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Abstract—Edge Computing is becoming more and more 

essential for the Industrial Internet of Things (industrial IoT) 

for predictive maintenance in the industry 4.0 framework. The 

transition from central to distributed approaches (edge nodes), 

will enhance the capabilities of handling real-time big data from 

IoT by ensuring low latency and high bandwidth. Moreover, 

with the developed architecture the possibility is given to have 

distributed Machine Learning (ML) by enabling edge devices to 

learn local ML models. Therefore, the performances of the 

global diagnostic models can be improved. In this paper, the 

developed setup is composed of PC’s, NVIDIA Jetson Nano 

Developers kits (for edge computing), and a smartphone for 

real-time displaying. The implemented real-time supervised 

machine learning approaches are applied on an industrial oil-

injection screw compressor instrumented with vibration 

sensors. Time domain features are calculated online with the 

help of sliding windows and the features are automatically 

classified. Embedded in the equipment, the used algorithms 

obtained very good real-time diagnostic performances. 

Keywords— predictive maintenance, diagnostic, supervised 

machine learning, time series, embedded edge computing. 

I. INTRODUCTION 

Many academic research works and industrial R&D 

projects are focused on diagnostics and predictive 

maintenance (Prognostics and health management, PHM) [1] 

[2]. Also, several leading scientific journals are specifically 

dedicated to this research field involving many researchers 

and engineers from different disciplines: general computing, 

computer networks and IoT (Internet of Things), advanced 

statistics, signal processing, Artificial Intelligence, data 

science and data mining, intensive computing, embedded 

systems, etc.. 

Some diagnostic approaches are specifically designed or 

adapted for application fields and sectors such as 

manufacturing and production systems [3], industry 4.0 [4], 

material/tools interaction in milling [5] [6] [7], aeronautic 

sector [8], energy [9] [ 10], health [11], mobility/transport 

[12], waste management/wastewater treatment plants [13], 

rotating machines [14], … 

Predictive diagnostics and maintenance approaches are 

traditionally based on different methods: 
• technical expertise [15], 

• model-driven approaches [16]. Physical models 
(phenomenological models) are constructed from 
observations and measurements, 

• data-driven approaches [16] [17] [18]. Data are 
acquired from sensors or data bases, usually without 
physics knowledge. The data can be handled with 
powerful statistic’s approaches [15] [19], artificial 
intelligence tools and data mining [20], 

• hybrid methods [16] [21] combining the previous 
methods. 

In this work, machine learning based diagnostic models 
are developed and implemented for time series (coming from 
sensors and data bases) with real time data streaming 
environment and IoT devices connections [22-25]. All the 
developed algorithms can be embedded.   

Feature selection approaches [26] have also been 
implemented in our framework. Indeed, these dimensionality 
reduction techniques lead to better learning performances and 
lower computational time. 

II. STUDIED INDUSTRIAL SYSTEM 

A. Studied System 

From the 2021 PHM Data Challenge [27], recorded 
vibrations data of an industrial oil-injection screw compressor 
are used in this work for real-time diagnosing of the different 
plant states: 1-Normal, 2-Unbalance, 3-Belt-Looseness, 4-
Belt-Looseness High, 5-Bearing-fault. The PHM Data 
Challenge is an international competition held annually by the 
PHM Society, a world-renowned academic society in the field 
of diagnostics, prognostics and health management.  



The compressor is illustrated in Fig. 1: a vibration sensor 
is attached at the 15kW motor (with an axis rotating speed of 
3600 rpm (rotations per minute)), the second vibration sensor 
is attached at the screw (with an axis rotating speed of 7200 
rpm). The two-channel data have a sampling frequency of 
10544 Hz.  

 

Fig. 1. Illustration of the studied oil-injection screw compressor 

The significant difficulty lies in obtaining separately the 

different defaults, the real time adding also severe constraints.  

 

Fig. 2. Signals of the two vibration sensors in the normal operating mode.  

 

Fig. 3. Signals of the two vibration sensors in the unbalanced operating 

mode. 

To address this issue, sliding windows are filled in by 

measurements from the two vibration sensors, the windows 

being or not overlapped. The impacts of the windows length 

and overlapping rate on the diagnostics performances (in real 

time) have also been analysed in this work. 

The features are calculated for each window, which lead 

to a time serie for each feature, each point of the time serie 

corresponding to a window. 

B. Features calculation 

After a first data processing (low pass filtering), the 

features are calculated in time domain for the measured 

vibrations. Each signal, for sensor 1 or 2, is called hereafter 

xk, at sample time k.  

Calculated features are : maximum and minimum of x(t), 

amplitude range, median value, maximum of the absolute 

value, inter quartile range, inter decile range, average value, 

average of the absolute value, average of the absolute value 

of the derivative signal, variance, energy, energy of the 

centred signal (1), energy of the derivative signal (2), 

skewness (3), kurtosis (4), moment order i (5), Shannon 

entropy (6), signal rate (7), etc. Some of the calculated time 

domain features are detailed below: 

• Energy of the centred signal:  (1) 

𝐸𝑐 = ∑(𝑥𝑘 − 𝑚𝑒𝑎𝑛(𝑥))
2

𝑁

𝑘=1

 

• Energy of the derivative signal:  (2) 

𝐸𝑑 = ∑ (
𝑑𝑥𝑘

𝑑𝑡
)

2𝑁−1

𝑘=1

 

• Skewness:  (3) 

𝑆 =
𝐸(𝑥 − 𝑚𝑒𝑎𝑛(𝑥))

3

𝑉𝑎𝑟3/2
 

• Kurtosis:  (4) 

𝐾 =
𝐸(𝑥 − 𝑚𝑒𝑎𝑛(𝑥))

4

𝑉𝑎𝑟2
 

• Moment order i (i = 5 : 10):  (5) 

𝑚𝑖 =
𝐸(𝑥 − 𝑚𝑒𝑎𝑛(𝑥))

𝑖

𝑉𝑎𝑟𝑖/2
 

• Shannon entropy:  (6) 

𝐸𝑆(𝑥) = − ∑ 𝑥𝑘
2

𝑁

𝑘=1

∗ log2(𝑥𝑘
2) 

• Signal rate: (7) 

τ =
𝑚𝑎𝑥(𝑥𝑘=1:𝑁) − 𝑚𝑖𝑛(𝑥𝑘=1:𝑁)

𝑚𝑒𝑎𝑛(𝑥)
 

In this application, features calculated in frequency domain 

(by using Fast Fourier Transformation, FFT) are not used, 

because of the possible nonlinearities in the vibration signals.  

All the calculated features are normalized and stored in a 

table whose lines and columns respectively represent the 



experimental number (also called instance) and the associated 

feature values. The normalization can be made as follows: 

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑜𝑟𝑚 =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒−𝑚𝑒𝑎𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

𝑣𝑎𝑟(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)
  (8) 

 

This normalization leads to: (9) 

 {
𝑚𝑒𝑎𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑜𝑟𝑚) = 0

𝑣𝑎𝑟(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑜𝑟𝑚) = 1
 

 

In our study, we used the normalization given by the 

Equation (10). The goal is to consider also the information of 

the standard deviation at each time. 

 

Normalized features:  (10) 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑜𝑟𝑚 =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 − 𝑚𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

𝑚𝑎𝑥(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) − min (𝑓𝑒𝑎𝑡𝑢𝑟𝑒)
 

III. DEVELOPED SETUP 

An innovate platform (hardware + software) for 

intelligent real time predictive maintenance has been 

developed in this work for industry 4.0 applications, with a 

distributed architecture. The transition from central to 

distributed topology with edge nodes will on one hand 

enhance the capabilities of handling real-time big data from 

IoT by ensuring low latency and high bandwidth, and on the 

other give the possibility to have distributed Machine 

Learning (ML) by enabling edge devices to learn local ML 

models. The setup is composed of several pc’s, two or more 

NVIDIA Jetson Nano Developers kits for computing on the 

edge, a smartphone for real-time displaying, see Fig. 4. 

 

Fig. 4. Setup developed within the framework of this study 

The developed intelligent maintenance framework has 

been tested and evaluated with the help of this platform. The 

measured data (time series) may be collected from the 

connected sensors (at the edge) or from databases located in 

a connected device (in this paper the database from the 2021 

PHM challenge was stored in a connected pc and feeds in real 

time the setup). 

In our network architecture, the MQTT communication 

protocol is used for information and message transmission 

(raw signals, filtered signals, features, diagnostics message 

and results, …) between components and devices. 

In this setup, the Mosquitto broker [28] enables the 

connection between the IoT devices in real time. It is 

implemented into a Raspberry 4 board connected at the local 

network via a router. The interconnection between various 

sites has been made via a VPN (Virtual Private Network). 

In order to obtain a complete diagnostics pipeline, several 
libraries are required, for example CuPy, scikit-learn or 
Pytorch. These libraries should be operated with the GPU 
(Graphics Processing Unit) accelerator and also with the 
possibility to an implementation on an edge node. Therefore, 
the Machine Learning Container for Jetson and Jetpack has 
been used, including all necessary libraries allowing an easy 
access to the GPU. Moreover, several modules provided a 
GPU integration specifically dedicated to Deep Learning for 
Edge Computing. 

The NVIDIA Jetson nano board has been chosen for its 
very low power consumption (10W maximum), and 
embedded applications, while having a sufficient RAM 
(Random Access Memory) size for our needs. 

In order to store in real time all the information circulating 
on the network, and to analyse them offline, a rapid writing 
into a database specifically dedicated for time series is 
required. To perform this, InfluxDB is used for many 
connected edge IoT devices. InfluxDB additionally includes 
an integrated dashboard, and can be easily connected to others 
HMI (Human Machine Interface) such as Grafana (which is 
also used in this work). For example, a real time display of 
some online calculated features is given in Appendix (see Fig. 
13). 

The developed framework is equipped with many high 
performance functionalities with many parameters: data 
cleaning, length of the sliding windows and its overlapping 
rate, normalizing or not of the signal and the features, choose 
the selection (and classification) algorithm of the features, 
choose the supervised machine learning model, the metrics for 
the performance and robustness evaluation, …  

 

Fig. 5. Architecture of the implemented framework with vibration sensor 

CN0549 

This architecture (Fig. 5) illustrates the multiple data 
sources: PHMAP 2021 conference Data or acquisition with 
sensors in real time from an industrial machine. The shown 
Database can be hosted in a PC or in a cloud [29]. 

IV. OBTAINED RESULTS OF IMPLEMENTED ALGORITHMS 

Different machine learning models are implemented and 

tested in real time. The model training can be made offline or 

online. Nevertheless, we choose to test it online in real time. 



 

Fig. 6. Neural Network based diagnostic model implemented into the 

Jetson nano without GPU : computational run time for the sliding windows 

Fig. 6 shows the measured execution time of a neural 

network based diagnostic model implemented into the 

NVIDIA Jetson nano board without using GPU, for each 

sliding window (in x coordinate are numbered the windows). 

These results illustrate that the execution time is nearly 

constant and takes 65 ms, less than the duration time of each 

window  (several hundred ms, depending on the user’s 

parameters choice). 

 

Fig. 7. Decision Trees based diagnostic model implemented into the Jetson 

nano without GPU : computational run time for the sliding windows 

For Fig. 7, this execution time reaches 80ms for Decision 

Trees under the same implementation conditions. As 

expected, this time is little higher, NVIDIA Jetson nano board 

being specifically optimized for Neural Networks 

implementation. 

 

Fig. 8. Neural Network based diagnostic model implemented into the CPU 

without GPU : computational run time for the sliding windows 

By contrast, the execution time of a Neural Network 

based diagnostic model implemented into a CPU/PC (Central 

Processing Unit), also without GPU, takes 40ms as illustrated 

in Fig. 8. 

With the developed architecture, the possibility is given 

to have distributed Machine Learning (ML) by enabling edge 

devices to learn local ML models. Distributed tasks can also 

be implemented, many combinations are possible. For 

example, the Jetson nano boards located close to the plant and 

sensors can be dedicated to sensor data processing (data 

cleaning and features calculation), whereas the diagnostic 

model runs in a central CPU connected remotely to all boards 

and sensors via network data streaming. Moreover, real-time 

setting and results displaying are done locally via 

touchscreens and remotely via smartphones (see Fig. 4). 

Several supervised machine learning models [30] have 

been implemented and tested : Neural Networks, Decision 

Trees, Random Forest, KNN (K-nearest neighbors), SVM 

(Support Vector Machine), Gaussian Naive Bayes. 70% of 

the labelled data are used for the training (online or offline 

training) of the models, whereas 30% of the labelled data are 

used for the model tests in real-time (necessarily with the help 

of sliding windows). The workflow of the ML model training 

is illustrated in Appendix (Fig. 12). 

Fig. 9 shows the obtained confusion matrix of the Neural 

Network based diagnostic implemented into the NVIDIA 

Jetson nano board (Fig. 9 is associated with the tests 

illustrated on Fig. 6). It can be seen that the results are very 

hopeful. 

 

Fig. 9. Confusion matrix of the Neural Network based diagnostic model 

For the studied oil-injection screw compressor, the best 
diagnostic results are obtained with the Neural Networks 
model : excellent accuracy rates are achieved, as with the 
Random Forest, but with the smallest execution time (in real 
time with sliding windows).  

Within the developed framework many diagnostic settings 
can be selected by the users, as for example: 

- signal : x% training, 100-x% test, 

- signal : can be normalized or not, 

- window size : 512 or 1024 or 2048 samples, 

- windows : without overlapping or with 50% 
overlapping, 

- features: can be normalized or not, moreover all or 
only the “best” automatically selected features can be 
extracted, 

- machine learning models: Neural Network, Decision 
Trees, Random Forest, KNN, SVM, Gaussian Naive 



Bayes. One can also choose multi-models 
approaches, 

- evaluation metrics: accuracy, error rate, sensitivity, 
specificity, precision, recall, F1 score, execution time. 

By considering all calculated features, some  models can 
lead to overfitting. Only the most meaningful features should 
be used. Therefore we implemented and tested different 
features selection algorithms into the framework: relief, 
mRMR (minimum redundancy maximum relevance), SPEC, 
Decision Trees, Random Forest. 

 

Fig. 10. Accuracy of the KNN model according to the number of the ordered 

features and their selection method 

Fig. 10 shows the accuracy obtained with a KNN based 

diagnostic model for several features selection methods. The 

x-axis represents the number of ordered features used by the 

diagnostic model. Only the features are normalized, not the 

sensor signals. It seems clearly that the best features selection 

algorithm is the Random Forest, and the number of features 

should not exceeds 25. More performance index should be 

considered for the features selection, for example the 

robustness to signal noise, the execution time, … In fact, the 

features selection is a multi-objectives problem. 

 

Fig. 11. Accuracy of the SVM model according to the number of the ordered 

features and their selection method 

Fig. 11 highlights the accuracy obtained with a SVM  

based diagnostic model for several features selection 

methods. The best results are obtained for the Decision Trees 

selection algorithm. Its obtained performance is practically 

constant, but a little less in comparison with the previous 

figure (Fig. 10). Between 8 and 30 features should be 

selected, depending also on other performance index (for 

example execution time). 

V. CONCLUSION  

This work concerns the development of a machine 

learning based predictive maintenance setup, with the 

associated framework, for industry 4.0 applications. The 

setup is composed of CPU’s, NVIDIA Jetson Nano boards 

(for computing on the edge), screens and smartphones (for 

real-time display). The distributed architecture enables edge 

computing close to the sensors and equipments. The practical 

example of the industrial oil-injection screw compressor 

illustrates the developed approaches. Several supervised 

machine learning algorithms have been implemented and 

compared. To achieve this, features were firstly calculated 

from measured data and were automatically selected by 

features selection algorithms. From the prediction results, the 

Neural Network model seems to be the most efficient 

diagnostic algorithm for the presented application. In 

forthcoming work, the actual setup architecture will be 

extended to multi-sites. Moreover, parameter optimization 

[31] of the predictive maintenance framework, for expected 

performances (for example for low resources), will also be 

investigated. 

ACKNOWLEDGMENTS 

The authors wish to express their thanks and appreciation 

to members of the following organizations for their support: 

iDEMoov Company and Association Nationale de la 

Recherche et de la Technologie (ANRT), Cifre grant number 

of Nicolas RINGLER: 2022/0473 

REFERENCES 

[1] Tania Cerquitelli, , Nikolaos Nikolakis, Niamh O’Mahony, Enrico 
Macii, Massimo Ippolito, Sotirios Makris, Predictive Maintenance in 
Smart Factories, Springer 2021 

[2] J. Lee, Industrial IA, Springer, Feb. 2020 

[3] Diez, L., Marangé, P., Levrat, É., Regeneration Management Tool for 
Industrial Ecosystem, IFAC-paperOnline, Volume 50, Issue 1, July 
2017, Pages 12950-12955 

[4] D'Emilia G., Gaspari A. Data Validation Techniques for Measurements 
Systems Operating in a Industry 4.0 Scenario a Condition Monitoring 
Application. Workshop on Metrology for Industry 4.0 and IoT, Brescia, 
112-116, 2018.  

[5] D. Knittel, H. Makich,, M. Nouari, "Milling Diagnosis using Machine 
Learning Approaches ", International Survishno conference 
(Surveillance, Vibration Shock and Noise), Lyon, France, 2019.  

[6] L. Codjo, M. Jaafar, H. Makich, D. Knittel, M. Nouari, "Honeycomb 
Core Milling Diagnosis Using Machine Learning in the Industry 4.0 
Framework",  IEEE International Conference on Emerging 
Technologies and Factory Automation (ETFA 2018), Torino, Italy, 
2018. 

[7] D. Knittel, H. Makich,, M. Nouari, "Milling Diagnosis using Artificial 
Intelligence Approaches ",  Journal Mechanics & Industry, Volume 20, 
Number 8, 2019 

[8] Florent Forest, PhD thesis, Unsupervised Learning of Data 
Representations and Cluster Structures: Applications to Large-scale 
Health Monitoring of Turbofan Aircraft Engines, University Sorbonne 
Paris Nord, France, 2021  

[9] Simon Henriet, PhD thesis, On solving the non intrusive load 
monitoring problem in large buildings : analyses, simulations and 
factorization based unsupervised learning, Telecom Paris, France, 2020  

[10] P. Wira and I. Szilagyi, "An Intelligent System for Smart Buildings 
using Machine Learning and Semantic Technologies: A Hybrid Data-

https://link.springer.com/book/10.1007/978-981-16-2940-2#author-1-0
https://link.springer.com/book/10.1007/978-981-16-2940-2#author-1-1
https://link.springer.com/book/10.1007/978-981-16-2940-2#author-1-2
https://link.springer.com/book/10.1007/978-981-16-2940-2#author-1-3
https://link.springer.com/book/10.1007/978-981-16-2940-2#author-1-3
https://link.springer.com/book/10.1007/978-981-16-2940-2#author-1-4
https://link.springer.com/book/10.1007/978-981-16-2940-2#author-1-5
https://www.scopus.com/authid/detail.uri?authorId=57192427869
https://www.scopus.com/authid/detail.uri?authorId=23005655800
https://www.scopus.com/authid/detail.uri?authorId=6603156956
https://www.sciencedirect.com/journal/ifac-papersonline/vol/50/issue/1


Knowledge Approach," IEEE International Conference on Industrial 
Cyber-Physical Systems (ICPS 2018), Saint-Petersburg, Russia, 2018 

[11] John Anderson Garcia Henao, PhD thesis, Green artificial intelligence 
to automate medical diagnosis with low energy consumption, 
University Côte d’Azur, France, 2022  

[12] Amina Alaoui Belghiti, PhD thesis, Prediction of abnormal situations 
by machine learning in a predictive maintenance context : Optimal 
transport theory for anomaly detection , University Paris-Saclay, 
France, 2021  

[13] Nagy Kiss A.M, PhD thesis, Analysis and synthesis of multiple models 
for diagnosis : application to a wastewater treatment plant. University 
of Lorraine, France, 2010.  

[14] Nishchal K. Verma, Al Salour, Intelligent Condition Based 
Monitoring, For Turbines, Compressors, and Other Rotating Machines; 
Springer 2020  

[15] Douglas Goodman, James P. Hofmeister, Ferenc Szidarovszky, 
Prognostics and Health Management: A Practical Approach to 
Improving System Reliability Using Condition-Based Data; Wiley 
2019  

[16] Morteza Soleimani, Felician Campean, Daniel Neagu, Diagnostics and 
prognostics for complex systems: A review of methods and challenges, 
Volume37, Issue8, December 2021, Pages 3746-3778, Quality and 
Reliability Engineering International journal, Wiley 

[17] Yaguo Lei , Naipeng Li , Xiang Li, Big Data-Driven Intelligent Fault 
Diagnosis and Prognosis for Mechanical Systems, Springer 2023 

[18] Niu, Data-Driven Technology for Engineering Systems Health 
Management: Springer, 2017  

[19] Hoang Pham, Reliability and Statistical Computing; Springer 2020  

[20] Michael G. Pecht, Myeongsu Kang, Prognostics and Health 
Management of Electronics: Fundamentals, Machine Learning, and the 
Internet of Things; Wiley 2018  

[21]  Omer F. Eker,, Fatih Camci, and Ian K. Jennions,  A New Hybrid 
Prognostic Methodology, International Journal of Prognostics and 
Health Management, 2019 009 

[22] Joao Gama et al, IoT Streams for Data-Driven Predictive Maintenance 
and IoT, Edge, and Mobile for Embedded Machine Learning; Springer 
2021  

[23] Alireza Entezami, Structural Health Monitoring by Time Series 
Analysis and Statistical Distance Measures; Springer 2021  

[24] Alexandre Cury, Diogo Ribeiro, Filippo Ubertini, Michael D. Todd, 
Structural Health Monitoring Based on Data Science Techniques; 
Springer 2022   

[25] R. Anandan et al, Industrial Internet of Things: Intelligent Analytics 
for Predictive Maintenance; Wiley 2022 

[26] Urszula Stańczyk, Lakhmi C. Jain, Feature Selection for Data and 
Pattern Recognition, Springer, 2015 

[27] http://phmap.org/data-challenge/ 

[28] The Journal of Open Source Software, Mosquitto: server and client 
implementation of the MQTT protocol,  
https://joss.theoj.org/papers/10.21105/joss.00265 

[29] D. Ning, J. Huang, J. Shen and D. Di, "A cloud based framework of 
prognostics and health management for manufacturing industry," 2016 
IEEE International Conference on Prognostics and Health 
Management (ICPHM), Ottawa, 2016 

[30] Miroslav Kubat, An Introduction to Machine Learning, Springer 2017 

[31] F. Bennis, R. K. Bhattacharjya, Nature-Inspired Methods for 
Metaheuristics Optimization, Springer, Feb. 2020. 

 

 

APPENDIX  

 

 

Fig. 12. Workflow of the ML model training 

 

Fig. 13. Real time display : features 1 to 6 with InfluxDB  
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