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Introduction

Random Walk is a powerful approach for analysing and exploring networks. By simulating the movement of a particle randomly traversing nodes and edges in a network, Random Walks are able to capture several topological and structural properties of networks [START_REF] Masuda | Exploring complex networks through random walks[END_REF], including connectivity [2], community structure [START_REF] Macropol | Rrw: repeated random walks on genome-scale protein networks for local cluster discovery[END_REF], and node centrality [START_REF] Newman | A measure of betweenness centrality based on random walks[END_REF]. Inspired from the PageRank algorithm [START_REF] Brin | The anatomy of a large-scale hypertextual web search engine[END_REF], initially developed for ranking web pages in search results by simulating the behavior of an internet user following hyperlinks or restarting on arbitrary pages, Random Walk with Restart (RWR) was first introduced by Pan et al. [START_REF] Pan | Automatic multimedia cross-modal correlation discovery[END_REF]. In the RWR approach, the random particle, at each step, can navigate from one node to one of its neighbors or restart its walk from a node randomly sampled from a set of seed nodes. As PageRank, this strategy prevents the walker from getting trapped in dead ends and allows a more comprehensive exploration of the network's topology [START_REF] Langville | Google's PageRank and Beyond: The Science of Search Engine Rankings[END_REF]. RWR, by enabling restart from one or several seed nodes, simulates a diffusion process in which the objective is to determine the steady state of an initial probability distribution [START_REF] Gómez | Diffusion dynamics on multiplex networks[END_REF]. This steady state represents a measure of proximity between the seed(s) and all the network nodes, quantifying the extent to which the influence or information from the seed nodes has spread throughout the network. It overall identifies nodes that are closely connected to the seed(s) and provides valuable insights into the network's organisation.

In computational biology, RWR has been particularly useful for the exploration of large-scale interaction networks and to derive guilt-by-association knowledge. For instance, RWR strategies significantly outperformed local distance measures for the prediction of gene-disease associations [START_REF] Köhler | Walking the interactome for prioritization of candidate disease genes[END_REF]. They have also been successfully applied to protein function prediction [START_REF] Cho | Compact integration of multi-network topology for functional analysis of genes[END_REF], identification of disease comorbidity [START_REF] Ko | Identification of disease comorbidity through hidden molecular mechanisms[END_REF], or drug-target interaction prediction [START_REF] Chen | Drug-target interaction prediction by random walk on the heterogeneous network[END_REF]. More recently, RWR have been applied to drug prioritisation and repurposing for SARS-CoV-2 [START_REF] Peng | Prioritizing antiviral drugs against sars-cov-2 by integrating viral complete genome sequences and drug chemical structures[END_REF][START_REF] Han | Identification of sars-cov-2-induced pathways reveals drug repurposing strategies[END_REF].

Originally designed for investigating simple single-layer (i.e., monoplex) networks, RWR has been extended to navigate more complex networks, i.e. networks composed of multiple layers of interaction data. One such extension was proposed by Li and Patra [START_REF] Li | Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network[END_REF] and introduced a RWR exploration of heterogeneous networks. They applied this approach to predict novel gene-phenotype relationships using a heterogeneous network composed of gene-gene interactions, phenotype-phenotype interactions, and known gene-phenotype associations. We introduced a RWR allowing the exploration of multiplex-heterogeneous networks, i.e., multiplex networks connected to each other by bipartite interactions [START_REF] Valdeolivas | Random walk with restart on multiplex and heterogeneous biological networks[END_REF]. More recently, we developed MultiXrank, a RWR algorithm able to explore generic multilayer networks [START_REF] Baptista | Universal multilayer network exploration by random walk with restart[END_REF]. We define a generic multilayer network as a multilayer network composed of any number and combination of multiplex and monoplex networks connected by bipartite interaction networks. In this multilayer framework, all the networks can also be weighted and/or directed. MultiXrank hence offers the opportunity to apply RWR on multilayer networks containing rich and complex interactions and fundamentally better suited for representing the multi-scale interactions observed in biological systems. In practice, MultiXrank outputs scores representing a measure of proximity between the seed(s) and all the nodes of the multilayer network. These output scores can then be used in a large number of downstream applications. We aim here to illustrate the versatility of the use of MultiXrank output scores. First, we show that MultiXrank can be used for node prioritisation. From a multilayer network containing gene, drug, and diseases interactions, we used MultiXrank scores to prioritise candidate drugs for leukemia. We also used the large network assembled in the Hetionet project [START_REF] Himmelstein | Systematic integration of biomedical knowledge prioritizes drugs for repurposing[END_REF], encompassing nine distinct types of nodes (including genes, drugs, diseases, biological processes, and pharmacological classes), to prioritise drugs for epilepsy. Second, we show that MultiXrank scores can be used to train a supervised classifier to predict gene-disease associations. Finally, we show how MultiXrank can be used to compute and compare diffusion profiles obtained for immune diseases on a multilayer network containing genomic information extracted from Promoter Capture Hi-C (PCHi-C) [START_REF] Schoenfelder | The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements[END_REF] experiments in different hematopoietic cells [START_REF] Javierre | Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters[END_REF]. Overall, these diverse applications of MultiXrank demonstrate its versatility, both in the types of networks it can explore and the variety of downstream analyses that can be applied using its output scores.

1 Node prioritisation to study human genetic diseases RWR approaches are frequently used to assess the proximity between seed node(s) and all the other nodes in a network. By leveraging the RWR output scores, nodes that are proximal to the seed node(s) can be prioritised. We will illustrate this prioritisation strategy by exploring the heterogeneous and rich information contained in biological multilayer networks using MultiXrank to prioritise genes and drugs in leukemia and epilepsy.

Prioritising genes and drugs of interest in Leukemia using MultiXrank on a gene and drug multilayer network

We first focused on leukemia, a disease for which we can confront our predictions with the knowledge accumulated in the literature. We prioritised genes and drugs of interest for leukemia based on MultiXrank output scores obtained from exploring a multilayer network composed of a gene multiplex network and a drug multiplex network, connected with a gene-drug bipartite network representing known drugtarget associations (Materials and methods).

We selected two seeds associated with leukemia. More precisely, we selected HRAS as gene seed. HRAS is a gene of the RAS gene family associated with a wide variety of tumors, in particular in myeloid leukemia [START_REF] Tyner | High-throughput sequencing screen reveals novel, transforming ras mutations in myeloid leukemia patients[END_REF]. We also selected a drug seed, Tipifarnib (DB04960), a drug investigated for the treatment of acute myeloid leukemia and other types of cancer [START_REF] Thomas | Tipifarnib in the treatment of acute myeloid leukemia[END_REF][START_REF] Yanamandra | Tipifarnib-induced apoptosis in acute myeloid leukemia and multiple myeloma cells depends on ca2+ influx through plasma membrane ca2+ channels[END_REF][START_REF] Luger | Tipifarnib as maintenance therapy in acute myeloid leukemia (aml) improves survival in a subgroup of patients with high risk disease. results of the phase iii intergroup trial e2902[END_REF]. Using these two nodes jointly as seeds is particularly relevant as HRAS is a farnesylated protein and Tipifarnib is a farnesyltransferase inhibitor [START_REF] Mcgeady | The farnesyl group of h-ras facilitates the activation of a soluble upstream activator of mitogen-activated protein kinase[END_REF]. We applied MultiXrank (with the parameters specified in Supplementary Table S3) using these two seeds jointly and selected the top 10 highest-scoring gene and drug nodes (Supplementary Tables S4 andS5, respectively). We extracted the subnetwork connecting the seed nodes and the top 10 prioritised genes and drugs and their close neighborhood (Figure 1). We observed that prioritised nodes are close to both seeds, with a maximum shortest path distance between a prioritised node and a seed node equal to 4 (Supplementary Tables S4 andS5).

A literature survey of these top-10 prioritised drugs and genes establishes known or suspected connections with leukemia (Supplementary section 2.A). For instance, the top scoring gene, CYP3A4, is a drug-metabolising enzyme that has been shown to play a role in drug resistance in leukemia [START_REF] Su | Regulation of drug metabolizing enzymes in the leukaemic bone marrow microenvironment[END_REF]. The second highest-scoring gene, FNTB, is coding the farnesyltransferase, and a target of Tipifarnib [START_REF] Venkatasubbarao | Farnesyl transferase inhibitor (R115777)-induced inhibition of STAT3(Tyr705) phosphorylation in human pancreatic cancer cell lines require extracellular signal-regulated kinases[END_REF]. Different genes related to signal transduction and known to be relevant for cancer, such as RAF1, RASGRP1, RASA1, or ARAF, are also identified among the top-scoring genes. Moreover, the top prioritised drug, Astemizole (DB00637), is a good candidate for leukemia treatment as it's anti-leukemic properties have been demonstrated in human leukemic cells [START_REF] Laverdiere | Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia[END_REF]. Interestingly, Astemizole is metabolised by CYP3A4 [START_REF] Matsumoto | Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine[END_REF], the top-scoring gene.

1.2 Prioritising genes and drugs of interest in Epilepsy using MultiXrank on a biomedical knowledge graph

We applied MultiXrank to prioritise candidate drugs for epilepsy, using as seed the epilepsy disease node (OID:1826) in the large and heterogeneous knowledge graph assembled in the Hetionet project [START_REF] Himmelstein | Systematic integration of biomedical knowledge prioritizes drugs for repurposing[END_REF]. This heterogeneous network is composed of eleven different types of nodes (Materials and Methods). We compared the drugs top-scored by MultiXrank, which is fully unsupervised, with the drugs prioritised by the Hetionet strategy, a supervised machine learning approach based on a regularised logistic regression model [START_REF] Himmelstein | Systematic integration of biomedical knowledge prioritizes drugs for repurposing[END_REF]. To evaluate the robustness of MultiXrank in relation to the choice of input parameters, we applied four distinct sets of parameters (Supplementary Table S6).

Most drugs are top-prioritised by both approaches. For instance, for one of the sets of parameters tested in MultiXrank (set of parameters number 4, Supplementary Table S6), 59% of the top-100 Hetionet prioritised drugs are also in the top-100 MultiXrank prioritised drugs, 79% are in the top-200 MultiXrank prioritised drugs, and 99% are in the top-500 MultiXrank prioritised drugs (Figure 2).

We further checked the 41 drugs from the top-100 drugs identified by MultiXrank that are not prioritised by Hetionet (Supplementary Table S7). Interestingly, 3 of them (namely, Propofol, Vigabatrin and Diclofenac, respectively ranked 8, 23 and 49 by MultiXrank) have been tested in clinical trials for epilepsy, according to the DrugBank [START_REF] Wishart | DrugBank 5.0: a major update to the DrugBank database for 2018[END_REF]. After extracting the DrugBank Categories associated to those 41 drugs (Supplementary Table S7), we observed that 24 of them are classified as Cytochrome P-450 Substrates.A recent study has shown that spontaneous recurrent seizures in mice modify Cytochrome P-450 expression in the liver and hippocampus. The authors hypothesise that nuclear receptors or inflammatory pathways can be considered as candidates for Cytochrome P-450 regulation during seizures [START_REF] Runtz | Hepatic and hippocampal cytochrome p450 enzyme overexpression during spontaneous recurrent seizures[END_REF]. Another study showed that Cytochrome P-450 enzymes can have a significant impact on the response to anti-epileptic drugs [START_REF] Gogou | Efficacy of antiepileptic drugs in the era of pharmacogenomics: A focus on childhood[END_REF]. The second most represented DrugBank Category in the list of the 41 drugs prioritised by MultiXrank but not by Hetionet was the category Agents that produce hypertension, which map to 18 drugs. A review of the existing literature regarding hypertension and epilepsy show that those two conditions often co-occur [START_REF] Wilner | Common comorbidities in women and men with epilepsy and the relationship between number of comorbidities and health plan paid costs in 2010[END_REF][START_REF] Stöllberger | Cardiorespiratory findings in sudden unexplained/unexpected death in epilepsy (SUDEP)[END_REF]. Furthermore, the relationship between the two conditions could be bidirectional, meaning that they can influence and exacerbate each other [START_REF] Szczurkowska | Epilepsy and hypertension: The possible link for sudden unexpected death in epilepsy?[END_REF].

These results indicate that MultiXrank can provide predictions complementary to the Hetionet supervised machine learning approach. In addition, MultiXrank predictions can be easily interpreted as the subnetworks underlying the top-scoring nodes can be easily extracted.

Supervised prediction of gene-disease associations

In a second study, we present a supervised approach to predict gene-disease associations. Predicting gene-disease associations is crucial for the diagnosis, understanding, and treatment of genetic diseases. Among available approaches to predict gene-disease associations, network-based methods have been particularly exploited and have demonstrated good performances [START_REF] Ata | Recent advances in network-based methods for disease gene prediction[END_REF]. These network approaches were initially based mainly on unsupervised strategies, but an increasing number of methods are implementing supervised strategies [START_REF] Ata | Recent advances in network-based methods for disease gene prediction[END_REF]. Here, we use the output scores of Multi-Xrank to train supervised XGBoost and Random Forest binary classifiers to predict gene-disease associations (Supplementary Figure S5).

We used a multilayer network composed of a gene multiplex network and a disease monoplex network (Materials and Methods). These multiplex and monoplex networks are connected by a gene-disease bipartite network constructed with an outdated version of DisGeNET (v2.0, 2014, [START_REF] Piñero | Disgenet: a discovery platform for the dynamical exploration of human diseases and their genes[END_REF]). The edges of the bipartite network are weighted according to the support score provided by DisGeNET v2.0 (2014). We applied MultiXrank on the multilayer network described above, using the gene and disease nodes from each gene-disease association as seeds. The parameters used for running MultiXrank are detailed in Supplementary Table S8. We used both positive associations (i.e. true gene-disease associations) and negative associations (i.e., random gene-disease pairs that are not associated according to DisGeNET). For each set of positive seeds (true gene-disease association), the gene-disease bipartite edge connecting the two seeds was removed from the bipartite network before training.We collected MultiXrank output scores obtained for all positive and negative gene-disease pairs of seeds and trained binary XGBoost and Random Forest classifiers with different parameters (Supplementary Table S9). We then tested the performance of the classifiers in predicting unseen gene-disease associations from the outdated version of DisGeNET that were kept out for testing as well as the genedisease associations that have been added in the updated version of DisGeNET (v7.0, 2020, [START_REF] Piñero | The disgenet knowledge platform for disease genomics: 2019 update[END_REF]). The full machine learning procedure is detailed in the Materials and Methods section. We also report the performances of our models in predicting DisGeNET v2.0 (2014) and DisGeNET v7.0 (2020) associations in Supplementary Tables S9 andS10, respectively. For the prediction of unseen test DisGeNET v2.0 (2014) associations, the best classification performance was achieved with an XG-Boost model taking class imbalance into account. This model reached a balanced accuracy of 0,85 and an F1-score of 0,79, showing the predictive potential of Mul-tiXrank output scores. However, the prediction performance dropped considerably for predicting DisGeNET v7.0 (2020) associations (balanced accuracy 0,64 and F1score 0,53). It should be noted that the MultiXrank scores used for the classification of DisGeNET v2.0 (2014) and DisGeNET v7.0 (2020) associations were calculated on the same network, constructed solely from the information contained in Dis-GeNET v2.0 (2014). Importantly, DisGeNET v2.0 (2014) reported only 381 654 gene-disease associations, whereas DisGeNET v7.0 (2020) reported 1 135 037 associations, which represents a threefold increase. Moreover, over the 21 666 genes reported in DisGeNET v7.0 (2020), only 14 255 appeared in DisGeNET v2.0 (2014). Similarly, only 38% of the 30 170 diseases reported in DisGeNET v7.0 (2020) were also reported in DisGeNET v2.0 (2014). The substantial increase in the amount of information contained in DisGeNET between 2014 and 2020 is potentially the cause of the significant decrease in classification performance.

Diffusion profiles comparison to unveil immune diseases similarities

The scores resulting from a random walk using a given seed can be regarded as a diffusion profile and represent a network-based molecular signature. Diffusion profiles obtained starting from different seeds can then be compared to reveal signature proximities. Here, we propose to compute and compare the diffusion profiles obtained using 131 immune diseases (Supplementary Table S13) as seed in MultiXrank applied to several multilayer networks. We created eight hematopoietic cell-specific multilayer networks, each composed of four different monoplex/multiplex networks (Figure 3, Materials and Methods). The first two monoplex/multiplex networks incorporate gene and disease interactions sourced from public databases. These two layers are the sames across all the eight multilayer networks. The remaining two layers encode Promoter Capture Hi-C (PCHi-C) fragment interactions and Topologically Associating Domain (TAD) interactions observed in various hematopoietic cell lines, extracted from a dataset generated in [START_REF] Javierre | Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters[END_REF]. It's important to note that the PCHI-C fragment layer and the TAD layer are unique to each hematopoietic cell line, and hence vary across the eight multilayer networks (Supplementary Section 1.C). The strength of this multilayer network constructions lies in its capacity to combine non cell-specific generic gene and disease interactions with data regarding genomic interactions unique to hematopoietic cell lineages. In addition, the genomic interaction layers allow us to consider data representing the 3D conformation of DNA and non-coding regions of the genomes. This 3D conformation of DNA is a key to understanding, for instance, genomic structural variations that are key players in the study of diseases [START_REF] Spielmann | Structural variation in the 3d genome[END_REF]. We demonstrated that these genomic data maintain the signal of the hematopoietic cell type. Indeed, the PCHi-C fragments and TAD datasets capture the tree lineage of hematopoietic cells (Supplementary Section 4.A, Supplementary Figure S6). We also demonstrate that this lineage signal is captured in the RWR scores obtained from applying MultiXrank to the eight multilayer networks (Supplementary Section 4.B, Supplementary Figures S7 andS8).

Here, we aim to apply MultiXrank on the eight hematopoietic multilayer networks using as seeds 131 different immune diseases to obtain the disease diffusion profiles. We consider the diffusion profiles as disease signatures. We will next cluster the immune diseases based on the similarity of their diffusion profiles. We hypothesise that such clustering can reveal potentially similar immune diseases.

To reveal similarities between the 131 immune diseases based on the diffusion profiles obtained on the eight multilayer networks, we first compute disease-disease distances for each cell type (i.e. hematopoietic multilayer network) and node type (i.e. disease nodes, protein nodes, PCHi-C fragment nodes and TAD nodes) (equation 1, Materials and Methods).

Then, the disease-disease distance matrices obtained for the eight hematopoietic multilayer networks are fused (equation 2, Materials and Methods). This procedure produces 4 disease-disease integrated similarity matrices, one for each node type in the multilayer networks. These matrices are then used to cluster the immune diseases using a multiview clustering algorithm (Materials and Methods). The obtained clusters are detailed in Supplementary Table S12. Additionally, the 4 matrices are concatenated into a single matrix and projected into a 2D t-SNE (tdistributed stochastic neighbor embedding) [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF] space. In this projection, we label each immune disease with their corresponding cluster (Figure 4).

Interestingly, we can assess the relevance of the approach by examining diseases that represent distinct subtypes of the same condition. These disease subtypes are caused by different mutated genes and hence present different connection patterns in the gene and disease monoplex/multiplex networks. Nevertheless, being subtypes of the same condition, we expect these diseases to have similar network-based diffusion profiles and cluster together. Our examination of the results substantiates this, as demonstrated for all diseases subtypes included in our list of 131 immune diseases, listed below:

• Autosomal recessive early-onset inflammatory bowel disease 28 (UMLS:C2751053, seed 54) and autosomal recessive early-onset inflammatory bowel disease 25 (UMLS:C2675508, seed 55), both grouped in cluster 0 and close in the t-SNE space (Figure 4, cluster 0) ; • Hypogammaglobulinemia AGM2 (UMLS:C3150750, seed 11), hypogammaglobulinemia AGM3 (UMLS:UMLS:C3150751, seed 12), hypogammaglobulinemia AGM4 (UMLS:C3150752, seed 13), hypogammaglobulinemia AGM5 (UMLS:C3150753, seed 14) and hypogammaglobulinemia AGM6 (UMLS:C3150207, seed 15), all grouped in cluster 1. In the t-SNE space, hypogammaglobulinemia AGM2, AGM4 and AGM5 are close, as well as hypogammaglobulinemia AGM3 and AGM6 (Figure 4, cluster 1) ; • Immunodeficiency with hyper IgM type 1 to type 5 (UMLS:C0398689 (seed 86), UMLS:C1720956 (seed 87), UMLS:C1720957 (seed 88), UMLS:C1842413 (seed 89), UMLS:C1720958 (seed 90)), all grouped in cluster 1 and close in the t-SNE space (Figure 4, cluster 1) ; • complement component 8 deficiency type 1 (UMLS:C3151081, seed 66) and Complement component 8 deficiency type 2 (UMLS:C3151080, seed 67), both grouped in cluster 1 and close in the t-SNE space (Figure 4, cluster 1) ; • Activated PI3K-Delta Syndrome 1 (UMLS:C3714976, seed 108) and activated PI3K-Delta Syndrome 2 (UMLS:C4014934, seed 107) are grouped in cluster 1 and close in the t-SNE projection (see Figure 4, cluster 1). • Aicardi-Goutières syndrome 1 (UMLS:C0796126, seed 45) and Aicardi-Goutières syndrome 2 (UMLS:C3489724, seed 46) are grouped in cluster 2 (Figure 4, cluster 2).

We conducted additional analysis to explore the composition of disease clusters and extract their essential characteristics: Facing the apparent diversity of diseases included in cluster 2, comparatively to the well defined clusters 0 and 1, we further investigated the composition of cluster 2. A literature review on the diseases included in this cluster shows that most of them are associated with blood diseases on one hand and cardiovascular system diseases on the other hand. Indeed, many of the diseases that are not directly associated with leukemia or lymphoma appear to be comorbid to those cancers. For instance, elevated risks of lymphoma and leukemia have been reported for patients with pernicious anemia [START_REF] Hsing | Pernicious anemia and subsequent cancer. A population-based cohort study[END_REF] and myelodysplastic syndromes can evolve to acute myeloid leukemia [START_REF] Corey | Myelodysplastic syndromes: the complexity of stem-cell diseases[END_REF]. Other diseases from cluster 2 that are considered associated with lymphoma and leukemia in the literature include ataxia telangiectasia [START_REF] Taylor | Leukemia and lymphoma in ataxia telangiectasia[END_REF], Bloom syndrome [START_REF] Arora | Bloom syndrome[END_REF], cartilage-hair hypoplasia [START_REF] Mäkitie | Increased incidence of cancer in patients with cartilage-hair hypoplasia[END_REF], and Chediak-Higashi syndrome [START_REF] Argyle | T-Cell Lymphoma and the Chediak-Higashi Syndrome[END_REF], among others. Moreover, many diseases from cluster 2 could be associated with cardiovascular diseases, according to the literature: congenital heart defects are observed in 50-85% of cases of CHARGE syndromes [START_REF] Sanlaville | CHARGE syndrome: an update[END_REF] ; the TARP syndrome is associated with congenital heart defects [START_REF] Niceta | TARP syndrome: Long-term survival, anatomic patterns of congenital heart defects, differential diagnosis and pathogenetic considerations[END_REF] ; congenital heart disease is a common feature in the 22q11.2 deletion syndrome (DiGeorge syndrome) [START_REF] Goldmuntz | 22q11.2 deletion syndrome and congenital heart disease[END_REF] ; Parry Romberg syndrome is associated with hypertrophic cardiomyopathy and rheumatologic heart disease [START_REF] Shah | Parry-Romberg Syndrome[END_REF] ; lichen sclerosus is associated with increased risk of cardiovascular comorbidities in female [START_REF] Ranum | Lichen sclerosus in female patients is associated with an increased risk of metabolic syndrome and cardiovascular comorbidities: a retrospective cohort review[END_REF] ; Pearson syndrome is often associated with cardiac conduction defects [START_REF] Shahid | Conduction defects in pediatric patients with Pearson syndrome: When to pace?[END_REF] ; the association of inclusion body myositis and cardiac disease is debated [START_REF] Ballo | Dilated cardiomyopathy and inclusion body myositis[END_REF] ; a case of Melkersson-Rosenthal syndrome affecting cardiac connective tissues was reported in [START_REF] Chan | Melkerrson-Rosenthal syndrome with cardiac involvement[END_REF].

Finally, we examined some diseases close to each other in the t-SNE space. We detail here 3 examples:

• Chronic recurrent multifocal osteomyelitis (CRMO) (UMLS:C0410422, seed 2) and Majeed syndrome (UMLS:C1864997, seed 99) ( Figure 4, cluster 0): CRMO is known as one of the major features of Majeed syndrome [START_REF] Ferguson | Majeed Syndrome: A Review of the Clinical, Genetic and Immunologic Features[END_REF]. • Netherton syndrome (UMLS:C0265962, seed 103) and Eosinophilic esophagitis (UMLS:C0341106, seed 5): (see Figure 4, cluster 0): Eosinophilic esophagitis is observed in 44% of the people with Netherton syndrome [START_REF] Bellon | Eosinophilic esophagitis is a trait of netherton syndrome[END_REF]. • Myasthenia gravis (UMLS:C0026896, seed 21) and Myositis (UMLS:C0027121, seed 22) (see Figure 4, cluster 0): several cases of co-existence of Myasthenia Gravis and Myositis are reported in [START_REF] Paik | The Co-Existence of Myasthenia Gravis in Patients with Myositis: A Case Series[END_REF].

of these observations suggest that the integrated MultiXrank scores effectively capture similarities in disease diffusion profiles, indicating shared phenotypic manifestations and potential comorbidity patterns among the diseases.

Conclusion

Multilayer networks provide a valuable framework for integrating a wide range of biological interactions involving diverse types of entities. The MultiXrank Random Walk with Restart algorithm can effectively explore such multilayer networks, offering opportunities for various analyses. In this study, we demonstrate the versatility of the MultiXrank algorithm through three distinct biological applications: prioritising drugs and genes in a disease context, predicting gene-disease associations, and comparing and clustering diseases.

Materials and methods

Construction of the biological networks

The different studies presented in this manuscript explore different biological networks summarised in Supplementary Table S1. Detailed information on the biological networks used in each study are provided in Supplementary Section 1.

In study 1, for node prioritisation in leukemia, we used a multilayer network composed of a gene and a drug multiplex networks, connected by bipartite genedrug interactions (Supplementary Section 1.A, Supplementary Table S1). In the gene multiplex network, we encode 3 types of gene interactions: protein-protein interactions, molecular complexes and pathways gathered from public databases. In the drug multiplex network, we encode 4 types of drug interactions: adverse interactions, experimental drug combinations, computationally predicted drug interactions and pharmacological interactions. The two multiplex networksare connected with gene-drug associations extracted from the repoDB database [START_REF] Brown | A standard database for drug repositioning[END_REF].

In study 1, for node prioritisation in epilepsy, we used Hetionet [START_REF] Himmelstein | Systematic integration of biomedical knowledge prioritizes drugs for repurposing[END_REF], an network containing 11 types of nodes (Supplementary Section 1.B, Supplementary Table S1). The first multiplex network encodes 3 types of gene interactions: coexpression, physical interaction and regulation. The second and third monoplex networks encode for disease similarities and drug similarities, respectively. The three monoplex/multiplex networks are connected with bipartite gene-drug interactions, gene-disease interactions and disease-drug interactions. The multilayer network also contains other node types (including pathways, biological process and pharmacologic classes) that are connected to the gene, drug and disease networks via bipartite interactions.

In study 2, Gene-Disease associations were predicted from MultiXrank output scores obtained by exploring a multilayer network composed of a gene multiplex network and a disease monoplex network, connected by gene-disease bipartite interactions (Supplementary Section 1.A, Supplementary Table S1). The multiplex network encodes gene interactions, identical to the one used in node prioritisation for leukemia. The monoplex network encode disease interactions. The gene-disease bipartite associations were extracted from an outdated version of the DisGeNET database (v2.0, 2014).

Finally, in study 3, we obtained MultiXrank scores from the exploration of eight hematopoietic multilayer networks (Supplementary Section 1.C, Supplementary Table S1). Those networks are composed of a disease monoplex network, a gene multiplex network and two genomic monoplex networks. The gene multiplex network encode gene interactions, and is identical to the one used in node prioritisation for leukemia. The disease monoplex network encodes disease phenotypic proximities. The two remaining networks encode genomic information: PCHi-C fragment interactions and TAD interactions. Importantly, the gene and disease networks are identical in the eight hematopoietic networks, whereas the PCHi-C and TAD networks were computed for each hematopoietic cell type from a dataset obtained in [START_REF] Javierre | Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters[END_REF]. We describe in detail the processing pipeline applied to obtain the PCHi-C fragment and TAD layers in Supplementary Section 1.C.

RWR with MultiXrank

All RWR scores were obtained using the MultiXrank Python package [START_REF] Baptista | Universal multilayer network exploration by random walk with restart[END_REF], available on GitHub: https://github.com/anthbapt/multixrank. Parameters used in each study are described in Supplementary Section 2, 3 and 4 (Supplementary Tables S3, S6, S8 and S11).

Network visualisation

The network visualisation displayed in Figure 1 was obtained with Cytoscape [START_REF] Shannon | Cytoscape: a software environment for integrated models of biomolecular interaction networks[END_REF].

Supervised classification

We created the gene-disease associations dataset from an outdated version of Dis-GeNET (v2.0, 2014). We obtained 1914 gene-disease associations. We generated a negative dataset by randomly picking 3828 pairs of gene and disease nodes that are not considered associated in DisGeNET v2.0 (2014). For each positive and negative gene-disease association defined in the training dataset, we used both the gene and the disease nodes as seeds when running MultiXrank (parameters defined in Supplementary Table S8). Then, we trained Random Forest and XGBoost binary classifiers (Supplementary Table S9) based on the MultiXrank output scores for predicting gene-disease associations. The evaluation of the binary classifiers is done on an updated version of the gene-disease associations dataset; DisGeNET v7.0 (2020). The test dataset contained 7218 novel positive gene-disease associations, and the negative dataset is randomly selected twice as many (i.e. 14 436) negative associations. We ran MultiXrank using as seeds the gene and disease nodes of each association of the evaluation dataset, using the same parameters used for obtaining MultiXrank scores for the training dataset (Supplementary Table S8). Then, the MultiXrank output scores were used as input of the previously computed Random Forest and XGBoost models (trained on the data obtained with the gene-disease association of DisGeNET v2.0 (2014)) to predict their label. Finally, we compared the predicted labels to the true labels. We report the results for each model in Supplementary Table S10. The full procedure is detailed in Supplementary Section 3 and Supplementary Figure S5.

Integration of MultiXrank output scores

Disease-disease rank distances per cell type and per node type

To compute disease-disease distance within each hematopoietic multilayer network, we start by integrating the scores of MultiXrank for each node type independently.

First, we create a disease distance matrix for each hematopoietic multilayer network c and node type t using equation 1:

D c,t disi,disj = N c,t k k=1 dist disi,k + dist disj ,k ( 2k+1 2 ) 2 (1) 
with dis i and dis j , the two seeds (i.e. immune diseases) considered and N c,t k the number of nodes of type t in the multilayer network c.

The rank distances, dist disi,k and dist disj ,k , are computed using the following equations:

dist disi,k = |(k -r disj disi,k )| 2
with r disj disi,k , the rank of the node at position k for disease dis i in the list of scores for disease dis j .

dist disj ,k = |(r disi disj ,k -k)| 2
with r disi disj k , the rank of the node at position k for disease dis j in the list of scores for disease dis i .

The distance dist disi,k (respectively dist disj ,k ) represents the square of the absolute difference between the rank of the node at position k for disease dis i (resp. dis j ) and the rank of the same node for disease dis j (resp. dis i ).

Disease-disease integrated rank distances

We integrate disease-disease rank distances across hematopoietic multilayer networks for each node type using the following equation:

D t disi,disj = Nc c=1 D c,t disi,disj 2 
(2) with D t disi,disj the integrated disease distances across hematopoietic multilayer networks for node type t, N c the total number of hematopoietic multilayer networks (i.e. eight) and D c,t disi,disj the disease-disease distances computed for hematopoietic multilayer network c and node type t.

Multiview Clustering

For clustering immune diseases based on the distance matrices D t disi,disj obtained for each node type t, we employed the multiview spectral clustering algorithm [START_REF] Kumar | A co-training approach for multi-view spectral clustering[END_REF] implemented in the mvlearn python package [START_REF] Perry | mvlearn: Multiview machine learning in python[END_REF] with n clusters = 3.

t-SNE projection

To visualise the immune disease clustering, we first concatenated the four immune disease distance matrices D t disi,disj . This concatenated matrix was then projected in a two-dimensional t-SNE (t-distributed stochastic neighbor embedding) space [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF]. The points were colored according to their assigned cluster, obtained from the multiview clustering. S6). The data on ictogenic properties has been sourced from the Hetionet study [START_REF] Himmelstein | Systematic integration of biomedical knowledge prioritizes drugs for repurposing[END_REF]. AIGD are anti-ictogenic drugs that have a seizure suppressor effect (beige), IGD are ictogenic drugs (pink), and UKND are drugs with unknown effects (grey). The outer circle of the pie chart displays the number of AIGD, IGD, and UNKD drugs amongst the 100 drugs prioritised by Hetionet (e.g., 77 Hetionet prioritised drugs are AIGD). The center of the pie chart displays the number of drugs from each category that were also prioritised by MultiXrank in the top-100 (displayed in lighter shades), top-200 (displayed in middle shade), and top-500 drugs (displayed in darker shades). For instance, 55 top-100 MultiXrank prioritised drugs are AIGD and 64 top-200 MultiXrank prioritised drugs are AIGD. The drugs prioritised in the top-500 include the drugs prioritised in the top-200, and the top-200 includes the drugs prioritised in the top-100. The white part of the pie chart corresponds to the drugs prioritised by Hetionet that are not in our MultiXrank top-500 prioritised drugs. 
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 1 Figures
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 2 Figure 2 Ictogenic properties of the 100 drugs prioritised by Hetionet and overlap with the top 100, 200, and 500 drugs prioritised by MultiXrank (parameter set 4, see Supplementary TableS6). The data on ictogenic properties has been sourced from the Hetionet study[START_REF] Himmelstein | Systematic integration of biomedical knowledge prioritizes drugs for repurposing[END_REF]. AIGD are anti-ictogenic drugs that have a seizure suppressor effect (beige), IGD are ictogenic drugs (pink), and UKND are drugs with unknown effects (grey). The outer circle of the pie chart displays the number of AIGD, IGD, and UNKD drugs amongst the 100 drugs prioritised by Hetionet (e.g., 77 Hetionet prioritised drugs are AIGD). The center of the pie chart displays the number of drugs from each category that were also prioritised by MultiXrank in the top-100 (displayed in lighter shades), top-200 (displayed in middle shade), and top-500 drugs (displayed in darker shades). For instance, 55 top-100 MultiXrank prioritised drugs are AIGD and 64 top-200 MultiXrank prioritised drugs are AIGD. The drugs prioritised in the top-500 include the drugs prioritised in the top-200, and the top-200 includes the drugs prioritised in the top-100. The white part of the pie chart corresponds to the drugs prioritised by Hetionet that are not in our MultiXrank top-500 prioritised drugs.

Figure 3

 3 Figure 3 Hematopoietic multilayer networks composed of two genomic layers built from PCHi-C and TAD data, of a gene multiplex network and of a disease monoplex network. The disease monoplex and the gene multiplex network are the same in all the hematopoietic multilayer networks. However, the PCHi-C and TAD layers are specific to each hematopoietic cell line. The black arrows represent the bipartite networks that connect two different types of nodes.

Figure 4 t

 4 Figure 4 t-SNE projection of the integrated distances between the 131 different immune diseases. Colors indicate the clusters in which the diseases were grouped according to the multiview spectral clustering algorithm. Points highlighted with grey background correspond to diseases cited in the main text.
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