains: Strain and energy density fields

The presented method not only allows the measurement of
the 3D evolution of grain boundaries but also provides the
local displacement field inside each grain, even deep in the
jammed state, for highly deformed grains. The right Cauchy-
Green deformation [58] tensor and its von Mises norms are
deduced from this displacement field [59]. Also, assuming a
hyperelastic behavior of the silicone used to make the beads
[20,59,60], we compute the energy density stored in the ma-
terial ρ [20,58]. Figure 7(a) shows the evolution of the mean
von Mises strain when the granular system is loaded. We find
that the mean von Mises strain first increases linearly with the
packing fraction. On average, this implies a proportionality
relation between the local and global strains applied to the
system.

Still, for a higher packing fraction, from φ ≈ 0.83 the
local strain enters a regime where it increases more rapidly.
In Fig. 6(b), we show the evolution of the average energy
density when the system is compressed. This quantity in-
creases quadratically with the packing fraction. This is a direct
consequence of the linear relation between the strain and the
packing fraction. It implies that even for quite high packing
fractions, from a coarse-grained point of view, the system
behaves as a solid. Still, when looking at the statistical distri-
bution of the energy field, presented in Fig. 7(c), this analogy
is no longer true. Indeed, the probability density function
(PDF) of ρ is Gaussian-like for a gently squeezed system, but
for more compressed systems, it displays an exponential tail
reminiscent of what is observed for the PDF of the interaction
forces between rigid grains [7].

IV. DISCUSSION

We have overcome one of the main experimental chal-
lenges recently identified as such by the granular matter
community [15,61,62]. The experimental framework we pre-
sented in this paper permits us to travel from macro- to
micro-observables and, conversely, from a highly squeezed
granular system deep in the jammed state to a very large
packing fraction. The strain tensor in the material of each
particle of the whole system was recorded during the com-
pression process, permitting us to compute the evolution of the
corresponding stress tensor and energy density. The change
in shape of the particles and their contacts were deduced,
and the classical—strain vs stress—measurements were also
monitored. No classical mechanics observables of the system

FIG. 7. Local mechanical evolution. Evolution (a) of the average
von Mises strain and (b) of the average energy density ρ̄ as a function
of the distance of the packing fraction from the jamming point φ −
φ0. Points are experimental data (different symbols stand for different
experiments), while in (a) the line shows a linear fit with a slope of
3 ± 0.1 and in (b) the plain curve is the quadratic fit 5 × 105(φ −
φ0 )2. (c) Evolution of the probability density function (PDF) of the
energy density P(ρ ) when a system is compressed.

were kept unknown during the whole loading process, open-
ing the way to a thorough analysis of this complex multiscale
mechanical process.

This set of information permitted us to check whether
the phenomenological power law between the system
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coordination number Z and packing fraction φ still holds
in three dimensions. Previously, this had been observed only
for 2D experiments [12–14,20]. This point extends the domain
of validity of this relation and suggests that more contacts
are created than what was initially expected. The compaction
law linking the pressure applied to the system and its packing
fraction, built for 2D systems and in three dimensions
for isotropic compression, were extended to the case of
uniaxially loaded 3D systems. The strength of this theoretical
framework, derived from the micromechanical expression of
the granular stress tensor, is based on having only physical
parameters that are easy to measure experimentally. Our
experimental results outstandingly validate this law even deep
in the jammed state. This will permit us to predict with great
precision the behavior of a loaded system just by knowing the
exact nature of the grains.

Moreover, the results presented in these series of 3D ex-
periments show that the mean contact geometry varies linearly
with the packing fraction. Just like for the compaction law, this
relation is supported by a mean field approximation developed
in the small deformation framework. It is remarkable that
even deep in the jammed state, where grains are extremely
deformed through multiple contacts and the Hertz contact
hypothesis is highly violated [36,60], the mean field analyt-
ical framework still holds and gives greatly reliable results.
This point is a good omen for finding a unified rheological
law describing the mechanical behavior of a system from
the jammed state up to a bulk material whatever the loading
process is.

Still, by tracking the local strain energy during compres-
sion, we revealed that, for a very high packing fraction,
a transition from granular-like to continuous-like materials
exists. For a packing fraction close to 0.83, the average
energy density follow a quadratic law with the packing
fraction, and the average strain follows a linear law. The
description of these quantities remains complex to describe
analytically in these high density regimes. In these regimes
the particles are highly distorted to fill the last remaining
porosities. This is in agreement with the fact that above
φ ≈ 0.83, the average particle asphericity also follows a
well defined power-law behavior with the packing frac-
tion. Below this threshold the material remains remarkably
well described by the material rheology taking granular
structure into account; on the contrary, above, it enters a
more extreme regime where observables vary abruptly. This
point, which has also been observed in two dimensions
[24,59], clearly evidences a sharp crossover in the material
behavior.

Our experimental framework evidences heuristic and ana-
lytical laws linking different observables of densely packed
granular systems. This provides insights into the granular
micromechanisms and how they are responsible for spe-
cific macroscopic behavior. On top of permitting us to
predict the evolution of a densely packed system, our find-
ings permit us to deduce the global state of a system
through local observations and the converse. This opens new
perspectives for rheological analysis of highly deformable
grain assemblies in various fields ranging from biology
[62–64] to engineering [65] and geophysics [49,50], to name
just a few.
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APPENDIX A: DERIVATION OF THE COMPACTION
EQUATION FOR 3D UNIAXIAL GEOMETRY

We briefly recall the main ingredients of the theoretical
framework presented in [22,23], and we extend it to fit uniax-
ial 3D geometry. In this case, P is related to the granular stress
tensor through its zz component by P = σzz. The granular
stress tensor is given by σ = nc〈 f c ⊗ �c〉c [57], where �c is
the vector between the centers of the grains and f c is the force
vector at a contact c. nc = Nc/V is the density of contacts,
with Nc being the total number of contacts in the volume
V . Considering a small particle size distribution around the
mean diameter d and with Vp = (π/6)d3 being the volume
of a sphere p, we obtain nc � 3Zφ/(πd3), with Z = 2Nc/Np

being the coordination number. From the definition of σzz via
the principal values of σ, we get

P � α
φZ

π
σ�, (A1)

with σ� = 〈 f c · �c〉c/d3 being a measure of the mean contact
stress and α being a constant related to various microscopic
parameters pertaining to the contact and force network spe-
cific to uniaxial compression but hardly accessible by means
of experiments. However, theoretical developments [66] have
shown that these microscopic parameters can be added to-
gether to build the shear strength parameter μM of the
material, allowing us to write α ∼ 1 + 2μM . For an assembly
of frictional spheres, μM is close to 0.25. Note that Eq. (A1)
is mostly known in its simpler form [10,57], where μM is
fixed to zero when considering the mean stress from the
trace of σ.

Close to the jammed state (i.e., in the case of small defor-
mations), assuming that the contact forces follow Hertz’s law
and verifying that (as discussed in Sec. III D) the macroscopic
deformation ε is linearly related to the mean contact deforma-
tion 〈δc/Rp〉c, with δc being the reduction in radius at a contact
c (via the parameter 
 ∼ 3.8 measured in our experiments),
we can rewrite Eq. (A1) as PSD = −α 2E∗

3π
3/2 Z0φ ln(3/2)( φ

φ0
).

Now, deep in the jammed state, we rely on the macroscopic
hypothesis formulated by Carroll and Kim [32]. Using an
analogy between the compaction process and the collapse of a
cavity within an elastic medium, they showed that, necessar-
ily, P ∝ ln[(φ∗

max − φ)/(φ∗
max − φ0)]. By combining this large

deformation approach with the small one and Eq. (A1), the
compaction equation becomes the one presented in Sec. III A.

APPENDIX B: PREDICTING THE LINEARITY
BETWEEN l̄ AND φ

First, let us remark that l̄ can be rewritten as a mean over
all grains and contacts: l̄ ∼ Zrc/Rp. Then, since we have ver-
ified (see Sec. III A) that (φ − φ0)/φ0 ∼ ε and also that ε ∼
〈δc/Rp〉c (see Sec. III D), we get the following proportionality
between Z and δ: Z ∼ √

δ/Rp. Finally, from the Hertz theory
we get that the radius of the contact surface between two
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spheres touching at a contact c is given by rc ∼ √
R∗δc, with

R∗ ≡ Rp being the effective radius and δc being the reduction
in radius at the contact. Injecting the two above proportional-
ities into the definition of l̄ leads to l̄ ∼ √

δ
√

δ ∼ φ − φ0.
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