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Abstract

Background: Biological networks have proven invaluable ability for representing
biological knowledge. Multilayer networks, which gather different types of nodes
and edges in multiplex, heterogeneous and bipartite networks, provide a natural
way to integrate diverse and multi-scale data sources into a common framework.
Recently, we developed MultiXrank, a Random Walk with Restart algorithm able
to explore such multilayer networks. MultiXrank outputs scores reflecting the
proximity between an initial set of seed node(s) and all the other nodes in the
multilayer network. We illustrate here the versatility of bioinformatics tasks that
can be performed using MultiXrank.

Results: We first show that MultiXrank can be used to prioritise genes and drugs
of interest by exploring multilayer networks containing interactions between
genes, drugs, and diseases. In a second study, we illustrate how MultiXrank scores
can also be used in a supervised strategy to train a binary classifier to predict
gene-disease associations. The classifier performance are validated using outdated
and novel gene-disease association for training and evaluation, respectively.
Finally, we show that MultiXrank scores can be used to compute diffusion profiles
and use them as disease signatures. We computed the diffusion profiles of more
than 100 immune diseases using a multilayer network that includes cell-type
specific genomic information. The clustering of the immune disease diffusion
profiles reveals shared shared phenotypic characteristics.

Conclusion: Overall, we illustrate here diverse applications of MultiXrank to
showcase its versatility. We expect that this can lead to further and broader
bioinformatics applications.

Keywords: Multilayer Network; Random Walk with Restart; Multi-omics Data;
Biological Network

Introduction

Random Walk is a powerful approach for analysing and exploring networks. By

simulating the movement of a particle randomly traversing nodes and edges in

a network, Random Walks are able to capture several topological and structural

properties of networks [1], including connectivity [2], community structure [3], and

node centrality [4]. Inspired from the PageRank algorithm [5], initially developed for

ranking web pages in search results by simulating the behavior of an internet user

following hyperlinks or restarting on arbitrary pages, Random Walk with Restart

(RWR) was first introduced by Pan et al. [6]. In the RWR approach, the random
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particle, at each step, can navigate from one node to one of its neighbors or restart

its walk from a node randomly sampled from a set of seed nodes. As PageRank,

this strategy prevents the walker from getting trapped in dead ends and allows a

more comprehensive exploration of the network’s topology [7]. RWR, by enabling

restart from one or several seed nodes, simulates a diffusion process in which the

objective is to determine the steady state of an initial probability distribution [8].

This steady state represents a measure of proximity between the seed(s) and all

the network nodes, quantifying the extent to which the influence or information

from the seed nodes has spread throughout the network. It overall identifies nodes

that are closely connected to the seed(s) and provides valuable insights into the

network’s organisation.

In computational biology, RWR has been particularly useful for the exploration of

large-scale interaction networks and to derive guilt-by-association knowledge. For

instance, RWR strategies significantly outperformed local distance measures for the

prediction of gene-disease associations [9]. They have also been successfully applied

to protein function prediction [10], identification of disease comorbidity [11], or

drug-target interaction prediction [12]. More recently, RWR have been applied to

drug prioritisation and repurposing for SARS-CoV-2 [13, 14].

Originally designed for investigating simple single-layer (i.e., monoplex) networks,

RWR has been extended to navigate more complex networks, i.e. networks com-

posed of multiple layers of interaction data. One such extension was proposed by

Li and Patra [15] and introduced a RWR exploration of heterogeneous networks.

They applied this approach to predict novel gene-phenotype relationships using a

heterogeneous network composed of gene-gene interactions, phenotype-phenotype

interactions, and known gene-phenotype associations. We introduced a RWR allow-

ing the exploration of multiplex-heterogeneous networks, i.e., multiplex networks

connected to each other by bipartite interactions [16]. More recently, we developed

MultiXrank, a RWR algorithm able to explore generic multilayer networks [17]. We

define a generic multilayer network as a multilayer network composed of any num-

ber and combination of multiplex and monoplex networks connected by bipartite

interaction networks. In this multilayer framework, all the networks can also be

weighted and/or directed. MultiXrank hence offers the opportunity to apply RWR

on multilayer networks containing rich and complex interactions and fundamentally

better suited for representing the multi-scale interactions observed in biological sys-

tems. In practice, MultiXrank outputs scores representing a measure of proximity

between the seed(s) and all the nodes of the multilayer network. These output scores

can then be used in a large number of downstream applications. We aim here to

illustrate the versatility of the use of MultiXrank output scores. First, we show that

MultiXrank can be used for node prioritisation. From a multilayer network contain-

ing gene, drug, and diseases interactions, we used MultiXrank scores to prioritise

candidate drugs for leukemia. We also used the large network assembled in the Het-

ionet project [18], encompassing nine distinct types of nodes (including genes, drugs,

diseases, biological processes, and pharmacological classes), to prioritise drugs for

epilepsy. Second, we show that MultiXrank scores can be used to train a supervised

classifier to predict gene-disease associations. Finally, we show how MultiXrank can

be used to compute and compare diffusion profiles obtained for immune diseases
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on a multilayer network containing genomic information extracted from Promoter

Capture Hi-C (PCHi-C) [19] experiments in different hematopoietic cells [20]. Over-

all, these diverse applications of MultiXrank demonstrate its versatility, both in the

types of networks it can explore and the variety of downstream analyses that can

be applied using its output scores.

1 Node prioritisation to study human genetic diseases

RWR approaches are frequently used to assess the proximity between seed node(s)

and all the other nodes in a network. By leveraging the RWR output scores, nodes

that are proximal to the seed node(s) can be prioritised. We will illustrate this pri-

oritisation strategy by exploring the heterogeneous and rich information contained

in biological multilayer networks using MultiXrank to prioritise genes and drugs in

leukemia and epilepsy.

1.1 Prioritising genes and drugs of interest in Leukemia using MultiXrank on a gene

and drug multilayer network

We first focused on leukemia, a disease for which we can confront our predictions

with the knowledge accumulated in the literature. We prioritised genes and drugs

of interest for leukemia based on MultiXrank output scores obtained from exploring

a multilayer network composed of a gene multiplex network and a drug multiplex

network, connected with a gene-drug bipartite network representing known drug-

target associations (Materials and methods).

We selected two seeds associated with leukemia. More precisely, we selected HRAS

as gene seed. HRAS is a gene of the RAS gene family associated with a wide va-

riety of tumors, in particular in myeloid leukemia [21]. We also selected a drug

seed, Tipifarnib (DB04960), a drug investigated for the treatment of acute myeloid

leukemia and other types of cancer [22–24]. Using these two nodes jointly as seeds

is particularly relevant as HRAS is a farnesylated protein and Tipifarnib is a farne-

syltransferase inhibitor [25]. We applied MultiXrank (with the parameters specified

in Supplementary Table S3) using these two seeds jointly and selected the top 10

highest-scoring gene and drug nodes (Supplementary Tables S4 and S5, respec-

tively). We extracted the subnetwork connecting the seed nodes and the top 10 pri-

oritised genes and drugs and their close neighborhood (Figure 1). We observed that

prioritised nodes are close to both seeds, with a maximum shortest path distance

between a prioritised node and a seed node equal to 4 (Supplementary Tables S4

and S5).

A literature survey of these top-10 prioritised drugs and genes establishes known

or suspected connections with leukemia (Supplementary section 2.A). For instance,

the top scoring gene, CYP3A4, is a drug-metabolising enzyme that has been shown

to play a role in drug resistance in leukemia [26]. The second highest-scoring gene,

FNTB, is coding the farnesyltransferase, and a target of Tipifarnib [27]. Different

genes related to signal transduction and known to be relevant for cancer, such as

RAF1, RASGRP1, RASA1, or ARAF, are also identified among the top-scoring
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genes. Moreover, the top prioritised drug, Astemizole (DB00637), is a good can-

didate for leukemia treatment as it’s anti-leukemic properties have been demon-

strated in human leukemic cells [28]. Interestingly, Astemizole is metabolised by

CYP3A4 [29], the top-scoring gene.

1.2 Prioritising genes and drugs of interest in Epilepsy using MultiXrank on a

biomedical knowledge graph

We applied MultiXrank to prioritise candidate drugs for epilepsy, using as seed the

epilepsy disease node (OID:1826) in the large and heterogeneous knowledge graph

assembled in the Hetionet project [18]. This heterogeneous network is composed of

eleven different types of nodes (Materials and Methods). We compared the drugs

top-scored by MultiXrank, which is fully unsupervised, with the drugs prioritised

by the Hetionet strategy, a supervised machine learning approach based on a regu-

larised logistic regression model [18]. To evaluate the robustness of MultiXrank in

relation to the choice of input parameters, we applied four distinct sets of parame-

ters (Supplementary Table S6).

Most drugs are top-prioritised by both approaches. For instance, for one of the sets

of parameters tested in MultiXrank (set of parameters number 4, Supplementary

Table S6), 59% of the top-100 Hetionet prioritised drugs are also in the top-100

MultiXrank prioritised drugs, 79% are in the top-200 MultiXrank prioritised drugs,

and 99% are in the top-500 MultiXrank prioritised drugs (Figure 2).

We further checked the 41 drugs from the top-100 drugs identified by MultiXrank

that are not prioritised by Hetionet (Supplementary Table S7). Interestingly, 3 of

them (namely, Propofol, Vigabatrin and Diclofenac, respectively ranked 8, 23 and

49 by MultiXrank) have been tested in clinical trials for epilepsy, according to the

DrugBank [30]. After extracting the DrugBank Categories associated to those 41

drugs (Supplementary Table S7), we observed that 24 of them are classified as

Cytochrome P-450 Substrates.A recent study has shown that spontaneous recurrent

seizures in mice modify Cytochrome P-450 expression in the liver and hippocampus.

The authors hypothesise that nuclear receptors or inflammatory pathways can be

considered as candidates for Cytochrome P-450 regulation during seizures [31]. An-

other study showed that Cytochrome P-450 enzymes can have a significant impact

on the response to anti-epileptic drugs [32]. The second most represented DrugBank

Category in the list of the 41 drugs prioritised by MultiXrank but not by Hetionet

was the category Agents that produce hypertension, which map to 18 drugs. A review

of the existing literature regarding hypertension and epilepsy show that those two

conditions often co-occur [33, 34]. Furthermore, the relationship between the two

conditions could be bidirectional, meaning that they can influence and exacerbate

each other [35].

These results indicate that MultiXrank can provide predictions complementary

to the Hetionet supervised machine learning approach. In addition, MultiXrank

predictions can be easily interpreted as the subnetworks underlying the top-scoring

nodes can be easily extracted.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.18.562848doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562848
http://creativecommons.org/licenses/by-nc-nd/4.0/


Baptista et al. Page 5 of 19

2 Supervised prediction of gene-disease associations

In a second study, we present a supervised approach to predict gene-disease as-

sociations. Predicting gene-disease associations is crucial for the diagnosis, under-

standing, and treatment of genetic diseases. Among available approaches to predict

gene-disease associations, network-based methods have been particularly exploited

and have demonstrated good performances [36]. These network approaches were ini-

tially based mainly on unsupervised strategies, but an increasing number of methods

are implementing supervised strategies [36]. Here, we use the output scores of Multi-

Xrank to train supervised XGBoost and Random Forest binary classifiers to predict

gene-disease associations (Supplementary Figure S5).

We used a multilayer network composed of a gene multiplex network and a dis-

ease monoplex network (Materials and Methods). These multiplex and monoplex

networks are connected by a gene-disease bipartite network constructed with an out-

dated version of DisGeNET (v2.0, 2014, [37]). The edges of the bipartite network

are weighted according to the support score provided by DisGeNET v2.0 (2014).

We applied MultiXrank on the multilayer network described above, using the gene

and disease nodes from each gene-disease association as seeds. The parameters used

for running MultiXrank are detailed in Supplementary Table S8. We used both

positive associations (i.e. true gene-disease associations) and negative associations

(i.e., random gene-disease pairs that are not associated according to DisGeNET).

For each set of positive seeds (true gene-disease association), the gene-disease bipar-

tite edge connecting the two seeds was removed from the bipartite network before

training.We collected MultiXrank output scores obtained for all positive and neg-

ative gene-disease pairs of seeds and trained binary XGBoost and Random Forest

classifiers with different parameters (Supplementary Table S9). We then tested the

performance of the classifiers in predicting unseen gene-disease associations from the

outdated version of DisGeNET that were kept out for testing as well as the gene-

disease associations that have been added in the updated version of DisGeNET

(v7.0, 2020, [38]). The full machine learning procedure is detailed in the Materials

and Methods section. We also report the performances of our models in predicting

DisGeNET v2.0 (2014) and DisGeNET v7.0 (2020) associations in Supplementary

Tables S9 and S10, respectively. For the prediction of unseen test DisGeNET v2.0

(2014) associations, the best classification performance was achieved with an XG-

Boost model taking class imbalance into account. This model reached a balanced

accuracy of 0,85 and an F1-score of 0,79, showing the predictive potential of Mul-

tiXrank output scores. However, the prediction performance dropped considerably

for predicting DisGeNET v7.0 (2020) associations (balanced accuracy 0,64 and F1-

score 0,53). It should be noted that the MultiXrank scores used for the classification

of DisGeNET v2.0 (2014) and DisGeNET v7.0 (2020) associations were calculated

on the same network, constructed solely from the information contained in Dis-

GeNET v2.0 (2014). Importantly, DisGeNET v2.0 (2014) reported only 381 654

gene-disease associations, whereas DisGeNET v7.0 (2020) reported 1 135 037 as-

sociations, which represents a threefold increase. Moreover, over the 21 666 genes

reported in DisGeNET v7.0 (2020), only 14 255 appeared in DisGeNET v2.0 (2014).

Similarly, only 38% of the 30 170 diseases reported in DisGeNET v7.0 (2020) were
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also reported in DisGeNET v2.0 (2014). The substantial increase in the amount of

information contained in DisGeNET between 2014 and 2020 is potentially the cause

of the significant decrease in classification performance.

3 Diffusion profiles comparison to unveil immune diseases
similarities

The scores resulting from a random walk using a given seed can be regarded as a dif-

fusion profile and represent a network-based molecular signature. Diffusion profiles

obtained starting from different seeds can then be compared to reveal signature

proximities. Here, we propose to compute and compare the diffusion profiles ob-

tained using 131 immune diseases (Supplementary Table S13) as seed in MultiXrank

applied to several multilayer networks. We created eight hematopoietic cell-specific

multilayer networks, each composed of four different monoplex/multiplex networks

(Figure 3, Materials and Methods). The first two monoplex/multiplex networks in-

corporate gene and disease interactions sourced from public databases. These two

layers are the sames across all the eight multilayer networks. The remaining two

layers encode Promoter Capture Hi-C (PCHi-C) fragment interactions and Topo-

logically Associating Domain (TAD) interactions observed in various hematopoietic

cell lines, extracted from a dataset generated in [20]. It’s important to note that

the PCHI-C fragment layer and the TAD layer are unique to each hematopoietic

cell line, and hence vary across the eight multilayer networks (Supplementary Sec-

tion 1.C).

The strength of this multilayer network constructions lies in its capacity to com-

bine non cell-specific generic gene and disease interactions with data regarding ge-

nomic interactions unique to hematopoietic cell lineages. In addition, the genomic

interaction layers allow us to consider data representing the 3D conformation of

DNA and non-coding regions of the genomes. This 3D conformation of DNA is

a key to understanding, for instance, genomic structural variations that are key

players in the study of diseases [39]. We demonstrated that these genomic data

maintain the signal of the hematopoietic cell type. Indeed, the PCHi-C fragments

and TAD datasets capture the tree lineage of hematopoietic cells (Supplementary

Section 4.A, Supplementary Figure S6). We also demonstrate that this lineage sig-

nal is captured in the RWR scores obtained from applying MultiXrank to the eight

multilayer networks (Supplementary Section 4.B, Supplementary Figures S7 and

S8).

Here, we aim to apply MultiXrank on the eight hematopoietic multilayer networks

using as seeds 131 different immune diseases to obtain the disease diffusion profiles.

We consider the diffusion profiles as disease signatures. We will next cluster the

immune diseases based on the similarity of their diffusion profiles. We hypothesise

that such clustering can reveal potentially similar immune diseases.

To reveal similarities between the 131 immune diseases based on the diffusion

profiles obtained on the eight multilayer networks, we first compute disease-disease

distances for each cell type (i.e. hematopoietic multilayer network) and node type

(i.e. disease nodes, protein nodes, PCHi-C fragment nodes and TAD nodes) (equa-

tion 1, Materials and Methods).
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Then, the disease-disease distance matrices obtained for the eight hematopoietic

multilayer networks are fused (equation 2, Materials and Methods). This proce-

dure produces 4 disease-disease integrated similarity matrices, one for each node

type in the multilayer networks. These matrices are then used to cluster the im-

mune diseases using a multiview clustering algorithm (Materials and Methods).

The obtained clusters are detailed in Supplementary Table S12. Additionally, the 4

matrices are concatenated into a single matrix and projected into a 2D t-SNE (t-

distributed stochastic neighbor embedding) [40] space. In this projection, we label

each immune disease with their corresponding cluster (Figure 4).

Interestingly, we can assess the relevance of the approach by examining diseases

that represent distinct subtypes of the same condition. These disease subtypes are

caused by different mutated genes and hence present different connection patterns

in the gene and disease monoplex/multiplex networks. Nevertheless, being subtypes

of the same condition, we expect these diseases to have similar network-based dif-

fusion profiles and cluster together. Our examination of the results substantiates

this, as demonstrated for all diseases subtypes included in our list of 131 immune

diseases, listed below:

• Autosomal recessive early-onset inflammatory bowel disease 28 (UMLS:C2751053,

seed 54) and autosomal recessive early-onset inflammatory bowel disease 25

(UMLS:C2675508, seed 55), both grouped in cluster 0 and close in the t-SNE

space (Figure 4, cluster 0) ;

• Hypogammaglobulinemia AGM2 (UMLS:C3150750, seed 11), hypogam-

maglobulinemia AGM3 (UMLS:UMLS:C3150751, seed 12), hypogamma-

globulinemia AGM4 (UMLS:C3150752, seed 13), hypogammaglobulinemia

AGM5 (UMLS:C3150753, seed 14) and hypogammaglobulinemia AGM6

(UMLS:C3150207, seed 15), all grouped in cluster 1. In the t-SNE space,

hypogammaglobulinemia AGM2, AGM4 and AGM5 are close, as well as hy-

pogammaglobulinemia AGM3 and AGM6 (Figure 4, cluster 1) ;

• Immunodeficiency with hyper IgM type 1 to type 5 (UMLS:C0398689 (seed

86), UMLS:C1720956 (seed 87), UMLS:C1720957 (seed 88), UMLS:C1842413

(seed 89), UMLS:C1720958 (seed 90)), all grouped in cluster 1 and close in

the t-SNE space (Figure 4, cluster 1) ;

• complement component 8 deficiency type 1 (UMLS:C3151081, seed 66) and

Complement component 8 deficiency type 2 (UMLS:C3151080, seed 67), both

grouped in cluster 1 and close in the t-SNE space (Figure 4, cluster 1) ;

• Activated PI3K-Delta Syndrome 1 (UMLS:C3714976, seed 108) and activated

PI3K-Delta Syndrome 2 (UMLS:C4014934, seed 107) are grouped in cluster

1 and close in the t-SNE projection (see Figure 4, cluster 1).

• Aicardi-Goutières syndrome 1 (UMLS:C0796126, seed 45) and Aicardi-

Goutières syndrome 2 (UMLS:C3489724, seed 46) are grouped in cluster 2

(Figure 4, cluster 2).

We conducted additional analysis to explore the composition of disease clusters

and extract their essential characteristics:
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• Cluster 0 regroups 31 immune diseases. It is mainly composed of Inflamma-

tory (e.g. Takayasu’s arteritis, giant cell arteritis (temporal arteritis), auto-

somal recessive early-onset inflammatory bowel disease), Autoinflammatory

(e.g. tumor necrosis factor receptor-associated periodic syndrome (TRAPS),

hyper-IgD syndrome, familial cold autoinflammatory syndrome), Autoim-

mune diseases (e.g: rheumatoid arthritis, type 1 diabetes, cicatricial pem-

phigoid, Hashimoto’s thyroiditis). This grouping underscores the intricate re-

lationship between inflammation, auto-inflammation and autoimmunity, as

supported by the existing literature on inflammatory disorders. Indeed, nu-

merous studies have postulated an immunological continuum linking mono-

genic autoinflammatory disorders with autoimmunity [41, 42].

• Cluster 1 encompasses 59 immune diseases. It groups conditions marked

by immunodeficiencies, primary immunodeficiencies (including several types

of Complement component deficiencies) and increased susceptibility to infec-

tions. Within this cluster, numerous diseases are linked to immunoglobulin-

related abnormalities, including various forms of hypogammaglobulinemia,

immunodeficiency with hyper IgM, as well as immunoglobulin A deficiency

and agammaglobulinemia.

• Cluster 2 accounts for 41 immune diseases. These diseases appear to be

rather diverse, encompassing diseases that impact a wide range of bodily sys-

tems. Many types of leukemias (e.g. acute myeloid leukemia, chronic lympho-

cytic leukemia, chronic myelogenous leukemia), lymphomas (e.g. Hodgkin’s

lymphoma, non-Hodgkin lymphoma) and other blood-related diseases (e.g.

pernicious anemia, myelodysplastic syndromes) are included in this cluster.

Other systems affected by diseases from cluster 2 include the cardiovascu-

lar (e.g: congenital heart block), hepatic (e.g. glycogen storage disease type

1B), skeletal (e.g. cherubism), dermatological (e.g. lichen sclerosus, pruritic

urticarial papules plaques of pregnancy), muscular (e.g. inclusion body myosi-

tis), neurological (e.g. Aicardi-Goutieres syndrome) and neuromuscular (e.g.

stiff person syndrome) systems. However, many of these diseases can im-

pact multiple systems (e.g. DiGeorge syndrome, Aicardi-Goutières syndrome,

CHARGE syndrome, glycogen storage disease type 1B, Pearson syndrome).

Facing the apparent diversity of diseases included in cluster 2, comparatively to

the well defined clusters 0 and 1, we further investigated the composition of cluster 2.

A literature review on the diseases included in this cluster shows that most of them

are associated with blood diseases on one hand and cardiovascular system diseases

on the other hand. Indeed, many of the diseases that are not directly associated

with leukemia or lymphoma appear to be comorbid to those cancers. For instance,

elevated risks of lymphoma and leukemia have been reported for patients with

pernicious anemia [43] and myelodysplastic syndromes can evolve to acute myeloid

leukemia [44]. Other diseases from cluster 2 that are considered associated with

lymphoma and leukemia in the literature include ataxia telangiectasia [45], Bloom

syndrome [46], cartilage-hair hypoplasia [47], and Chediak-Higashi syndrome [48],

among others. Moreover, many diseases from cluster 2 could be associated with

cardiovascular diseases, according to the literature: congenital heart defects are
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observed in 50–85% of cases of CHARGE syndromes [49] ; the TARP syndrome is

associated with congenital heart defects [50] ; congenital heart disease is a common

feature in the 22q11.2 deletion syndrome (DiGeorge syndrome) [51] ; Parry Romberg

syndrome is associated with hypertrophic cardiomyopathy and rheumatologic heart

disease [52] ; lichen sclerosus is associated with increased risk of cardiovascular

comorbidities in female [53] ; Pearson syndrome is often associated with cardiac

conduction defects [54] ; the association of inclusion body myositis and cardiac

disease is debated [55] ; a case of Melkersson–Rosenthal syndrome affecting cardiac

connective tissues was reported in [56].

Finally, we examined some diseases close to each other in the t-SNE space. We

detail here 3 examples:

• Chronic recurrent multifocal osteomyelitis (CRMO) (UMLS:C0410422, seed

2) and Majeed syndrome (UMLS:C1864997, seed 99) ( Figure 4, cluster 0):

CRMO is known as one of the major features of Majeed syndrome [57].

• Netherton syndrome (UMLS:C0265962, seed 103) and Eosinophilic esophagi-

tis (UMLS:C0341106, seed 5): (see Figure 4, cluster 0): Eosinophilic esophagi-

tis is observed in 44% of the people with Netherton syndrome [58].

• Myasthenia gravis (UMLS:C0026896, seed 21) and Myositis (UMLS:C0027121,

seed 22) (see Figure 4, cluster 0): several cases of co-existence of Myasthenia

Gravis and Myositis are reported in [59].

All of these observations suggest that the integrated MultiXrank scores effectively

capture similarities in disease diffusion profiles, indicating shared phenotypic man-

ifestations and potential comorbidity patterns among the diseases.

Conclusion

Multilayer networks provide a valuable framework for integrating a wide range of

biological interactions involving diverse types of entities. The MultiXrank Random

Walk with Restart algorithm can effectively explore such multilayer networks, offer-

ing opportunities for various analyses. In this study, we demonstrate the versatility

of the MultiXrank algorithm through three distinct biological applications: priori-

tising drugs and genes in a disease context, predicting gene-disease associations,

and comparing and clustering diseases.

4 Materials and methods

4.1 Construction of the biological networks

The different studies presented in this manuscript explore different biological net-

works summarised in Supplementary Table S1. Detailed information on the biolog-

ical networks used in each study are provided in Supplementary Section 1.

In study 1, for node prioritisation in leukemia, we used a multilayer network

composed of a gene and a drug multiplex networks, connected by bipartite gene-

drug interactions (Supplementary Section 1.A, Supplementary Table S1). In the

gene multiplex network, we encode 3 types of gene interactions: protein-protein in-

teractions, molecular complexes and pathways gathered from public databases. In
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the drug multiplex network, we encode 4 types of drug interactions: adverse interac-

tions, experimental drug combinations, computationally predicted drug interactions

and pharmacological interactions. The two multiplex networksare connected with

gene-drug associations extracted from the repoDB database [60].

In study 1, for node prioritisation in epilepsy, we used Hetionet [18], an net-

work containing 11 types of nodes (Supplementary Section 1.B, Supplementary

Table S1). The first multiplex network encodes 3 types of gene interactions: co-

expression, physical interaction and regulation. The second and third monoplex

networks encode for disease similarities and drug similarities, respectively. The three

monoplex/multiplex networks are connected with bipartite gene-drug interactions,

gene-disease interactions and disease-drug interactions. The multilayer network also

contains other node types (including pathways, biological process and pharmaco-

logic classes) that are connected to the gene, drug and disease networks via bipartite

interactions.

In study 2, Gene-Disease associations were predicted from MultiXrank output

scores obtained by exploring a multilayer network composed of a gene multiplex

network and a disease monoplex network, connected by gene-disease bipartite in-

teractions (Supplementary Section 1.A, Supplementary Table S1). The multiplex

network encodes gene interactions, identical to the one used in node prioritisation

for leukemia. The monoplex network encode disease interactions. The gene-disease

bipartite associations were extracted from an outdated version of the DisGeNET

database (v2.0, 2014).

Finally, in study 3, we obtained MultiXrank scores from the exploration of eight

hematopoietic multilayer networks (Supplementary Section 1.C, Supplementary Ta-

ble S1). Those networks are composed of a disease monoplex network, a gene mul-

tiplex network and two genomic monoplex networks. The gene multiplex network

encode gene interactions, and is identical to the one used in node prioritisation

for leukemia. The disease monoplex network encodes disease phenotypic proximi-

ties. The two remaining networks encode genomic information: PCHi-C fragment

interactions and TAD interactions. Importantly, the gene and disease networks are

identical in the eight hematopoietic networks, whereas the PCHi-C and TAD net-

works were computed for each hematopoietic cell type from a dataset obtained

in [20]. We describe in detail the processing pipeline applied to obtain the PCHi-C

fragment and TAD layers in Supplementary Section 1.C.

4.2 RWR with MultiXrank

All RWR scores were obtained using the MultiXrank Python package [17], avail-

able on GitHub: https://github.com/anthbapt/multixrank. Parameters used in each

study are described in Supplementary Section 2, 3 and 4 (Supplementary Tables

S3, S6, S8 and S11).

4.3 Network visualisation

The network visualisation displayed in Figure 1 was obtained with Cytoscape [61].

4.4 Supervised classification

We created the gene-disease associations dataset from an outdated version of Dis-

GeNET (v2.0, 2014). We obtained 1914 gene-disease associations. We generated a
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negative dataset by randomly picking 3828 pairs of gene and disease nodes that are

not considered associated in DisGeNET v2.0 (2014). For each positive and nega-

tive gene-disease association defined in the training dataset, we used both the gene

and the disease nodes as seeds when running MultiXrank (parameters defined in

Supplementary Table S8). Then, we trained Random Forest and XGBoost binary

classifiers (Supplementary Table S9) based on the MultiXrank output scores for

predicting gene-disease associations. The evaluation of the binary classifiers is done

on an updated version of the gene-disease associations dataset; DisGeNET v7.0

(2020). The test dataset contained 7218 novel positive gene-disease associations,

and the negative dataset is randomly selected twice as many (i.e. 14 436) negative

associations. We ran MultiXrank using as seeds the gene and disease nodes of each

association of the evaluation dataset, using the same parameters used for obtaining

MultiXrank scores for the training dataset (Supplementary Table S8). Then, the

MultiXrank output scores were used as input of the previously computed Random

Forest and XGBoost models (trained on the data obtained with the gene-disease

association of DisGeNET v2.0 (2014)) to predict their label. Finally, we compared

the predicted labels to the true labels. We report the results for each model in Sup-

plementary Table S10. The full procedure is detailed in Supplementary Section 3

and Supplementary Figure S5.

4.5 Integration of MultiXrank output scores

Disease-disease rank distances per cell type and per node type

To compute disease-disease distance within each hematopoietic multilayer network,

we start by integrating the scores of MultiXrank for each node type independently.

First, we create a disease distance matrix for each hematopoietic multilayer net-

work c and node type t using equation 1:

Dc,t
disi,disj

=

Nc,t
k∑

k=1

√
distdisi,k + distdisj ,k

( 2k+1
2 )2

(1)

with disi and disj , the two seeds (i.e. immune diseases) considered and N c,t
k the

number of nodes of type t in the multilayer network c.

The rank distances, distdisi,k and distdisj ,k, are computed using the following

equations:

distdisi,k = |(k − r
disj
disi,k

)|2

with r
disj
disi,k

, the rank of the node at position k for disease disi in the list of scores

for disease disj .

distdisj ,k = |(rdisidisj ,k
− k)|2
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with rdisidisjk
, the rank of the node at position k for disease disj in the list of scores

for disease disi.

The distance distdisi,k (respectively distdisj ,k) represents the square of the abso-

lute difference between the rank of the node at position k for disease disi (resp.

disj) and the rank of the same node for disease disj (resp. disi).

Disease-disease integrated rank distances

We integrate disease-disease rank distances across hematopoietic multilayer net-

works for each node type using the following equation:

Dt
disi,disj =

√√√√ Nc∑
c=1

Dc,t
disi,disj

2
(2)

with Dt
disi,disj

the integrated disease distances across hematopoietic multilayer net-

works for node type t, Nc the total number of hematopoietic multilayer networks

(i.e. eight) and Dc,t
disi,disj

the disease-disease distances computed for hematopoietic

multilayer network c and node type t.

4.6 Multiview Clustering

For clustering immune diseases based on the distance matrices Dt
disi,disj

obtained

for each node type t, we employed the multiview spectral clustering algorithm [62]

implemented in the mvlearn python package [63] with n clusters = 3.

4.7 t-SNE projection

To visualise the immune disease clustering, we first concatenated the four immune

disease distance matrices Dt
disi,disj

. This concatenated matrix was then projected in

a two-dimensional t-SNE (t-distributed stochastic neighbor embedding) space [40].

The points were colored according to their assigned cluster, obtained from the

multiview clustering.
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Additional Files

Additional file 1 — Supplementary information for: Random Walk with Restart on multilayer networks: from node

prioritisation to supervised link prediction and beyond

Supplementary Section 1: Multilayer networks

Supplementary Section 2: Node prioritisation to study human genetic diseases

Supplementary Section 3: Supervised prediction of gene-disease associations

Supplementary Section 4: Diffusion profiles comparison to unveil immune diseases similarities

Supplementary Table S1: Monoplex, multiplex and bipartite networks used in our three study cases. Of note, this

table includes only the networks used in our analysis and does not encompass the broader non-network format

information used in our studies.

Supplementary Table S2: PCHi-C fragment networks characteristics.

Supplementary Table S3: MultiXrank parameters used for node prioritisation in leukemia.

Supplementary Table S4: Top 10 prioritised genes for leukemia, associated MultiXrank scores, degree and distance

to seed nodes.

Supplementary Table S5: Top 10 prioritised drugs for leukemia, associated MultiXrank scores, degree and distance

to seed nodes.

Supplementary Table S6: Four sets of MultiXrank parameters used for node prioritisation in epilepsy. It is to note

that only the λ parameter differs.

Supplementary Table S7: DrugBank Categories associated to at least 7 drugs from the 41 drugs prioritised by

MultiXrank (parameter set number 4, top-100) that are not prioritised by Hetionet. The first column of the table

corresponds to the DrugBank Category and the second column (N ) corresponds to the number of drugs mapped to

each category. It is to note that some drugs belong to more than one class.

Supplementary Table S8: MultiXrank parameters used for the supervised prediction of gene-disease associations.
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Supplementary Table S9: XGBoost and Random Forest models and performance metrics for predicting Gene-Disease

associations from DisGeNET v2.0 (2014). The models are trained and tested according to the protocol described in

Supplementary Figure S5. We trained the XGBoost and Random Forest models using various class weights, large

weights penalising classification errors for the corresponding class (pos., for positive associations and neg., for

negative associations). We report several performance metrics for each model: Balanced Accuracy (defined as the

average of recall obtained on each class), F1-score and number of True Positives (TP), False Positives (FP), True

Negatives (TN) and False Negative (FN). The best performing model is highlighted in grey.

Supplementary Table S10: XGBoost and Random Forest models and performance metrics for predicting

Gene-Disease associations from DisGeNET v7.0 (2020). The models are the same as those presented in

Supplementary Table S9, and have not been retrained for predicting DisGeNET v7.0 (2020) associations. We report

several performance metrics for each model: Balanced Accuracy (defined as the average of recall obtained on each

class), F1-score and number of True Positives (TP), False Positives (FP), True Negatives (TN) and False Negative

(FN). The best performing model is highlighted in grey.

Supplementary Table S11: MultiXrank parameters used for diffusion profiles comparison to unveil immune diseases

similarities.

Supplementary Table S12: Composition and characteristics of the immune disease clusters. Supplementary Table

S13: List of the 131 immune diseases considered in this study. The first column represents the number used to

identify each disease in the t-SNE projection. The second column represents the name of the disease. The third

column is the UMLS identifier of the disease.

Supplementary Figure S1: Tree lineages of hematopoietic cells. MPP: Multi-Potent Progenitor ; CLP: Common

Lymphoid Progenitor ; CMP: Common Myeloid Progenitor ; GMP: Granulocyte/Macrophage Progenitor ; MEP:

Megakaryocyte/Erythrocyte Progenitor. Lymphoid cells and myeloid cells included in this study are indicated in red

and blue, respectively.

Supplementary Figure S2: Left: Largest component of the PCHi-C fragment network built from the nB cells dataset.

Right: Degree distribution of the PCHi-C fragment network defined on the left, with a zoom on low degree nodes.

Supplementary Figure S3: Representation of the multilayer network used for node prioritisation in leukemia. The

network is composed of a gene multiplex network, a drug multiplex network and their associated bipartite network.

The gene multiplex network contains nodes corresponding to genes/proteins and edges corresponding to

protein-protein, molecular complex, and Reactome pathway associations. The drug multiplex network contains nodes

corresponding to drugs and edges corresponding to pharmacological, experimental, predicted, and clinical drug-drug

interactions (Supplementary section 1.A). For the sake of clarity, the bipartite network containing the interactions

connecting the two different types of nodes of the two multiplex networks is represented by the black arrow.

Supplementary Figure S4: Ictogenic properties of the 100 drugs prioritised by Hetionet and overlap with the top 100,

200, and 500 drugs prioritised by MultiXrank (parameter set 1 to 3, see Supplementary Table S6). The data on

ictogenic properties has been sourced from the Hetionet study. AIGD are anti-ictogenic drugs that have a seizure

suppressor effect (beige), IGD are ictogenic drugs (pink), and UKND are drugs with unknown effects (grey). The

outer circle of the pie chart displays the number of AIGD, IGD, and UNKD drugs amongst the 100 drugs prioritised

by Hetionet. The center of the pie chart displays the number of drugs from each category that were also prioritised

by MultiXrank in the top-100 (displayed in lighter shades), top-200 (displayed in middle shade), and top-500 drugs

(displayed in darker shades). The drugs prioritised in the top-500 include the drugs prioritised in the top-200, and

the top-200 includes the drugs prioritised in the top-100. The white part of the pie chart corresponds to the drugs

prioritised by Hetionet that are not in our MultiXrank top-500 prioritised drugs.

Supplementary Figure S5: Workflow of the random forest binary classifier. The left panel represents the training

step. Here, the bipartite network connecting the gene multiplex and the disease monoplex network is built from

DisGeNET v2.0 (2014). The gene-disease associations in DisGeNET v2.0 (2014) are also considered positive

gene-disease associations. Negative gene-disease associations are sampled randomly. Then, MultiXrank is run using

the gene and the disease nodes of each positive and negative gene-disease association, and the output scores are

saved as described in the matrix *. This matrix is used with the positive and negative labels to train a random forest

binary classifier. The right panel represents the test step. In this case, the true positive gene-disease associations are

created from DisGeNET v7.0 (2020) and true negative gene-disease associations are sampled randomly. We next ran

MultiXrank using as seeds the gene and disease nodes from each positive and negative gene-disease association, and

saved the output scores in the matrix **. Finally, this ** matrix is used as an input of the previously trained random

forest classifier to predict the labels of each gene-disease association. The predicted labels are then compared with

the true known labels. The protocol is the same for two or three multiplex networks.

Supplementary Figure S6: 2D PCA projection of the Jaccard index similarities between the different hematopoietic

cell types. Left: similarities computed on the PCHi-C fragment dataset. Right: similarities computed on the TAD

dataset. Red: Lymphoid cells. Blue: Myeloid cells.

Supplementary Figure S7: 2D PCA projection of the similarity between the hematopoietic cell types. The tree

lineage of hematopoietic cells is correctly found with the PCHi-C fragment, TAD and disease output scores of

MultiXrank. However, the tree lineage is not recovered for the protein output scores.

Supplementary Figure S8: 2D PCA projection of hematopoietic cell similarities with respect to the integrated

MultiXrank output scores effectively visualises the similarity between various hematopoietic cell types. In this

projection, lymphoid cells (depicted in red) and myeloid cells (depicted in blue) exhibit a relative separation within

the PCA space. Moreover, nCD4 and nCD8 cells are in close proximity to each other and relative proximity with nB

cells. Furthermore, Macrophage (Mac0) and its precursor, Monocyte (Mon), appear closely situated. Additionally,

Erythrocyte (Ery) and Megakaryocyte (MK), both stemming from the same progenitor, also exhibit high proximity

to each other.
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Figure 1 Subnetwork connecting the seed nodes (in red), the top 10 prioritised genes (diamonds)
and drugs (dots) and their neighborhood. Vertex colors indicate the ranking of the nodes (except
for the seed nodes, colored in red), with darker colors indicating better ranking. Edges are colored
according to their provenance: gene multiplex (blue), drug multiplex (grey) and bipartite
interactions (orange).
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Figure 2 Ictogenic properties of the 100 drugs prioritised by Hetionet and overlap with the top
100, 200, and 500 drugs prioritised by MultiXrank (parameter set 4, see Supplementary Table S6).
The data on ictogenic properties has been sourced from the Hetionet study [18]. AIGD are
anti-ictogenic drugs that have a seizure suppressor effect (beige), IGD are ictogenic drugs (pink),
and UKND are drugs with unknown effects (grey). The outer circle of the pie chart displays the
number of AIGD, IGD, and UNKD drugs amongst the 100 drugs prioritised by Hetionet (e.g., 77
Hetionet prioritised drugs are AIGD). The center of the pie chart displays the number of drugs
from each category that were also prioritised by MultiXrank in the top-100 (displayed in lighter
shades), top-200 (displayed in middle shade), and top-500 drugs (displayed in darker shades). For
instance, 55 top-100 MultiXrank prioritised drugs are AIGD and 64 top-200 MultiXrank prioritised
drugs are AIGD. The drugs prioritised in the top-500 include the drugs prioritised in the top-200,
and the top-200 includes the drugs prioritised in the top-100. The white part of the pie chart
corresponds to the drugs prioritised by Hetionet that are not in our MultiXrank top-500 prioritised
drugs.
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Figure 3 Hematopoietic multilayer networks composed of two genomic layers built from PCHi-C
and TAD data, of a gene multiplex network and of a disease monoplex network. The disease
monoplex and the gene multiplex network are the same in all the hematopoietic multilayer
networks. However, the PCHi-C and TAD layers are specific to each hematopoietic cell line. The
black arrows represent the bipartite networks that connect two different types of nodes.

Figure 4 t-SNE projection of the integrated distances between the 131 different immune diseases.
Colors indicate the clusters in which the diseases were grouped according to the multiview spectral
clustering algorithm. Points highlighted with grey background correspond to diseases cited in the
main text.
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