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Abstract

We present a finite element toolbox for the computation of Bogoliubov-de Gennes modes
used to assess the linear stability of stationary solutions of the Gross-Pitaevskii (GP)
equation. Applications concern one (single GP equation) or two-component (a system of
coupled GP equations) Bose-Einstein condensates in one, two and three dimensions of
space. An implementation using the free software FreeFem++ is distributed with this
paper. For the computation of the GP stationary (complex or real) solutions we use a
Newton algorithm coupled with a continuation method exploring the parameter space (the
chemical potential or the interaction constant). Bogoliubov-de Gennes equations are then
solved using dedicated libraries for the associated eigenvalue problem. Mesh adaptivity is
proved to considerably reduce the computational time for cases implying complex vortex
states. Programs are validated through comparisons with known theoretical results for
simple cases and numerical results reported in the literature.
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Nature of problem: The software computes Bogoliubov-de Gennes (BdG) complex
modes of Bose-Einstein condensates described by the Gross-Pitaevskii (GP) equation.
BdG equations are obtained by linearizing the GP equation (or the system of coupled
GP equations) around a stationary solution. Obtained BdG modes are used to assess on
the stability of stationary states.
Solution method: Stationary states of the GP equation are obtained by a Newton algo-
rithm. Parameter space is explored using a continuation on the chemical potential. Once
the stationary (complex or real) state is captured accurately, BdG modes are computed
by solving the associated eigenvalue problem with the ARPACK library. Complex eigen-
values and eigenvectors are computed and stored. The wave function is discretized by P2
(piece-wise quadratic) Galerkin triangular (in 2D) or tetrahedral (in 3D) finite elements.
Mesh adaptation is implemented to reduce the computational time. Examples are given
for stationary states in one- and two-component Bose-Einstein condensates.
Running time: From seconds to hours depending on the mesh resolution and space
dimension.

1. Introduction

Since their first observation [1, 2], Bose-Einstein condensates have become a powerful
experimental framework for the study of waves and excitations in superfluids and nonlinear
systems. The study of wave related structures (solitons, vortices) and their stability is an
active area of research, and many efforts have been devoted to the developments of new
experimental techniques for the creation and the study of new excited states. We can
mention the use of rotation [3, 4], imprinting techniques manipulating the phase of the
wave function [5, 6], counterflows techniques [7], the use of anisotropic potentials [8] or
multicomponent BEC settings [9]. A large variety of wave or vortex-related states could
be thus obtained. Basic examples refer to single vortex lines (with I-, U- or S- shape)
in rotating BEC [10], vortex rings and one-dimensional solitons. More complex states
with multiple vortex rings, vortex stars, hopfions and solitons can be created [11, 12, 13].
In multicomponent BECs, dark-bright [14] and dark-antidark [15] states can be also
obtained.

The main application of the programs presented in this paper is the study of the
stability of such solitary waves or vortex states that are theoretically or numerically found
as stationary solutions to the Gross-Pitaevskii (GP) equation [16, 17]. The linearization of
the GP equation around a given stationary solution results in the Bogoliubov-de Gennes
(BdG) system of equations [18]. Solving the BdG eigenvalue problem provides linear
modes, for which their stability could be studied. The present toolbox thus contains two
distinct parts: the computation of stationary solution of the GP equation (or a system of
coupled GP equations) and the computation of complex eigenvalues and modes for the
associated BdG system.

Concerning the computation of stationary states of the GP equation, a large variety of
discretization methods were suggested in the open literature: spectral methods [19, 20, 21],
finite-elements [22, 23] or finite-differences [24, 25, 26, 27, 28, 29]. Programs written in
Fortran [19, 24], C [25, 26], Matlab [20, 26, 21, 28], FreeFem++ [23] or C and Fortran
with OpenMP [29] have been shared. All these works use a common approach to the
problem, which is to find the stationary states of the GP equation under the constraint
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of the total mass conservation (i. e. the L2-norm of the wave function is fixed). When
studying the stability of excitations in the BdG framework, another approach is commonly
adopted: the chemical potential is used as a convenient parameter to explore all possible
states (and bifurcations) and thus the total mass varies from one state to another. This
second approach has been already applied with finite elements [15, 30, 14, 31], finite
differences [14, 13, 12] or spectral methods [13] and will be used in this work. To solve
the BdG eigenvalue problem, specialized libraries are generally used: ARPACK [32], SLEPc
[33] or FEAST [34]. Such libraries offer the flexibility to be easily interfaced with different
types of discretization, since only final matrices of the eigenvalue problem are needed. A
mathematical study of the BdG equation with numerical comparisons between spectral
and finite difference discretizations has been recently reported in [35].

To the best of our knowledge, FACt [Fluctuations in Atomic Condensates, 36] is the
only publicly accessible code for the BdG problem. It considers thermal excitations of the
BECs at non-zero temperatures by solving the BdG equation in two component BECs with
a pseudo-spectral method. The present FreeFem++ toolbox uses a different (PDE-oriented)
formulation of the problem and has the advantage to hide all technicalities related to the
implementation of the finite-element method and the interface with eigenvalue libraries
(such as ARPACK) [37]. The user can thus focus on the physical and mathematical
model, and eventually on the numerical algorithm solving the problem. The high level
programming language offered in FreeFem++ and the syntax close to mathematical
formulations make the implementation of numerical algorithms very easy. Finite elements
algorithms were successfully used to solve the GP equation [38, 23] or the BdG problem
[15] and recently to identify vortices in a quantum field [39]. Another advantage of the
present toolbox is to use mesh adaptivity to reduce the mesh size and the computational
time. Solving the BdG problem for complex cases becomes thus possible using personal
computers. The computed BdG modes could be further used as initial conditions
for starting real-time dynamics simulations using the time-dependent GP equation.
The outputs of this toolbox could thus be used with any available code for the time-
dependent GP equation. A large variety of such codes exists in the CPC library [e. g.
24, 25, 26, 28, 40, 29].

The structure of the paper is as follows. In Sect. 2, we introduce the GP and BdG
models. Sections 3 and 4 describe the numerical methods used for the computation the
stationary states and BdG modes. We present various benchmarks used for the validation
of our codes in Sects. 5 and 6. The architecture of the programs and a description of
parameter and output files are given in Sect. 7. Finally, we summarize the main features
of the toolbox and present some possible extensions in Sect. 8.
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2. The Gross-Pitaevskii model and Bogoliubov-de Gennes equations

2.1. The Gross-Pitaevskii equation
In the zero temperature limit, the Gross-Pitaevskii equation describes the time-

evolution of the complex-valued macroscopic wave function ψ : D → C, with D ∈ Rd the
domain of the d-dimensional condensate (d = 1, 2, 3):

iℏ
∂ψ

∂t
= − ℏ2

2m∇2ψ + Vtrapψ + g|ψ|2ψ, (1)

where Vtrap(x) is the external trapping potential, ℏ the reduced Planck constant and m
the atomic mass. The nonlinear term models the interaction between atoms, and for
d = 3 (3D condensate) g = 4πℏ2as

m , with as the scattering length. We consider the case of
harmonic trapping potentials:

Vtrap(x) = m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2)
, (2)

where ωx,ωx,ωx are trapping frequencies. In several BEC experiments, the ratio between
trapping frequencies justifies the so-called dimension-reduction [41, 42] and the description
of condensates with one- (d = 1) or two-dimensional (d = 2) GP equation. For example,
in experiments reported in [15] the BEC is confined in a highly elongated, cigar-shaped
harmonic trap with frequencies (ωx,ωy,ωz) = 2π(1.4, 176, 174) Hz; the 100:1 aspect ratio
ensures effectively one-dimensional dynamics in BEC. For d = 1 or 2, the nonlinear
interaction constant g is specified according to the dimension reduction.

The atomic density n(x) = |ψ(x)|2 vanishes outside the condensate due to the trapping,
which implies that homogeneous Dirichlet boundary conditions should be imposed for the
wave function (ψ = 0 on ∂D). The corresponding GP energy is:

E(ψ) =
∫

D

(
ℏ2

2m |∇ψ(x, t)|2 + Vtrap(x)|ψ(x, t)|2 + g

2 |ψ(x, t)|4
)
dx, (3)

and the total number of atoms:

N(ψ) =
∫

D
ψψ dx =

∫
D

|ψ|2dx, (4)

where ψ denotes the complex conjugate.
Stationary solutions to the GP equation (1) are obtained by imposing the form

ψ(x, t) = ϕ(x)e− i
ℏµt, (5)

with µ the chemical potential. The stationary wave function ϕ is then solution of the
stationary GP equation:

− ℏ2

2m∇2ϕ+ Vtrapϕ+ g|ϕ|2ϕ = µϕ. (6)

Note that from (5) we infer that |ψ|2 = |ϕ|2 and thus N(ϕ) = N(ψ) and E(ψ) = E(ϕ).
The chemical potential is related to the number of atoms by the relation:

µ = 1
N(ϕ)

(
E(ϕ) + g

2

∫
D

|ϕ|4dx

)
. (7)
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In this work, we compute stationary solutions for fixed values of the chemical potential
µ. Branches of solutions are followed by continuation on µ. To catch such branches,
two limits associated to the value of µ can be considered as initial condition. In the
case of low density (corresponding to a small number of particles), the nonlinear term
in (1) can be neglected to obtain the linear GP equation. In the case of an harmonic
potential (2), ψ can then be described as an eigenstate of the quantum harmonic oscillator.
Using a separation of variables, these eigenstates can be written as a product of Hermite
and Laguerre polynomials or spherical harmonics, depending on the dimension and
the coordinate system. As an example, for the 2D BEC with trapping potential (2)
with ωx = ωy = ω⊥, the eigenstates formulated in Cartesian coordinates are |k, l⟩ ∝
Hk( √

ω⊥x)Hl(
√
ω⊥y)e− 1

2ω⊥(x2+y2), where Hk,Hl are Hermite polynomials; k and l index
the eigenstates and correspond to the number of cuts in the condensate along the x and
y axes respectively. Solutions in the linear limit corresponding to various exited states of
the condensate have been analysed in many studies [e. g. 11, 30].

The other limit is the Thomas-Fermi limit, associated to large values of µ. In this
case, the kinetic energy becomes negligible when compared to the nonlinear term. The
stationary GP equation (6) reduces to:

µϕ = Vtrapϕ+ g|ϕ|2ϕ, (8)

which gives an analytical expression for the atomic density:

nTF = |ψTF|2 = 1
g

(µ− Vtrap)+. (9)

2.2. The Bogoliubov-de Gennes equation
The Bogoliubov-de Gennes model is based on the linearisation of (1) assuming that:

ψ(x, t) = (ϕ(x) + δϕ(x, t))e− i
ℏµt, (10)

where ϕ(x) is a stationary state satisfying Eq. (6) and δϕ a small perturbation. Inserting
(10) in (1), we obtain, after neglecting second order terms in δϕ, an evolution equation for
the perturbation δϕ:

iℏ
∂δϕ

∂t
= Hδϕ− µδϕ+ 2g|ϕ|2δϕ+ gϕ2δϕ, (11)

where we denoted by

H ≡ − ℏ2

2m∇2 + Vtrap, (12)

the linear part of the Hamiltonian. Considering perturbations of the form

δϕ(x, t) = A(x)e−iωt +B(x)eiωt, (13)

we obtain, after separating terms in e−iωt and eiω̄t, the Bogoliubov-de Gennes (BdG)
system of equations [18, 43]:(H − µ+ 2g|ϕ|2 gϕ2

−gϕ2 −(H − µ+ 2g|ϕ|2)

) (
A
B

)
= ℏω

(
A
B

)
. (14)
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Note that the BdG equation (14) is a linear eigenvalue problem, since ϕ is fixed and H is a
linear real operator. The present toolbox computes, for a given complex stationary state
ϕ ∈ C, solutions (ω,A,B) to the BdG equation (14), with ω denoting complex eigenvalues
and (A,B) complex eigenvectors.

The following properties of the BdG eigenvalue problem can be obtained by elementary
manipulations and will be useful to check the accuracy of calculations:

1. If (ω,A,B) is solution to (14), then (−ω,B,A) is also a solution. This property is
obtained by taking the conjugate of (14).

2. ω = 0 is always an eigenvalue (the zero-energy mode). It can be checked that
the full solution is (0,αϕ, −αϕ),α ∈ C [18] and represents, following (13), a time
invariant (small) excitation δϕ = (α − α)ϕ. This corresponds in (10) to a gauge
transformation and, consequently, it does not add any physical excitation to the
system.

3. ω is also an eigenvalue. If ϕ ∈ R, it is easy to see from (14) that (ω,A,B) is also
a solution. For the general case of ϕ ∈ C this property also holds and it can be
proved using the Hamiltonian nature of the problem [43].

4. If we multiply the first equation of the system (14) by A and the second by B,
integrate over the domain D and then sum the two equations, we obtain that:

δE = ℏω
∫

D

(
|A|2 − |B|2

)
dx ∈ R, (15)

which is generally presented in the literature in the equivalent form [44, 18, 35]:

(ω − ω)
∫

D

(
|A|2 − |B|2

)
dx = 0. (16)

From (15) or (16) we can draw two main observations that are important to interpret
the results of the BdG analysis:

1. If the BdG modes are normalized such that
∫

D
(
|A|2 − |B|2

)
dx , 0, then we infer

from (16) that only real eigenvalues are possible. These correspond to elementary
excitations. A mathematical study of the properties of the BdG modes when ω and
ϕ are real is offered in [35]. Moreover, the quantity δE in (15) represents the energy
difference between the stationary ψ and the perturbed state ψ+ δψ [18]. The Krein
signature K was introduced as the sign of the energy difference, K = sign(δE) [45].
If K > 0 for all modes, then ϕ is the global minimum of the energy, i. e. the ground
state. On the contrary, if there exists a mode with K < 0, then the excitation
reduces the energy of the system and the stationary state is thus energetically
unstable, i. e. excited state (or local minimum of the energy).

2. If
∫

D
(
|A|2 − |B|2

)
dx = 0, complex eigenvalues ω = ωr + iωi are possible. If ωi , 0,

then the BdG mode is dynamically unstable.
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2.3. Two-component BECs
Mixtures of BECs have been experimentally created, either by considering different

atomic species or by using hyperfine states of a single isotope. We consider two-component
BECs described by the following system of two coupled GP equations for wave functions
ψ1 and ψ2: 

iℏ
∂ψ1

∂t
=

(
− ℏ2

2m∇2 + Vtrap + g11|ψ1|2 + g12|ψ2|2
)
ψ1,

iℏ
∂ψ2

∂t
=

(
− ℏ2

2m∇2 + Vtrap + g21|ψ1|2 + g22|ψ2|2
)
ψ2.

(17)

Coefficients g11 and g22 represent interactions between atoms of the same species while
g12 and g21 describe interactions between different species. The total energy is the sum
of the GP energy of each component:

E(ψ1,ψ2) =
∫

D

2∑
i=1

 ℏ2

2m |∇ψi|2 + Vtrap |ψi|2 + 1
2

2∑
j=1

gij |ψi|2|ψj |2
 dx. (18)

Similarly to the one component case, stationary states are sought as ψ1 = ϕ1e
− i

ℏµ1t and
ψ2 = ϕ2e

− i
ℏµ2t, with chemical potentials µ1 and µ2. We obtain the following system of

equations: 
µ1ϕ1 =

(
− ℏ2

2m∇2 + Vtrap + g11|ϕ1|2 + g12|ϕ2|2
)
ϕ1,

µ2ϕ2 =
(

− ℏ2

2m∇2 + Vtrap + g21|ϕ1|2 + g22|ϕ2|2
)
ϕ2.

(19)

Note that in most of published experimental and theoretical studies, the trapping potential
is generally the same for the two components. If necessary, different expressions for Vtrap
can be easily implemented in the provided scripts (see next section). This also applies for
systems with different atomic masses (m1 , m2). For the sake of simplicity, we present in
this paper the case with identical trapping potentials and masses for the two components.

For the linear stability analysis we consider perturbations of the form:{
δϕ1(x) = A(x)e−iωt +B(x)eiωt,
δϕ2(x) = C(x)e−iωt +D(x)eiωt,

(20)

and obtain the BdG equations for the two-component case:

M


A
B
C
D

 = ℏω


A
B
C
D

 , (21)

where the matrix M can be presented in the form:

M =


M11 g11ϕ

2
1 g12ϕ1ϕ2 g12ϕ1ϕ2

−g11ϕ1
2

M22 −g12ϕ1ϕ2 −g12ϕ1ϕ2
g21ϕ1ϕ2 g21ϕ1ϕ2 M33 g22ϕ

2
2

−g21ϕ1ϕ2 −g21ϕ1ϕ2 −g22ϕ2
2

M44

 , (22)
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with: 
M11 = H − µ1 + 2g11|ϕ1|2 + g12|ϕ2|2,
M22 = −M11,
M33 = H − µ2 + g21|ϕ1|2 + 2g22|ϕ2|2,
M44 = −M33.

(23)

2.4. Scaling
Various forms of scaling are used in the literature (see [46] for a unified form of

the GP scaling). To allow one to switch between different forms, we first introduce a
reference (trapping) frequency ωs which will define a time scale ts and a length scale xs
(the corresponding harmonic oscillator length):

ts = 1
ωs

, xs =
√

ℏ
mωs

. (24)

We then introduce a reference value ψs for the wave function and scale variables as:

x → x

xs
, t → t

ts
, ψ → ψ

ψs
. (25)

The same scaling is used for the stationary state ϕ. The dimensionless form of the
time-dependent stationary GP equation (1) becomes:

i
∂ψ

∂t
= −1

2∇2ψ + Ctrapψ + β|ψ|2ψ, (26)

with
Ctrap(x) = 1

ℏωs
Vtrap(x), β = gψ2

s

ℏωs
. (27)

Note that the coefficient 1/2 in front of the Laplacian in Eq. (26) comes from the choice
(24) for the reference length, since all terms were divided by the quantity (of the dimension
of an energy):

ℏωs = mx2
sω

2
s = ℏ2

mx2
s

. (28)

From (2) we infer that the non-dimensional trapping potential takes the form:

Ctrap(x, y, z) = 1
2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2)
, where ωx,y,z → ωx,y,z

ωs
. (29)

Similarly, the stationary GP equation (6) becomes:

−1
2∇2ϕ+ Ctrapϕ+ β|ϕ|2 = µϕ, where µ → µ

ℏωs
. (30)

Finally, the BdG system of equations takes the non-dimensional form:(H − µ+ 2β|ϕ|2 gϕ2

−gϕ2 −(H − µ+ 2β|ϕ|2)

) (
A
B

)
= ω

(
A
B

)
, (31)
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where H ≡ − 1
2 ∇2 + Ctrap is dimensionless, ω → ω/ωs and A → A/ψs, B → B/ψs.

In the two component case, the wave functions are scaled as ψ1 → ψ1
ψs,1

and ψ2 → ψ2
ψs,2

,
and the system (19) for the stationary state becomes:

µ1ϕ1 =
(

−1
2∇2 + Ctrap + β11|ϕ1|2 + β12|ϕ2|2

)
ϕ1,

µ2ϕ2 =
(

−1
2∇2 + Ctrap + β21|ϕ1|2 + β22|ϕ2|2

)
ϕ2,

(32)

where βij → gij

ℏωs
ψ2
s,j , µi → µi

ℏωs
. It follows that the non-dimensional form of the BdG

system for the two-component BEC is obtained from (21)-(23), by replacing coefficients
gij with βij and using the non-dimensional form of H.

We provide with this toolbox example scripts (files Tools scaling/phys to adim 1comp.edp
and Tools scaling/phys to adim 2comp.edp) that compute non-dimensional parame-
ters from physical values corresponding to several published experimental studies. These
programs could guide the user in making the link between parameters of existing experi-
ments and non-dimensional parameters used in this contribution (and, more generally, in
theoretical studies).

3. Computing stationary solutions of the GP equation

3.1. Newton method for a single component BEC
Stationary solutions of Eq. (30) are computed using a Newton method. Considering

that ϕ = ϕr + iϕi, we obtain the following system of equations after separating real and
imaginary parts: 

−1
2∇2ϕr + Ctrapϕr + βf(ϕr,ϕi)ϕr − µϕr = 0,

−1
2∇2ϕi + Ctrapϕi + βf(ϕr,ϕi)ϕi − µϕi = 0,

(33)

where f(ϕr,ϕi) implements the non-linear (interaction) term. Here f(ϕr,ϕi) = |ϕ|2 =
ϕ2
r + ϕ2

i , but the method is described (and programmed) for a general expression of f
that can be easily changed in the toolbox.

We consider homogeneous Dirichlet boundary conditions for ϕr and ϕi, i. e. ϕr =
ϕi = 0 on ∂D, and set the classical Sobolev spaces V = H1

0 (D) for ϕr and ϕi. The weak
formulation of (33) can be thus written as follows: find (ϕr,ϕi) ∈ V × V = V 2, such that
for all test functions (vr, vi) ∈ V 2:

Fr(ϕr,ϕi, vr) =
∫

D
(Ctrap − µ)ϕrvr +

∫
D

1
2∇ϕr · ∇vr +

∫
D
βf(ϕr,ϕi)ϕrvr = 0,

Fi(ϕr,ϕi, vi) =
∫

D
(Ctrap − µ)ϕivi +

∫
D

1
2∇ϕi · ∇vi +

∫
D
βf(ϕr,ϕi)ϕivi = 0.

(34)

Starting from an initial guess (ϕ0
r,ϕ0

i ), solution increments

q = ϕkr − ϕk+1
r , s = ϕki − ϕk+1

i , k ≥ 0, (35)
9



are computed using the Newton algorithm:
(
∂Fr
∂ϕr

)
ϕr=ϕk

r ,ϕi=ϕk
i

(
∂Fr
∂ϕi

)
ϕr=ϕk

r ,ϕi=ϕk
i(

∂Fi
∂ϕr

)
ϕr=ϕk

r ,ϕi=ϕk
i

(
∂Fi
∂ϕi

)
ϕr=ϕk

r ,ϕi=ϕk
i


(
q
s

)
=

(
Fr(ϕkr ,ϕki , vr)
Fi(ϕkr ,ϕki , vi)

)
, (36)

with the corresponding weak formulation:

∫
D

(Ctrap − µ)qvr +
∫

D

1
2∇q · ∇vr +

∫
D

β

(
∂f

∂ϕr
(ϕk

r , ϕk
i ) ϕk

r q + ∂f

∂ϕi
(ϕk

r , ϕk
i ) ϕk

r s + f(ϕk
r , ϕk

i )q
)

vr

=
∫

D
(Ctrap − µ)ϕk

r vr +
∫

D

1
2∇ϕk

r · ∇vr +
∫

D
βf(ϕk

r , ϕk
i )ϕk

r vr,∫
D

(Ctrap − µ)svi +
∫

D

1
2∇s · ∇vi +

∫
D

β

(
∂f

∂ϕr
(ϕk

r , ϕk
i ) ϕk

i q + ∂f

∂ϕi
(ϕk

r , ϕk
i ) ϕk

i s + f(ϕk
r , ϕk

i )s
)

vi

=
∫

D
(Ctrap − µ)ϕk

i vi +
∫

D

1
2∇ϕk

i · ∇vi +
∫

D
βf(ϕk

r , ϕk
i )ϕk

i vi.

(37)
Note that the metalanguage used in FreeFem++ enables the implementation of Eqs. (37)
in a form very similar to mathematical formulae, which is appreciable to rapidly build
bug-free numerical codes.

3.2. Newton method for a two-component BEC
For a two-component BEC, we solve the following system, obtained from (32) after

separating real and imaginary parts for ϕ1 = ϕ1r + iϕ1i and ϕ2 = ϕ2r + iϕ2i:

−1
2∇2ϕ1r + (Ctrap − µ1)ϕ1r + β11f(ϕ1r,ϕ1i)ϕ1r + β12f(ϕ2r,ϕ2i)ϕ1r = 0,

−1
2∇2ϕ1i + (Ctrap − µ1)ϕ1i + β11f(ϕ1r,ϕ1i)ϕ1i + β12f(ϕ2r,ϕ2i)ϕ1i = 0,

−1
2∇2ϕ2r + (Ctrap − µ2)ϕ2r + β21f(ϕ1r,ϕ1i)ϕ2r + β22f(ϕ2r,ϕ2i)ϕ2r = 0,

−1
2∇2ϕ2i + (Ctrap − µ2)ϕ2i + β21f(ϕ1r,ϕ1i)ϕ2i + β22f(ϕ2r,ϕ2i)ϕ2i = 0.

(38)

We consider again homogeneous Dirichlet boundary conditions, i. e. ϕ1r = ϕ1i =
ϕ2r = ϕ2i = 0 on ∂D. The weak formulation of (38) can be written as follows: find
(ϕ1r,ϕ1i,ϕ2r,ϕ2i) ∈ V 4, such that for all test functions (v1r, v1i, v2r, v2i) ∈ V 4:

F1r =
∫

D
(Ctrap − µ1)ϕ1rv1r +

∫
D

1
2∇ϕ1r · ∇v1r +

∫
D

(β11f(ϕ1r, ϕ1i) + β12f(ϕ2r, ϕ2i))ϕ1rv1r = 0,

F1i =
∫

D
(Ctrap − µ1)ϕ1iv1i +

∫
D

1
2∇ϕ1i · ∇v1i +

∫
D

(β11f(ϕ1r, ϕ1i) + β12f(ϕ2r, ϕ2i))ϕ1iv1i = 0,

F2r =
∫

D
(Ctrap − µ2)ϕ2rv2r +

∫
D

1
2∇ϕ2r · ∇v2r +

∫
D

(β21f(ϕ1r, ϕ1i) + β22f(ϕ2r, ϕ2i))ϕ2rv2r = 0,

F2i =
∫

D
(Ctrap − µ2)ϕ2iv2i +

∫
D

1
2∇ϕ2i · ∇v2i +

∫
D

(β21f(ϕ1r, ϕ1i) + β22f(ϕ2r, ϕ2i))ϕ2iv2i = 0.

(39)
10



The Newton step for increments

q1 = ϕk1r − ϕk+1
1r , s1 = ϕk1i − ϕk+1

1i , q2 = ϕk2r − ϕk+1
2r , s2 = ϕk2i − ϕk+1

2i , (40)

consists then in solving the following four equations:∫
D

(Ctrap − µ1)q1v1r +
∫

D

1
2∇q1 · ∇v1r +

∫
D

(β11f(ϕk
1r, ϕk

1i) + β12f(ϕk
2r, ϕk

2i))q1v1r

+
∫

D
β11

(
∂f

∂ϕr
(ϕk

1r, ϕk
1i)ϕk

1rq1 + ∂f

∂ϕi
(ϕk

1r, ϕk
1i)ϕk

1rs1

)
v1r

+
∫

D
β12

(
∂f

∂ϕr
(ϕk

2r, ϕk
2i)ϕk

1rq2 + ∂f

∂ϕi
(ϕk

2r, ϕk
2i)ϕk

1rs2

)
v1r

=
∫

D
(Ctrap − µ1)ϕk

1rv1r +
∫

D

1
2∇ϕk

1r · ∇v1r +
∫

D
(β11f(ϕk

1r, ϕk
1i) + β12f(ϕk

2r, ϕk
2i))ϕk

1rv1r,

(41)∫
D

(Ctrap − µ1)s1v1i +
∫

D

1
2∇s1 · ∇v1i +

∫
D

(β11f(ϕk
1r, ϕk

1i) + β12f(ϕk
2r, ϕk

2i))s1v1i

+
∫

D
β11

(
∂f

∂ϕr
(ϕk

1r, ϕk
1i)ϕk

1iq1 + ∂f

∂ϕi
(ϕk

1r, ϕk
1i)ϕk

1is1

)
v1i

+
∫

D
β12

(
∂f

∂ϕr
(ϕk

2r, ϕk
2i)ϕk

1iq2 + ∂f

∂ϕi
(ϕk

2r, ϕk
2i)ϕk

1is2

)
v1i

=
∫

D
(Ctrap − µ1)ϕk

1iv1i +
∫

D

1
2∇ϕk

1i · ∇v1i +
∫

D
(β11f(ϕk

1r, ϕk
1i) + β12f(ϕk

2r, ϕk
2i))ϕk

1iv1i,

(42)∫
D

(Ctrap − µ2)q2v2r +
∫

D

1
2∇q2 · ∇v2r +

∫
D

(β22f(ϕk
2r, ϕk

2i) + β21f(ϕk
1r, ϕk

1i))q2v2r

+
∫

D
β21

(
∂f

∂ϕr
(ϕk

1r, ϕk
1i)ϕk

2rq1 + ∂f

∂ϕi
(ϕk

1r, ϕk
1i)ϕk

2rs1

)
v2r

+
∫

D
β22

(
∂f

∂ϕr
(ϕk

2r, ϕk
2i)ϕk

2rq2 + ∂f

∂ϕi
(ϕk

2r, ϕk
2i)ϕk

2rs2

)
v2r

=
∫

D
(Ctrap − µ2)ϕk

2rv2r +
∫

D

1
2∇ϕk

2r · ∇v2r +
∫

D
(β21f(ϕk

1r, ϕk
1i) + β22f(ϕk

2r, ϕk
2i))ϕk

2rv2r,

(43)∫
D

(Ctrap − µ2)s2v2i +
∫

D

1
2∇s2 · ∇v2i +

∫
D

(β22f(ϕk
2r, ϕk

2i) + β21f(ϕk
1r, ϕk

1i))s2v2i

+
∫

D
β21

(
∂f

∂ϕr
(ϕk

1r, ϕk
1i)ϕk

2iq1 + ∂f

∂ϕi
(ϕk

1r, ϕk
1i)ϕk

2is1

)
v2i

+
∫

D
β22

(
∂f

∂ϕr
(ϕk

2r, ϕk
2i)ϕk

2iq2 + ∂f

∂ϕi
(ϕk

2r, ϕk
2i)ϕk

2is2

)
v2i

=
∫

D
(Ctrap − µ2)ϕk

2iv2i +
∫

D

1
2∇ϕk

2i · ∇v2i +
∫

D
(β21f(ϕk

1r, ϕk
1i) + β22f(ϕk

2r, ϕk
2i))ϕk

2iv2i.

(44)
Again, the implementation of Eqs. (41)-(44) with FreeFem++ is very similar to the
mathematical formulation.
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3.3. Finite element implementation with FreeFem++
The algorithms presented below are implemented using the free software FreeFem++

[37]. We illustrate in this section the main principles of programming used in building
the toolbox and the numerical settings for the BdG problem.

One of the main advantages offered by FreeFem++ is to program cumbersome formulae
in a compact form, close to the mathematical formulation. For example, the system (37)
is implemented in a Macro (precisely BdG 1comp/A macro/Macro problem.edp) in which
integral terms are easy to identify:

NewMacro problemGP
macro f(ur ,ui) (urˆ2 + ui ˆ2) //
macro dfdur(ur ,ui) (2.* ur)//
macro dfdui(ur ,ui) (2.* ui)//

varf vGP ([q,s],[vr ,vi]) =
intN(Th , qforder =ord)(( Ctrap - mu)*q*vr + .5* grad(q) ’*grad(vr)
+ (Ctrap - mu)*s*vi + .5* grad(s) ’*grad(vi)
+ beta * (f(phir ,phii)*q*vr + f(phir ,phii)*s*vi)
+ beta * phir*vr*( dfdur(phir ,phii)*q + dfdui(phir ,phii)*s)
+ beta * phii*vi*( dfdur(phir ,phii)*q + dfdui(phir ,phii)*s))
+ intN(Th , qforder =ord)(( Ctrap - mu)*phir*vr + .5* grad(phir) ’*

grad(vr)
+ (Ctrap - mu)*phii*vi + .5* grad(phii) ’*grad(vi)
+ beta * f(phir ,phii) * (phir*vr + phii*vi))
BCGP;
EndMacro

Another advantage of this formulation is that it can be used for any dimension (d = 1, 2
or 3) and any available type of finite elements, by simply declaring these values in the
files defining the computational case. For example, for the 1D dark-soliton test case (file
BdG 1comp/INIT/1D DS.inc):

macro dimension 1//
macro FEchoice P2//

These choices are then used in the main programs to define the finite-element spaces.
For example, in FFEM GP 1c 1D 2D 3D.edp:

func Pk = [FEchoice , FEchoice ];
...
meshN Th; // Local mesh
fespace Wh(Th , FEchoice );
fespace Whk(Th ,Pk);
...
Wh <complex > phi; // Wavefunction
Whk [q,s], [phir ,phii ];

12



For the two-component BEC, the macro formulation of the Newton algorithm is similar
to the previous one-component case and follows Eqs. (41)-(42)
(file BdG 2comp/A macro/Macro problem.edp):

NewMacro problemGP
macro f(ur ,ui) (urˆ2 + ui ˆ2) //
macro dfdur(ur ,ui) (2.* ur)//
macro dfdui(ur ,ui) (2.* ui)//

varf vGP ([q1 ,s1 ,q2 ,s2],[v1r ,v1i ,v2r ,v2i ])=
intN(Th , qforder =ord)(
1./2.* grad(q1) ’*grad(v1r) + (Ctrap - mu1)*q1*v1r + ( beta11 *

f(phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*q1*v1r
+ beta11 *( dfdur(phi1r ,phi1i)*phi1r*q1 + dfdui(phi1r ,phi1i)*

phi1r*s1)*v1r
+ beta12 *( dfdur(phi2r ,phi2i)*phi1r*q2 + dfdui(phi2r ,phi2i)*

phi1r*s2)*v1r
+1./2.* grad(s1) ’*grad(v1i) + (Ctrap - mu1)*s1*v1i + ( beta11

*f(phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*s1*v1i
+ beta11 *( dfdur(phi1r ,phi1i)*phi1i*q1 + dfdui(phi1r ,phi1i)*

phi1i*s1)*v1i
+ beta12 *( dfdur(phi2r ,phi2i)*phi1i*q2 + dfdui(phi2r ,phi2i)*

phi1i*s2)*v1i
+1./2.* grad(q2) ’*grad(v2r) + (Ctrap - mu2)*q2*v2r + ( beta22

*f(phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*q2*v2r
+ beta22 *( dfdur(phi2r ,phi2i)*phi2r*q2 + dfdui(phi2r ,phi2i)*

phi2r*s2)*v2r
+ beta21 *( dfdur(phi1r ,phi1i)*phi2r*q1 + dfdui(phi1r ,phi1i)*

phi2r*s1)*v2r
+1./2.* grad(s2) ’*grad(v2i) + (Ctrap - mu2)*s2*v2i + ( beta22

*f(phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*s2*v2i
+ beta22 *( dfdur(phi2r ,phi2i)*phi2i*q2 + dfdui(phi2r ,phi2i)*

phi2i*s2)*v2i
+ beta21 *( dfdur(phi1r ,phi1i)*phi2i*q1 + dfdui(phi1r ,phi1i)*

phi2i*s1)*v2i
)
+ intN(Th , qforder =ord)(
1./2.* grad(phi1r) ’*grad(v1r) + (Ctrap - mu1)*phi1r*v1r + (

beta11 *f(phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*phi1r*v1r
+ 1./2.* grad(phi1i) ’*grad(v1i) + (Ctrap - mu1)*phi1i*v1i +

( beta11 *f(phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*phi1i*
v1i

+ 1./2.* grad(phi2r) ’*grad(v2r) + (Ctrap - mu2)*phi2r*v2r +
( beta22 *f(phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*phi2r*
v2r

+ 1./2.* grad(phi2i) ’*grad(v2i) + (Ctrap - mu2)*phi2i*v2i +
( beta22 *f(phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*phi2i*
v2i

)
BCGP;
EndMacro
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Note that, since the expression of Ctrap is also defined as a macro, it is easy to
change the scripts to implement a different trapping (Ctrap1 and Ctrap2) for the two
components (corresponding to mu1 and mu2).

For all programs in this toolbox, we use P2 (piece-wise quadratic) finite elements.
FreeFem++ also offers a fast mesh generator for 1D, 2D or 3D configurations. The mesh

(generically identified as Th) is made of segments in 1D, triangles in 2D and tetrahedrons
in 3D. The initial solution is built specifically for each case as an approximation of the
state we want to study (see Sects. 5 and 6). Newton iterations are stopped when one of
two following criteria is satisfied:∥∥∥∥(

q
s

)∥∥∥∥
∞
< ϵq,

∥∥∥∥(
Fr
Fi

)∥∥∥∥
2
< ϵF . (45)

In practice, we use ϵq = 10−8 and ϵF = 10−16 and in all considered cases both criteria are
satisfied simultaneously. To achieve convergence in the Newton algorithm, the choice of
the solver for the linear system resulting from (33) or (38) is very important. For 1D and
2D problems we solve the system with a direct LU method using the library MUMPS. For 3D
problems, we use a GMRES method, preconditioned by an incomplete LU factorization.

Branches of stationary solutions are followed by a continuation method on the param-
eter µ0 ≤ µ ≤ µf . In practice, we start from a value µ0 for which the initial condition is
sufficiently close to the stationary state and use this converged state as an initial guess
for the Newton method with chemical potential µ0 + δµ. The process is repeated until
µf is reached. This is especially useful when following states from the linear limit to high
values of µ. For the two-component case, the continuation is done first on µ1 and µ2 and
then on the inter-component interactions β12 and β21.

An important tool in FreeFem++ is the adaptive mesh refinement, that considerably
helps in reducing the computational time while keeping a high degree of accuracy. The
grid is refined in regions of high gradients and coarsened in low gradients regions. The
mesh is adapted in 2D using the standard adaptmesh command of FreeFem++ which
creates a new mesh adapted to the Hessian of the solution. The algorithm implemented in
the adaptmesh function modifies the inner product used in the automatic mesh generator
to evaluate distance and volume [47, 48, 49]. Equilateral elements are thus constructed,
accordingly to the new metric. The inner product is based on the evaluation of the
Hessian H of the variables of the problem. For example, for a P1 (piece-wise linear)
finite-element discretization of a variable χ, the interpolation error is bounded by:

ε = |χ− Πhχ|0 ≤ c sup
T∈Th

sup
x,y,z∈T

|H(x)|(y − z, y − z), (46)

where Πhχ is the P1 interpolate of χ, |H(x)| is the Hessian of χ at point x after being
made positive definite. Using the Delaunay algorithm (e. g. [50]) to generate a triangular
mesh with edges close to the unit length in the metric M = |H|

(cε) will result in an equally
distributed interpolation error ε over the edges of the mesh. Note that this algorithm
is different from Adaptive Mesh Refinement (AMR) methods based on a topological
representation of the computational mesh by a hierarchical structure consisting of oct-
quad-and binary trees (e. g. [51]). The previous approach could be generalized for a
vector variable χ = [χ1,χ2]. After computing the metrics M1 and M2 for each variable,
we define a metric intersection M = M1 ∩ M2, such that the unit ball of M is included
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in the intersection of the two unit balls of metrics M2 and M1 (for details, see the
algorithm defined in [48]). For the stationary GP equation solved in this toolbox, we use
the adaptive mesh refinement based on the intersection of three metrics computed from
squared modulus, real and imaginary parts of the complex wave function (see also [38]).

In 3D, the adaptative mesh refinement is done through the libraries mshmet and mmg
[52] using similar algorithms. These libraries are directly linked to FreeFem++ . When
using continuation, we adapt the mesh for different values of µ. Mesh adaptation is
mandatory for the complicated test cases, especially in 3D or for the two-component cases:
using a refined mesh for the entire domain would lead to a large memory consumption and
an excessively long computational time. Note that when adapting the finite element mesh,
the user can set the values for hmax and hmin, which are the maximum and, respectively,
the minimum edge size of the triangular mesh. This offers the possibility to control the
size of the mesh and thus find a trade-off between accuracy and computational cost.

4. Solving the BdG equations

The BdG problem (31) is solved using the ARPACK library [32]. It is directly interfaced
with FreeFem++ and uses an Arnoldi method to compute the eigenvalues and eigenvectors
of a given matrix. We use the following weak formulation corresponding to (31):

∫
D

1
2∇A · ∇v1 +

∫
D

(Ctrap − µ)Av1 +
∫

D
2β|ϕ|2Av1 +

∫
D
βϕ2Bv1 = ω

∫
D
Av1,

−
∫

D

1
2∇B · ∇v2 −

∫
D

(Ctrap + µ)Bv2 −
∫

D
2β|ϕ|2Bv2 −

∫
D
βϕ

2
Av2 = ω

∫
D
Bv2.

(47)
The bilinear terms in the left hand side of this equation form the finite element matrix M
that is sent to ARPACK. To check the accuracy of the eigenvalue computation, we compute
the residual: ∥∥∥∥M (

A
B

)
− ω

(
A
B

)∥∥∥∥
∞

. (48)

Numerical tests showed that using a shift leads to an increased accuracy: the residual
decreases to 10−7 and eigenvalues are closer to the expected values when compared to
known results. We use a shift σ = 10−4, which is implemented by adding the following
term to the matrix:

−
∫

D
σ(Av1 +Bv2). (49)

The code for the BdG part is, again, very similar to mathematical expressions. For
example, it easy to see the correspondence between the BdG formulation (47) and its
implementation in the following macro (file BdG 1comp/A macro/Macro problem.edp):

NewMacro problemBdG
varf vBdGMat ([A,B],[v1 ,v2]) =
intN(Th , qforder =ord)(.5* grad(v1) ’*grad(A) + (Ctrap -mu)*A*v1

’
+ 2.* beta*abs(phi)ˆ2*A*v1 ’ + beta*phi ˆ2*B*v1 ’
- .5* grad(v2) ’*grad(B) - (Ctrap -mu)*B*v2 ’
- 2.* beta*abs(phi)ˆ2*B*v2 ’ - beta *(phi ’) ˆ2*A*v2 ’
- sigma*A*v1 ’ - sigma*B*v2 ’)
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BCBdG;

varf vBdGVec ([A,B],[v1 ,v2]) = intN(Th , qforder =ord)(A*v1 ’ +
B*v2 ’);

EndMacro

For the two-component case, the numerical method is similar and based on the
following weak formulation corresponding to (21)-(23):

∫
D

1
2∇A · ∇v1 +

∫
D

(Ctrap − µ1)Av1 +
∫

D

(
2β11|ϕ1|2 + β12|ϕ2|2

)
Av1

+
∫

D
β11ϕ

2
1Bv1 +

∫
D
β12ϕ1ϕ2Cv1 +

∫
D
β12ϕ1ϕ2Dv1 = ω

∫
D
Av1,

−
∫

D

1
2∇B · ∇v2 −

∫
D

(Ctrap − µ)Bv2 −
∫

D

(
2β11|ϕ1|2 + β12|ϕ2|2

)
Bv2

−
∫

D
β11ϕ1

2
Av2 −

∫
D
β12ϕ1ϕ2Cv2 −

∫
D
β12ϕ1ϕ2Dv2 = ω

∫
D
Bv2,∫

D

1
2∇C · ∇v3 +

∫
D

(Ctrap − µ)Cv3 +
∫

D

(
2β22|ϕ2|2 + β21|ϕ1|2

)
Cv3

+
∫

D
β21ϕ1ϕ2Av3 +

∫
D
β21ϕ1ϕ2Bv3 +

∫
D
β22ϕ

2
2Dv3 = ω

∫
D
Cv3,

−
∫

D

1
2∇D · ∇v4 −

∫
D

(Ctrap − µ)Dv4 −
∫

D

(
2β22|ϕ2|2 + β21|ϕ1|2

)
Dv4

−
∫

D
β21ϕ1ϕ2Av4 −

∫
D
β21ϕ1ϕ2Bv4 −

∫
D
β22ϕ2

2
Cv4 = ω

∫
D
Dv4.

(50)

5. Validation test cases for the one-component BEC

We start by validating the codes for the one-component BEC against well known
benchmarks. For all considered cases the non-dimensional equations are solved in the
setting for which β = 1. A summary of the considered cases, together with typical
computational times and mesh sizes (i. e. the number of elements), is provided in Tab.
1. The mesh is initially build by taking into account the topology of the solution. For
instance, the mesh for the 2D vortex case is a disk with smaller triangles in the center
(where the vortex is located), with defined minimum edge size hmin = hmax/45. When
the adaptive mesh refinement is used, at each iteration of the Newton algorithm the mesh
is refined in regions of high gradients (e. g. around solitons or vortices) and de-refined
otherwise (zones of constant density), see Sect. 3.3. To fairly compare the efficiency
of the two algorithms for these known cases, we impose the same minimum edge size
hmin in the adaptive mesh refinement procedure. Note however that, when exploring
branches of solutions for which the topology is unknown, it is safer to use the adaptive
mesh refinement to accurately capture new solutions. For each case in Tab. 1, we indicate
the size of the mesh for the last step of the continuation procedure.
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Without mesh adaptation With mesh adaptation
CPU time GP CPU time BdG Mesh size CPU time GP CPU time BdG Mesh size

1D ground state 00:00:01 00:00:05 3 602
1D dark soliton 00:00:01 00:00:02 1 356
2D ground state 00:00:05 00:00:48 20 000 00:00:05 00:00:29 10 847
2D dark soliton 00:20:49 05:34:28 45 000 00:17:03 02:20:57 21 382
2D central vortex 00:20:33 02:36:25 34 406 00:09:16 00:53:20 13 300
3D ground state 00:38:02 06:51:43 63 888 00:28:56 04:51:09 46 497

Table 1: Test cases for the one-component BEC. Computational time and mesh size (number of elements).
All computation were performed on a Macbook pro M1, 16GB of DDR4 2400 MHz RAM.

5.1. 1D case: ground state
The first test case is the computation of eigenvalues of the ground state of a one-

dimensional BEC with trapping potential Vtrap = 1
2mω

2
zz

2. In the Thomas-Fermi limit,
the explicit expressions for eigenvalues are known [53]:

ωTF
n = ωz

√
n(n+ 1)

2 , n ∈ N. (51)

We compare in Tab. 2 numerical and theoretical values of eigenvalues ω for µ = 6 and
ωz = 0.025. The Thomas-Fermi solution (9) was used to initialize the Newton algorithm.
We could check from Tab. 2 that the computed eigenvalues verify the following expected
properties (see also Sect. 2.2):
(i) all eigenvalues are real (the stationary state is dynamically stable) and form pairs
(+ω, −ω),
(ii) the first eigenvalue is ω = 0;
(iii) the other eigenvalues correspond to theoretical predictions (51),
(iv) all Krein signatures are positive (the stationary state is energetically stable).

Note that, since the computation of eigenvalues stops when the residual defined in (48)
is reduced to 10−7, values below this threshold have to be considered as zero. However,
we prefer to display the output values of the code to better guide the user and ensure the
reproducibility of the presented results.

Re(ω) Im(ω) K ωTF
n from (51)

ω1 -2.89857e-15 2.16087e-07 1
ωTF

0 = 0
ω2 6.18933e-15 -2.16087e-07 1
ω3 -0.025 -8.80682e-11 1

ωTF
1 = ωz = 0.025

ω4 0.025 2.76512e-11 1
ω5 -0.0433018 -4.41549e-11 1

ωTF
2 ≈ 0.043301270

ω6 0.0433018 -1.21387e-11 1
ω7 -0.0612394 -2.87955e-10 1

ωTF
3 ≈ 0.061237243

ω8 0.0612394 1.64467e-10 1
ω9 -0.0790624 -1.09235e-10 1

ωTF
4 ≈ 0.07905694

ω10 0.0790624 8.67993e-11 1

Table 2: 1D ground state: eigenvalues and Krein signatures.

Note also from Tab. 2 that this case requires only 5 seconds for the computation
of 100 BdG modes. This illustrates the advantage of the finite-element discretization
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generating sparse matrices. Special storage and linear algebra algorithms are well adapted
to this sparse structure of matrices, resulting in a considerable gain of computational
time, when compared to discretization methods using full matrices. For this case using
3,602 elements, corresponding to Ndof =14,410 degrees of freedom or unknowns (since we
use P2 elements) the BdG matrix has only 115,268 non-zero elements.

5.2. 1D case: dark soliton
We analyse for the second 1D test case an excited state, obtained by adding a dark

solition to the Thomas-Fermi density previously computed. The initial condition for the
Newton algorithm is thus built as:

ϕinitDS = √
nTF tanh( √

µz). (52)

We plot in Fig. 1(a) the initial condition and the converged stationary state. Eigenvalues
are displayed in Tab. 3. As expected, all eigenvalues are real, as the dark soliton is
dynamically stable in 1D. A complete characterization of the BdG modes is offered in
[41].

• The mode with ω4 ≈ ωz√
2 ≈ 0.017677669 is the anomalous mode; it is the only mode

with a negative Krein signature. It is represented in Fig. 1(b) and we retrieve the
profile obtained in [54].

• The dipole or Kohn mode at ω6 ≈ ωz = 0.025 corresponds to oscillations of the
center of mass of the condensate.

• The quadrupole mode (or the breathing mode) is obtained for ω8 ≈ ωz
√

3 ≈
0.04330127. This mode is particular to the one-dimensionality of the system.
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Re(ω) Im(ω) K
ω1 -2.57971e-07 -3.29591e-15 1
ω2 2.57971e-07 3.25101e-15 1
ω3 -0.0178197 -1.09577e-12 -1
ω4 0.0178197 1.00791e-12 -1
ω5 -0.025 -5.42312e-12 1
ω6 0.025 6.69980e-12 1
ω7 -0.0435553 -8.24994e-12 1
ω8 0.0435553 9.60204e-12 1
ω9 -0.0616151 4.28088e-13 1
ω10 0.0616151 2.16934e-13 1

Table 3: 1D dark soliton: eigenvalues and Krein signatures.

5.3. 2D case: ground state
We switch now to 2D BEC configurations with trapping potential Vtrap = 1

2mω
2
⊥r

2,
where r2 = x2 + y2. For this case, the eigenvalues in the Thomas-Fermi limit are also
known [53]:

ωTF
m,k = ω⊥

√
m+ 2k2 + 2k(1 +m), (53)

where m, k ≥ 0 are integers. We present in Tab. 4 the first 20 eigenvalues computed for
µ = 6 and ω⊥ = 0.2, with and without mesh adaptation. We find all Krein signatures
to be 1, which is the expected result in the absence of topological excitations. This is a
perfect case to check that computations using mesh adaptation provide the same results
as computations with a refined fixed mesh. Results in Tab. 4 show that this is indeed the
case for our BdG solvers.

To give again an indication of the size of the involved matrices in the eigenvalue solver
(see also the 1D case), we note that for this case using 20,000 elements, corresponding to
Ndof =80,802 degrees of freedom (since we use P2 elements) the BdG matrix has only
1,846,404 non-zero elements. Due to the sparse structure of matrices, the full computation
of 100 BdG modes takes only 43 seconds.

5.4. 2D case: dark soliton
Following the same procedure as in the 1D case, we add to the previously computed

2D ground state a centered dark soliton (Fig. 2). This is an interesting case to test the
continuation procedure in following a branch of stationary solutions. The initial condition
is given by the |1, 0⟩ state in the linear limit:

ϕDS =
√
ω⊥

2π H0( √
ω⊥x)H1( √

ω⊥y)e− 1
2ω⊥(x2+y2), (54)

where Hn are Hermite polynomials. We set ω⊥ = 0.2 and follow this solution up to µ = 3.
Real and imaginary parts of eigenvalues are presented in Fig. 2(a, b) and are identical to
the results published in [55]. This state does not have an azimuthal symmetry. Due to the
space discretization, there exists a preferred direction along which the soliton will tend to
align itself. When adapting the mesh, this direction changes and the wave function will
then rotate. To avoid this phenomenon, we only adapt the mesh every 5 iterations during
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No mesh adaptation With mesh adaptation
Re(ω) Im(ω) K Re(ω) Im(ω) K ωm,k from (53)

ω1 -2.40414e-06 -1.98607e-16 1 -1.85460e-15 9.45459e-07 1
ωTF

0,0 = 0
ω2 2.40414e-06 1.85464e-16 1 2.12161e-15 -9.45459e-07 1
ω3 -0.200004 6.56614e-12 1 -0.200005 -6.67229e-12 1

ωTF
1,0 = 0.2ω4 0.200004 4.53514e-12 1 0.200005 5.92280e-12 1

ω5 -0.200004 4.81411e-11 1 -0.200005 -2.00336e-11 1
ω6 0.200004 9.24505e-11 1 0.200005 -1.73351e-11 1
ω7 -0.283448 1.57185e-11 1 -0.283448 4.81597e-11 1

ωTF
2,0 = 0.28284271ω8 0.283448 -9.27850e-11 1 0.283448 -2.43005e-11 1

ω9 -0.283467 -8.76293e-12 1 -0.283467 1.32560e-11 1
ω10 0.283467 -5.44819e-11 1 0.283467 -1.49808e-11 1
ω11 -0.348767 8.04747e-11 1 -0.348769 3.80437e-11 1

ωTF
3,0 = 0.34641016ω12 0.348767 2.11023e-11 1 0.348769 -9.97390e-11 1

ω13 -0.348767 -2.40051e-11 1 -0.348769 3.10873e-11 1
ω14 0.348767 5.21115e-12 1 0.348769 -8.21595e-11 1
ω15 -0.400017 -1.42155e-10 1 -0.400018 -9.66174e-11 1

ωTF
4,0 = ωTF

0,1 = 0.4

ω16 0.400017 -2.04832e-11 1 0.400018 2.76314e-11 1
ω17 -0.405640 9.79059e-12 1 -0.405642 -5.96945e-11 1
ω18 0.405640 -5.94868e-11 1 0.405642 -3.22440e-11 1
ω19 -0.405676 -6.62270e-11 1 -0.405679 -1.20474e-11 1
ω20 0.405676 1.45039e-11 1 0.405679 8.86265e-12 1

Table 4: 2D ground state: eigenvalues and Krein signatures.

the continuation procedure. This permits to optimally adapt the size of the mesh while
reducing the effects of the rotation. Table 1 shows that this is an efficient approach to
reduce the computational time.

The final adapted mesh is presented in Fig. 2(c) for a selected value of the chemical
potential, with the corresponding atomic density |ϕ|2 in Fig. 2(d). We also present in
Figs. 2(e) and 2(f) the dependence of the total number of atoms N and the energy E of
the system, respectively, on the chemical potential µ. We recall from Eq. (7) that the
relation between µ and N is nonlinear and depends on the computed stationary state ϕ.
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Figure 2: 2D dark soliton: a) real part ωr and b) imaginary part ωi of eigenvalues as a function of µ.
Example of solution for µ = 3.007: c) adapted mesh, d) atomic density |ϕ|2. Variation with µ of: e)
number of atoms N , f) the energy E.
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5.5. 2D case: central vortex
We compute another solution studied in [55, 56]. It consists of a disk-shaped BEC

with a centered vortex. The initial condition is given by the |0, 1⟩ state in cylindrical
coordinates (r, θ):

ϕV S ∝ rL1
0(ω⊥r

2)eiθe− 1
2ω⊥r

2
, (55)

where L1
0 is the Laguerre polynomial. We set, as in the previous case, ω⊥ = 0.2.

Eigenvalues computed with and without mesh adaptation are displayed in Fig. 3(a) and
(b). We checked that both methods give the same results as those obtained in [55, 56].
The atomic density is presented in Fig. 3(c) and (d) for two values of µ.
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Figure 3: 2D BEC with a centered vortex. Real part ωr of eigenvalues as a function of µ computed a)
without and b) with mesh adaptation. c) Atomic density |ϕ|2 for µ = 0.45 and µ = 3. The radius of the
computational domain is Rd = 4.5.

The first BdG modes (A,B) for this state are displayed in Fig. 4 by plotting their
modulus coloured by the phase. We can distinguish:
• The zero-energy mode ω = 0 (Fig. 4(a)), associated to the phase invariance of the GP
equation.
•The anomalous mode (Fig. 4(b)) corresponds to the following approximation of its
eigenvalue in the Thomas-Fermi limit [55]:

ω = ω2
⊥

2µ ln(A µ

ω⊥
) ≈ 0.03261667238, A ≈ 2

√
2π ≈ 8.886. (56)
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This value is represented by a dashed green line in Figs. 3 (a) and (b).
• The dipole or Kohn mode (Fig. 4(c)) corresponds to ω = ω⊥ and is independent of µ.
• The 4-th mode (Fig. 4(d)) corresponding to ω = µ− 2ω⊥ in the linear limit [56]. This
value is represented by a continuous green line in Figs. 3 (a) and (b).

Figure 4: 2D BEC with a centered vortex: first four BdG modes A and B. Surfaces of modulus coloured
by the phase. The radius of the computational domain is Rd = 4.5.
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5.6. 3D case: ground state
Computing the BdG modes for a 3D BEC is a challenging numerical problem. Even

with mesh adaptation, the number of degrees of freedom is high and increases with
the size of condensate (i. e. with µ). For this test case, we computed the spectrum of
the ground state of a spherical BEC with trapping potential Vtrap = 1

2mω
2
⊥r

2, where
r2 = x2 + y2 + z2. We set ω⊥ = 1. The eigenvalues presented in Fig. 5 are in very good
agreement with numerical results obtained in [12]. This case shows that our finite-element
toolbox can be used to study simple 3D configurations. For more complicated states,
the use of parallelization is mandatory to reduce the computational time and memory
requirements.
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Figure 5: 3D case: ground state. a) Real part ωr of the eigenvalues as a function of µ, b) illustration of
four BdG modes (iso-surfaces of the modulus).

6. Validation test cases for the two-component BEC

For the two-component BEC, we compute BdG modes for the dark-antidark solitary
1D or 2D waves studied in [15]. Antidark solitary waves are bright solitary waves on top of
a finite background. Such states appear in a two-component system with inter-component
repulsion: a dark soliton or a vortex (or a ring) in one component will induce an effective
potential, through the inter-component nonlinearity, on the second component. The
result is that atoms of the second component are attracted into the dip of the first one.
We consider the system (32) in the case of repulsive inter-component interactions with
miscibility condition 0 ≤ β12 <

√
β11β22 that ensures that the two components co-exist

outside the dark-antidark state. To simplify the case study, since only the ratio between
non-linear interaction constants matters, we set β11 = β22 = β = 1, β12 = β21 and
0 < β12 < β.

The considered two-component cases are summarized in Tab. 5 displaying the necessary
computational times and mesh sizes. Note that the codes consider independent values for
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coefficients βij , 1 ≤ i, j ≤ 2, and thus can be used to study configurations different from
those analysed in [15].

Without mesh adaptation With mesh adaptation
CPU time GP CPU time BdG mesh size CPU time GP CPU time BdG mesh size

1D dark-antidark state 00:00:27 00:07:50 2714
2D vortex-antidark state 00:30:04 03:41:55 38 640 00:14:06 01:42:28 14 408
2D ring-antidark state 00:38:20 06:51:21 40 335 00:12:43 02:28:26 11 639

Table 5: Test cases for the two-component BEC. Computational time and mesh size (number of elements).
All computation were performed on a Macbook pro M1, 16GB of DDR4 2400 MHz RAM.

6.1. 1D case: dark-antidark soliton
The first state is a dark-antidark solitary wave in 1D. We set a soliton solution

(constructed as in Eq. (52)) in the first component, while the second component is in the
Thomas-Fermi ground state. Obtained eigenvalues are shown in Fig. 6(a) and (b) and
correspond to the results of [15]. The small imaginary instability around β12 = β21 = 0.8
is well resolved. Profiles of the atomic density for different values of the interaction
coefficient are presented in Fig. 6(c).
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Figure 6: 1D two-component case: dark-antidark solitary wave. a) Real part ωr and b) imaginary part
ωi of BdG eigenvalues, c) atomic density profiles for three values of β12.
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6.2. 2D two-component case: ring-antidark-ring state
With the toolbox, we provide two test cases for 2D configurations: the vortex-antidark

and ring-antidark solitary waves. We show here only the case with ring-antidark solitary
waves. The first component contains a ring soliton and the second is in the ground state.
Results are shown in Fig. 7(a) and (b) for the real and imaginary parts of the eigenvalues.
Figure 7(c) shows for the atomic density profiles which correspond to the figures presented
in [15].

β
12

ω
r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

a)

β
12

ω
i

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

b)

Figure 7: 2D two-component case: ring-antidark-ring state. a) Real part ωr and b) imaginary part of
eigenvalues, c) density profiles for three values of β12.

26



7. Description of the programs

In this section, we first describe the architecture of the programs and the organisation
of the provided files. We then present the input parameters and the structure of the
output files.

7.1. Program architecture
Codes and data files forming the BdG toolbox are stored in the FFEM BdG toolbox

directory, which is organized around two main subdirectories: BdG 1comp and BdG 2comp,
corresponding to the one- and two-component codes. Each subdirectory contains two
main files: FFEM GP $case.edp, which is the main FreeFem++ script file for the compu-
tation of the stationary state, and FFEM BdG $case.edp which is the main FreeFem++
script file for the computation of the BdG eigenvalues ($case=1c 1D 2D 3D for the
one-component case and $case=2c 1D 2D for the two-component case). To run the
computation of the Gross-Pitaevskii stationary state, the user can use the command
FreeFem++ FFEM GP $case.edp. BdG eigenvalues can then be computed with the com-
mand FreeFem++ FFEM BdG $case.edp. Parameter files for the examples presented in
this paper are stored in the INIT folder.

The obtained solutions are saved in the dircase directory. Depending on the output
format selected by the user, data files are generated in specific folders for visualization
with Tecplot, Paraview or Gnuplot. We also provide in the folder Figures ready-made
layouts for Tecplot. The user can thus obtain the figures from this paper using newly
generated data. More details about the output structure are given in Sect. 7.4.

The complete architecture of the BdG 1comp directory is the following (the architecture
of the BdG 2comp directory is almost identical):

1. FFEM GP $case.edp: the main script for the computation of the GP stationary
states.

2. FFEM BdG $case.edp: the main script for computing eigenvalues.
3. param num common.inc: a parameter file for the main numerical parameters.
4. INIT: directory storing the parameter files for the examples presented in Sect. 5.
5. Figures: directory containing Tecplot layouts used to replot the figures shown in

Sect. 5. The main code must be run with the associated example before opening
the layout to replot the figure. For some examples, it is necessary to run the case
with different parameters (e.g. with and without mesh adaptation) before opening
the layout.

6. A macro: directory containing macros used in the main scripts.
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7.2. Macros and functions
The different macros and functions used in the toolbox for the sequential code are

stored in the A macro folders:

• Macro BdGsolve.edp: macro computing the BdG eigenvalues corresponding to
matrices in Eqs. (47) and (50).

• Macro createdir.edp: macro creating the file structure of the dircase folder.

• Macro GPsolve.edp: macro computing the GP stationary state with a Newton
method (see Eqs. (37) and (41)-(44)).

• Macro meshAdapt.edp: macro adapting the mesh to the wave function.

• Macro operator.edp: definitions of useful macros and functions: gradients, energy
(3), chemical potential (7), Hermite polynomials, etc. Also contains a macro creating
a spherical mesh for 3D problems.

• Macro output.edp: macros used to save data in Tecplot and Paraview formats.

• Macro plotEigenvector.edp: macro plotting the real and imaginary parts of a BdG
eigenvector.

• Macro plotphi.edp: macro plotting the complex wave function. The user can press
”k” to alternate between plots of the density, phase and real and imaginary parts of
the wave function.

• Macro problem.edp: definitions of the weak formulations for the GP (Eqs. (37) or
(50)) and BdG problems (Eqs. (47) or (41)-(44)).

• Macro restart.edp: macros used to save and load the wave function to or from
FreeFem++ files.

• Macro saveData.edp: macro saving the stationary wave function.

• Macro saveEigenvalues.edp: macro saving the BdG eigenvalues and eigenvectors.

7.3. Input parameters
Parameters are separated in two files. Numerical parameters used in all computations

are in param num common.inc. Files in the INIT directory specify physical parameters
describing the state that will be studied during a computation and numerical parameters
specific to this problem. The files distributed with the toolbox provide a variety of
examples that can be used as a starting point when selecting parameters for the study of
new states.
(1) In the file param num common.inc, the parameters are:

• displayplot: controls the output information to plot. Possible values range from 0
(no plots), to 2 (plots data at all iterations of the Newton method and all eigenvectors
computed by the BdG code).

• iwait: a Boolean indicating if the code must wait for user input when a plot is
shown (true) or it can continue (false) with the next plot.
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• cutXY, cutXZ, cutYZ: (only for 3D cases) Booleans indicating whether to plot
cuts of the wave function along the different axis at x = 0, y = 0 or z = 0.

• Tecplot: a Boolean indicating whether to save data in the Tecplot format.

• Paraview: a Boolean indicating whether to save data in the Paraview format (only
in 2D and 3D).

• adaptinit: if true, the initial solution is recomputed after the first mesh adaptation.

• adaptmeshFF: determines if mesh adaptation is used (true) or not (false).

• useShift: a Boolean indicating whether to use a shift when computing the BdG
eigenvalues (see Eq. (49)).

• Nadapt: if mesh adaptation is used, the mesh is adaptated every Nadapt iterations
during the continuation.

• Nplot: the wave function is plotted every Nplot iterations during the continuation.

• Nsave: the wave function is saved for Paraview or Tecplot every Nsave iterations
during the continuation.

• Nrst: the wave function is saved for the BdG computation every Nrst iterations
during the continuation.

• tolerrF: the tolerance value of ϵF in Eq. (45).

• tolNewton: the tolerance value of ϵq in Eq. (45).

• shift: the value of the shift σ used when computing eigenvalues.

• newtonMax: the maximum number of Newton iterations.

(2) In the file $case.inc, stored in the INIT directory, the parameters are:

• General parameters for the case:
• dimension: the dimension of the problem (1, 2 or 3).
• FEchoice: the type of finite element used. Usually P2.
• nev: the number of eigenvalues computed by the BdG code.

• Parameters used to restart a computation:
• restart: a boolean indicating if the initial solution is a restart from a previous
computation. If true, the solution and mesh stored in fcaserestart for the value
of µ given by murestart will be used as initial solution.
• murestart: the initial value of µ in the case of a restart.
• fcaserestart: the folder where the initial solution is stored in the case of a restart.

29



• Parameters of the continuation:
• kpol, lpol, mpol: integers defining the initial state in the linear limit.
• startmu: the initial value of µ.
• endmu: the final value of µ.
• dmu: the increment in µ during the continuation.
• facmu: when using the linear limit, the initial value of µ is given by facmu ·µ|klm⟩.

• Coefficients of the GP equation:
• beta: the nonlinear coefficient (we set β = 1 in all test cases).
• ax, ay, az: the frequencies of the trapping potential along the three axes.
• Ctrap: a function defining the trapping potential.

• Parameters for the mesh creation:
• Dx: the distance between points on the mesh border.
• scaledom: a coefficient used to control the size of the domain: the mesh radius
is given by Rdom = scaledom rTF where rTF is the Thomas-Fermi radius.
• createMesh: a macro creating the initial mesh Th.

• Parameters for the mesh adaptation:
• errU: the interpolation error level.
• hmin: the minimum length of a mesh element edge in the new mesh.
• hmax: the maximum length of a mesh element edge in the new mesh.
• adaptratio: the ratio for a prescribed smoothing of the metric. No smoothing is
done if the value is less than 1.1.

• Parameters for the initial solution:
• initname: the name given to the initial solution.
• initcond: a macro defining the initial solution for the phi variable.

• Definitions of the boundary conditions:
• BCGP: the boundary conditions used in the GP code for Eqs. (37) and (41)-(44).
• BCBdG: the boundary conditions used in the BdG code for Eqs. (47) and (50).
• fcase: the name given to the current computation.
• dircase: the directory where the results are stored.

(3) In a two component case, some new parameters are defined in the $case.inc file:

• Parameters used to restart a computation:
• mu1restart, mu2restart: initial values of µ1 and µ2 in the case of a restart.
• beta12restart, beta21restart initial values of β12 and β21 in the case of a
restart.

• Parameters of the continuation:
• startmu1, startmu2: initial values of µ1 and µ2.
• endmu1, endmu2: final values of µ1 and µ2.
• dmu1, dmu2: increments of µ1 and µ2 during the continuation.
• startbeta12, startbeta21: initial values of β12 and β21.
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• endbeta12, endbeta21: final values of β12 and β21.
• dbeta12, dbeta21: increments of β12 and β21 during the continuation.

• Coefficients of the GP equation:
• beta11, beta12: nonlinear coefficients β11 and β22.

• Parameters for the initial solution:
• initname1: the name given to the initial solution for the first component.
• initname2: the name given to the initial solution for the second component.
• initcond: a macro defining the initial solution for [phi1,phi2] variables.

7.4. Outputs
When a computation starts, the OUTPUT $case directory is created. It contains up to

eight folders. The RUNPARAM directory contains a copy of the code and data files, allowing
an easy identification of each case and preparing an eventual rerun of the same case.
The other folders contains different output format files of the computed solution, to be
visualised with Tecplot, Paraview or Gnuplot. The content of these subfolders depends
on the case and on the computation parameters (differences in the two component code
are given in parenthesis):

1. The Gnuplot folder contains two files:
• Informations about the stationary states are stored in the GP results.dat file.
The columns are in order: the non-linear coefficient β (β12 and β21), the imposed
chemical potential µ (µ1 and µ2), the number of Newton iterations used for this
value of µ, the errors ϵF and ϵq (45), the computed value of the chemical potential
(7) (computed values of µ1 and µ2), the number of atoms (4) (the number of atoms
in the two components), the GP energy (3), the mesh size, the number of degrees of
freedom and the CPU time to compute the stationary state.
• BdG eigenvalues are stored in the BdG results.dat file. The columns are in
order: the non-linear coefficient β (β12 and β21), the imposed chemical potential
µ (µ1 and µ2), the eigenvalue number between 0 and nev, the real and imaginary
part of the eigenvalues, the Krein signature and its sign (the Krein signature and
its sign for the two components), the residual (48) and the CPU time to compute
the eigenvalues.

2. The Paraview folder contains the wave functions stored as .vtk or .vtu and .pvd
files:
• phi init.vtu and phi final.vtu are the initial and final solutions.
• phi mu $mu.vtu contains the stationary wave function for a given value of µ.
• phi mu1 $mu1 mu2 $mu2.vtu contains the stationary wave function for given values
of µ1 and µ2 in the first continuation.
• phi beta12 $beta12 beta21 $beta21.vtu contains the stationary wave function
for given values of β12 and β21 in the second continuation.

3. The Paraview Eigenvectors folder contains the eigenvectors stored as:
• eVec mu $mu $nev.vtu in the one component code.
• eVec beta12 $beta12 beta21 $beta21 mu1 $mu1 mu2 $nev.vtu in the two com-
ponent code.
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4. The RST folder contains the stationary states stored as FreeFem++ files. The names
are:
• RST-$mu.rst or RST-$mu1-$mu2-$beta12-$beta21.rst for the data.
• RSTTh-$mu or RSTTh-$mu1-$mu2-$beta12-$beta21 for the mesh files. The file
extensions are .mesh (in 1D), .msh (in 2D) or .meshb (in 3D).

5. The Tecplot folder contains the wave functions stored as .dat Tecplot files:
• phi init.dat and phi final.dat are the initial and final solutions.
• phi mu $mu.dat contains the stationary wave function for a given value of µ.
• phi mu1 $mu1 mu2 $mu2.dat contains the stationary wave function for given values
of µ1 and µ2 in the first continuation.
• phi beta12 $beta12 beta21 $beta21.dat contains the stationary wave function
for given values of β12 and β21 in the second continuation.

6. The Tecplot Eigenvectors folder contains the eigenvectors stored in the Tecplot
format:
• eVec mu $mu $nev.dat in the one component code.
• eVec beta12 $beta12 beta21 $beta21 mu1 $mu1 mu2 $nev.dat in the two com-
ponent code.

7. The Tecplot Eigenvalues folder contains the eigenvalues stored in the Tecplot
format. Filenames are BdG results $i.dat. Each file contains the i-th smallest
eigenvalue for each value of µ (or β12 in the two-component code).

8. Summary and conclusions

The aim of the toolbox presented in this paper is the computation of stationary
states and BdG modes of one- and two-component BECs in 1D and 2D. The use of mesh
adaptation enables an efficient computation of stationary states by adapting the spatial
discretization to the topology of the considered state. This makes possible the study of
various 1D and 2D problems and even a simple 3D configuration without parallelization.
The toolbox was created with FreeFem++ , a free and open-source finite element software
for the study of partial differential equations. The method consists of two steps: (i)
a Newton method, combined with a continuation on the chemical potential µ or the
inter-component interaction parameters β12 and β21, is used to obtain the stationary state
of the GP equation, (ii) the BdG modes are obtained by solving an eigenvalue problem
with ARPACK. The numerical code was validated against test cases studied theoretically
or numerically in the literature. All parameter files corresponding to these test cases
are shared with the toolbox, allowing the user to obtain the results presented in this
paper. These parameter files can be used as templates to initiate the study of other BEC
states. We considered only one and two component systems with a cubic nonlinearity,
but the toolbox could be easily modified to study other configurations such as quartic
± quadratic trapping potentials [57], dipolar interactions [58] or spinor condensates [59].
Future extensions of the toolbox concern the implementation of domain decomposition
methods and the use of PETSc and SLEPc libraries for this problem. The new parallel
toolbox will make possible the computation (with a reasonable CPU time), of BdG modes
for 3D BEC configurations without axial symmetry, such as BEC with U , S vortices [10],
giant vortices [60] or new computationally discovered exotic states reported in very recent
contributions [61].
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