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Introduction

A network (or graph) is comprised of a set of nodes (or vertices) that are connected by a set of edges (or links); see InfoBox 1. Networks allow us to study the properties of a complex system that emerge from interactions between its individual components. Networks have been a powerful way to represent a variety of real-world phenomena, including technological, information, transportation, social, financial, software, ecological, chemical, and biological systems [START_REF] Barabási | Network Science[END_REF][START_REF] Newman | Networks[END_REF]. Our focus is on biological networks, which offer the understanding of complex functions at the levels of genes, proteins, cells, tissues, organs, etc. by representing a given biological system as an interconnected entity rather than a collection of individual components. Nodes represent biomolecules (e.g., amino acid residues within a protein, proteins within a cell, or cells within a tissue) and edges indicate interactions between the biomolecules (e.g., physical, functional, or chemical).

Network biology (Fig. 1) is an interdisciplinary field spanning computational (e.g., algorithms, graph theory, network science, data mining, and machine learning) and biological sciences. While the field has existed for nearly two decades, there have been rapid changes to it and new algorithmic challenges have arisen. This is caused by many factors, including increasing data complexity, such as multiple types of data becoming available at different levels (or scales) of biological organization, as well as growing data size. Ironically, despite the huge increase in the amount of available data, the data still remain incomplete and noisy. This means that the research directions in the field need to evolve as well. The word cloud in the center, generated using WordClouds.com, contains the top 30 most representative words from this paper. Note that each word's rank is based on the sum of the weights of the core word (e.g., learn) and its derived words (e.g., learns, learning, learned).

To facilitate a discussion on the future of the field, we organized a workshop on Future Directions in Network Biology at the University of Notre Dame in 2022. This targeted meeting brought together 39 active researchers in various aspects of network biology to present and discuss a short-and long-term vision for computational research in this field. 31 of the participants attended the workshop in person. Due to difficulties with international travel related to the COVID-19 pandemic, all in-person participants were from institutions in the United States. To draw on a combination of distinct ideas and experiences, all possible effort was made to balance diversity among the attendees. Namely, of the in-person attendees, 42% were female. There was a healthy mix of ranks (e.g., full, associate, or assistant professors, postdocs, and PhD students) among academic participants, and there was representation from industry and government.

• A (pairwise, homogeneous) graph (or network) G = (V, E) is defined by a set of nodes (or vertices) V and a set of edges (or links) E. All nodes v ∈ V are of the same type. An edge e u,v ∈ E indicates a relationship between exactly two nodes u, v ∈ V. • In a protein-protein interaction (PPI) network, nodes are proteins and edges correspond to physical bindings between proteins. Such a network of physical PPIs is also referred to as interactome. • An association PPI network may contain physical PPIs, but also PPIs derived from sequence or 3D structural similarities, genetic interactions, literature-mined edges, or other protein association types. • Correlation networks are calculated from -omics data collected across multiple samples. A prominent type are gene co-expression networks, where nodes (genes) are linked by undirected edges if the genes' expression levels are correlated strongly enough across the samples. • Regulatory networks capture directed relationships between regulators and their targets and describe causal (rather than correlative) relationships between biomolecules. A prominent type are gene regulatory networks where the regulators are transcription factor proteins (or other molecules that impact gene expression such as microRNAs) and the targets are genes. • Biomedical knowledge graphs describe semantic relationships between diverse biomedical entities (e.g., genes, diseases, and patients, as well as measurements associated with them). They represent facts using "subject-predicate-object" triples as the fundamental unit; the subject and object are nodes in the graph and the predicate (or relation) corresponds to a directed edge between the nodes. • A condition-unspecific (or context-unaware) network spans multiple conditions/contexts such as diseases, ages, cell types, tissues, etc., and ultimately, individuals. • A condition-specific network is inferred by integrating a context-unaware network with conditionspecific node measurement (e.g., gene expression or mutation) data. This identities network regions that are "active" in the given condition, which can be seen as condition-specific or disease-dysregulated pathways (sparse, tree-like subnetworks) or functional modules (dense, clique-like subnetworks). • A heterogeneous graph contains multiple types of nodes and/or edges.

• A multiplex/multilayer graph is a heterogeneous graph with a single node type and multiple edge types. • A multiscale graph is a heterogeneous graph with multiple node (and thus edge) types in which the different node types are at different scales (or levels) of biological organization. • A network-of-networks is a multiscale graph in which nodes at a higher level are graphs themselves at the lower level. • Multimodal data that are represented as a heterogeneous graph in network biology include multi-omic data such as epigenomic, transcriptomic, proteomic, and metabolomic molecular measurements as well as non-molecular data such as text and images from e.g., patients' electronic health records. • A hypergraph is a generalization of a (pairwise) graph in which an edge (also called a hyperedge) can connect any number (including more than two) of the nodes. • A subgraph (or subnetwork) G S = (V S , E S ) of a graph G = (V, E) consists of a set of nodes V S ⊆ V and a set of edges E S ⊆ E such that for each edge e ∈ E S , both of its end nodes must be in V S . • A subgraph is induced if and only if all edges between the nodes in V S that exist in E are in E S .

• Graphlets are connected, non-isomorphic, induced subgraphs of a (pairwise) graph.

• Hypergraphlets are graphlet extensions from (pairwise) graphs to hypergraphs. • A cluster or community in a graph is a set of topologically related nodes, typically nodes that are densely connected to each other and loosely connected to nodes in other clusters.

InfoBox 1: Basic terminology used in the paper.

The participants presented their views of important research directions, open problems, and challenges that would propel computational and in particular algorithmic advances in network biology. Video recordings of the presentations are publicly available on YouTube 1 , along with additional information on the workshop web site2 . One of the goals of the workshop was to understand how the field of algorithms is benefiting the field of network biology, and vice versa. Also, the workshop aimed to identify pressing challenges with well-established as well as emerging algorithms-heavy topics in network biology, which are shown in Fig. 1: inference and comparison of biological networks (Section 2), multimodal data integration and heterogeneous networks (Section 3), higher-order network analysis (Section 4), machine learning on networks (Section 5), and network-based personalized medicine (Section 6). We comment on why these topics were strategically chosen for discussion at the workshop.

Certain types of -omics data are explicitly captured as networks. That is, interactions between biomolecules are provided explicitly as a result of biotechologies for data collection. A prominent example are protein-protein interaction (PPI) networks. In these networks, nodes are proteins and edges correspond to physical bindings between the proteins. In human and some model organisms, extensive high-throughput yeast-to-hybrid and other experimental efforts have resulted in large sets of "reference" PPIs (such as HURI for human), along with substantial knowledge about protein binding specificities [START_REF] Luck | A reference map of the human binary protein interactome[END_REF][START_REF] Stark | BioGRID: a general repository for interaction datasets[END_REF]. Other types of -omics data are not captured as networks explicitly, but interactions between biomolecules can be inferred computationally, resulting in e.g., association, correlation, regulatory, or knowledge graphs (InfoBox 1). Section 2 addresses several aspects of the task of inferring a homogeneous network, including a condition-specific network, typically from up to a couple of -omics data types/modes, along with a related topic of differential network analysis, which is one type of network comparison. Section 3 addresses the task of inferring a heterogeneous network, typically from diverse -omics or other multimodal data types (InfoBox 1), along with several other tasks related to multi-omics data integration, including network alignment, which is another type of network comparison. By a homogeneous network, we mean a network with a single node type and a single edge type, while by a heterogeneous network, we mean any non-homogeneous network (i.e., multiple node types or multiple edge types or both); see InfoBox 1 and Section 3 for details.

Given (explicitly captured or inferred) network data, the next step is to analyze the data. While Sections 2 and 3 already address network analysis from the perspective of network comparison and several other tasks, Sections 4 and 5 further discuss prominent tasks related to network analysis. Namely, Section 4 discusses topics of capturing higher-order network structures called graphlets (subgraphs) in traditionally used pairwise graphs, which capture interactions between pairs of nodes, as well as shifting from pairwise graphs to hypergraphs, which are capable of capturing interactions between more than two nodes (InfoBox 1). Section 5 discusses machine learning advances in network biology, a field that has seen an exponential growth in the last decade. Key topics discussed include graph representation learning, incorporating knowledge into machine learning models, generative graph modeling, and transfer learning.

Section 6 complements the other, computationally focused sections by discussing an applied aspect of network biology: network-based personalized (or precision) medicine. Precision medicine aims to provide tailored treatment strategies for individuals [START_REF] Aronson | Building the foundation for genomics in precision medicine[END_REF][START_REF] Kaiser | NIH plots million-person megastudy[END_REF]. This personalized characterization may include molecular, environmental, lifestyle, and other factors. Integrating such different data types via network approaches can expand the potential for precision therapeutics while providing robustness to various types of data noise [START_REF] Wang | Similarity network fusion for aggregating data types on a genomic scale[END_REF].

The five workshop topics are not mutually exclusive. For example, multimodal (including multi-omics) data integration is a topic relevant to almost all of Sections 2-6. After the current research network biology advances are presented in these five sections, Section 7 discusses future research directions in the field, and Section 8 provides additional discussion on scientific communities, education/training, and diversity in computational (including network) biology.

Inference and comparison of biological networks

Inference of a network from non-network data. Biological networks that are computationally inferred from non-network -omics data can be categorized into three broad types: association networks, correlation networks, and regulatory networks (Fig. 2A).

Physical PPI networks are explicitly derived via high-throughput experiments (Section 1) [START_REF] Luck | A reference map of the human binary protein interactome[END_REF]. On the other hand, while association networks might contain experimentally derived interactions, they also contain interactions derived computationally from a variety of possible data sources. For example, in addition to physical PPIs, the STRING association network [START_REF] Szklarczyk | The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[END_REF] contains PPIs derived from sequence or 3D structural similarities, genetic interactions, literature-mined edges, or other types of pairwise protein associations that are distinct from physical binding between proteins. Note that in a genetic interaction network, an edge between nodes (genes/proteins) indicates that mutations or other perturbations to the two nodes produce an unexpected cellular phenotype [START_REF] Baryshnikova | Genetic Interaction Networks: Toward an Understanding of Heritability[END_REF]. An example of a genetic interaction is when mutations in both of the genes/proteins result in cell death, i.e., are lethal, while the cell remains viable when there is a mutation in just one of them. A weighted version of a genetic interaction network also exists, in which edge weights indicate how strong or weak the observed double mutant phenotype, such as cell growth rate, is compared to the expected phenotype [START_REF] Costanzo | A global genetic interaction network maps a wiring diagram of cellular function[END_REF].

Correlation networks are typically calculated from -omics data collected across multiple samples (time points, tissues, patients, ages, drugs, or other conditions). Among the most prominent types of correlation networks are gene co-expression networks. Namely, given transcriptomics data containing the expression (i.e., mRNA abundance) levels of genes across multiple samples, a gene co-expression network can be constructed by linking nodes (genes) via edges if the genes' expression levels are correlated strongly enough across the samples. In addition to being used to capture gene co-expression, correlation networks have been applied in biomedicine to study relationships between many other types of elements, such as metabolites [START_REF] Perez De Souza | Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation[END_REF], disease biomarkers [START_REF] Chu | Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD[END_REF][START_REF] Huang | A Network Analysis of Biomarkers for Type 2 Diabetes[END_REF][START_REF] Nishihara | Biomarker correlation network in colorectal carcinoma by tumor anatomic location[END_REF], and even foods [START_REF] Kim | Uncovering the nutritional landscape of food[END_REF][START_REF] Samieri | Using network science tools to identify novel diet patterns in prodromal dementia[END_REF]. Correlation networks are widely used in biomedical applications due to their simplicity and the ease with which they can be generated and interpreted [START_REF] Huang | A Network Analysis of Biomarkers for Type 2 Diabetes[END_REF][START_REF] Lee | Changes in the gut microbiome influence the hypoglycemic effect of metformin through the altered metabolism of branched-chain and nonessential amino acids[END_REF][START_REF] Pierson | Sharing and specificity of coexpression networks across 35 human tissues[END_REF][START_REF] Samieri | Using network science tools to identify novel diet patterns in prodromal dementia[END_REF].

Pearson correlation is the most common measure for calculating correlation networks, i.e., determining which gene pairs should be linked by edges, although other measures, such as Spearman correlation or mutual information, are also used, depending on the nature of the data and nonlinearity of the relationships being captured [START_REF] Reshef | Detecting novel associations in large data sets[END_REF]. Multiple algorithms and tools have been developed for inferring correlation networks, including ARACNe [START_REF] Margolin | ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context[END_REF], which calculates the mutual information between pairs of nodes and then removes indirect relationships; CLR [START_REF] Faith | Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles[END_REF], which calculates the mutual information between pairs of nodes and then z-score normalizes; WGCNA [START_REF] Zhang | A general framework for weighted gene co-expression network analysis[END_REF], which scales the Pearson correlation to generate a scale-free network topology (or network structure); and wTO [START_REF] Gysi | wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool[END_REF], which normalizes the chosen correlation by all other correlations and calculates a probability for each edge.

Despite their popularity, correlation networks have multiple known limitations. One limitation is difficulty translating to biological mechanisms. Another limitation is that different network inference methods yield significant dissimilarities in the topology as well as functional content between the resulting correlation networks [START_REF] Rider | Networks are important for systems biology[END_REF]. For example, when multiple methods are applied to infer gene co-expression networks based on the same underlying data, the resulting networks tend to capture different sets of edges between the same nodes; furthermore, when those networks are used to predict genes' functional annotations such as Gene Ontology (GO) terms, the results often differ [START_REF] Li | Enhancing gene co-expression network inference for the malaria parasite plasmodium falciparum[END_REF]. Sometimes it might be helpful to combine networks inferred using different methods into a consensus network [START_REF] Gysi | wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool[END_REF][START_REF] Li | Enhancing gene co-expression network inference for the malaria parasite plasmodium falciparum[END_REF], where edges are re-weighted so that the more networks support an edge and the more strongly they support it, the higher its consensus weight/probability. A further limitation of gene co-expression networks is that co-expression between two genes occurs when one gene regulates another or when two genes are targeted by the same regulator. However, these two distinct biological scenarios are represented the same way in a co-expression network, by linking the two genes with an undirected edge. Instead, regulatory networks can distinguish between the different scenarios, as discussed next.

Regulatory networks capture directed relationships between regulators and their targets and describe causal (rather than "just" correlative) relationships between biomolecules. There are many types of regulatory networks in biology. However, for most inferred regulatory networks, the regulators are transcription factor (TF) proteins (or other molecules that impact gene expression such as microRNAs) and the targets are genes; these are commonly referred to as gene regulatory networks. There are many approaches to infer gene regulatory networks. For example, TF-gene relationships can be measured experimentally through ChIP-sequencing. In this case, the presence of a TF binding in the regulatory region(s) of a gene can be used to infer an edge from that TF to the gene. However, the cost and experimental limitations make it impossible to infer a complete gene regulatory network in this way. Therefore, many computational approaches have been developed to infer gene regulatory networks. For example, the DNA sequence of gene regulatory regions can be scanned to identify matching patterns (known as sequence motifs) that indicate a potential TF binding site; however, linking TFs to genes based on DNA sequence alone does not give a condition-specific network. Thus, methods to infer gene regulatory networks typically use gene expression data, either alone or in combination with computational evidence for TF binding in gene promoters, to infer TF-gene relationships [START_REF] Marbach | Wisdom of crowds for robust gene network inference[END_REF]. Popular algorithms of this type include Inferelater [START_REF] Bonneau | The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo[END_REF], which uses linear regression, L1 shrinkage, and LASSO to identify a set of parsimonious models to predict target gene expression levels from TF expression levels (and other factors); GENIE3 [START_REF] Huynh-Thu | Inferring regulatory networks from expression data using tree-based methods[END_REF], which uses tree-based ensemble methods to develop a set of regression problems that predict the expression pattern of each target gene from the expression of a set of input TF genes; and PANDA [START_REF] Glass | Passing messages between biological networks to refine predicted interactions[END_REF], which uses message passing to amplify consistent structures across three input data types: The second approach category is illustrated. The thicker an edge in the network for a given condition, the more relevant the edge is for that condition. (D) Differential network analysis. Illustrated is a potential differential network between conditions 1 and 2, in which the edges that are highly relevant for condition 1 but not condition 2 are in purple, and the edges that are highly relevant for condition 2 but not condition 1 are in orange; all other edges, which have consistent relevance patterns in both conditions, are shown in black. TF-TF PPIs, computationally inferred TF-gene relationships, and gene-gene co-expressions. As opposed to Inferelator and GENIE3, PANDA does not consider the expression levels of TFs but instead uses evidence of co-expression in genes as evidence of targeting by the same TF. In contrast, a recent method NETREX-CF incorporates, among other techniques, a machine learning approach known as collaborative filtering to deal with missing data [START_REF] Wang | NetREX-CF integrates incomplete transcription factor data with gene expression to reconstruct gene regulatory networks[END_REF].

Other methods to infer regulatory networks incorporate epigenetic data. In particular, chromatin state can indicate whether the DNA is "open" and available to be bound by a TF; thus, computational evidence for TF binding in gene regulatory regions that also overlap with open chromatin can be used to estimate cell type-specific networks [START_REF] Neph | Circuitry and dynamics of human transcription factor regulatory networks[END_REF]. Specific algorithms to infer gene regulatory networks using epigenetic data include TEPIC [START_REF] Schmidt | Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction[END_REF][START_REF] Schmidt | TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis[END_REF], which combines TF binding affinities, chromatin state data, and gene annotation data to predict TF-gene relationships, and SPIDER [START_REF] Sonawane | Constructing gene regulatory networks using epigenetic data[END_REF], which uses message passing to infer and amplify consistent structure in an epigenetically-pruned gene regulatory network constructed by combining computational evidence for TF binding with open chromatin data. Both TEPIC and SPIDER can also (optionally) incorporate gene expression data. Despite multiple methods in this area (including many beyond those described here), it remains challenging to integrate multiple types of -omics data to effectively infer accurate condition-specific regulatory networks; later (sub)sections touch on this challenge.

Link prediction: inference of new interactions from existing network data. Going back to physical PPI networks, one of their limitations is a substantial number of false negatives (i.e., missing links); there also exist false positives (i.e., reported links that do not actually exist). Imputing missing PPIs is typically performed in one of two ways (Fig. 2B): (1) inferring new PPIs (or removing existing PPIs) based on topological properties of an existing PPI network, and (2) determining whether proteins bind using their amino acid sequences alone, which is critical when only protein sequence data is available.

Network-based prediction of new PPIs often uses either a relatively simple rule (e.g., it may be desirable to link nodes that have high degrees, that have many common interacting partners -or neighbors -either direct or extended ones, that share many paths, or that are topologically similar [START_REF] Hulovatyy | Revealing Missing Parts of the Interactome via Link Prediction[END_REF]) or more sophisticated diffusion-based network embeddings [START_REF] Coşkun | Node similarity-based graph convolution for link prediction in biological networks[END_REF][START_REF] Cowen | Network propagation: a universal amplifier of genetic associations[END_REF][START_REF] Devkota | GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks[END_REF][START_REF] Hamilton | Embedding logical queries on knowledge graphs[END_REF][START_REF] Huang | SkipGNN: predicting molecular interactions with skip-graph networks[END_REF][START_REF] Kovács | Network-based prediction of protein interactions[END_REF][START_REF] Yuen | Better link prediction for protein-protein interaction networks[END_REF]. A mixture of these strategies, where simple rules are employed in the core of the network, and diffusion-based network embeddings are employed outside the core, perform particularly well. However, the set of rules and the embedding used matters [START_REF] Devkota | GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks[END_REF], especially because interaction patterns may be quite different in physical versus association PPI networks.

Deep learning methods [START_REF] Chen | Multifaceted protein-protein interaction prediction based on Siamese residual RCNN[END_REF][START_REF] Hashemifar | Predicting protein-protein interactions through sequence-based deep learning[END_REF][START_REF] Sledzieski | D-script translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions[END_REF][START_REF] Zhang | Predicting protein-protein interactions using high-quality non-interacting pairs[END_REF] have had success in sequence-based prediction of PPIs. These methods focus on computational speed. That is, like the network-based methods, they seek to predict "just" whether (rather than also how, which is more challenging) two protein sequences interact, so that it is tractable to make predictions for all the protein pairs in the network. This is in contrast to methods that use deep learning to first predict protein 3-dimensional (3D) structures and then learn to dock the structures to predict the protein interaction interface [START_REF] Evans | Protein complex prediction with AlphaFold-Multimer[END_REF], which are not currently feasible to be run at genome-wide scale. However, some sequence-based methods manage to implicitly incorporate information about protein 3D structures. For example, D-SCRIPT [START_REF] Sledzieski | D-script translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions[END_REF] uses a pretrained protein language model [START_REF] Bepler | Learning the protein language: Evolution, structure, and function[END_REF] and implicitly learns a fuzzy contact map representation.

How to simultaneously leverage network-and sequence-based link prediction remains an open problem, with valuable initial work [START_REF] Bepler | Learning the protein language: Evolution, structure, and function[END_REF]. Also, evaluating link prediction methods and especially hybrid methods is tricky. This is because existing ground-truth networks (other than HURI [START_REF] Luck | A reference map of the human binary protein interactome[END_REF]) are biased by the portions of the networks containing well-studied proteins and pathways. So, it is difficult to come up with fair performance measures that are not biased by node degrees, and that do not advantage network-based methods while disadvantaging sequence-based methods. On the other hand, sequence-based approaches do better on close homologs of known interacting protein pairs. Inference of a condition-specific network. While existing biological network data resulting from extensive experimental efforts are an incredible resource, they do not capture how interactions in biological networks differ across conditions, i.e., they are context-free. By conditions, we mean diseases, ages, cell types, tissues, etc., and ultimately, individuals. Indeed, while human genomes in both healthy and disease populations are rapidly being sequenced, the corresponding condition-specific networks remain largely unknown. Moreover, the substantial amount of genetic variation across populations makes it infeasible in the near term to experimentally determine the full impact of this variation on interactions. So, computational methods have played and will continue to play a major role in inferring condition-specific networks.

We divide computational approaches for inferring condition-specific networks into several broad categories:

(1) approaches that assess whether mutations observed in disease alter protein interactions; (2) approaches that combine mutation data (e.g., on how many patients with a disease have genes containing significantly associated single nucleotide polymorphisms, indels, etc.) or condition-specific gene expression data (e.g., information on which genes are significantly expressed -or active -in a given condition; here, typically multiple data samples are needed per condition) with a PPI network, in order to identify PPIs that are dysregulated in a given disease or active in a given condition, i.e., to infer a condition-specific PPI network (Fig. 2C); [START_REF] Agarwal | Higher Order Learning with Graphs[END_REF] approaches that use gene expression data to infer a correlation network specific to the condition or sample of interest; and (4) analogs of the previous approaches but applied to regulatory networks rather than PPI or correlation networks.

Regarding the first approach category, significant computational efforts have focused on characterizing whether mutations observed in disease and variants across populations alter protein interactions. Early work mapping mutations observed in Mendelian diseases onto protein structures demonstrated that there is a statistically significant enrichment of Mendelian disease mutations in protein interaction interfaces, as compared to neutral polymorphisms observed across populations [START_REF] Gao | Insights into disease-associated mutations in the human proteome through protein structural analysis[END_REF]. Homology modeling and domain-based approaches to identify sites that participate in interactions with DNA, RNA, peptides, ions, and small molecules have revealed that missense mutations observed in Mendelian diseases and somatic missense mutations in cancer are both enriched in these sites, with the strongest enrichments for DNA-binding sites, while common variants are depleted from these sites [START_REF] Ghersi | Interaction-based discovery of functionally important genes in cancers[END_REF][START_REF] Kobren | Systematic domain-based aggregation of protein structures highlights DNA-, RNA-and other ligand-binding positions[END_REF]. Further, these enrichments can be leveraged to identify cancer-relevant genes by developing statistical approaches to uncover proteins with more somatic missense mutations in their binding sites than expected [START_REF] Ghersi | Interaction-based discovery of functionally important genes in cancers[END_REF][START_REF] Kobren | PertInInt: an integrative, analytical approach to rapidly uncover cancer driver genes with perturbed interactions and functionalities[END_REF]. Protein interaction interfaces, as identified by homology modeling [START_REF] Mosca | Interactome3D: adding structural details to protein networks[END_REF] and machine learning [START_REF] Meyer | Interactome INSIDER: a structural interactome browser for genomic studies[END_REF], have also been shown to be enriched in somatic missense mutations as compared to non-interface residues, and specific protein interactions relevant for cancer have been identified [START_REF] Cheng | Comprehensive characterization of protein-protein interactions perturbed by disease mutations[END_REF]. High-throughput experimental screens have led to estimates that two thirds of disease-causing polymorphisms perturb protein interactions, with about half of these interrupting specific protein interactions while leaving other interactions unaffected [START_REF] Sahni | Widespread macromolecular interaction perturbations in human genetic disorders[END_REF].

Regarding the second approach category, numerous computational efforts have focused on integrating conditionspecific molecular measurements, mainly gene mutation or expression data (also referred to as gene activity data), with PPI network data (which is generally not condition-specific, i.e., is context-free), by mapping the gene activities onto the corresponding proteins in the PPI network, in order to assign condition-specific weights to the proteins or PPIs (or both) in the network (Fig. 2C); then, highly weighted PPI network regions are hypothesized to be pathways dysregulated in disease (if using mutation data) or condition-specific subnetworks (if using expression data) [START_REF] Leiserson | Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes[END_REF][START_REF] Newaz | Inference of a Dynamic Aging-related Biological Subnetwork via Network Propagation[END_REF]. The set of all such PPIs/pathways/subnetworks is a condition-specific PPI network. The data integration step is often performed via network propagation [START_REF] Cowen | Network propagation: a universal amplifier of genetic associations[END_REF], which diffuses the gene activities through the PPI network via random walks, although other approach types exist such as kernel, Bayesian, or non-negative matrix factorization methods [START_REF] Newaz | Inference of a Dynamic Aging-related Biological Subnetwork via Network Propagation[END_REF].

Prominent applications of approaches from the second category have been studying cancer [START_REF] Leiserson | Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes[END_REF], tissuespecificity [START_REF] Basha | Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes[END_REF], aging [START_REF] Li | Towards future directions in data-integrative supervised prediction of human aging-related genes[END_REF], and genome-wide associations [START_REF] Carlin | A fast and flexible framework for network-assisted genomic association[END_REF][START_REF] Vanunu | Associating genes and protein complexes with disease via network propagation[END_REF]. As an example, cancer-related gene mutation data was integrated with PPI data using the HotNet2 algorithm to identify the parts of the PPI network that are likely to be active in cancer [START_REF] Leiserson | Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes[END_REF]. Such a cancer-specific network is not necessarily connected, i.e., it might consist of multiple connected components, each of which can be thought of as a cancer-specific pathway or subnetwork. As another example, a general framework was proposed for assessing the ability of condition-specific PPI network inference approaches to illuminate tissue-specific processes and disease genes [START_REF] Basha | Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes[END_REF]. This framework integrated RNA-sequencing profiles for 34 human tissues with a PPI network to create 34 tissue-specific PPI networks. Here, all tissue-specific PPI networks contained the same nodes and interactions, and they differed "only" in the weights associated with them. Then, given data associating GO biological processes to their relevant human tissues, this framework allows different condition-specific PPI network inference approaches to be benchmarked via enrichment tests in terms of their ability to recover tissue-specific processes. As a final example, unlike in the above applications where the inferred cancerand tissue-specific networks were static, when studying human aging, which is a dynamic biological process, it is desired to infer a dynamic aging-specific network. Of the pioneering approaches towards this goal [START_REF] Li | Supervised prediction of aging-related genes from a context-specific protein interaction subnetwork †[END_REF][START_REF] Newaz | Inference of a Dynamic Aging-related Biological Subnetwork via Network Propagation[END_REF][START_REF] Li | Improved supervised prediction of aging-related genes via weighted dynamic network analysis[END_REF][START_REF] Li | Towards future directions in data-integrative supervised prediction of human aging-related genes[END_REF], a recent finding is that inferring an aging-specific PPI network that is both weighted and dynamic (as opposed to unweighted or static) results in the most accurate prediction of aging-related genes [START_REF] Li | Improved supervised prediction of aging-related genes via weighted dynamic network analysis[END_REF]. To infer this network, network propagation was used to map gene expression-based weights at different ages onto nodes in a PPI network. This resulted in a weighted network snapshot for each age, where the different snapshots had the same nodes and PPIs and "only" differed in their age-specific weights. The collection of all age-specific snapshots formed a weighted dynamic aging-specific PPI network. Then, aging-related genes can be predicted from this network, as discussed below [START_REF] Li | Improved supervised prediction of aging-related genes via weighted dynamic network analysis[END_REF][START_REF] Li | Towards future directions in data-integrative supervised prediction of human aging-related genes[END_REF].

An important issue in identifying condition-specific networks and especially disease-altered subnetworks via the above approaches is to determine whether the resulting (sub)networks are due to the molecular measurements (i.e., mutation or expression data) alone, the PPI network topology alone (e.g., due to ascertainment bias in PPI network data), or genuinely a combination of both molecular measurement and network data. Recent work has shown that in some applications there may be a narrow regime where both molecular data and network information contribute to the identification of disease-dysregulated subnetworks [START_REF] Chitra | NetMix2: A Principled Network Propagation Algorithm for Identifying Altered Subnetworks[END_REF][START_REF] Reyna | NetMix: a network-structured mixture model for reduced-bias estimation of altered subnetworks[END_REF].

Regarding the third approach category, condition-specific correlation networks are most often derived by applying a correlation measure to subsets of related samples [START_REF] Pierson | Sharing and specificity of coexpression networks across 35 human tissues[END_REF]. However, since correlation measures rely on defining a distribution, this approach is inappropriate when a specific condition is represented by only a few (or even a single) sample(s). However, recently methods have been developed to infer "sample-specific correlations". That is, given a set of gene expression samples (across which correlation can be measured), these approaches can estimate one network for each individual sample in the input dataset. In particular, both ssPCC [START_REF] Liu | Personalized characterization of diseases using sample-specific networks[END_REF] and LIONESS [START_REF] Kuijjer | lionessR: single sample network inference in R[END_REF][START_REF] Kuijjer | Estimating sample-specific regulatory networks[END_REF] work by computing two correlation networks, one with all samples and one with all samples except an individual sample of interest, and use the difference between the two to estimate a correlation network specific to the sample of interest.

Finally, regarding the fourth approach category, genetic variants can impact gene regulatory networks by, for example, altering TF binding or allele-specific expression [START_REF] Przytycki | Differential allele-specific expression uncovers breast cancer genes dysregulated by cis noncoding mutations[END_REF]. Recall that missense mutations are enriched in sites that participate in interactions with DNA, RNA, peptides, ions, and small molecules, with the strongest enrichments for DNA-binding sites [START_REF] Ghersi | Interaction-based discovery of functionally important genes in cancers[END_REF][START_REF] Kobren | Systematic domain-based aggregation of protein structures highlights DNA-, RNA-and other ligand-binding positions[END_REF], and that statistical approaches to identify proteins with more somatic missense mutations in their binding sites than expected by chance have identified cancer-relevant genes [START_REF] Kobren | PertInInt: an integrative, analytical approach to rapidly uncover cancer driver genes with perturbed interactions and functionalities[END_REF][START_REF] Kobren | Systematic domain-based aggregation of protein structures highlights DNA-, RNA-and other ligand-binding positions[END_REF]. Deep learning approaches trained on DNA binding data from ENCODE [START_REF] Moore | Expanded encyclopaedias of DNA elements in the human and mouse genomes[END_REF] have also been used to assess whether DNA mutations impact TF binding in a tissue-specific manner [START_REF] Zhou | Predicting effects of noncoding variants with deep learning-based sequence model[END_REF]. For some TFs, altered DNA-binding specificities can be predicted de novo using machine learning [START_REF] Christensen | Recognition models to predict DNA-binding specificities of homeodomain proteins[END_REF][START_REF] Persikov | De novo prediction of DNA-binding specificities for Cys 2 His 2 zinc finger proteins[END_REF][START_REF] Sahni | Widespread macromolecular interaction perturbations in human genetic disorders[END_REF][START_REF] Wetzel | Learning probabilistic protein-DNA recognition codes from DNA-binding specificities using structural mappings[END_REF]. However, if a DNA-binding protein's specificity is known a priori, then it is more accurate to instead predict how mutations alter that specificity rather than predict specificities de novo. For example, accurate predictions about how mutations alter DNA-binding specificities for homeodomain proteins were made by simultaneously learning interaction interfaces between DNA-binding proteins and their binding sites together with a predictive approach for DNA-binding specificity [START_REF] Wetzel | Learning probabilistic protein-DNA recognition codes from DNA-binding specificities using structural mappings[END_REF]. Extending this approach to all DNA-binding proteins represents an important avenue for future work.

There has been also significant work done to infer condition-specific regulatory networks from various types of -omics data, as has been extensively reviewed in [START_REF] Baur | Data integration for inferring context-specific gene regulatory networks[END_REF]. As one example, PANDA was applied to subsets of GTEx gene expression data to infer 38 tissue-specific gene regulatory networks [START_REF] Sonawane | Understanding tissue-specific gene regulation[END_REF] and it was found that changes in TF targeting patterns led to the creation of new regulatory paths, giving them transcriptional control of tissue-specific processes. There also exist approaches that can be used to infer sample-specific networks for different -omics data types. For example, EGRET integrates predicted TF binding sites with genotype and expression quantitative trait loci data to create individual genotype-specific regulatory networks [START_REF] Weighill | Predicting genotype-specific gene regulatory networks[END_REF]. The SPIDER [START_REF] Sonawane | Constructing gene regulatory networks using epigenetic data[END_REF] and TEPIC [START_REF] Schmidt | Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction[END_REF][START_REF] Schmidt | TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis[END_REF] methods (described above) can be applied to individual epigenetic profiles to generate sample-specific regulatory networks. PSIONIC learns patient-specific TF regression weights by using chromatin-filtered TF-gene relationships to predict gene expression. Finally, the LIONESS method [START_REF] Kuijjer | Estimating sample-specific regulatory networks[END_REF] can be used together with existing gene regulatory network reconstruction approaches that leverage gene expression data. When applying it in the same way as already described for correlation networks (the third approach category above), the LIONESS framework uses two estimated gene regulatory networks, one inferred with all gene expression samples and one inferred with all samples except one, to estimate a gene regulatory network specific to that sample [START_REF] Kuijjer | Estimating sample-specific regulatory networks[END_REF].

Differential network analysis: comparison of condition-specific networks. Condition-specific networks often have the same set of nodes and differ "just" in terms of their edges. Many approaches have been developed to identify network regions that differ the most between condition-specific networks; the hope is that such regions are responsible for the underlying biological differences between e.g., healthy and disease conditions, between different tissues, or between young and old ages [START_REF] Basha | The DifferentialNet database of differential protein-protein interactions in human tissues[END_REF][START_REF] Lichtblau | Comparative assessment of differential network analysis methods[END_REF]. In general, approaches for this task can be characterized in several ways.

One category is based on the stage of network analysis, i.e., when differences between condition-specific networks are measured. Given condition-specific networks, one option is to first compute some topological property of a network region (at the level of a node, edge, network cluster -group of highly interconnected nodes -or entire network; see below) in each condition-specific network and then measure the extent of change in that property across the networks/conditions; the goal is to identify network regions that change the most [START_REF] Lichtblau | Comparative assessment of differential network analysis methods[END_REF][START_REF] Zhu | MetaDCN: meta-analysis framework for differential co-expression network detection with an application in breast cancer[END_REF]. A potential issue is that some topological properties, such as centrality measures that are intended to rank nodes in a network from most to least central/important, are meaningful when used within a network but not necessarily when compared across networks [START_REF] Newman | Networks[END_REF]. As an alternative, approaches exist that first use the condition-specific networks to infer a single differential network that intuitively captures edges that differ between the conditions (Fig. 2D); only then, a desired topological property (e.g., centrality of each node) in the differential network is computed to identify network regions that are the most relevant (e.g., central/important) for the underlying condition-specific differences [START_REF] Ruan | Differential analysis of biological networks[END_REF].

The other category is based on the level of topology, i.e., where differences between condition-specific networks are measured: at the node [START_REF] Weighill | Gene targeting in disease networks[END_REF], edge [START_REF] Glass | A network model for angiogenesis in ovarian cancer[END_REF], cluster [START_REF] Padi | Detecting phenotype-driven transitions in regulatory network structure[END_REF], or entire network level [START_REF] Newaz | Inference of a Dynamic Aging-related Biological Subnetwork via Network Propagation[END_REF]. At the node level, differences in centrality (e.g., degree or betweenness) are often used to identify the biomolecules around which network connectivity varies the most between the compared conditions. For example, "differential targeting," i.e., the difference in gene targeting -or the sum of the weights for all incoming edges to a gene -between two gene regulatory networks was used in combination with standard gene set enrichment tools to identify over-represented biological processes in pancreatic ductal adenocarcinoma subtypes [START_REF] Weighill | Gene targeting in disease networks[END_REF]. At the edge level, the goal is typically to determine edges specific to a given condition. This can be done in multiple ways, by taking, for example, a certain percentage of the highest-weight edges, all edges above a given threshold, edges that have higher weights in one condition compared to others [START_REF] Sonawane | Understanding tissue-specific gene regulation[END_REF], or a combination of these [START_REF] Glass | A network model for angiogenesis in ovarian cancer[END_REF]. For example, the tissue-specific PPI networks discussed above, which were defined by differential edge scores, were correctly enriched in their respective tissue-associated biological processes; also, when only the top 1% of the differential edges were considered, the resulting differential network regions were correctly enriched in genes related to diseases associated with their respective tissues [START_REF] Basha | Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes[END_REF]. Linking this discussion to the first approach category described above, it is important to note that although node centralities are often determined for each condition-specific network and then compared across the networks, they can also be calculated for a network defined by condition-specific edges. For example, degree and betweenness centralities of all genes in 38 tissue-specific gene regulatory networks were used to show that tissue-specific genes tended to assume bottleneck positions in their corresponding networks; in parallel, tissue-specific edges were identified by comparing the weight of each edge in a given tissue to the distribution of that edge's weight across all tissues, and it was found that the tissue-specific edges were enriched for connections between tissue-specific genes and depleted for canonical interactions [START_REF] Sonawane | Understanding tissue-specific gene regulation[END_REF]. At the cluster level, for example, given two condition-specific networks, ALPACA [START_REF] Padi | Detecting phenotype-driven transitions in regulatory network structure[END_REF] identifies clusters that are shared between networks and distinct to each network. Heterogeneous (specifically, multiplex; Section 3) clustering algorithms [START_REF] Mucha | Community structure in time-dependent, multiscale, and multiplex networks[END_REF] could also perhaps be useful for identifying such clusters. At the level of entire networks, typically their pairwise edge overlaps, as measured by e.g., the Jaccard index, are used to quantify their pairwise (dis)similarities [START_REF] Newaz | Inference of a Dynamic Aging-related Biological Subnetwork via Network Propagation[END_REF].

We comment on two additional aspects of differential network analysis. First, while some condition-specific networks are derived from multiple data samples, sample-specific networks have the additional benefit of being able to be compared while accounting for other potentially relevant biomedical information [START_REF] Kuijjer | Estimating sample-specific regulatory networks[END_REF]. For example, the same statistical tools employed for differential gene expression analysis can be used to determine significant changes in the node-, edge-, cluster-, and network-level topological properties between sets of sample-specific networks. Importantly, this allows topological properties to be evaluated in the context of relevant biological and phenotypic variables, as well as potential confounders. For example, limma [START_REF] Ritchie | limma powers differential expression analyses for RNA-sequencing and microarray studies[END_REF] was applied to compare features between male and female sample-specific gene regulatory networks while controlling for relevant confounders such as body mass index and age; node, edge, and TF-targeting was identified specific to males and females across 29 different tissues [START_REF] Lopes-Ramos | Sex differences in gene expression and regulatory networks across 29 human tissues[END_REF], as well as sex-specific targeting of the drug metabolism pathway in colon cancer [START_REF] Lopes-Ramos | Gene regulatory network analysis identifies sex-linked differences in colon cancer drug metabolism[END_REF].

Second, while the above discussion applies to all condition types, including temporal ones, we explicitly wish to comment more on approaches for characterizing how networks change over time [START_REF] Teschendorff | Statistical mechanics meets single-cell biology[END_REF]. A prominent application in this context has been studying the change of PPI network topology with age. The process of inferring an aging-specific PPI network has already been discussed above. Here, we comment on how such a network, consisting of network snapshots corresponding to different ages, is analyzed. Original studies asked whether the overall, or global, topology changed with age, by: measuring pairwise edge overlaps between the snapshots; evaluating whether the snapshots' properties such as the average clustering coefficient, diameter, and graphlet degree distributions changed with age; and evaluating the fit of each snapshot to random (e.g., scale-free or geometric) graphs [START_REF] Faisal | Dynamic networks reveal key players in aging[END_REF][START_REF] Newaz | Inference of a Dynamic Aging-related Biological Subnetwork via Network Propagation[END_REF]. Global topologies of the age-specific snapshots did not significantly change with age. It was then analyzed whether local topological positions of nodes as measured by (normalized) centralities changed with age. Hundreds of such genes were identified and predicted as aging-related; the predictions were validated via functional enrichment analyses [START_REF] Faisal | Dynamic networks reveal key players in aging[END_REF][START_REF] Newaz | Inference of a Dynamic Aging-related Biological Subnetwork via Network Propagation[END_REF]. Unlike such unsupervised prediction of aging-related genes, in recent work [START_REF] Li | Improved supervised prediction of aging-related genes via weighted dynamic network analysis[END_REF][START_REF] Li | Towards future directions in data-integrative supervised prediction of human aging-related genes[END_REF], supervised prediction was performed: by relying on knowledge about which genes are aging-versus non-aging-related [START_REF] De Magalhães | The Human Ageing Genomic Resources: online databases and tools for biogerontologists[END_REF], new aging-related genes were predicted if their evolving topologies in a dynamic aging-specific PPI network matched topologies of the known aging-related genes. Recall that the state-of-the-art aging-specific dynamic PPI network is weighted. So, weighted node topological measures were used as features for supervised prediction that were simple extensions of unweighted centralities. Also, more advanced measures were proposed, which account for how the distribution of edge weights in the given node's (extended) network neighborhood changes with age, i.e., across the network snapshots [START_REF] Li | Improved supervised prediction of aging-related genes via weighted dynamic network analysis[END_REF]. A parallel line of work focused on studying how clusters, i.e., community structure, in a dynamic aging-specific human PPI network changed with age, and it was shown that the most prominent changes in the community structure correspond to ages that reflect known shifts from one stage of human lifespan to another [START_REF] Crawford | ClueNet: Clustering a temporal network based on topological similarity rather than denseness[END_REF][START_REF] Hulovatyy | SCOUT: simultaneous time segmentation and community detection in dynamic networks[END_REF].

Another prominent point of discussion in the temporal/dynamic context are theoretical studies of molecular networks and observations of cell differentiation (i.e., the transition of a cell from one type to another), which indicate that cellular transitions can be smooth or nonlinear, gradual or abrupt [START_REF] Moris | Transition states and cell fate decisions in epigenetic landscapes[END_REF][START_REF] Nykter | Gene expression dynamics in the macrophage exhibit criticality[END_REF]. Computational methods to characterize these transitions using single-cell gene expression data include MuTrans [START_REF] Zhou | Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics[END_REF], QuanTC [START_REF] Sha | Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data[END_REF], and BioTIP [START_REF] Yang | Detecting critical transition signals from single-cell transcriptomes to infer lineage-determining transcription factors[END_REF]. These methods use different statistical approaches (stochastic differential equations, unsupervised learning of cell plasticity, or co-expression) and underlying theories (entropy and energy or tipping-point theory), but converge at the same best-studied bifurcations in six datasets [START_REF] Yang | Detecting critical transition signals from single-cell transcriptomes to infer lineage-determining transcription factors[END_REF].

Other types of network comparison. Differential network analysis is one type of network comparison, in which networks being compared have the exact same nodes and differ "only" in their edges (or edge weights). In other words, the mapping between the nodes of the compared networks is known. A complementary category of network comparison includes approaches that compare networks when their node mapping is unknown. Here, there are two distinct types: (1) network alignment or alignment-based network comparison and (2) alignment-free network comparison [461].

Alignment-based network comparison aims to find a mapping between the nodes of the compared networks that optimizes some objective function; this typically means conserving many edges and a large subgraph between the networks [START_REF] Faisal | The post-genomic era of biological network alignment[END_REF][START_REF] Guzzi | Survey of local and global biological network alignment: the need for reconciling the two sides of the same coin[END_REF]461]. This approach category is useful for comparing biological networks of different species to identify evolutionary conserved parts of the networks. Consequently, network alignment allows for transferring biological knowledge (e.g., proteins' functional annotations or PPIs) between aligned network regions across the compared species; also, it can complement sequence alignment by allowing for identification of protein orthology relationships based on the proteins' PPI network rather than (just) sequence similarities. Note that even when aligning homogeneous networks, the problem of network alignment can be viewed as integrating these networks into a heterogeneous (specifically, multiplex; Section 3) network representation. For this reason, and because recently methods have been proposed that actually align heterogeneous networks, we discuss algorithmic aspects of network alignment in the more appropriate Section 3. Here, we "just" aim to contrast general working principles of the different types of network comparison.

In contrast to alignment-based comparison, alignment-free network comparison "simply" aims to quantify the overall topological similarity between networks, regardless of a node mapping between the networks, and without intending to identify any conserved network regions; this typically means comparing some topological properties between networks, such as their (graphlet) degree distributions [START_REF] Newaz | Graphlets in network science and computational biology[END_REF]461]. Alignment-free network comparison is most often used to evaluate the fit of a random graph (e.g., scale-free or geometric) to a real-world network; also, it can identify groups/families of networks that are topologically similar to each other [461]. Given that alignment-free network comparison approaches do not aim to produce a node mapping between the compared networks, while alignment-based approaches do, the former are typically computationally more efficient than the latter [461].

Multimodal data integration and heterogeneous networks

Overview. Network representations of biological systems, from cells to ecosystems, are naturally heterogeneous, consisting of multiple types of nodes and interactions. This section focuses on prominent computational challenges related to inference and analysis of heterogeneous networks. We broadly define a heterogeneous network as a representation of multimodal data where each data mode corresponds to a different node or edge type. In the literature, the term "heterogeneous network" has often been used as a synonym to, e.g., a multiplex, multilayer, or multiscale network. The challenge is that sometimes different terminologies are used for the same concept, or the same terminology is used for different concepts; the disparate terminology associated with heterogeneous networks can reflect nuances in their frameworks [START_REF] Kivelä | Multilayer networks[END_REF]. Here is what we mean by these terms (Fig. 3A).

A multiplex/multilayer network is a special type of heterogeneous network with a single node type but different edge types between the nodes; these can be viewed as being composed of different network layers sharing the same set (replica) of nodes but each layer having distinct edge types [START_REF] Kinsley | Multilayer and multiplex networks: An introduction to their use in veterinary epidemiology[END_REF]. An example of this type in biology is an association PPI network capturing different types of relationships, such as physical interactions, functional relationships, and sequence similarities between proteins. A typical heterogeneous network, including those we discuss in this section, contains both distinct node types and (by definition) distinct edge types. An example of this type is a molecular network representing relationships among heterogeneous node types such as genes, transcripts, proteins, and metabolites. Another example is a knowledge graph representing semantic relationships between node types such as genes, patients, drugs, and diseases. Another level of complexity is handling distinct node types at different scales of biological organization, e.g., node types resulting from data modalities that capture molecular measurements in epigenomic, transcriptomic, proteomic, and metabolomic assays and from non-molecular text and imaging data. In this case, we are dealing with a heterogeneous network type called a multiscale network. A network-of-networks is a special case of a multiscale network in which a node at a given scale is a network at a lower scale. For example, a node (protein) in a PPI network can be represented as a protein structure network in which nodes are the protein's amino acids and edges link amino acids that are close enough in the protein's 3D fold [START_REF] Gu | Modeling multi-scale data via a network of networks[END_REF]. Our definition of a heterogeneous network subsumes all of multiplex/multilayer, typical heterogeneous, and multiscale networks, and in general, any network type that is not a homogeneous (single node type and single edge type) network.

Heterogeneous networks are a powerful framework for the representation, integration, and analysis of diverse data modalities of a complex system with multiple types of nodes or edges (or both), allowing for reconciling complementary measurements and providing a holistic view of the system. Here, we discuss the following major research directions encompassing heterogeneous networks: inference of a heterogeneous network from multimodal data, pathway reconstruction for interpretation of multi-omic data, network alignment, inference and reasoning with biomedical knowledge graphs, and network-of-networks analysis. This is not an exhaustive list of topics on heterogeneous networks, and other sections touch on additional topics. For example, Section 5 touches on graph representation learning including but not limited to learning in heterogeneous networks, and Section 6 talks about integration of multimodal data for the purpose of patient stratification, identification of disease-dysregulated molecular pathways and functional modules, and other precision medicine applications.

Inference of a heterogeneous network from multimodal data. Heterogeneous network inference is the computational task of inferring the graph connectivity structure from multimodal -to date, typically multi-omic -measurements [START_REF] Hawe | Inferring interaction networks from multi-omics data[END_REF]. The vast majority of methods for this task infer connections between nodes corresponding to biomolecules such as genes, proteins, and metabolites (Fig. 3B) using bulk -omic datasets. Single-cell -omic datasets have posed new opportunities for network inference where nodes can represent individual cells. Heterogeneous network inference methods can be grouped into categories based on how much they rely on labeled positive examples of edges.

Probably the simplest category of approaches take as input labeled examples of edges and non-edges along with pairwise node feature vectors derived from multimodal data and train binary classifiers to discriminate node pairs with edges from node pairs without edges [START_REF] Greene | Understanding multicellular function and disease with human tissue-specific networks[END_REF][START_REF] Marbach | Predictive regulatory models in drosophila melanogaster by integrative inference of transcriptional networks[END_REF]. These binary classification approaches assume that all node pairs are independent of each other and are therefore limited in their ability to exploit the known connectivity structure of the graph. An alternative are embedding methods (discussed in more detail in Section 5) that take as input an incomplete graph and multimodal measurement data as node features and learn an embedding of the nodes based on the (partial) graph structure and measured values, which are then used to infer edges based on link prediction [START_REF] Lee | Heterogeneous multi-layered network model for omics data integration and analysis[END_REF][START_REF] Yue | Graph embedding on biomedical networks: methods, applications and evaluations[END_REF] or matrix completion [START_REF] Natarajan | Inductive matrix completion for predicting gene-disease associations[END_REF]. Graph embedding methods relax the independence assumption of binary classification methods. As graph embedding methods capture more of the network connectivity, it is conceivable that they need less training data to do as good prediction as simple binary classification. Graph neural networks (GNNs, discussed in more detail in Section 5) offer new ways to incorporate more global information about the network to inform the inference task [START_REF] Yue | Graph embedding on biomedical networks: methods, applications and evaluations[END_REF]. The biggest limitation of the above approaches is the need for positive training data (edges) and that negative examples (non-edges) are not truly observed but are assumed to be part of the complement of the positive set.

On the other hand, unsupervised graph structure learning methods take as input node-level measurements and infer the graph structure from these measurements alone, without requiring any labeled examples of edges/nonedges. These approaches can range from correlation-based networks inferring pairwise dependencies between nodes representing different multimodal data [START_REF] Vasaikar | Linkedomics: analyzing multi-omics data within and across 32 cancer types[END_REF][START_REF] Zhou | OmicsAnalyst: a comprehensive web-based platform for visual analytics of multi-omics data[END_REF] to more general approaches based on probabilistic graphical models [START_REF] Hawe | Inferring interaction networks from multi-omics data[END_REF][START_REF] Koller | Probabilistic graphical models: principles and techniques[END_REF]. In probabilistic graphical models, nodes are modeled as random variables and edges correspond to statistical dependencies [START_REF] Koller | Probabilistic graphical models: principles and techniques[END_REF], where each data modality is represented as a different node type [START_REF] Chen | Selection and estimation for mixed graphical models[END_REF][START_REF] Sedgewick | Mixed graphical models for integrative causal analysis with application to chronic lung disease diagnosis and prognosis[END_REF]. Once the networks have been defined, they can be further clustered into modules to identify potential functional groupings among the nodes [START_REF] Choobdar | Assessment of network module identification across complex diseases[END_REF][START_REF] Mitra | Integrative approaches for finding modular structure in biological networks[END_REF][START_REF] Newman | Modularity and community structure in networks[END_REF]. Unsupervised learning of graph structure from multi-omic data lends itself naturally to the inference of gene regulatory networks [START_REF] Baur | Data integration for inferring context-specific gene regulatory networks[END_REF], where node types represent target genes and protein regulators. Protein regulators can be further modeled based on their observed mRNA levels or their hidden activity levels [START_REF] Miraldi | Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells[END_REF]. While such approaches do not need any edge-level information, if any, potentially noisy, information is available, this can be incorporated as a graph prior to guide the structure learning [START_REF] Greenfield | Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks[END_REF][START_REF] Miraldi | Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells[END_REF][START_REF] Siahpirani | A prior-based integrative framework for functional transcriptional regulatory network inference[END_REF]. A key modeling challenge when handling multiple types of measurements is to specify the appropriate probability distributions for each data modality [START_REF] Chen | Selection and estimation for mixed graphical models[END_REF][START_REF] Sedgewick | Mixed graphical models for integrative causal analysis with application to chronic lung disease diagnosis and prognosis[END_REF]. As structure learning of probabilistic graphical models such as general Bayesian networks can encounter scalability issues, several heuristics such as focusing on promising parents [START_REF] Friedman | Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm[END_REF][START_REF] Schmidt | Learning graphical model structure using L1regularization paths[END_REF], exploiting modularity of molecular networks [START_REF] Segal | Learning module networks[END_REF], or approximating joint probability distributions as done in dependency networks [START_REF] Greenfield | Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks[END_REF][START_REF] Heckerman | Dependency networks for inference, collaborative filtering, and data visualization[END_REF][START_REF] Roy | Integrated module and gene-specific regulatory inference implicates upstream signaling networks[END_REF] have enabled these models to scale to thousands of variables.

The availability of single-cell multi-omic datasets has also opened up challenges that can be tackled with heterogeneous network inference [START_REF] Demetci | SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport[END_REF][START_REF] Heumos | Best practices for single-cell analysis across modalities[END_REF]. One such problem is to infer cell-cell networks with nodes corresponding to cells, node types corresponding to different modalities (e.g., scRNA-seq, scATAC-seq) or time points (or both), and edges representing different semantics such as similarity or lineage relationships. Due to the size and sparsity in these data, dimensionality reduction is typically performed prior to inference of network structure. Non-negative matrix factorization, independent components analysis, and variational autoencoders are common dimensionality reduction approaches for single-cell multi-omic datasets. After dimensionality reduction, graph learning can be done using the k-nearest neighbor approach [START_REF] Butler | Integrating single-cell transcriptomic data across different conditions, technologies, and species[END_REF] or with optimal transport [START_REF] Demetci | SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport[END_REF][START_REF] Schiebinger | Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming[END_REF]. Graphs based on k-nearest neighbors, with different distance measures, are straightforward to implement and frequently used in practice, while optimal transport's framework to match probability distributions of cells can be used to capture fine-grained cell dynamics.

Pathway reconstruction for interpretation of multi-omic data.

Heterogeneous networks offer a powerful framework to integrate, interpret, and reconcile missing and noisy measurements commonly seen in multi-omic experiments [START_REF] Haque | A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications[END_REF][START_REF] Peck Justice | Boosting detection of low-abundance proteins in thermal proteome profiling experiments by addition of an isobaric trigger channel to TMT multiplexes[END_REF]. The task of pathway reconstruction takes as input multi-omic measurements of different biomolecules represented as node types and a large background molecular network. It outputs a sparse subnetwork with high-quality connections among the relevant biomolecules [START_REF] Garrido-Rodriguez | Integrating knowledge and omics to decipher mechanisms via large-scale models of signaling networks[END_REF] (Fig. 3C). The background networks typically contain PPIs and may also include protein-DNA, protein-RNA, or proteinmetabolite interactions to match the available -omic data. Paths from one relevant biomolecule to another in the background network can help prune irrelevant biomolecules and identify those that may play critical roles in the overall biological process but were missed in the -omic measurements [START_REF] Paull | Discovering causal pathways linking genomic events to transcriptional states using tied diffusion through interacting events (TieDIE)[END_REF][START_REF] Pirhaji | Revealing disease-associated pathways by network integration of untargeted metabolomics[END_REF][START_REF] Tuncbag | Network-based interpretation of diverse high-throughput datasets through the omics integrator software package[END_REF][START_REF] Winkler | De novo identification of maximally deregulated subnetworks based on multi-omics data with deregnet[END_REF]. Note that this task can be seen as a heterogeneous version of the task of inferring a homogeneous condition-specific network (via the second category of approaches) discussed in Section 2.

The sparse subnetwork obtained depends on the choice of optimization algorithm and its parameters. Some pathway reconstruction algorithms are computationally efficient, based on shortest paths [START_REF] Ritz | Pathways on demand: automated reconstruction of human signaling networks[END_REF] or network flow [START_REF] Yeger-Lotem | Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity[END_REF]. Despite their algorithmic simplicity, these methods can still effectively prioritize biologically relevant nodes and interactions. Network flow-based method can scale across multiple experiments by relying on the multicommodity flow approach, which identifies nodes and edges that are unique and shared across conditions [START_REF] Gosline | SAMNet: a network-based approach to integrate multi-dimensional high throughput datasets[END_REF]. General integer linear programming approaches [START_REF] Chasman | Inferring host gene subnetworks involved in viral replication[END_REF][START_REF] Ourfali | SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments[END_REF] support arbitrary node, edge, and path constraints. These provide the greatest customization for a particular multi-omic dataset but less scalability and reusability across applications. Intermediate approaches such as the Prize-Collecting Steiner Forest [START_REF] Tuncbag | Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem[END_REF] are computationally difficult to solve exactly but can be approximated efficiently. For instance, the Omics Integrator software [START_REF] Tuncbag | Network-based interpretation of diverse high-throughput datasets through the omics integrator software package[END_REF] based on the Prize-Collecting Steiner Forest algorithm adds prizes to nodes that should be included in the sparse subnetwork and costs to edges based on their reliability. Parameters control the tradeoff between node prizes and edge costs, a penalty for including nodes with high degree, and a penalty for the number of connected components in the subnetwork.

Heterogeneous pathway reconstruction is especially powerful because network connections between different types of biomolecules can be combined to reveal more complete and explanatory pathways. For instance, a TF that activates differentially expressed genes detected with RNA-seq may be inferred to be regulated by an upstream phosphorylated kinase detected with mass spectrometry. A study of Kaposi's Sarcoma-associated Herpesvirus infection [START_REF] Sychev | Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism[END_REF] illustrates the data types and algorithms involved, and biological insights gained in multi-omic pathway reconstruction. The authors profiled the proteomic and phosphoproteomic changes in endothelial cells induced by viral infection using mass spectrometry and gene expression changes with RNA-seq. They used TF binding motifs and a statistical enrichment test with the gene expression data to identify potentially relevant transcriptional regulators. Then, they applied Omics Integrator [START_REF] Tuncbag | Network-based interpretation of diverse high-throughput datasets through the omics integrator software package[END_REF] to combine the transcriptional regulators, proteomic changes, phosphoproteomic changes, and a PPI background network in order to obtain a holistic view of the endothelial cell response to infection. Ultimately, this analysis revealed peroxisome-related proteins to be an important part of the response. This network-based insight was supported with follow-up wet laboratory experiments [START_REF] Sychev | Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism[END_REF].

Network alignment. In network biology, network alignment has traditionally been used to compare species' PPI networks [START_REF] Emmert-Streib | Fifty years of graph matching, network alignment and network comparison[END_REF][START_REF] Faisal | The post-genomic era of biological network alignment[END_REF][START_REF] Guzzi | Survey of local and global biological network alignment: the need for reconciling the two sides of the same coin[END_REF][START_REF] Ma | Heuristics and metaheuristics for biological network alignment: A review[END_REF][START_REF] Sharan | Modeling cellular machinery through biological network comparison[END_REF][START_REF] Vijayan | Pairwise versus multiple global network alignment[END_REF]. In this context, network alignment aims to find a node (protein) mapping between the compared networks that uncover regions of high topological (and often sequence) conservation, with the hypothesis that the resulting aligned nodes and network regions are evolutionary conserved or functionally similar. Finding such a node mapping is closely related to the NP-complete subgraph isomorphism problem, making the network alignment problem NP-hard [START_REF] Faisal | The post-genomic era of biological network alignment[END_REF].

Even when comparing PPI networks, which are homogeneous, network alignment can be viewed as a multimodal data integration task. This is because an alignment (i.e., node mapping) in a "composed view" results in a heterogeneous (specifically, multiplex/multilayer) network whose "supernodes" contain mapped nodes from the individual homogeneous networks and whose edges are of distinct types, indicating which one(s) of the compared networks the given edge is present in under the given node mapping (Fig. 3D). More recently, approaches have been proposed for aligning heterogeneous networks in biology [START_REF] Gu | From homogeneous to heterogeneous network alignment via colored graphlets[END_REF][START_REF] Milano | L-HetNetAligner: a novel algorithm for local alignment of heterogeneous biological networks[END_REF] and other domains [START_REF] Chen | FASCINATE: Fast Cross-Layer Dependency Inference on Multi-layered Networks[END_REF][START_REF] Yan | Dissecting Cross-Layer Dependency Inference on Multi-Layered Inter-Dependent Networks[END_REF]. Below, we discuss algorithmic principles of traditional alignment of homogeneous networks and then comment on the alignment of heterogeneous networks.

Analogous to sequence alignment, alignment of homogeneous networks can be local or global [START_REF] Meng | Local versus global biological network alignment[END_REF]. Both have (dis)advantages [START_REF] Guzzi | Survey of local and global biological network alignment: the need for reconciling the two sides of the same coin[END_REF]. Also, network alignment can be pairwise (between exactly two networks) or multiple (between more than two networks) [START_REF] Vijayan | Multiple network alignment via multiMAGNA++[END_REF]. The latter has traditionally been expected to lead to deeper biological insights as it aligns all considered networks simultaneously as opposed to one pair at a time; however, a recent evaluation showed that this is not always the case [START_REF] Vijayan | Pairwise versus multiple global network alignment[END_REF]. At the same time, multiple network alignment is computationally more complex [START_REF] Vijayan | Multiple network alignment via multiMAGNA++[END_REF].

Network alignment has two main algorithmic components [START_REF] Faisal | Global network alignment in the context of aging[END_REF]. First, topological similarity between nodes across the compared networks is computed via some measure of node conservation; graphlet-based measures (Section 4) are among state-of-the-art [START_REF] Gu | From homogeneous to heterogeneous network alignment via colored graphlets[END_REF][START_REF] Newaz | Graphlets in network science and computational biology[END_REF]. Second, an alignment strategy quickly identifies alignments that optimize some objective function accounting for total node and ideally also edge conservation under the given node mapping. That is, a good alignment should both map similar nodes to each other and conserve many edges. Original alignment strategies were of the seed-and-extend type [START_REF] Kuchaiev | Topological network alignment uncovers biological function and phylogeny[END_REF][START_REF] Singh | Global alignment of multiple protein interaction networks with application to functional orthology detection[END_REF][START_REF] Sun | Simultaneous optimization of both node and edge conservation in network alignment via WAVE[END_REF]. The extension around highly similar "seed" nodes, by adding mapped nodes incrementally to build the alignment one step at a time, is intended to explicitly improve node conservation of the resulting alignment, but edge conservation only implicitly. To improve edge conservation explicitly as the alignment is constructed, rather than only evaluating it after the fact, another type of alignment strategy -a search algorithm -was introduced. Here, entire alignments are explored, and the one that scores the highest based on the given (e.g., edge conservation-based) objective function is returned, using, e.g., genetic algorithms [START_REF] Saraph | MAGNA: maximizing accuracy in global network alignment[END_REF][START_REF] Vijayan | Multiple network alignment via multiMAGNA++[END_REF][START_REF] Vijayan | Alignment of dynamic networks[END_REF][START_REF] Vijayan | MAGNA++: Maximizing Accuracy in Global Network Alignment via both node and edge conservation[END_REF] or simulated annealing [START_REF] Mamano | SANA: simulated annealing far outperforms many other search algorithms for biological network alignment[END_REF].

A recent algorithmic shift in network alignment has been from unsupervised to supervised, data-driven alignment [START_REF] Gu | Data-driven network alignment[END_REF][START_REF] Gu | Data-driven biological network alignment that uses topological, sequence, and functional information[END_REF]. Traditional network alignment uses the notion of topological similarity to quantify how close to isomorphic two nodes' extended network neighborhoods are. A major issue is that regardless of the considered similarity measure, aligned nodes often do not correspond to nodes that should actually be mapped, i.e., that are functionally related [START_REF] Gu | Data-driven network alignment[END_REF]. Specifically, when comparing species' PPI networks, aligned nodes do not correspond to proteins that are involved in same biological processes. This is why a move was made from optimizing topological similarity to learning from the data what kind of topological relatedness corresponds to functional relatedness, without assuming that topological relatedness means topological similarity [START_REF] Gu | Data-driven network alignment[END_REF]. For example, topological similarity will aim to match a triangle in one network to a triangle in another network, and a square in the former to a square in the latter. Yet, due to biological variation or noise in PPI data, perhaps it is the triangle in the first network that is functionally related and should thus be matched to the square rather than the triangle in the second network, which is what topological relatedness would aim to learn from the data. This resulted in moving from traditional unsupervised alignment (functional labels of nodes, e.g., biological processes of proteins in PPI networks, being used to evaluate an alignment only after it is produced) to supervised, data-driven alignment (functional labels of nodes being used during the process of constructing an alignment, to learn patterns of topological relatedness). A pioneering data-driven network alignment method used traditional machine learning, i.e., user-predefined (graphlet-based) features [START_REF] Gu | Data-driven network alignment[END_REF][START_REF] Gu | Data-driven biological network alignment that uses topological, sequence, and functional information[END_REF] and standard classifiers (e.g., logistic regression), while a follow-up effort used deep learning and specifically GNNs [START_REF] Ding | Supervised biological network alignment with graph neural networks[END_REF].

Finally, going back to alignment of heterogeneous networks, an earlier attempt in biology was still to align homogeneous networks to each other, where the heterogeneity came from the fact that the individual homogeneous networks being compared were of different types: one was a human PPI network whose nodes were proteins, and the other was a disease-disease association network whose nodes were diseases [START_REF] Wu | Align human interactome with phenome to identify causative genes and networks underlying disease families[END_REF]. Then, the goal of aligning the two networks was to identify causative genes/proteins and their pathways underlying disease families. But, because each of the compared networks was homogeneous, a homogeneous network alignment approach sufficed for their comparison. A more recent effort towards actually aligning one heterogeneous network to another, each with different node and edge types (or colors), was extending the existing notions of homogeneous graphlet-based node similarity/conservation as well as homogeneous edge conservation (discussed above) into their heterogeneous (or colored) counterparts, and then extending the existing seed-and-extend or search alignment strategies (discussed above) to find high-scoring alignments with respect to the new heterogeneous conservation measures [START_REF] Gu | From homogeneous to heterogeneous network alignment via colored graphlets[END_REF]. In evaluations on synthetic and real biological networks, the heterogeneous methods led to higher-quality alignments and better robustness to noise in the data than their homogeneous counterparts [START_REF] Gu | From homogeneous to heterogeneous network alignment via colored graphlets[END_REF]. Two types of heterogeneous biological networks were considered: first, PPI networks were aligned to each other, where nodes (proteins) were colored according to whether they were involved in aging, cancer, and/or Alzheimer's disease; second, protein-GO term networks were aligned to each other, where such a network had two types of nodes -proteins and GO terms -and three types of edges -PPIs, protein-GO term annotations, and GO term-GO term semantic similarity associations [START_REF] Gu | From homogeneous to heterogeneous network alignment via colored graphlets[END_REF]. This effort [START_REF] Gu | From homogeneous to heterogeneous network alignment via colored graphlets[END_REF] aligned heterogeneous networks globally. In parallel, an approach for their local alignment was proposed [START_REF] Milano | L-HetNetAligner: a novel algorithm for local alignment of heterogeneous biological networks[END_REF].

Relevant work is that on machine learning-based embedding of heterogeneous networks (Section 5) in biology [START_REF] Pio-Lopez | MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach[END_REF] and other domains [START_REF] Wang | Multiplex network infomax: Multiplex network embedding via information fusion[END_REF][START_REF] Wang | A survey on heterogeneous graph embedding: methods, techniques, applications and sources[END_REF], which could be extended to heterogeneous network alignment. However, to our knowledge, such extension has not yet been carried out in biology but it has been carried out in other domains such as social, information, or technological networks [START_REF] Cai | Resolving Power Equipment Data Inconsistency via Heterogeneous Network Alignment[END_REF][START_REF] Wang | Network alignment enhanced via modeling heterogeneity of anchor nodes[END_REF][START_REF] Xiong | Contrastive multi-view multiplex network embedding with applications to robust network alignment[END_REF][START_REF] Zhang | NetTrans: Neural Cross-Network Transformation[END_REF][START_REF] Zhang | ORIGIN: Non-Rigid Network Alignment[END_REF][START_REF] Zheng | Heterogeneous embedding propagation for large-scale e-commerce user alignment[END_REF]. Note that in [START_REF] Xiong | Contrastive multi-view multiplex network embedding with applications to robust network alignment[END_REF], biological data was analyzed but in a different task of node classification; in the task of network alignment, only non-biological data was considered. Also note that while in [START_REF] Wang | Network alignment enhanced via modeling heterogeneity of anchor nodes[END_REF], both "network alignment" and "heterogeneity" are mentioned, the latter does not refer to the nature of compared networks; instead, it refers to the fact that "anchor nodes" between the compared networks, i.e., nodes that are typically assumed to be good seeds for guiding the alignment process, often have different local topologies across the compared networks, i.e., are often topologically dissimilar. This is consistent with the observation in (homogeneous) biological network alignment discussed above that motivated the move from topological similarity to topological relatedness [START_REF] Gu | Data-driven network alignment[END_REF][START_REF] Gu | Data-driven biological network alignment that uses topological, sequence, and functional information[END_REF]. Finally, note that in [START_REF] Zhang | NetTrans: Neural Cross-Network Transformation[END_REF][START_REF] Zhang | ORIGIN: Non-Rigid Network Alignment[END_REF], the heterogeneity of considered networks came from node/edge attributes rather than explicit node/edge types. In these two studies, GNNs were used to first find an embedding of nodes of the compared networks, and then the network alignment problem was viewed as a point registration problem [START_REF] Zhang | ORIGIN: Non-Rigid Network Alignment[END_REF] or a neural network transformation problem [START_REF] Zhang | NetTrans: Neural Cross-Network Transformation[END_REF].

Inference of and reasoning on biomedical knowledge graphs. Biomedical knowledge graphs (BKGs), which describe semantic relationships between biomedical entities, are among the richest examples of heterogeneous networks [START_REF] Nicholson | Constructing knowledge graphs and their biomedical applications[END_REF]. BKGs aim to combine facts about diverse biomedical entities, which can range from genes to individual patients as well as measurements associated with them. BKGs represent biological facts using "subject-predicate-object" triples as the fundamental unit, with the subject and object corresponding to nodes in the graph and the predicate (also called a relation) corresponding to a directed edge, possibly of different types, between the nodes. For example, Chlorin e6-PDT (subject) reduced (predicate) cell proliferation (object); Fig. 3E. Exemplar active BKG projects, each taking a unique approach, include Scalable Precision Medicine Knowledge Engine (SPOKE)3 [START_REF] Morris | Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in saccharomyces cerevisiae[END_REF], BioThings Explorer4 [START_REF] Fecho | Progress toward a universal biomedical data translator[END_REF][START_REF] Lelong | BioThings SDK: a toolkit for building high-performance data APIs in biomedical research[END_REF], biomedical "corner" of Wikidata5 [START_REF] Manske | GeneDB and Wikidata[END_REF][START_REF] Page | Wikidata and the bibliography of life[END_REF][START_REF] Waagmeester | Wikidata as a knowledge graph for the life sciences[END_REF], and PrimeKG [START_REF] Chandak | Building a knowledge graph to enable precision medicine[END_REF].

BKGs have emerged as powerful frameworks for diverse biomedical applications [START_REF] Nicholson | Constructing knowledge graphs and their biomedical applications[END_REF] including drug repurposing (e.g., Hetionet [START_REF] Himmelstein | Systematic integration of biomedical knowledge prioritizes drugs for repurposing[END_REF] and SPOKE [START_REF] Morris | Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in saccharomyces cerevisiae[END_REF]), rare disease diagnosis [START_REF] Alsentzer | Deep learning for diagnosing patients with rare genetic diseases[END_REF], and biomarker discovery (e.g., SPOKE [START_REF] Himmelstein | Heterogeneous network edge prediction: a data integration approach to prioritize disease-associated genes[END_REF]). BKGs leverage graph databases like Neo4j and Virtuoso, and semantic web standards like the Resource Description Framework for their backend. BKGs leverage over a hundred years of graph theory to enable operations on first neighbors, paths, centralities, and other network components, as well as semantics, inference, and reasoning. There are a number of computational challenges that emerge to maximally extract the information encoded in BKGs for diverse biomedical applications ranging from construction of BKGs to reasoning with BKGs [START_REF] Peng | Knowledge graphs: opportunities and challenges[END_REF]. For example, advanced, multi-hop queries specifying node and edge types are essential to navigating heterogeneous network representations of biomedical knowledge. Many of these challenges have been approached using similar methods of network inference as previously described (e.g., link prediction) as well as more recently with graph representation learning approaches discussed in Section 5.

Equally important is the question of representation of biomedical and biological literature to enable advanced queries and reasoning. Traditional BKGs assume that all knowledge can be represented as subject-predicateobject tuples and are constructed using tuple extraction techniques based on machine learning. A simple postprocessing algorithm can extract the tuples from any sentence and represent them as links between nodes on the BKGs. However, traditional BKGs have ignored the conditions (e.g., patient age or environment) of the facts, which capture essential contexts for knowledge exploration and inference. Recently, a new type of BKG, Condition-aware BKG (CondBKG [START_REF] Jiang | Biomedical knowledge graphs construction from conditional statements[END_REF]), has been introduced, which considers both facts and their conditions in the biomedical statements. Unlike traditional BKGs which have only one layer of subject-predicate-object tuples, CondBKG is a three-layered information-lossless representation of BKGs. The first layer has biomedical concept and attribute nodes; the second layer represents both biomedical fact and condition tuples by nodes of the predicate phrases, connecting to the subjects and objects in the first layer; the third layer has nodes that represent statement sentences as their textual attributes and connect to fact and/or condition tuples in the second layer (Fig. 3E). CondBKG is constructed from a machine learning model's output tuples. Given a statement sentence and its context (e.g., nearby sentences) in a scientific article, the model learns from multiple types of input signals of sentence (e.g., word embeddings and part of speech tags) and predicts one or multiple tuples. CondBKG has 18.1 million fact tuples, 7.5 million condition tuples, 10.9 million concept nodes, and 703 thousand attribute nodes. CondBKG preserves more knowledge from unstructured text than traditional flat BKGs and can be used to answer tailored queries, such as what factors increase or reduce cell proliferation and their conditions (Fig. 3E). CondBKG can provide a good understanding of biomedical and biological statements and supports diverse applications for biomedical knowledge discovery.

Network-of-networks analysis. Biological systems function at different scales of organization. Thus, multiscale and specifically network-of-networks analysis (Fig. 3A) is an exciting, still relatively unexplored area of research. This topic has received an increasing amount of attention only in recent years. This is likely because it has been increasingly recognized that network-of-networks representations of various biological data can be obtained: given that different diseases tend to manifest in different tissues, nodes (diseases) in a disease similarity network can be represented as their associated tissue-specific PPI networks [START_REF] Ni | Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model[END_REF]; nodes in a PPI network can be represented as protein structure networks [START_REF] Gao | Hierarchical graph learning for protein-protein interaction[END_REF][START_REF] Gu | Modeling multi-scale data via a network of networks[END_REF]; nodes in a network of interacting molecules can be represented as molecular graphs [START_REF] Wang | Powerful graph of graphs neural network for structured entity analysis[END_REF][START_REF] Wang | GoGNN: Graph of Graphs Neural Network for Predicting Structured Entity Interactions[END_REF]; nodes in a bipartite graph containing interactions between drugs and their target proteins can be represented as drug molecule graphs and target protein structure networks, respectively [START_REF] Chu | Hierarchical graph representation learning for the prediction of drug-target binding affinity[END_REF]. Note that not all existing network-of-networks studies originate in the biology domain. Some have been proposed and evaluated in other domains, such as on text and social network datasets [START_REF] Li | Semi-supervised hierarchical graph classification[END_REF].

The studies that have analyzed biological network-of-networks data typically perform different network analysis and application tasks, as follows. The task of node ranking was applied to candidate disease gene prioritization [START_REF] Ni | Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model[END_REF]. The task of link prediction was applied to predicting interactions between proteins [START_REF] Gao | Hierarchical graph learning for protein-protein interaction[END_REF], between molecules such as drugs [START_REF] Wang | Powerful graph of graphs neural network for structured entity analysis[END_REF][START_REF] Wang | GoGNN: Graph of Graphs Neural Network for Predicting Structured Entity Interactions[END_REF], or between drugs and their target proteins [START_REF] Chu | Hierarchical graph representation learning for the prediction of drug-target binding affinity[END_REF]. A new task was introduced -that of entity label prediction -which merges the two traditionally isolated tasks of node (protein) classification at the higher scale containing a PPI network and graph (also protein) classification at the lower-scale containing protein structure networks [START_REF] Gu | Modeling multi-scale data via a network of networks[END_REF]. This task was applied to protein function prediction [START_REF] Gu | Modeling multi-scale data via a network of networks[END_REF]. Given that the different approaches were proposed for different tasks/applications, they have typically not been evaluated against each other. It remains unclear whether the different approaches can be effectively used in tasks/applications other than those they were proposed for, as well as what (dis)advantages of each approach are on the methodological level. With the increasing availability of network-of-networks data and the increasing number of approaches for network-of-networks analysis, the need for proper method evaluation will only continue to gain importance. This will require all studies to make their data and code publicly available and easy to use. According to our exploration of the existing network-of-networks studies discussed above, this is not always true. represented as an edge connecting two proteins, and a transcriptional regulatory interaction is represented as a directed edge from a TF to a gene). However, these interactions often involve additional components and the interactions themselves can be regulated by other components [START_REF] Battiston | Networks beyond pairwise interactions: Structure and dynamics[END_REF]. In other words, there is often a need to capture interactions between multiple (two or more) nodes rather than between exactly two nodes (as is the case with pairwise graphs). In the literature, several higher-order graph ideas have been proposed to overcome the limitations of pairwise graphs. There are two general categories of such ideas.

The first category still works with pairwise graphs but relies on either higher-order dependencies between two nodes [START_REF] Xu | Representing higher-order dependencies in networks[END_REF] or small subgraphs [START_REF] Newaz | Graphlets in network science and computational biology[END_REF], as follows. Regarding higher-order dependencies, it was shown that when representing sequential data such as global shipping traffic as networks, assuming the first-order dependency, i.e., that the next movement of traffic depends only on the current node, and thus discounting the fact that the movement may depend on several previous steps, can yield inaccurate network analysis results [START_REF] Xu | Representing higher-order dependencies in networks[END_REF]. This is because data derived from many complex systems can show up to fifth-order dependencies between two nodes. Consequently, an approach was proposed for capturing variable orders of dependencies between pairs of nodes [START_REF] Xu | Representing higher-order dependencies in networks[END_REF]. Regarding subgraphs, these can be viewed as "higher-order coordinated patterns" between two or more nodes of a pairwise graph [START_REF] Battiston | Networks beyond pairwise interactions: Structure and dynamics[END_REF]; a subgraph captures first-order dependencies (as defined above [START_REF] Xu | Representing higher-order dependencies in networks[END_REF]) between multiple nodes in a pairwise graph. Examples of subgraph types are cycles (e.g., a triangle or a square) or cliques (the densest of all subgraph types, containing all possible edges between their nodes) [START_REF] Battiston | Networks beyond pairwise interactions: Structure and dynamics[END_REF]. Two general categories of subgraphs exist: graphlets [START_REF] Pržulj | Biological network comparison using graphlet degree distribution[END_REF] and network motifs [START_REF] Milo | Superfamilies of evolved and designed networks[END_REF]. Two key differences exist between them: graphlets are induced subgraphs while network motifs are not, and network motifs need to be statistically significantly over-represented in a pairwise graph compared to a null (i.e., random graph) model while graphlets do not rely on a null model. Both higher-order dependencies and subgraphs in pairwise graphs from the first category fail to directly account for interactions between more than two nodes in a network. An alternative is the second category of higher-order graph ideas -to explicitly consider higher-order graph structures. Here, while simplicial complexes are a theoretic possibility, they have assumptions that are practically too strong in some systems [START_REF] Xu | Representing higher-order dependencies in networks[END_REF]). The next most general idea of higher-order interactions that is at the same time less constraining and thus more practical are hypergraphs [START_REF] Xu | Representing higher-order dependencies in networks[END_REF]).

Higher-order dependencies have not yet received attention in the biology domain, which is why we do not discuss this idea further. Graphlets in pairwise graphs (or simply graphlets), hypergraphs, and graphlets in hypergraphs (i.e., hypergraphlets) have received significant attention in the biology domain, which is why the following sections discuss these topics in more detail. While network motifs have also received attention, it remains unclear which random graph model fits real-world networks the best and should thus be used for network motif identification [START_REF] Artzy-Randrup | Comment on "Network motifs: Simple building blocks of complex networks" and "Superfamilies of evolved and designed networks[END_REF][START_REF] Newaz | Graphlets in network science and computational biology[END_REF], which is why we do not discuss network motifs further.

Graphlets. Graphlets, small subgraphs, are Lego-like building blocks of a network. More formally, they are connected, non-isomorphic, induced subgraphs of a graph [START_REF] Pržulj | Modeling interactome: scale-free or geometric?[END_REF]. Because counting of large graphlets in a large network is time-consuming, in practice, graphlets on up to five nodes have typically been studied. Graphlets were originally proposed as subgraphs of undirected, homogeneous, static, unordered, and pairwise graphs [START_REF] Newaz | Graphlets in network science and computational biology[END_REF]. More recently, they were extended to their directed [START_REF] Lugo-Martinez | Generalized graphlet kernels for probabilistic inference in sparse graphs[END_REF][START_REF] Sarajlić | Graphlet-based characterization of directed networks[END_REF], heterogeneous [START_REF] Gu | From homogeneous to heterogeneous network alignment via colored graphlets[END_REF], dynamic [START_REF] Hulovatyy | Exploring the structure and function of temporal networks with dynamic graphlets[END_REF], ordered [START_REF] Faisal | GRAFENE: Graphletbased alignment-free network approach integrates 3D structural and sequence (residue order) data to improve protein structural comparison[END_REF][START_REF] Malod-Dognin | GR-Align: fast and flexible alignment of protein 3D structures using graphlet degree similarity[END_REF], or hypergraph [START_REF] Gaudelet | Hypergraphlets Give Insight into Multi-Scale Organisation of Molecular Networks[END_REF][START_REF] Lugo-Martinez | Classification in biological networks with hypergraphlet kernels[END_REF] counterparts, respectively; the latter are called hypergraphlets and are discussed more below after hypergraphs are introduced. The following concepts are discussed for original graphlets, but they generalize to the more data-rich counterparts as well.

In a graphlet, nodes can correspond to different symmetry groups called automorphism orbits (or just orbits for simplicity) [START_REF] Pržulj | Biological network comparison using graphlet degree distribution[END_REF]. For example, in a graphlet corresponding to the 3-node path (e.g., a -b -c), the two outer nodes (a and c in our illustration) are symmetric to each other and thus belong to the same orbit, while the middle node (b) is in its own orbit. As another example, in a clique, all nodes are symmetric to each other and thus belong to the same orbit. There are 15 orbits for 2-4-node graphlets and 73 for 2-5-node graphlets. This concept of graphlet orbits can be used to quantify a node's extended network neighborhood into a 15-or 73-dimensional embedding, often called the node's graphlet degree vector (GDV) [START_REF] Milenković | Uncovering biological network function via graphlet degree signatures[END_REF]. This vector counts how many times a node of interest touches (or participates in) each of the considered graphlets at each of their orbits. By computing GDV for each node in a network, one can obtain the network's GDV matrix, whose entry (i, j) contains the information of how many times node i touches orbit j [START_REF] Milenković | Uncovering biological network function via graphlet degree signatures[END_REF][START_REF] Newaz | Graphlets in network science and computational biology[END_REF]. Note that there exist an analogous concept of edge (rather than node) as well as node pair orbits, GDVs, and GDV matrices [START_REF] Hulovatyy | Revealing Missing Parts of the Interactome via Link Prediction[END_REF][START_REF] Solava | Graphlet-based edge clustering reveals pathogen-interacting proteins[END_REF].

GDV matrices of networks have been used as features to compare extended neighborhoods of nodes (edges, node pairs) in the same network, extended neighborhoods of nodes (edges, node pairs) across different networks, or structures of entire networks [START_REF] Newaz | Graphlets in network science and computational biology[END_REF]. These, in turn, have been used in numerous computational tasks, such as network alignment, alignment-free network comparison, graph classification, node classification, network de-noising via link prediction, network clustering, and node centrality computation, as well as for various application problems, such as studying human aging, protein folding and function, cancer and other diseases, pathogenicity, or mental health (e.g., depression and anxiety), as briefly discussed in other sections [START_REF] Liu | The power of dynamic social networks to predict individuals' mental health[END_REF][START_REF] Liu | Heterogeneous network approach to predict individuals' mental health[END_REF][START_REF] Newaz | Graphlets in network science and computational biology[END_REF][START_REF] Newaz | Multi-layer sequential network analysis improves protein 3D structural classification[END_REF][START_REF] Solava | Graphlet-based edge clustering reveals pathogen-interacting proteins[END_REF].

Hypergraphs. Hypergraphs provide powerful representations by generalizing edges between exactly two nodes to hyperedges that involve multiple nodes [START_REF] Berge | Graphs and Hypergraphs[END_REF]. For example, protein complexes, which involve simultaneous interactions among multiple proteins that carry out function only as a group, are effectively represented using undirected hypergraphs, where each node is a protein and each undirected hyperedge (a set of nodes) is a complex [START_REF] Klamt | Hypergraphs and cellular networks[END_REF]. Under this representation, complexes that share interactors can be disambiguated, thus allowing more flexibility to capture multiple functionalities on the same set of nodes. Signaling pathways, on the other hand, are represented using directed hypergraphs in which proteins are represented by nodes and reactions are represented by directed hyperedges [START_REF] Ritz | Signaling hypergraphs[END_REF].

Fig. 4 shows an example of nine reactions from the transforming growth factor-beta (TGFβ) signaling pathway [START_REF] Gillespie | The reactome pathway knowledgebase 2022[END_REF] and their representation using higher-order graph frameworks. In this example, TGFβ1 binds to the TFGβ receptor and phosphorylates SMAD2/3, which in turn binds to SMAD4; SMAD2/3 are subsequently dephosphorylated by MTMR4. The signaling reactions are captured by a directed hypergraph with nine hyperedges connecting proteins (which may be phosphorylated) and protein complexes (Fig. 4A). Without the directed hyperedges, we have a series of overlapping protein complexes, the structure of which provides some insights into how the protein complexes form (Fig. 4B). Directed and undirected hypergraphs offer more information than a graph that only captures pairwise physical interactions in this cascade (Fig. 4C). If dealing with the pairwise graph representation in Fig. 4C, graphlets can help characterize the local topology of a specific node (Fig. 4D) or an entire network, as discussed above. If dealing with the hypergraph representation from Fig. 4A-B, hypergraphlets, discussed below, can be used to quantify topology (Fig. 4E).

A shortcoming of pairwise graphs in representing multi-component interactions is that some paths may be lost [START_REF] Murgas | Hypergraph geometry reflects higher-order dynamics in protein interaction networks[END_REF] or ghost paths can be created [START_REF] Pandey | Functional annotation of regulatory pathways[END_REF] while contracting a multi-way interaction into a set of pairwise interactions. For example, as seen in Fig. 4A, the interaction between TGFβ1 and SMAD2/3 occurs when TGFβ1 is part of the TGFβ complex that is phosphorylated, but this information is lost in the pairwise graph representation shown in Fig. 4C. In addition, contracting multi-way interactions into pairwise interactions results in the replication of interactions between multiple components, inflating subgraph density, multiplicity of paths, and node degrees; while also shortening paths. Generalization of notions such as density or centrality to hypergraphs can therefore provide more reliable insights into the topology and dynamics of biological networks [START_REF] Feng | Hypergraph models of biological networks to identify genes critical to pathogenic viral response[END_REF].

In addition to reducing representation loss, hypergraphs also offer meaningful algorithmic advantages. Owing to the graph duality property where each graph can be represented as a hypergraph by inverting nodes and edges of the original graph into hyperedges and nodes, respectively, of a dual graph, hypergraph representations offer a possibility to unify methodology. For example, node classification, edge classification, and link prediction on pairwise graphs can all be seen as node classification on (extended) dual hypergraphs [START_REF] Lugo-Martinez | Classification in biological networks with hypergraphlet kernels[END_REF]. This allows for the development of general methodologies and software that could support statistical inference tasks on biological networks.

To date, the application of hypergraphs in biological network analysis is limited because of constraints posed by the availability of data and annotations (or lack thereof). In cellular signaling, post-translational modifications play a central role in multi-way interactions among cellular components, yet only a small fraction of post-translational modifications are well-characterized [START_REF] Needham | Illuminating the dark phosphoproteome[END_REF]. As biotechnology advances and more data are generated, the availability of algorithms that solve fundamental problems on hypergraph representations, therefore, has the potential to guide data generation and curation of annotations.

Hypergraph algorithms. In the broader computer science community, hypergraph algorithms exist for several problems including shortest paths, random walks, and clustering [START_REF] Ausiello | Directed hypergraphs: Introduction and fundamental algorithms-A survey[END_REF][START_REF] Cambini | Flows on hypergraphs[END_REF][START_REF] Ducournau | Random walks in directed hypergraphs and application to semi-supervised image segmentation[END_REF][START_REF] Gao | Dynamic Shortest Path Algorithms for Hypergraphs[END_REF][START_REF] Zhou | Learning with hypergraphs: Clustering, classification, and embedding[END_REF]. Within the context of network biology, hypergraphs have been used to study metabolic networks [START_REF] Klamt | Hypergraphs and cellular networks[END_REF], clusters in PPI networks [START_REF] Ramadan | A hypergraph model for the yeast protein complex network[END_REF], and shortest paths in signaling pathways. This final application is the best developed use of directed hypergraphs in network biology. Hence, we focus our discussion on it.

Defining reachability in directed hypergraphs is significantly more complex than in pairwise graphs. A key principle is that the nodes in the head of a hyperedge are reachable from some source only if all the nodes in the tail are themselves reachable from that source. This principle expresses the natural concept that for any product of a reaction to form, all the reactants must be present. The notion of B-reachability formalizes this idea [START_REF] Ausiello | Directed hypergraphs: Introduction and fundamental algorithms-A survey[END_REF][START_REF] Ritz | Signaling hypergraphs[END_REF]. The challenge now is that computing B-hyperpath with the smallest number of edges is an NP-complete problem, even when the tail and head of each hyperedge contain at most two nodes and we are interested only in acyclic hyperpaths [START_REF] Ritz | Signaling hypergraphs[END_REF]. An initial approach proposed a mixed-integer linear program to compute optimal hyperpaths [START_REF] Ritz | Signaling hypergraphs[END_REF], applying it with success to the Wnt signaling pathway in the NCI Pathway Interaction Database. In practice, a drawback of this method was that a very large number of nodes without any incoming hyperedge had to be included among the sources for any meaningful hyperpath to exist.

A later technique relaxed the definition of B-hyperpath [START_REF] Franzese | Hypergraph-based connectivity measures for signaling pathway topologies[END_REF] to address this problem. As another alternative, an efficient heuristic approach can handle cyclic hyperpaths and computes optimal ones in practice [START_REF] Krieger | Heuristic shortest hyperpaths in cell signaling hypergraphs[END_REF].

An exact cutting-plane algorithm can also compute shortest hyperpaths with cycles while being efficient in practice on both the NCI Pathway Interaction Database and Reactome [START_REF] Krieger | Computing shortest hyperpaths for pathway inference in cellular reaction networks[END_REF]. Finally, similar problems have been studied in the context of metabolic networks. Here, the notion of shortest path is generalized to a factory, which also takes reaction stoichiometry into account. A mixed-integer linear program can find factories with the fewest reactions and accommodate two orders of negative regulation [START_REF] Krieger | Computing optimal factories in metabolic networks with negative regulation[END_REF].

Statistical learning on hypergraphs. Hypergraphs can be approximated by pairwise graphs (e.g., star expansion, clique expansion [START_REF] Agarwal | Higher Order Learning with Graphs[END_REF]), but such approximations do not retain all properties of the original hypergraphs (e.g., the cut properties [START_REF] Ihler | Modeling hypergraphs by graphs with the same mincut properties[END_REF]). Therefore, methods directly developed for learning on hypergraph data can offer practical advantages. A number of such approaches have emerged [START_REF] Antelmi | A Survey on Hypergraph Representation Learning[END_REF][START_REF] Chitra | Random walks on hypergraphs with edge-dependent vertex weights[END_REF][START_REF] Cong | Random walks for circuit clustering[END_REF][START_REF] Leordeanu | Efficient hypergraph clustering[END_REF][START_REF] Lugo-Martinez | Classification in biological networks with hypergraphlet kernels[END_REF][START_REF] Maleki | HyperNetVec: Fast and scalable hierarchical embedding for hypergraphs[END_REF][START_REF] Wachman | Learning from interpretations: a rooted kernel for ordered hypergraphs[END_REF]; however, accurate learning on hypergraphs is often hindered by NP-hardness issues [START_REF] Gärtner | On Graph Kernels: Hardness Results and Efficient Alternatives[END_REF][START_REF] Hein | The total variation on hypergraphs-learning on hypergraphs revisited[END_REF][START_REF] Purkait | Clustering with hypergraphs: the case for large hyperedges[END_REF] and, thus, methods developed to directly deal with hypergraph data often trade accuracy for scalability.

A common theme in statistical learning on hypergraphs is finding a typically high-dimensional representation, or an embedding, of the data, and subsequently applying traditional machine learning to learn some concept; see Section 5 for more details. These methods can work at the level of entire graphs for graph classification, or at the level of nodes (edges), for node (edge) classification and link prediction. A well-known graph classification problem is the prediction of toxicity of chemical molecules [START_REF] Vishwanathan | Graph kernels[END_REF], where the nodes are atoms, and the edges are bonds, both of different types, or prediction of protein function [START_REF] Borgwardt | Protein function prediction via graph kernels[END_REF]. Examples of popular node/edge classification problems are function prediction for proteins/protein complexes in PPI networks or for amino acid residues in protein structure networks [START_REF] Lugo-Martinez | The loss and gain of functional amino acid residues is a common mechanism causing human inherited disease[END_REF][START_REF] Vacic | Graphlet kernels for prediction of functional residues in protein structures[END_REF]. An example of a link prediction problem is the task of de-noising and completion of the PPI network itself, as also discussed in Section 2. Embeddings are often formalized via kernel-based approaches or representation learning (Section 5), thus allowing the practitioners to use both finite-and infinite-dimensional representations. Well-performing kernel approaches (kernels are symmetric, positive semi-definite similarity functions defined on pairs of objects, that allow efficient learning [START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF]) include random walks [START_REF] Wachman | Learning from interpretations: a rooted kernel for ordered hypergraphs[END_REF] and hypergraphlet counting [START_REF] Lugo-Martinez | Classification in biological networks with hypergraphlet kernels[END_REF]. Hypergraphlets are typically defined as small, connected, (rooted) hypergraphs, often with a finite number of node and edge types [START_REF] Lugo-Martinez | Classification in biological networks with hypergraphlet kernels[END_REF]. They are a non-trivial extension of (pairwise) graphlets discussed above [START_REF] Lugo-Martinez | Generalized graphlet kernels for probabilistic inference in sparse graphs[END_REF][START_REF] Milenković | Uncovering biological network function via graphlet degree signatures[END_REF][START_REF] Pržulj | Biological network comparison using graphlet degree distribution[END_REF][START_REF] Pržulj | Modeling interactome: scale-free or geometric?[END_REF][START_REF] Shervashidze | Efficient graphlet kernels for large graph comparison[END_REF][START_REF] Vacic | Graphlet kernels for prediction of functional residues in protein structures[END_REF], with both illustrated in Fig. 4D-E. As with graphlets, the appeal for counting hypergraphlets derives from the graph reconstruction conjecture [START_REF] Bondy | Graph reconstruction-a survey[END_REF]. Though proved only for certain types of graphs (e.g., trees), the graph reconstruction conjecture postulates that a large graph of size n can be reconstructed up to isomorphism from the counts of all subgraphs up to the size of n -1. A stronger version of the conjecture allows for such reconstruction for subgraphs up to the size of some k < n -1. Under these conditions, hypergraphlet counting approaches can lead to embeddings that allow universal approximation on hypergraph data. Another approach, relying on neural-network graph embeddings, allows for scaling hypergraph-based approaches to very large graphs [START_REF] Maleki | HyperNetVec: Fast and scalable hierarchical embedding for hypergraphs[END_REF]. Among additional, deep learning-based approaches for hypergraphs [START_REF] Gui | Large-scale embedding learning in heterogeneous event data[END_REF][START_REF] Tu | Structural deep embedding for hyper-networks[END_REF], a prominent example utilizes a GNN based on self-attention to effectively learn embeddings of the nodes and predict hyperedges for non-k-uniform heterogeneous hypergraphs, enhancing the generalizability [START_REF] Zhang | Hyper-SAGNN: a self-attention based graph neural network for hypergraphs[END_REF]. This approach and its extensions have been applied to studying chromatin biology [START_REF] Zhang | Matcha: probing multi-way chromatin interaction with hypergraph representation learning[END_REF][START_REF] Zhang | Multiscale and integrative single-cell Hi-C analysis with Higashi[END_REF] and predicting genetic interactions for a group of genes, specifically trigenic interactions, thereby significantly expanding the quantitative characterization of higher-order interactions [START_REF] Zhang | DANGO: Predicting higher-order genetic interactions[END_REF].

Limitations. Three major issues confront the wide adoption of hypergraph-based representations in network biology. Databases such as Reactome [START_REF] Gillespie | The reactome pathway knowledgebase 2022[END_REF] contain well-curated reaction networks that are amenable to representations as generalizations of directed hypergraphs. The first issue is that these resources remain incomplete and rely on manual curation. One promising direction of research is to analyze pairwise graphs to automatically infer reactions. An elegant example is an approach that uses properties of chordal graphs to convert a graph representation of a signaling pathway as a nested tree of protein complexes [START_REF] Zotenko | Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations[END_REF]. A graph is chordal if every pair of nodes in every cycle of length four or more is connected by an edge. Since PPI networks are not necessarily chordal, the authors augment them with additional edges, e.g., those that connect weak siblings, i.e., pairs of nodes that have identical neighbor sets but are themselves not connected by an edge. If the resulting graph is chordal, it admits a representation as a tree of cliques, which can be converted into a tree of complexes in the original graph by deleting the artificially-added edges. This method was applied to the TNF-α/NF-κB and pheromone signaling pathways [START_REF] Zotenko | Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations[END_REF]. To further the use of hypergraphs in network biology, it will be important to generalize this method to apply to larger classes of graphs and to unify these methods of automated reconstruction with the results of manual curation. It may also be valuable to formulate hybrid network representations that combine the features of pairwise graphs and hypergraphs.

A caveat here is that the need to develop a novel set of algorithms for every new representation might prevent its wide adoption in the community.

The second issue is that the theory for (directed) hypergraphs is much less well-developed than for pairwise graphs. Problems that have well-established and simple polynomial-time solutions on pairwise graphs, e.g., shortest paths, turn out to be computationally intractable on directed hypergraphs [START_REF] Ritz | Signaling hypergraphs[END_REF], as discussed above.

Incorporating regulation into the definitions of shortest paths continues to be challenging [START_REF] Krieger | Computing optimal factories in metabolic networks with negative regulation[END_REF]. Moreover, graph-theoretic concepts such as clusters, flows, random walks, or convolutions that have been employed fruitfully in network biology are either challenging to generalize to hypergraphs or have found limited applications in biology.

The third issue is that it is not clear under what conditions or for which applications a higher-order representation is better than a pairwise graph representation. Arguments often appeal to visual and qualitative reasoning (Fig. 4). We encourage the community to come forward with well-established datasets, evaluation measures, and benchmark frameworks that can pose these questions formally and develop generalizable standards.

Machine learning on networks

Overview. Machine learning has emerged as a powerful paradigm for creating predictive models specified as parameterized functions with tunable parameters that operate on structured data, such as graphs, spatial geometries, relational structures, and manifolds. Applying machine learning methods to network data has demonstrated potential in a myriad of biological network analysis tasks [START_REF] Hetzel | Graph representation learning for single-cell biology[END_REF][START_REF] Li | Graph representation learning in biomedicine and healthcare[END_REF][START_REF] Theodoris | Transfer learning enables predictions in network biology[END_REF][START_REF] Yue | Graph embedding on biomedical networks: methods, applications and evaluations[END_REF]. Recent methods are designed to produce graph representations as compact numerical vectors (or embeddings) corresponding to various graph elements, such as nodes, edges, subgraphs, and entire graphs, and capture essential information about the topology of these elements. These learned representations can be fed into models trained toward a vast array of downstream analytic tasks.

Predictive models on graphs can be created through unsupervised, self-supervised, and supervised learning on all types of networks, including homogeneous, heterogeneous, temporal, and spatial networks, and with additional constraints and domain knowledge imposed on models. By leveraging deep graph learning models pretrained on large-scale general graph datasets, it is possible to adapt (or fine-tune) pretrained representations for diverse use cases in predictive and generative modeling [START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF][START_REF] Gainza | De novo design of protein interactions with learned surface fingerprints[END_REF]. As machine learning on graphs continues to be developed, appropriate model benchmarking is necessary to ensure that task-specific evaluation measures are well-defined and predictions are fair and robust. The rest of this section discusses these topics, which are also summarized in Fig. 5.

Unsupervised, self-supervised, and supervised graph learning. Unsupervised learning of graph representations involves optimizing parameterized strategies, such as GNNs, graph transformers, or multi-layer neural message-passing models, to aggregate information from a node's (entity, such as a gene in a gene co-expression network or a patient in a patient similarity network) neighbors in the network and optimizing the representations such that the proximity between entities in the embedding space mirrors their proximity in the network [START_REF] Atz | Geometric deep learning on molecular representations[END_REF][START_REF] Cao | A Comprehensive Survey on Geometric Deep Learning[END_REF]. Prevalent strategies for sampling neighbors in the network vicinity of nodes that get embedded in the latent space include biased and unbiased random walks as well as adaptive neighbor sampling [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF][START_REF] Veličković | Deep Graph Infomax[END_REF]. Objective functions of these methods aim to maximize embedding similarity in the latent space for neighboring nodes in the network [START_REF] Hamilton | Graph representation learning[END_REF][START_REF] Hamilton | Representation Learning on Graphs: Methods and Applications[END_REF][START_REF] Perozzi | Deepwalk: online learning of social representations[END_REF][START_REF] Tang | LINE: Large-scale information network embedding[END_REF]. For instance, nodes connected by edges should be embedded closer together in the latent space (i.e., have more similar embeddings) than nodes that are not connected [START_REF] Grover | node2vec: Scalable Feature Learning for Networks[END_REF][START_REF] Liu | Graph self-supervised learning: A survey[END_REF][START_REF] Wu | Self-supervised learning on graphs: Contrastive, generative, or predictive[END_REF][START_REF] Xie | Self-supervised learning of graph neural networks: A unified review[END_REF]. However, unsupervised learning approaches have limitations, primarily because they do not take full advantage of the rich information provided by the network.

Self-supervised graph representation learning, the predominant approach for machine learning on graphs, utilizes the information contained in the underlying networks upon which the model operates. There are four types of self-supervised learning on graphs: node-, edge-, subgraph-, and graph-level prediction [START_REF] Hassani | Contrastive multi-view representation learning on graphs[END_REF][START_REF] Li | Graph representation learning in biomedicine and healthcare[END_REF]. An example of a self-supervised node classification task is predicting each node's degree. Link prediction is a self-supervised edge classification task that predicts whether an edge exists between a pair of nodes [START_REF] Kipf | Variational graph auto-encoders[END_REF][START_REF] Li | Graph representation learning in biomedicine and healthcare[END_REF] Generative model The core of this approach (left) is a machine learning model, typically a neural network, that takes one or more biological networks as input and learns representations (embeddings) of various graph elements in an unsupervised, self-supervised, or supervised manner. These representations can be used for exploratory analysis or as input to train a new machine learning model to perform a downstream task. Models can also be trained end-to-end, i.e., a single model that learns representations and performs downstream prediction, or trained for one task with abundant labels and transferred (modified and fine-tuned) to a new related task with limited labels. Generative network-based machine learning models can also be used to create novel graph-structured data based on the learned representations. Critical to continued development, wide adoption, and practical utility of network-focused machine learning is a parallel improvement in frameworks for rigorous benchmarking, explainability of predictions, and uncertainty quantification.

based on a self-supervised objective, which can be of the contrastive, masking, or generative type [START_REF] Liu | Self-supervised learning: Generative or contrastive[END_REF].

Examples of self-supervised subgraph and graph tasks include predicting subgraph and graph properties, such as distributional statistics of shortest path lengths, network diameter, and the presence or absence of specific higher-order structures and graphlets [START_REF] Alsentzer | Subgraph neural networks[END_REF][START_REF] Luo | CLEAR: Cluster-enhanced contrast for self-supervised graph representation learning[END_REF][START_REF] You | Graph contrastive learning with augmentations[END_REF]. The type of task hinges on the desired properties of the learned representations. As such, self-supervised graph representation learning is flexible and versatile across applications in biology and medicine [START_REF] Zitnik | Modeling polypharmacy side effects with graph convolutional networks[END_REF][START_REF] Zitnik | Predicting multicellular function through multi-layer tissue networks[END_REF].

Graph representation learning, whether unsupervised or self-supervised, can be applied to any type of network, including but not limited to homogeneous, heterogeneous, temporal, spatial, and physical networks. For example, in heterogeneous networks, GNN and graph transformer models leverage node-and edgebased attention weights to aggregate neighborhood information depending on node and edge types [START_REF] Fu | MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks[END_REF][START_REF] Kesimoglu | GRAF: Graph attention-aware fusion networks[END_REF][START_REF] Wang | Heterogeneous graph attention network[END_REF][START_REF] Xie | MGAT: Multi-view Graph Attention Networks[END_REF][START_REF] Zhang | Heterogeneous graph neural network[END_REF]. Other approaches treat each edge type as a homogeneous graph, apply a graph representation learning model to it, and then integrate edge-type specific node representations into final representations [START_REF] Fu | MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks[END_REF][START_REF] Kesimoglu | GRAF: Graph attention-aware fusion networks[END_REF][START_REF] Kesimoglu | SUPREME: multiomics data integration using graph convolutional networks[END_REF][START_REF] Wang | MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification[END_REF]. Furthermore, subgraphs can be sampled via metapaths to learn semantic nuances underlying a heterogeneous network in a self-supervised manner, such as through contrastive learning [START_REF] Dong | metapath2vec: Scalable Representation Learning for Heterogeneous Networks[END_REF][START_REF] Zhao | Multi-view Self-supervised Heterogeneous Graph Embedding[END_REF]. These advancements in graph representation learning have impacted areas like cancer biology, drug discovery, and disease diagnosis [START_REF] Esteva | A guide to deep learning in healthcare[END_REF][START_REF] Huang | Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design[END_REF][START_REF] Huang | Artificial intelligence foundation for therapeutic science[END_REF][START_REF] Gysi | Network medicine framework for identifying drug-repurposing opportunities for COVID-19[END_REF][START_REF] Stokes | A deep learning approach to antibiotic discovery[END_REF].

Supervised graph representation learning leverages labeled data within networks to directly optimize models for specific prediction tasks. In this paradigm, nodes, edges, or entire graphs are associated with groundtruth labels, and the learning process minimizes the discrepancy between the model's predictions and these labels [START_REF] Schlichtkrull | Modeling relational data with graph convolutional networks[END_REF][START_REF] Veličković | Graph attention networks[END_REF]. Common applications include node classification, where individual nodes are assigned to predefined categories, and graph classification, wherein entire graphs are categorized based on their topological features [START_REF] Eyuboglu | Mutual interactors as a principle for phenotype discovery in molecular interaction networks[END_REF][START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF]. Unlike unsupervised and self-supervised models, supervised graph learning directly uses label information, often leading to more task-specific and accurate representations, albeit at the cost of requiring labeled data.

Incorporating knowledge into machine learning models through knowledge graphs, spatial constraints, equivariances, and symmetries. In numerous biological and medical applications, standard graph representation learning often falls short of requirements. In these cases, the model's predictive accuracy can be enhanced by imposing constraints drawn from pre-existing knowledge. Typical strategies encompass incorporating multimodal data into BKGs, augmenting GNNs with bespoke architectures, and applying domain-specific invariances.

BKGs help model heterogeneous relationships between biomedical entities, as already discussed in Section 3. The resulting latent space, which reflects the topology of the underlying knowledge graph, can be operated on to make inferences about existing and novel relationships. Jointly modeling diverse types of relationships in a BKG, such as integrative modeling of transcription regulation and metabolism [START_REF] Chandrasekaran | Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis[END_REF][START_REF] Niu | TRIMER: transcription regulation integrated with metabolic regulation[END_REF], can present unique challenges due to the BKG's incompleteness and potential high-order relationships involving heterogeneous entities. Incorporating pathway knowledge, either implicitly as constraints that regularize network embeddings [START_REF] Niu | TRIMER: transcription regulation integrated with metabolic regulation[END_REF] or directly as a prior placed on the BKG structure and parameters in a Bayesian fashion [START_REF] Boluki | Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors[END_REF], has been shown to improve predictive performance. Depending upon the complexity of the biological question, utilizing biomedical knowledge can be useful to extract robust patterns from high-dimensional or small-sample datasets. Supervised machine learning methods often require many samples to identify biologically meaningful patterns, which can limit their applicability in areas such as rare diseases that are inherently limited in clinical cases, leading to few samples to analyze [START_REF] Banerjee | Machine learning in rare disease[END_REF]. Advances in self-supervised graph learning applied to BKGs have shown promise for rare disease research [START_REF] Alsentzer | Deep learning for diagnosing patients with rare genetic diseases[END_REF] and will likely be informative for applications beyond rare diseases for which few samples exist with high-dimensional data.

Temporal and spatial data can be represented as networks, but specialized neural architectures are necessary to learn optimally on temporal/dynamic networks. Temporal graph representation learning methods typically involve two main components: a GNN architecture to generate embeddings for each time point and a recurrent neural network, such as a long short-term memory network or a transformer network, to perform sequence learning by leveraging temporal relationships between elements in the sequence. Existing approaches use GNNs as feature extractors of nodes and the underlying topology, and recurrent neural networks for temporal learning and to include additional metadata information [START_REF] Li | Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting[END_REF][START_REF] Manessi | Dynamic graph convolutional networks[END_REF][START_REF] Pareja | Evolvegcn: evolving graph convolutional networks for dynamic graphs[END_REF][START_REF] Peng | Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[END_REF][START_REF] Zhao | T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction[END_REF]. Recently, static GNNs have been extended to handle dynamic graphs by treating time points as hierarchical states [START_REF] You | ROLAND: graph learning framework for dynamic graphs[END_REF] or applied to irregular time series data by propagating neural messages between time intervals of each sensor as well as between sensors [START_REF] Zhang | Graph-guided network for irregularly sampled multivariate time series[END_REF]. Protein molecular configurations can be depicted as protein structure networks where amino acid nodes are linked by the 3D physical proximity of their residues, and the amino acid spatial coordinate information is encoded as node attributes. Deep learning models, particularly through the use of equivariant GNNs, can both attain high performance and preserve transformations of protein networks under translation, reflection, and rotation of networks in the 3D space [START_REF] Batzner | E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials[END_REF][START_REF] Gong | General framework for E(3)-equivariant neural network representation of density functional theory hamiltonian[END_REF][START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF]. For instance, to establish a model that remains invariant to molecular spatial orientation, constraints enforcing rotation invariance ought to be integrated [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF]. Methodologies derived from equivariant neural networks, such as AlphaFold [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF], can complement sequence-based language models [START_REF] Lin | Evolutionary-scale prediction of atomic-level protein structure with a language model[END_REF] by harnessing evolutionary data to infer protein structures from primary amino acid sequences, and potentially generate realistic molecular formations.

Generative graph models. Generative graph models are a class of machine learning models specifically designed to generate new graphs, or parts of graphs, that resemble a given set of example graphs in some way. These models learn to capture the underlying patterns and structures inherent in the training graphs and can then be used to produce new graphs with similar properties as the training graphs. For example, in molecular biology, the inherently graph-like nature of molecular structures has made GNNs an ideal tool for creating realistic synthetic molecules, guiding the generation process by learning the underlying patterns and properties from real molecular data [START_REF] Bilodeau | Generative models for molecular discovery: Recent advances and challenges[END_REF]. One such method is a variational graph autoencoder that learns embeddings of molecular structures and uses them to generate novel molecular graphs [START_REF] Jin | Junction tree variational autoencoder for molecular graph generation[END_REF][START_REF] Kipf | Variational graph auto-encoders[END_REF][START_REF] Li | Learning deep generative models of graphs[END_REF]. Other generative models, such as GraphVAE, GraphRNN, and MolGAN, have also been developed to generate realistic graph-structured data [START_REF] Cao | MolGAN: An implicit generative model for small molecular graphs[END_REF][START_REF] Simonovsky | GraphVAE: towards generation of small graphs using variational autoencoders[END_REF][START_REF] You | GraphRNN: Generating Realistic Graphs with Deep Auto-Regressive Models[END_REF]. Inspired by generative adversarial networks for image generation, MolGAN pits a generator model (which produces graphs) against a discriminator model (which tries to distinguish between real and generated graphs). Additionally, graph transformer networks have recently been proposed for molecular graph generation, demonstrating the ability to generate molecules with desired properties by training on extensive chemical databases [START_REF] Bagal | MolGPT: molecular generation using a transformer-decoder model[END_REF].

When applied to protein design, GNNs have demonstrated impressive results in designing protein sequences that fold into specific structures [START_REF] Ingraham | Generative models for graph-based protein design[END_REF]. Graph-based methods like PotentialNet have shown promise for protein-ligand binding prediction [START_REF] Feinberg | PotentialNet for Molecular Property Prediction[END_REF]. Similarly, DeepSite uses 3D convolutional neural networks to predict protein-ligand binding sites [START_REF] Jiménez | DeepSite: protein-binding site predictor using 3D-convolutional neural networks[END_REF]. Moreover, recent generative models, such as ProteinMPNN [START_REF] Dauparas | Robust deep learning-based protein sequence design using ProteinMPNN[END_REF] utilize message-passing neural network architecture to generate realistic protein sequences and structures, further expanding the range of possibilities for protein design. By using GNNs, the field of protein and drug design can leverage the learned representations of molecular structure to generate molecules and proteins with desirable properties, substantially advancing the capabilities of computational biology.

Transfer learning. The quality of representations generated by graph representation learning methods is contingent upon the availability of labels. Nevertheless, in the realm of network biology, labels are often in short supply due to the substantial resources required for their curation and validation. A potent solution to addressing this challenge is transfer learning. This approach involves initially training a graph representation learning model on a large reference network via self-supervised pretraining [START_REF] Hu | Strategies for pre-training graph neural networks[END_REF][START_REF] Li | Graph representation learning in biomedicine and healthcare[END_REF][START_REF] Xie | Self-supervised learning of graph neural networks: A unified review[END_REF][START_REF] You | Graph contrastive learning with augmentations[END_REF], followed by adapting the resulting model or its outputs to a different task of interest typically through supervised learning on a small set of labeled examples (fine-tuning). Pretraining a model on a large network followed by fine-tuning of the model using a small labeled dataset allows the model to harness extant information about a network entity (i.e., from the large network utilized for pretraining) in service of diverse tasks with limited task-specific labels.

Transfer learning has shown considerable potential for developing predictive models on condition-specific networks that vary with biological conditions. Networks are typically constructed from context-free data (e.g., the human reference PPI network [START_REF] Luck | A reference map of the human binary protein interactome[END_REF]) or data generated under specific conditions (e.g., a gene co-expression network for a particular disease). Biomedical entities and their interactions can vary across biological conditions, such as tissues, cell types, and disease states. Nevertheless, generalizing knowledge from context-free networks to context-specific problems presents considerable challenges. For instance, deducing tissue-or cell type-specific interactions from the human reference PPI network necessitates algorithmic innovation [START_REF] Greene | Understanding multicellular function and disease with human tissue-specific networks[END_REF][START_REF] Ietswaart | GeneWalk identifies relevant gene functions for a biological context using network representation learning[END_REF][START_REF] Li | Deep contextual learners for protein networks[END_REF][START_REF] Zitnik | Predicting multicellular function through multi-layer tissue networks[END_REF]. One approach to this challenge involves constructing context-specific networks (as discussed in Sections 2 and 3) and applying independent shallow network embedding layers to learn node representations based on network topology and tissue hierarchical structure [START_REF] Greene | Understanding multicellular function and disease with human tissue-specific networks[END_REF][START_REF] Zitnik | Predicting multicellular function through multi-layer tissue networks[END_REF]. An alternative strategy is to learn shallow network embeddings on a context-free network, such that the embeddings of nodes operating in the same context are more similar to each other than nodes operating in different contexts [START_REF] Ietswaart | GeneWalk identifies relevant gene functions for a biological context using network representation learning[END_REF].

Recent methods incorporate context in a data-driven manner, constructing cell type-specific PPI networks using single-cell transcriptomic data [START_REF] Li | Contextualizing protein representations using deep learning on protein networks and single-cell data[END_REF][START_REF] Li | Deep contextual learners for protein networks[END_REF]. Unified by a network of cell type and tissue hierarchy, these networks can be harnessed to learn unique protein representations tailored to each cell type context [START_REF] Li | Contextualizing protein representations using deep learning on protein networks and single-cell data[END_REF][START_REF] Li | Deep contextual learners for protein networks[END_REF].

Understanding predictive models, benchmarking, and rigorous evaluation across diverse tasks.

With the rapid evolution of graph learning methodologies, the need to construct rigorous benchmarks for effectively assessing the performance of these novel techniques is becoming increasingly urgent [START_REF] Hu | Open graph benchmark: Datasets for machine learning on graphs[END_REF][START_REF] Shchur | Pitfalls of graph neural network evaluation[END_REF].

Open-science evaluation platforms such as the Benchmarking GNN [START_REF] Dwivedi | Benchmarking graph neural networks[END_REF] and Open Graph Benchmark [START_REF] Hu | OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs[END_REF][START_REF] Hu | Open graph benchmark: Datasets for machine learning on graphs[END_REF] serve as significant assets for general graph benchmarking, while other resources are being curated explicitly for the domain of network biology [START_REF] Liu | nleval: A Python Toolkit for Generating Benchmarking Datasets for Machine Learning with Biological Networks[END_REF].

In order to provide a comprehensive evaluation, these resources ought to be expanded to include tasks defined at various levels of graphs, including node classification, link prediction, subgraph classification and clustering, and whole-graph classification and regression. In addition to benchmarking models for predictive tasks, evaluation frameworks are needed for generative graph models. They should also encompass diverse types of biological graphs, such as heterogeneous, spatial, and temporal ones. A critical element in this regard is the performance of network-based machine learning techniques, which set a benchmark for comparison against advanced graph representation learning and GNN methodologies [START_REF] Bronstein | Geometric deep learning: Grids, groups, graphs, geodesics, and gauges[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF][START_REF] Liu | Supervised learning is an accurate method for network-based gene classification[END_REF][START_REF] Scarselli | The graph neural network model[END_REF].

Moreover, the explainability of graph-based learning can offer significant insights in the biomedical domain [START_REF] Agarwal | Evaluating explainability for graph neural networks[END_REF][START_REF] Xie | Task-agnostic graph explanations[END_REF][START_REF] Ying | Gnnexplainer: Generating explanations for graph neural networks[END_REF][START_REF] Yuan | On explainability of graph neural networks via subgraph explorations[END_REF]. Consequently, it is equally important to examine learned algorithms by examining pretrained graph representations [START_REF] Forster | BIONIC: biological network integration using convolutions[END_REF] and mapping attention mechanisms in attention-based deep learning models [START_REF] Elmarakeby | Biologically informed deep neural network for prostate cancer discovery[END_REF]. As we move towards the broader application of machine learning models in network biology, proper quantification of the uncertainty, error, and utility associated with these models is indispensable. Given the potential for considerable uncertainty in these models, effective techniques for uncertainty quantification are required to fully comprehend the predictive capabilities and limitations of a given model [START_REF] Abdar | A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges[END_REF].

When the model's objective is specific, such as treatment recommendation, disease diagnosis and prognosis, and steady-state or transient network behavior prediction, an objective-driven approach to uncertainty quantification can be beneficial [START_REF] Yoon | Quantifying the objective cost of uncertainty in complex dynamical systems[END_REF]. This approach allows us to quantify uncertainty based on its impact on the expected performance of prediction and intervention tasks. Ultimately, this can pave the way for optimal experimental design techniques [START_REF] Dehghannasiri | Optimal experimental design for gene regulatory networks in the presence of uncertainty[END_REF][START_REF] Dehghannasiri | Efficient experimental design for uncertainty reduction in gene regulatory networks[END_REF] that prioritize experiments to generate the most informative data points selected by active learning strategies, effectively reducing model uncertainty.

Network-based personalized medicine

Overview. The overarching goal of precision medicine is to develop diagnostic and treatment strategies tailored to individual patients [START_REF] Aronson | Building the foundation for genomics in precision medicine[END_REF][START_REF] Kaiser | NIH plots million-person megastudy[END_REF][START_REF] Malod-Dognin | Precision medicine-a promising, yet challenging road lies ahead[END_REF], while also taking into account the desired level of precision for each treatment. Personalized characterization of an individual or a group can encompass various data types, including molecular, healthcare, environmental, lifestyle, and behavioral information, commonly modeled and analyzed as networks [START_REF] Pržulj | Network analytics in the age of big data[END_REF]. By assimilating data from different modalities, precision therapeutics can amplify their potential and bolster resilience against diverse data noise [START_REF] Gligorijevic | Integrative methods for analyzing big data in precision medicine[END_REF][START_REF] Huang | Therapeutics data commons: Machine learning datasets and tasks for drug discovery and development[END_REF][START_REF] Huang | Artificial intelligence foundation for therapeutic science[END_REF]. Fusing data from multiple sources has proven effective in advancing precision medicine [START_REF] Gaudelet | Integrative data analytic framework to enhance cancer precision medicine[END_REF][START_REF] Gligorijevic | Patient-specific data fusion for cancer stratification and personalised treatment[END_REF][START_REF] Malod-Dognin | Towards a data-integrated cell[END_REF][START_REF] Wang | Similarity network fusion for aggregating data types on a genomic scale[END_REF].

Patient stratification. Precision medicine aims to provide individualized diagnostic and treatment strategies. Developing treatments tailored to specific patient groups based on distinct disease subtypes (Fig. 6A) is poised to transform a prevailing one-size-fits-all approach used in healthcare. Network methods can integrate multimodal data to identify patient groups with coherent genetic, genomic, physiological, and clinical profiles [START_REF] Ektefaie | Multimodal learning with graphs[END_REF][START_REF] Gligorijevic | Patient-specific data fusion for cancer stratification and personalised treatment[END_REF][START_REF] Petti | Network medicine for patients' stratification: from single-layer to multi-omics[END_REF], even when the underlying data are incomplete and noisy [START_REF] Pai | Patient similarity networks for precision medicine[END_REF]. The methods assume that patients with similar clinical signatures and similar -omics profiles have similar clinical outcomes. Similarities between patients can be efficiently represented through patient similarity networks; in these networks, nodes symbolize patients, and weighted edges denote the degree of similarity derived from clinical and biomolecular patient attributes. Each patient data attribute, such as age, sex, mutation status, or gene expression profile, can be used to create a network of pairwise patient similarities. Then, the set of all such networks can be viewed as a multiplex network, with a layer for each of the attributes. Various similarity measures can be employed to assess patient similarity across different datasets corresponding to different attributes. After the multiplex patient similarity network is constructed, patient subtypes can be identified by examining the community (clustering) structure within the network. Communities are characterized as subsets of nodes that are densely connected to each other and loosely connected to nodes in different communities. Communities are thus densely/strongly linked patient groups and can shed light on distinct disease subtypes.

Network methods offer distinct advantages over non-network approaches, which often grapple with the complexities of integrated datasets [START_REF] Gligorijević | Methods for biological data integration: perspectives and challenges[END_REF]. Patient stratification has increasingly benefited from networkbased methodologies, which can elucidate intricate biological interactions, especially within disease mutation landscapes, such as cancer [START_REF] Gligorijevic | Patient-specific data fusion for cancer stratification and personalised treatment[END_REF] or rare hereditary diseases [START_REF] Malod-Dognin | A phenotype driven integrative framework uncovers molecular mechanisms of a rare hereditary thrombophilia[END_REF]. In such network representations, the intricacies of gene-gene interactions, encompassing aspects like mutual exclusivity, co-occurrence, and both physical and functional associations, become more pronounced. By delving into these interactions through network analysis of personalized gene regulatory networks [START_REF] Rogers | Network modeling predicts personalized gene expression and drug responses in valve myofibroblasts cultured with patient sera[END_REF], one can better understand inter-individual variation in disease driven by differences in interactions caused by each patient's genetic background, environmental exposures, and the proportions of specific cell types involved in disease [START_REF] Van Der Wijst | An integrative approach for building personalized gene regulatory networks for precision medicine[END_REF]. Such insights can elevate the accuracy of patient stratification, which is typically measured as the ability to classify patients as belonging to known disease subtypes [START_REF] Pai | netDx: interpretable patient classification using integrated patient similarity networks[END_REF] or the ability to identify disease biomarkers that generalize (maintain performance) when applied to new data that have not yet been seen by the model [START_REF] Alsentzer | Deep learning for diagnosing patients with rare genetic diseases[END_REF][START_REF] Kong | Network-based machine learning approach to predict immunotherapy response in cancer patients[END_REF]. These insights can also guide the refinement of therapeutic strategies, ensuring they are optimally tailored to specific patient groups [START_REF] Dao | BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions[END_REF][START_REF] Gligorijevic | Patient-specific data fusion for cancer stratification and personalised treatment[END_REF][START_REF] Huang | Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design[END_REF].

Identification of pathways associated with disease subtypes and patient groups. Identifying group-specific mutations provides valuable insights into the underlying biochemical pathways associated with the disease (Fig. 6B). These pathways can be conceptualized as networks, laying the foundation for an in-depth understanding of disease mechanisms. Incorporating individual mutation or expression data into pathway-based (i.e., network-based) methods aid in identifying targetable mutations [START_REF] Park | Pathway centrality in protein interaction networks identifies putative functional mediating pathways in pulmonary disease[END_REF]. This approach is especially pertinent in determining functional pathways that play roles in expression responses to disease-propagating mutations, leveraging the concept of pathway centrality [START_REF] Windels | Graphlet eigencentralities capture novel central roles of genes in pathways[END_REF][START_REF] Windels | Identifying cellular cancer mechanisms through pathwaydriven data integration[END_REF].

For instance, by integrating genomic, clinical, and therapeutic data through networks, physicians can categorize patients with treatment-resistant prostate cancer based on specific gene mutations like AR, PTEN, and BRCA2. Recognizing these mutations facilitates the adoption of personalized therapies, targeting the aberrant pathways distinctive to each patient's tumor profile. As a result, this tailored treatment strategy offers the potential for safer and more effective treatments [START_REF] Mateo | Accelerating precision medicine in metastatic prostate cancer[END_REF].

Furthermore, recent research has illuminated the importance of tissue-specific regulatory networks and the pathways they encompass, which frequently manifest genetic mutations in particular patient cohorts. This understanding emerged from the combined analysis of expression and chromatin accessibility data, unveiling a previously unidentified tissue-specific stem-cell-like subtype of treatment-resistant prostate cancer that may be a target for intervention [START_REF] Tang | Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets[END_REF]. Similarly, a comparative structural analysis of the chromatin structure network in chronic lymphocytic leukemia and control tissue of origin revealed that genes driving this cancer type are characterized by specific local wiring patterns not only in the chromatin structure network of chronic lymphocytic leukemia cells but also of healthy cells [START_REF] Malod-Dognin | Chromatin network markers of leukemia[END_REF]. This allows for the successful prediction of new DNA elements related to this cancer type, and importantly, it shows that cancer-related DNA elements can be identified in other cancer types by investigating the chromatin structure network of the healthy cell of origin, a critical new insight paving the road to new therapeutic strategies [START_REF] Malod-Dognin | Chromatin network markers of leukemia[END_REF].

Identification of disease-dysregulated functional modules. Studying disease-dysregulated functional modules can advance the understanding of disease beyond isolated mutations or pathway dysregulations. Disease-associated behaviors can materialize in clusters of tightly interacting proteins forming functional modules (Fig. 6B) [START_REF] Agrawal | Large-scale analysis of disease pathways in the human interactome[END_REF][START_REF] Menche | Uncovering disease-disease relationships through the incomplete interactome[END_REF] rather than exclusively via singular gene mutations or perturbed gene expression [START_REF] Schadt | Molecular networks as sensors and drivers of common human diseases[END_REF].

The quest to uncover disease-associated functional modules from molecular networks is a long-standing challenge with implications for precision medicine [START_REF] Barabási | Network medicine: a network-based approach to human disease[END_REF][START_REF] Choobdar | Assessment of network module identification across complex diseases[END_REF][START_REF] Eyuboglu | Mutual interactors as a principle for phenotype discovery in molecular interaction networks[END_REF][START_REF] Gaudelet | Unveiling new disease, pathway, and gene associations via multi-scale neural network[END_REF][START_REF] Gysi | Non-coding RNAs improve the predictive power of network medicine[END_REF][START_REF] Mitra | Integrative approaches for finding modular structure in biological networks[END_REF]. Prevailing approaches for finding disease modules rely on the assumption that interacting genes tend to associate with similar phenotypes. For instance, gene co-expression network analysis has been employed to pinpoint modules of genes that exhibit analogous co-expression patterns in breast cancer. Notably, these clusters of genes correlate with distinct metastasis progression patterns in patients [START_REF] Chuang | Network-based classification of breast cancer metastasis[END_REF].

Given the inherent heterogeneity of cancer, concentrated efforts have been directed toward identifying disease modules that correlate with extreme manifestations of continuous phenotypes. For phenotypes that manifest along a continuum rather than a binary outcome, pinpointing extreme values is more straightforward. Disease modules, ascertained through alternative techniques like co-expression networks, can be used to refine disease diagnosis [START_REF] Gysi | Whole transcriptomic network analysis using co-expression differential network analysis (CoDiNA)[END_REF]. They can also forecast the response of individual cell lines to specific anticancer agents and potentially suggest patient-tailored drug combinations [START_REF] Kim | Identifying drug sensitivity subnetworks with NETPHIX[END_REF][START_REF] Salazar | Multi-project and multi-profile joint non-negative matrix factorization for cancer omic datasets[END_REF]. Supplementing these techniques, differential network analysis (Section 2) can reveal differential connections or rewiring of a molecular network under varying conditions. This complements traditional differential gene expression analyses, giving a robust framework to investigate diverse conditions and, by extension, different patient groups [START_REF] Gysi | Construction, comparison and evolution of networks in life sciences and other disciplines[END_REF][START_REF] Gysi | Whole transcriptomic network analysis using co-expression differential network analysis (CoDiNA)[END_REF][START_REF] Tu | Differential network analysis by simultaneously considering changes in gene interactions and gene expression[END_REF].

Precision medicine's applications in identifying candidate anticancer therapeutics have broadened its scope to probe molecular shifts linked with other diseases and aging. Recent research endeavors have used multi-omics strategies to pinpoint innovative therapeutic targets for ulcerative colitis [START_REF] Voitalov | The module triad: A novel network biology approach to utilize patients' multi-omics data for target discovery in ulcerative colitis[END_REF] and rheumatoid arthritis [START_REF] Li | Contextualizing protein representations using deep learning on protein networks and single-cell data[END_REF].

Other studies have delved into molecular biomarkers, their regulatory pathways, and age-related modifications [START_REF] Tseng | Peripheral iron levels in children with attention-deficit hyperactivity disorder: a systematic review and meta-analysis[END_REF]. These studies aim to formulate therapies adeptly tailored to diverse age demographics. Complementing the focus on aging, there is a burgeoning interest in discerning patient sex-specific disparities. These lines of inquiry draw motivation from epidemiological data, which delineate differential patterns in the incidence, progression, and prognosis of complex diseases across gender and age brackets [START_REF] Cannistraci | Age-sex population adjusted analysis of disease severity in epidemics as a tool to devise public health policies for COVID-19[END_REF].

Drug repurposing and pharmacogenomics. Compared to traditional drug development, drug repurposing (Fig. 6C) offers significant advantages such as low cost, reduced risk, and faster drug development timelines [START_REF] Pushpakom | Drug repurposing: progress, challenges and recommendations[END_REF]. While early examples of successfully repurposed drugs have been identified through serendipitous discoveries, the availability of massive amounts of -omics and knowledge data and advances in computational techniques have provided opportunities for systematic in silico inference of novel indications for existing drugs [START_REF] Guney | Network-based in silico drug efficacy screening[END_REF][START_REF] Huang | Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design[END_REF][START_REF] Wen | Multimodal representation learning for predicting molecule-disease relations[END_REF][START_REF] Xenos | Integrated data analysis uncovers new COVID-19 related genes and potential drug re-purposing candidates[END_REF][START_REF] Zambrana | Network neighbors of viral targets and differentially expressed genes in COVID-19 are drug target candidates[END_REF]. Network science and machine learning models have demonstrated impressive capabilities, but the bar for clinical applications is high. For example, an ensemble network approach has been used to identify drug candidates for repurposing against COVID-19 viral replication [START_REF] Gysi | Network medicine framework for identifying drug-repurposing opportunities for COVID-19[END_REF][START_REF] Patten | Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization[END_REF]. Validation of the most promising computational predictions in the laboratory yielded an order of magnitude more potent candidates than non-guided experimental screening. In pharmacogenomics, graph convolutional neural networks trained on heterogeneous networks of drug-drug interactions identified adverse events due to polypharmacy and concomitant use of medications [START_REF] Zitnik | Modeling polypharmacy side effects with graph convolutional networks[END_REF]. Furthermore, deciphering drug-cell connectivity data, indispensable for patient-specific drug repositioning, gains momentum by embedding PPI networks using tensor completion algorithms [START_REF] Bumin | FiT: fiber-based tensor completion for drug repurposing[END_REF].

The role of medical imaging in precision medicine. In addition to -omics data, medical images have emerged as an important new data modality that can facilitate precision medicine, including disease detection, diagnosis, and therapeutic interventions [START_REF] Comaniciu | Shaping the future through innovations: From medical imaging to precision medicine[END_REF][START_REF] Lambin | Radiomics: the bridge between medical imaging and personalized medicine[END_REF]. Often, medical images encompass distinct topological patterns of target entities that can serve as diagnostic signatures or biomarkers, such as the dendritic structure of the trachea or clustering behaviors of immune cells. Combining these topological signatures with deep learning algorithms offers a substantial advantage in various medical image analysis endeavors, including segmentation, classification, registration, and tracking, and can help with the interpretability of deep learning models. Building tools to compute topological and deep learning representations of imaging data inaugurates new avenues for nuanced analysis, unveiling hidden patterns and intricate correlations within multifaceted datasets [START_REF] Edelsbrunner | Topological Persistence and Simplification[END_REF]. These developments have catalyzed the birth of topology-infused deep learning techniques for myriad applications, spanning from segmenting retinal vessels [START_REF] Hu | Topology-preserving deep image segmentation[END_REF][START_REF] Shit | clDice-a novel topology-preserving loss function for tubular structure segmentation[END_REF] to discerning retinal arteries/veins [START_REF] Mishra | VTG-Net: a CNN based vessel topology graph network for retinal artery/vein classification[END_REF] and forecasting protein semantic similarities [START_REF] Wang | TANGO: A GO-term embedding based method for protein semantic similarity prediction[END_REF].

An important application of network-based precision medicine lies in brain disorders, where medical image analysis intertwines with network and -omics data (Fig. 6D). Specifically, the strides in procuring multimodal neuroimaging, neural network configurations, genetic markers, and other biomolecular signatures present unparalleled research opportunities. These permit profound insights into the neural architectures of the human brain, the modulation of its functionalities by network topographies, and the genetic interplays that correspond to disease-specific cerebral patterns. An emergent discipline, dubbed connectome genetics, heralds the meticulous delineation of human neural connectivity, unraveling its ties to cognition, behavior, and the genetic underpinnings of individual neural circuit variances [START_REF] Arnatkeviciute | Where the genome meets the connectome: understanding how genes shape human brain connectivity[END_REF]. Graph mining techniques combined with data science methods have been devised, geared towards personalizing diagnosis and therapy by leveraging the multifaceted data from connectome genetics [START_REF] Arnatkeviciute | Genetic influences on hub connectivity of the human connectome[END_REF][START_REF] Jahanshad | Genome-wide scan of healthy human connectome discovers spon1 gene variant influencing dementia severity[END_REF][START_REF] Sha | Genetic architecture of the white matter connectome of the human brain[END_REF]. The recent advent of GNN-driven deep learning models further deepens our grasp on the intricate shifts within this data, advancing our understanding of neurological diseases and their heterogeneity across patient populations [START_REF] Zhang | Brain connectome based complex brain disorder prediction via novel graphblind convolutional network[END_REF][START_REF] Zhang | Disentangled and proportional representation learning for multi-view brain connectomes[END_REF][START_REF] Zhao | Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer[END_REF].

The role of social and contact networks in healthcare. Biological networks hold significant promise for advancing personalized medicine. In tandem, social, support, and contact networks correlate with individual health outcomes (Fig. 6E), providing valuable insights into patient behaviors and sentiments [START_REF] Smith | Social networks and health[END_REF]. Such networks offer real-time perspectives on patient inclinations, such as therapy adherence preferences. Moreover, they can model patient behaviors associated with medication consumption, enabling the formulation of individualized intervention strategies [START_REF] Guiñazú | Employing online social networks in precision-medicine approach using information fusion predictive model to improve substance use surveillance: A lesson from twitter and marijuana consumption[END_REF]. The confluence of health and social networks has been harnessed to forecast individual health outcomes, including mental health parameters like anxiety and depression. These predictions emerge from a rich tapestry of data sources, including combinations of heterogeneous social network data and wearable health measures [START_REF] Liu | Heterogeneous network approach to predict individuals' mental health[END_REF], and dynamic social network interactions [START_REF] Liu | The power of dynamic social networks to predict individuals' mental health[END_REF].

In global health emergencies, networks detailing interpersonal contacts have been pivotal in predicting disease transmission. The COVID-19 pandemic spurred the creation of composite models that integrate contact information with individual patient attributes [START_REF] Guzzi | Disease spreading modeling and analysis: A survey[END_REF]. Within such models, nodes signify individuals, while links -static or temporal/dynamic -depict inter-individual interactions. Distinct individual features, such as health status (e.g., healthy or recovered), are encapsulated as node-associated feature vectors. Grounded in theoretical foundations of susceptible-infectious-recovered models [START_REF] Guzzi | Disease spreading modeling and analysis: A survey[END_REF], these approaches are nuanced and can account for real-world contact patterns. They allow for simulation and evaluation of public health response strategies, from containment measures to vaccination campaigns [START_REF] Alguliyev | Graph modelling for tracking the COVID-19 pandemic spread[END_REF][START_REF] Bryant | Modelling the dispersion of SARS-CoV-2 on a dynamic network graph[END_REF][START_REF] Stegehuis | Epidemic spreading on complex networks with community structures[END_REF]. For example, designing a vaccination strategy targeting individuals based on contact behaviors could preempt outbreaks. However, besides the political and social problems related to the design of a vaccination strategy, the simulation of such nuanced, contact-centric models demands significant computational prowess, especially for matrix operations [START_REF] Fortunato | Community detection in graphs[END_REF][START_REF] Guzzi | Disease spreading modeling and analysis: A survey[END_REF].

Open questions for network-based precision medicine. Despite notable advancements in network methods for precision medicine, several challenges remain. These include model benchmarking and comparison, integration of multimodal data from individual patients, and strategies to achieve the intricate equilibrium between preserving patient confidentiality and maximizing the utility of these approaches. Evaluating new methods is complex because establishing ground-truth, i.e., gold-standard or "correct", benchmarks against which various network strategies can be compared [START_REF] Guo | Challenges and opportunities in network-based solutions for biological questions[END_REF] remains challenging. Evaluating precision therapeutics in vivo presents even greater challenges, given the impossibility of retroactively altering treatment modalities for the same individual at a specific temporal junction. Garnering multimodal data about a single patient presents its own difficulties, as diverse data types vary in quality and completeness [START_REF] Wang | Similarity network fusion for aggregating data types on a genomic scale[END_REF][START_REF] Zitnik | Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities[END_REF]. In light of these complexities, there is a need for graph learning algorithms tailored for data-intensive multimodal networks. Importantly, new network embedding methodologies may provide simplification of these complexities into new modeling paradigms that are easier to comprehend and compute on [START_REF] Doria-Belenguer | The axes of biology: a novel axes-based network embedding paradigm to decipher the functional mechanisms of the cell[END_REF][START_REF] Doria-Belenguer | A functional analysis of omic network embedding spaces reveals key altered functions in cancer[END_REF][START_REF] Xenos | Linear functional organization of the omic embedding space[END_REF]. Furthermore, it is imperative to foster computational paradigms adept at handling patient data in a manner that safeguards privacy while not compromising on scientific robustness and safety [START_REF] Hunter | Reporting actionable research results: shared secrets can save lives[END_REF].

Precision medicine stands poised to enable transformative shifts in disease diagnosis, therapeutic interventions, and overall patient care. Network methods and multimodal data integration are instrumental to these ambitions. Addressing intrinsic challenges related to small-sample datasets that lack statistical power and magnifying methods' susceptibility to misinterpretation and unstable performance is paramount for furthering its nascent triumphs. Surmounting these obstacles requires interdisciplinary research involving network biology scientists, clinicians, and healthcare policymakers to ensure that precision medicine evolves as a paradigm for disease diagnosis, prevention, and treatment that works equally well for all patients by taking into account individual differences in lifestyle, socioeconomic factors, environment, and biological characteristics [START_REF] Of | Us Research Program Investigators. The "All of Us" research program[END_REF].

Research discussion and future outlook

Even the well-established network biology research topics/problems, such as network inference (Section 2), have many known limitations and thus open questions associated with them. The emerging research problems, such as network-of-networks analysis (Section 3) or determining how the explosion of large language models can benefit network biology, will have even more challenges associated with them, as expected, given that these problems have started to receive attention only recently; such challenges are discussed below. The emerging problems also bring exciting new opportunities. In the following sections, we build upon the discussion about limitations and open questions from the previous sections, link together common themes from the earlier sections, and complement the previous sections by introducing additional open problems and opportunities.

On methodological paradigms and empirical evaluation

The need to compare different categories of approaches designed for the same purpose. For several topics discussed thus far, a common theme has been that it remains unclear how specific categories of approaches for a given purpose compare to each other in terms of methodological (dis)advantages, as well as in which network analysis tasks or biomedical applications they might be (in)appropriate to use. For example, with network alignment, methods from biological and other (e.g., social) network domains are rarely evaluated against each other (as discussed more below); with network-of-networks analysis, the existing approaches were proposed for different network analysis tasks or biomedical applications and have not yet been compared to each other (Section 3); with hypergraph versus pairwise graph analyses, it remains unclear to what extent different tasks actually benefit from hypergraph-based methods (Section 4).

Focusing more on network alignment, methods for this purpose introduced for biological networks have typically been thoroughly compared to each other (Section 3), including fair comparison of different approach categories, such as global versus local network alignment [START_REF] Guzzi | Survey of local and global biological network alignment: the need for reconciling the two sides of the same coin[END_REF][START_REF] Meng | Local versus global biological network alignment[END_REF], pairwise versus multiple network alignment [START_REF] Vijayan | Pairwise versus multiple global network alignment[END_REF], or alignment of static versus dynamic networks [START_REF] Vijayan | Alignment of dynamic networks[END_REF]. On the other hand, network alignment methods introduced in network biology have rarely been compared to those introduced in other domains such as social networks, and vice versa, despite having similar if not the same goals -mapping related nodes or network regions across compared networks. This could be because biological networks have significantly fewer nodes and are likely noisier than other (e.g., social) networks [START_REF] Eyuboglu | Mutual interactors as a principle for phenotype discovery in molecular interaction networks[END_REF]. This could also be because networks in different domains contain different types of data, which makes the methods customized to their specific data types, rendering their comparison challenging or requiring methodological extensions and new developments. Or, it could be because developers of methods in different domains are from different scientific communities and may thus be unaware of each others' scientific discoveries (Section 8). In either case, it is critical to understand the methodological (dis)advantages of approaches from different domains. Their comprehensive and fair comparison could be a step in this direction, guiding the development of more powerful and possibly more generalizable network alignment approaches.

Network biology has traditionally relied on approaches that work directly on graph topology. In contrast, in recent years, the field has seen an increasing interest in network embedding -be it via earlier spectral-based or diffusion/propagation/random-walk based methods or more recent deep learning methods -which first transform graph topology into compact numerical representation vectors, i.e., embeddings, and then work on these graph representations (Section 5). A comparative study of non-embedding approaches that work directly on graph topology against network embedding methods was performed in a broad set of contexts: network alignment, graph clustering (i.e., community detection), protein function prediction, network de-noising, and pharmacogenomics [START_REF] Nelson | To embed or not: network embedding as a paradigm in computational biology[END_REF]. The finding was that in terms of accuracy, depending on the context and evaluation measures used, sometimes direct, graph-based methods outperformed network embedding ones and other times, results were reversed; regarding computational complexity/running time, embedding methods outperformed direct, graph-based methods most of the time [START_REF] Nelson | To embed or not: network embedding as a paradigm in computational biology[END_REF]. These indicate the need for a deeper combination of these approaches.

Also, network biology has traditionally relied on combinatorial or graph-theoretic techniques, i.e., on manually engineered or user-predefined topological features of nodes or graphs (the field has also relied on additional method types, e.g., those from the physics community within the field of network science, but these are not the focus of discussion here). For example, a prominent research problem of the graph-theoretic type that has revolutionized the field of network biology is counting graphlets/subgraphs in a graph; various node-, edge-, or network-level features based on these counts are then applicable to many downstream computational tasks and biomedical applications, as discussed in Section 4. More recently, network biology has benefited from the boom in deep learning (e.g., GNNs), which can automatically generate relevant network topological features prominently via graph representation learning (Section 5). It remains unclear which of graph-theoretic versus deep learning approaches (i.e., manually engineered versus automatically generated network topological features) are better and in which contexts. In other words, both approach categories seem to have merits depending on the context. Again, the question is how to combine them for improved performance.

As an example, graphlet-based and GNN-based analyses of protein structure networks were shown to outperform traditional non-network-based analyses of protein sequences and 3D structures in the tasks of protein structure comparison/classification and protein function prediction, respectively [START_REF] Faisal | GRAFENE: Graphletbased alignment-free network approach integrates 3D structural and sequence (residue order) data to improve protein structural comparison[END_REF][START_REF] Gligorijević | Structure-based protein function prediction using graph convolutional networks[END_REF][START_REF] Newaz | Network-based protein structural classification[END_REF]. Only recently, the graphlet and GNN approaches were evaluated against each other when comparing protein structures, by the authors who proposed using GNNs for studying 3D structures [START_REF] Gligorijević | Structure-based protein function prediction using graph convolutional networks[END_REF]. They found that graphlet-based analyses greatly outperformed GNN-based analyses in accuracy, although they found the latter to scale better to denser protein structure networks [START_REF] Berenberg | Graph embeddings for protein structural comparison[END_REF].

The relatively inferior performance of GNNs compared to graphlet-based approaches in that particular network-based protein structure comparison [START_REF] Berenberg | Graph embeddings for protein structural comparison[END_REF] can potentially be elucidated as follows. Given that network comparison represents an NP-hard undertaking, a viable computational strategy that balances feasibility and efficacy involves the comparison of network substructures. Graphlets, by design, embody such an approach. Early GNNs were initially not designed for modeling subgraphs. So, it might not be surprising that popular GNN architectures cannot count graphlets and subgraphs and thus might not be the right methodological choice for specific scientific problems [START_REF] Chen | Can graph neural networks count substructures[END_REF]. Nevertheless, recent advancements in the field have yielded a spectrum of novel GNN methodologies tailored to subgraph modeling and enumeration. Theoretical underpinnings have emerged that show the expressive capacity of GNNs, delineating which classes of GNN architectures are proficient or deficient in quantifying specific subgraph structures [START_REF] Bouritsas | Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting[END_REF][START_REF] Chen | Can graph neural networks count substructures[END_REF][START_REF] Tahmasebi | Counting substructures with higher-order graph neural networks: Possibility and impossibility results[END_REF][START_REF] Tahmasebi | The power of recursion in graph neural networks for counting substructures[END_REF][START_REF] Yu | Learning to count isomorphisms with graph neural networks[END_REF]. For example, while message-passing GNNs have been popular architectures for learning on graphs, recent research has revealed important shortcomings in their expressive power. In response, higher-order GNNs have been developed that substantially increase the expressive power, although at a high computational cost [START_REF] Tahmasebi | Counting substructures with higher-order graph neural networks: Possibility and impossibility results[END_REF].

These techniques demonstrate the potential to enumerate subgraphs, thus circumventing the established limitations of low-order (message-passing) GNNs while exploiting sparsity to reduce the computational complexity relative to higher-order GNNs [START_REF] Tahmasebi | Counting substructures with higher-order graph neural networks: Possibility and impossibility results[END_REF]. Further, recent recursive pooling methods centered on local neighborhoods and dynamically rewired message-passing techniques [START_REF] Gutteridge | DRew: dynamically rewired message passing with delay[END_REF] improve performance for tasks relying on long-range interactions. Finally, innovative methods based on graph transformers [START_REF] Ying | Do transformers really perform badly for graph representation[END_REF][START_REF] Zhang | Hierarchical graph transformer with adaptive node sampling[END_REF] afford a spectrum of trade-offs between expressive capability and efficiency of machine learning models.

Related to the above discussion, recent developments have highlighted the emergence of state-of-the-art geometric deep learning models trained on protein 3D structures. Specifically, these models focus on proteins' structural surfaces without explicitly incorporating the underlying protein sequence or structural fold considerations. Notably, these models have enhanced performance in various tasks associated with predicting interactions between proteins and other biomolecules. These tasks encompass critical areas such as protein pocket-ligand prediction, prediction of PPI residues, ultrafast scanning of protein surfaces to forecast protein complexes, and the design of novel protein binders [START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF][START_REF] Gainza | De novo design of protein interactions with learned surface fingerprints[END_REF]. Geometric deep learning methods that model protein 3D structures as networks are promising. Such approaches were shown to outperform scientific methods traditionally used in a variety of tasks related to structure-based modeling and prediction of protein properties, including some existing network-based, although not necessarily geometric deep learning approaches [START_REF] Stärk | Equibind: Geometric deep learning for drug binding structure prediction[END_REF][START_REF] Wang | Learning hierarchical protein representations via complete 3d graph networks[END_REF][START_REF] Zhang | Protein representation learning by geometric structure pretraining[END_REF]. The tasks in question included drug binding, PPI prediction, and protein fold, function, or reaction prediction/classification [START_REF] Stärk | Equibind: Geometric deep learning for drug binding structure prediction[END_REF][START_REF] Wang | Learning hierarchical protein representations via complete 3d graph networks[END_REF][START_REF] Zhang | Protein representation learning by geometric structure pretraining[END_REF].

A potential avenue to handling different approach categories/paradigms, such as those discussed above, each with its own merits depending on the context, is to propose algorithmic improvements toward reconciling them. Another is to carry out empirical evaluation of different approaches in a variety of different contexts: at various levels of graph structure (e.g., node, edge, subgraph, or entire network), for diverse types of graphs (e.g., heterogeneous, dynamic, spatial), in different computational tasks (e.g., node classification, graph classification, link prediction), and different biomedical applications (e.g., protein function prediction, cancer, aging, drug repurposing). The following sections discuss these two avenues in more detail.

Algorithmic improvements towards reconciling diverse methodological paradigms. An algorithmic solution to handling different approach categories for the same purpose is to design hybrid methods that employ techniques from all associated disciplines. For example, deep learning methods can be combined with a network propagation approach to improve the embedding of multiple networks [START_REF] Nasser | BERTwalk for integrating gene networks to predict gene-to pathway-level properties[END_REF]. Alternatively, a theory that would unify different approach categories could be proposed. For instance, the field of neural algorithmic reasoning focuses on developing deep learning models that emulate combinatorial algorithms [START_REF] Veličković | Neural algorithmic reasoning[END_REF]. As a case in point, a transformer neural architecture, which was initially devised for natural language processing, has been repurposed to tackle the combinatorial traveling salesman problem [START_REF] Bresson | The transformer network for the Traveling Salesman Problem[END_REF]. A primary objective of this discipline is to investigate the capacity of (graph) neural networks to learn novel combinatorial algorithms, particularly for NP-hard challenges that necessitate heuristic approaches. Put differently, the aim is to ascertain if deep learning can extract heuristics from data more effectively, potentially superseding human-crafted heuristic methods that could demand years of dedicated research to formulate for NP-hard problems [START_REF] Bresson | The transformer network for the Traveling Salesman Problem[END_REF].

Another potential solution on the methodological level relies on the fact that current GNN approaches mainly adopt deep learning from other domains outside of network biology. As such, it is necessary to understand the correct inductive biases within a deep learning model that are representative of a biological mechanism under consideration. For example, can and should the hierarchical structures of ontologies, such as the GO or Disease Ontology, be incorporated into the GNN structure used for predicting proteins' functions or disease associations, respectively? Existing work on visible neural networks shows that such an attempt to incorporate a cell's hierarchical structure and function into the architecture of the deep learning model is effective and facilitates interpretability as the model's components naturally correspond to biological entities [START_REF] Gaudelet | Unveiling new disease, pathway, and gene associations via multi-scale neural network[END_REF][START_REF] Ma | Using deep learning to model the hierarchical structure and function of a cell[END_REF]. Even the hierarchical network-of-networks idea is not only useful as a potent new way to represent and analyze multiscale biological data as discussed in Section 3, but also as a novel graph representation learning methodology for popular network analysis tasks that are not necessarily of the multiscale nature. For example, there exist studies that take multiple networks as input, all at the same scale, and then perform the well-established tasks of graph embedding [START_REF] Du | MrMine: Multi-resolution Multi-network Embedding[END_REF] or classification [START_REF] Wang | Imbalanced graph classification via graph-of-graph neural networks[END_REF] via novel hierarchical approaches, e.g., a graph-of-graphs neural network [START_REF] Wang | Imbalanced graph classification via graph-of-graph neural networks[END_REF], or matrix-factorization based data fusion [START_REF] Malod-Dognin | Towards a data-integrated cell[END_REF].

In addition, uncertainty quantification presents a unique set of challenges. The inherent structure and complexity of network datasets introduce nuances not observed in other data modalities. The primary challenge lies in distinguishing between aleatoric (data-related) and epistemic (model-related) uncertainties while effectively mitigating potential biases that can distort predictive performance. Aleatoric uncertainty, stemming from inherent biological variation and limitations of experimental technology, encompasses variability arising from naturally random effects and natural variation intrinsic to the data. For instance, in PPI networks, inherent biological variability can lead to uncertainties in node or edge properties. On the other hand, epistemic uncertainty is engendered by a lack of knowledge or limited modeling assumptions. This type of uncertainty is particularly pronounced in graph-based tasks due to the myriad ways graphs can be represented, processed, and interpreted. For instance, different choices in GNN model architectures or graph pooling strategies can introduce varying degrees of epistemic uncertainty. Effectively quantifying and addressing these uncertainties is paramount for ensuring reliable and robust findings, especially when making critical decisions based on such models.

Another relevant question is how generalizable versus specific an approach should be. One frequent issue is selecting a suitable similarity measure. For instance, this issue arises when deciding which property of a graph should indicate the proximity of its nodes in an embedding produced by a GNN, or when discerning relationships between biomolecules for inferring correlation or regulatory networks by linking nodes with edges.

Selecting an optimal similarity measure for a specific task or application often requires extensive empirical assessment, evaluating multiple measures against one another. It remains a challenge to discern whether a universal, principled similarity measure exists. The answer could potentially be specific to individual tasks or applications or broad categories of analogous tasks. The emphasis on generalizability also begs the question of its desirability; sometimes, the focus should be finely tuned to the specific task, application, or audience. Furthermore, in some contexts, dissimilarity (or distance) might be more pertinent than similarity. For example, proteins can have opposing effects on each other despite working on the same functional goal.

As another example, neighboring edges might mean different things, such as up-versus down-regulation of genes. An essential consideration is the selection of distances with theoretical underpinnings that facilitate efficient optimization [START_REF] Cao | Going the Distance for Protein Function Prediction: A New Distance Metric for Protein Interaction Networks[END_REF], including distances that provably uphold the triangle inequality [START_REF] Ding | Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques[END_REF] and distances specified on smooth manifolds that yield symmetric positive semi-definite distance matrices [START_REF] Wang | Network enhancement as a general method to denoise weighted biological networks[END_REF]. Moreover, in typically high-dimensional spaces, the compromises entailed when our chosen distances forsake theoretical properties can be significant, potentially distorting interpretations and downstream analyses [START_REF] Beyer | When is "Nearest Neighbor[END_REF][START_REF] Radovanović | Hubs in space: popular nearest neighbors in high-dimensional data[END_REF].

Additional considerations for proper empirical method evaluation: benchmark data, performance measures, code and data sharing, best practices. Establishing appropriate benchmark data (including ground-truth data for training and testing/evaluating a predictive model), evaluation measures, and benchmark frameworks is critical to allow for systematic, fair, and unbiased method comparison. Notably, such frameworks must allow for continuous evaluation as new methods and algorithms will continue to appear.

Best practices and guidelines on assessment in network biology are needed.

Lessons learned from challenges in biomedicine such as Critical Assessment of protein Structure Prediction (CASP) [START_REF] Kryshtafovych | New prediction categories in CASP15[END_REF][START_REF] Kryshtafovych | Critical assessment of methods of protein structure prediction (CASP)-Round XIV[END_REF][START_REF] Moult | A large-scale experiment to assess protein structure prediction methods[END_REF], Dialogue on Reverse Engineering Assessment and Methods (DREAM) [START_REF] Meyer | Advances in systems biology modeling: 10 years of crowdsourcing DREAM challenges[END_REF][START_REF] Saez-Rodriguez | Crowdsourcing biomedical research: leveraging communities as innovation engines[END_REF][START_REF] Stolovitzky | Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference[END_REF], and Critical Assessment of protein Function Annotation (CAFA) [START_REF] Jiang | An expanded evaluation of protein function prediction methods shows an improvement in accuracy[END_REF][START_REF] Radivojac | A large-scale evaluation of computational protein function prediction[END_REF][START_REF] Zhou | The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens[END_REF] can perhaps help guide the development of best evaluation practices specific to network biology. Such challenges are a paradigm for unbiased and robust evaluation of algorithms for analysis of biological and biomedical data, which crowdsources data analysis to large communities of expert volunteers [START_REF] Costello | Seeking the wisdom of crowds through challenge-based competitions in biomedical research[END_REF][START_REF] Saez-Rodriguez | Crowdsourcing biomedical research: leveraging communities as innovation engines[END_REF]. Challenges are done in the form of collaborative scientific competitions. Through these, rigorous validation and reproducibility of methods are promoted, open innovation is encouraged, collaborative communities are fostered to solve diverse and critical biomedical problems and accelerate scientific discovery, the creation and dissemination of well-curated data repositories are enabled, and the integration of predictions from different methods submitted by challenge participants provides a robust solution that often outperforms the best individual solution [START_REF] Saez-Rodriguez | Crowdsourcing biomedical research: leveraging communities as innovation engines[END_REF].

CASP is the earliest formal method assessment initiative in computational biology [START_REF] Moult | A large-scale experiment to assess protein structure prediction methods[END_REF]. While network biology approaches can be used for CASP's protein structure prediction and CAFA's protein function prediction problems, DREAM was explicitly initiated in response to a network biology need -to reverse-engineer biological networks from high-throughput data [START_REF] Stolovitzky | Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference[END_REF]. Since then, numerous DREAM Challenges have been conducted spanning a variety of additional computational (not necessarily network) biology topics, including TF binding, gene regulation, signaling networks, dynamical network models, disease module identification, scRNA-seq and scATAC-seq data analysis, single-cell transcriptomics, and drug combinations6 [START_REF] Meyer | Advances in systems biology modeling: 10 years of crowdsourcing DREAM challenges[END_REF]. Note that in addition to these initiatives focused solely on computational biology tasks, there exist community benchmark frameworks for general graph-based machine learning that also handle some computational biology tasks, which could thus also serve as significant assets. An example is Open Graph Benchmark [START_REF] Hu | OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs[END_REF][START_REF] Hu | Open graph benchmark: Datasets for machine learning on graphs[END_REF] (Section 5), which includes the task of predicting protein function from PPI network data with fully reproducible results and directly comparable approaches using the same datasets 7 .

Interestingly, some of the common themes that emerged from the original 2006 DREAM initiative [START_REF] Stolovitzky | Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference[END_REF] still hold to this date and were also discussed at our 2022 workshop. The current biological network data may not be mechanistically accurate, yet they can still help understand cellular functioning. Exploring conditionspecific biological networks is important because network properties can differ in different conditions. While there exist some highly trusted biological data (e.g., the reference HURI PPI network for humans [START_REF] Luck | A reference map of the human binary protein interactome[END_REF]) that may serve as ground truth for understanding (dis)advantages of network algorithms, synthetic network data that are much easier to generate will continue to be necessary for evaluating algorithm performance. However, experimentalists are unlikely to trust any scientific findings from synthetic data or computational approaches evaluated only on such data. Further, regarding ground-truth data for training and testing/evaluating a predictive model, it is critical to have available knowledge on both positive and negative instances in ground-truth data. Examples of the latter are PPIs or protein-functional associations that do not exist in cells. However, such negative instance data are hard to obtain in biology.

To add to the discussion about ground-truth data, using the aging process as an example, ground-truth data about human aging have been obtained in one of two ways: via sequence-based homology from model species [START_REF] De Magalhães | The Human Ageing Genomic Resources: online databases and tools for biogerontologists[END_REF] or via differential gene expression analyses in humans [START_REF] Berchtold | Gene expression changes in the course of normal brain aging are sexually dimorphic[END_REF][START_REF] Jia | An analysis of aging-related genes derived from the genotype-tissue expression project (GTEx)[END_REF]. In a recent study [START_REF] Li | Improved supervised prediction of aging-related genes via weighted dynamic network analysis[END_REF], only 17 genes were shared between the 185 sequence-based and 347 expression-based human aging-related genes. This poses several questions. How do we resolve such discrepancies with datasets on the same biological process resulting from different modalities/technologies, which likely exist in other applications as well? Given their high complementarity, perhaps integrating the different data types could yield more comprehensive insights into the biological process under consideration. However, if any of the other datasets is noisy, or if the different data types have different "signatures" (i.e., features) in a biological network, their integration could decrease the chances of detecting meaningful biological signals from the network compared to analyzing the different data types individually. Moreover, because different types of biological data collected via biotechnologies (e.g., genomic sequence data versus transcriptomic gene expression data versus interactomic PPI data) are likely to capture complementary functional slices of the given biological process, is it appropriate to use some of these datasets as the ground-truth data to validate predictions obtained via computational analyses of the other datasets? In our example of the aging process, is it appropriate to use sequence-based or expression-based aging-related knowledge to validate network-based aging-related gene predictions? Is this appropriate, especially because sequence-based and expression-based "knowledge" are also computational predictions, i.e., the result of sequence alignment and differential gene expression analysis, respectively? Also, is this appropriate because sequence-based knowledge about human aging are sequence orthologs of aging-related genes in model species? So, would any aspects of the aging process that are unique to humans be missed by the knowledge originally collected in the model species?

Another challenge with empirical evaluation is accurately estimating the absolute and relative performance of machine learning models and quantifying the uncertainty of performance estimates. Network data is inherently relational, thus inevitably violating the assumptions of independent and identically distributed data [START_REF] Neville | Evaluating statistical tests for within-network classifiers of relational data[END_REF][START_REF] Neville | Correcting evaluation bias of relational classifiers with network cross validation[END_REF]. Even further, the problems with long-tailed degree distribution in biological networks and homology between nodes require careful selection of training and test data when evaluating performance accuracy [START_REF] Hamp | More challenges for machine-learning protein interactions[END_REF][START_REF] Lugo-Martinez | Classification in biological networks with hypergraphlet kernels[END_REF][START_REF] Park | Flaws in evaluation schemes for pair-input computational predictions[END_REF].

Also, to allow for proper method evaluation, the authors of original methods must publicly release complete and easy-to-use code and data from their papers to allow for reproducing the initial studies and applying and evaluating a given method on new data [START_REF] Heil | Reproducibility standards for machine learning in the life sciences[END_REF]. Journals and other publication venues should and typically do establish requirements for data and code sharing. Consequently, scientific communities have shown remarkable improvements regarding releasing open-source software and data. Yet, ensuring compliance remains an issue. For example, while code or data might be released, they are sometimes incomplete or not easy to use. Or, there are instances when there might be a link (e.g., to GitHub) provided in the corresponding publication to meet the publication venue requirements, but the link might point to a page that says "under construction", to an empty directory, or to a directory containing some files but without a transparent readme file on how to use the information provided. Who should ensure compliance with publication venue requirements, i.e., that complete and easy-to-use code and data are provided to ensure easy reproducibility? The editors of a venue publishing a given paper? The reviewers already volunteering their virtually non-existent "free" time to evaluate the paper's scientific merits for publication should thus probably not be expected to invest even more effort to verify that the code and data can be run correctly. The authors? The future readers of the 7 https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-proteins paper who might be interested in using the method? If the latter two, what should be the repercussions if it is found that the code or data do not exist or are not possible or easy to use? On a related note, how long after publication should the authors be required to maintain the project code and data and respond to related email inquiries? Hosting of the code and data is not an issue for authors due to availability of archival data repositories such as Zenodo. However, actively maintaining the code and data is an issue, and this is directly related to whether and how long after the project completion the funding by the federal agencies and others might be available for this purpose.

On missing data

Network completeness and interaction causality. Much of network biology relies on aging technologies with notable limitations. Focusing on physical PPIs, biotechnologies such as yeast two-hybrid systems [START_REF] Fields | A novel genetic system to detect protein-protein interactions[END_REF], cross-linking mass-spectrometry [START_REF] Piersimoni | Cross-linking mass spectrometry for investigating protein conformations and protein-protein interactions-a method for all seasons[END_REF], and structural determination of protein complexes [START_REF] Jacobsen | NMR spectroscopy explained: simplified theory, applications and examples for organic chemistry and structural biology[END_REF][START_REF] Rhodes | Crystallography Made Crystal Clear, Third Edition: A Guide for Users of Macromolecular Models[END_REF][START_REF] Saibil | Cryo-EM in molecular and cellular biology[END_REF] have collectively generated systems-level data that have led to critical methodological advances in network biology. Of course, these efforts to obtain the physical interactome have been complemented by valuable data collection and network inference efforts related to systems-level correlation networks. However, as computational methods are now maturing, the data are starting to lag. High-resolution, high-throughput data-generating technologies, capable of directly identifying pathways and order of molecular events in various experimental and clinical contexts, are the next frontier for deeper understanding of molecular systems.

There is a need to expand from physical and correlation networks toward causal relationships [START_REF] Belyaeva | Causal network models of SARS-CoV-2 expression and aging to identify candidates for drug repurposing[END_REF] or simulatable kinetic models [START_REF] Karr | A whole-cell computational model predicts phenotype from genotype[END_REF]. For this, biotechnologies for data collection need to be improved to allow for higher-quality data to build better causal networks and more complete networks. This will also require the development of new (categories of) approaches that can handle the captured causality. Even if/when we have high-quality causal networks and efficient and accurate methods for their analysis, will this suffice to understand biochemical mechanisms? When one knows biochemical mechanisms, one can infer causality. However, causality cannot help fully understand biochemical mechanisms.

Algorithmic research to guide data generation efforts. It will likely be beneficial to integrate multi-omic network data with BKGs to offer precise and targeted treatments for rare diseases [START_REF] Alsentzer | Deep learning for diagnosing patients with rare genetic diseases[END_REF]. Such network data with richer semantics will more directly help suggest biological hypotheses [START_REF] Sanghvi | Accelerated discovery via a whole-cell model[END_REF][START_REF] Wang | Scientific discovery in the age of artificial intelligence[END_REF] or support iterative data generation and analyses through active learning [START_REF] Sverchkov | A review of active learning approaches to experimental design for uncovering biological networks[END_REF][START_REF] Zhang | Active learning for optimal intervention design in causal models[END_REF]. Informing laboratory experiments using predictions from computational studies could be a path forward to build more complete and accurate data, which could lead to developing new, more advanced network analysis methods to further inform and improve laboratory experiments.

How network biology (primarily algorithmic research) can best support the collection and analysis of multimodal data is quite an important question, especially when collecting multimodal data for the same individuals, including building personalized (i.e., individual-specific) networks. An answer here could be to first figure out what question will be asked in which task/application and then design a data collection strategy. One might want to define optimal datasets. Or, one might want to find unifying factors within data modalities; this is precisely why there is a need for multimodal data for the same individuals, at least some of the data/individuals. This might require systematic, comprehensive, and well-funded consortia efforts. Various types of time-dependent perturbation data could help infer dynamic biological networks. Very few tasks/applications have benefited from dynamic network analysis in biology. One example is the task of network alignment: unlike traditional network alignment that has compared static networks (Section 3), recently, the problem of aligning dynamic networks has been defined, and several algorithms have been proposed for solving the newly defined problem [START_REF] Aparicio | Temporal network alignment via GoT-WAVE[END_REF][START_REF] Vijayan | Alignment of dynamic networks[END_REF][START_REF] Vijayan | Aligning dynamic networks with DynaWAVE[END_REF]. The challenge here is the lack of experimentally obtained dynamic biological network data, which is why such methods have been evaluated on synthetic networks, computationally inferred dynamic biological networks, or dynamic networks from other domains [START_REF] Aparicio | Temporal network alignment via GoT-WAVE[END_REF][START_REF] Vijayan | Alignment of dynamic networks[END_REF][START_REF] Vijayan | Aligning dynamic networks with DynaWAVE[END_REF].

Another example is a recent network-based study of the dynamics of the protein folding process [START_REF] Newaz | Multi-layer sequential network analysis improves protein 3D structural classification[END_REF]. A key challenge is the lack of large-scale data on protein folding intermediates, i.e., 3D conformations of a protein as it undergoes folding to attain its native structure. Experimental data of this type are lacking even on the small scale [START_REF] Newaz | Multi-layer sequential network analysis improves protein 3D structural classification[END_REF]. Traditional computational, simulation-based studies, as well as the recent network-based effort [START_REF] Newaz | Multi-layer sequential network analysis improves protein 3D structural classification[END_REF], all approximate the folding intermediates of a protein from the protein's final (or native) 3D structure. Obtaining the actual protein folding intermediates experimentally is unlikely to happen any time soon, especially at a large scale, so computational efforts will be needed. With recent breakthroughs in protein structure prediction, e.g., AlphaFold [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF], this need represents an excellent opportunity for computational research to help obtain, model, and analyze the resulting dynamic data.

The final example is a dynamic network analysis of the aging process, i.e., predicting new aging-related genes from a dynamic aging-specific PPI network (Section 2). Here, a key challenge is that shockingly, using newer aging-related gene expression and PPI network data obtained via newer biotechnologies to infer a dynamic aging-specific network does not yield more accurate aging-related gene predictions than using older data from over a decade ago when dynamic network analyses of aging were pioneered [START_REF] Li | Towards future directions in data-integrative supervised prediction of human aging-related genes[END_REF]. It was also observed in a different study on active module identification that using newer network data typically did not lead to more biologically meaningful results [START_REF] Lazareva | On the limits of active module identification[END_REF]. Going back to aging, it remains unclear whether the issue is with gene expression data, PPI network data, methods for integrating the two to computationally infer a dynamic aging-specific network, network methods used for feature extraction from the aging-specific network, ground-truth data on which genes are aging-versus non-aging-related, or something else entirely [START_REF] Li | Towards future directions in data-integrative supervised prediction of human aging-related genes[END_REF].

Towards inclusive and equitable precision medicine. Progress in computational (including network) biology and biomedicine has been hindered by a lack of -omics data encompassing vast human diversity [START_REF] Cruz | Importance of Diversity in Precision Medicine: Generalizability of Genetic Associations Across Ancestry Groups Toward Better Identification of Disease Susceptibility Variants[END_REF]. Underrepresentation of human genetic diversity has drastically weakened the biological discoveries that would benefit all populations, leading to health disparities. The traditional one-size-fits-all healthcare model meant for a "typical" patient may not work well for everyone. In response, the National Institutes of Health has aimed to invite one million people across the United States to help build one of the most diverse health databases in history, welcoming participants from all backgrounds through the "All of Us" program 8 . Inclusivity is at the core of the program: participants are diverse in terms of their races, ethnicities, age groups, regions of the country, gender identity, sexual orientation, socioeconomic status, education, disability, and health status. The data collected through the program is expected to lead to discoveries on how our biology, environment, and lifestyle affect our health. Unlike traditional research that has focused on a particular disease or group of people, this program aims to build a diverse database that can inform thousands of studies on a variety of health conditions. Availability of inclusive and diverse -omics data, design of research studies that intentionally and carefully account for such data, and development of computational methods and evaluation frameworks that handle such data in a fair and unbiased manner will be critical for advancing computational biology and biomedicine for all populations and reaching health equity.

Beyond the issue of underrepresentation, certain populations are intrinsically limited in size, such as rare diseases, which are inherently limited in clinical cases [START_REF] Banerjee | Machine learning in rare disease[END_REF]. Studying a substantial fraction of a small population may still result in data that do not yield health outcomes comparable to those from larger populations. In such scenarios, amassing more data may not be feasible, leading to small-sample datasets that can lack statistical power and magnify the susceptibility of computational models to misinterpretation and unstable performance. Network analysis techniques can play a pivotal role in addressing this challenge. Techniques such as few-shot machine learning [START_REF] Alsentzer | Deep learning for diagnosing patients with rare genetic diseases[END_REF] and domain adaptation [START_REF] He | Domain adaptation for time series under feature and label shifts[END_REF] for network methods are instrumental in enabling computational models to learn patterns from small datasets and generalize to newly acquired data. Such models can adapt and generalize across diverse populations, thereby enhancing the robustness and applicability of health outcomes derived from datasets with small numbers of samples.

Other major future research advancements

The interface between network biology and large language models. Large language models (LLMs), such as ChatGPT and GPT-4, are making strides in natural language processing and artificial intelligence, owing to their wide-ranging applicability. Nevertheless, LLMs often serve as black-box models, presenting limitations in comprehensively capturing and accessing factual knowledge. In contrast, BKGs are structured knowledge models that systematically store extensive factual information. BKGs have the potential to enhance LLMs by providing external knowledge that aids in inference and bolstering interpretability. However, constructing BKGs is intricate and dynamic, posing challenges to existing methods in generating novel facts and representing previously unseen knowledge. Thus, an approach integrating LLMs and BKGs could emerge as a valuable strategy, harnessing their strengths in tandem [START_REF] Pan | Unifying large language models and knowledge graphs: a roadmap[END_REF].

The potential synergies between traditional text and structured knowledge graphs are becoming increasingly evident. Language model pretraining has proven invaluable in extracting knowledge from text corpora to bolster various downstream tasks. Yet, these models predominantly focus on single documents, often overlooking inter-document dependencies or broader knowledge scopes. Recent advances [START_REF] Mcdermott | Structure-inducing pre-training[END_REF][START_REF] Yasunaga | Linkbert: Pretraining language models with document links[END_REF] address this limitation by conceptualizing text corpora as interconnected document graphs. By placing linked documents in shared contexts and adopting self-supervised objectives combining masked language modeling and document relation prediction, such methods can achieve considerable progress in tasks like multi-hop reasoning and few-shot question answering. On a parallel front, while text-based language models have garnered substantial attention, knowledge graphs can complement text data, offering structured background knowledge that provides a useful scaffold for reasoning. In an emerging line of inquiry, studies [START_REF] Yasunaga | Deep bidirectional language-knowledge graph pretraining[END_REF] explore self-supervised paradigms to construct a unified foundation model, intertwining text and knowledge graphs. These approaches pretrain models by unifying two self-supervised reasoning tasks, masked language modeling, and link prediction, marking an exciting direction for future advancements in network biology.

LLMs, traditionally associated with the processing of natural language, possess a flexibility that extends their utility beyond text data [START_REF] Luo | BioGPT: generative pre-trained transformer for biomedical text generation and mining[END_REF]. The underlying architectures, especially transformer-based designs like BERT and GPT variants, can be adapted to learn from any sequential data. In biology, this adaptability implies that LLMs can be trained on biological sequences, such as DNA, RNA, and proteins [START_REF] Lin | Evolutionary-scale prediction of atomic-level protein structure with a language model[END_REF][START_REF] Rao | Evaluating protein transfer learning with tape[END_REF][START_REF] Xu | Peer: a comprehensive and multi-task benchmark for protein sequence understanding[END_REF]. Rather than processing words or sentences, these models can assimilate nucleotide or amino acid sequences, thereby capturing intricate patterns and dependencies in genomic and proteomic data [START_REF] Dauparas | Robust deep learning-based protein sequence design using ProteinMPNN[END_REF][START_REF] Lin | Evolutionary-scale prediction of atomic-level protein structure with a language model[END_REF][START_REF] Mcdermott | Structure-inducing pre-training[END_REF][START_REF] Meier | Language models enable zero-shot prediction of the effects of mutations on protein function[END_REF]. These cross-disciplinary advances in LLMs highlight their potential to advance the frontiers of computational biology. In addition to large sequence-based pretrained models like LLMs, an emerging area of structure-based pretrained models is concerned with generating new network structures, such as protein and small molecule networks [START_REF] Bennett | Improving de novo protein binder design with deep learning[END_REF][START_REF] Gainza | De novo design of protein interactions with learned surface fingerprints[END_REF][START_REF] Rodrigues | CSM-Potential: mapping protein interactions and biological ligands in 3D space using geometric deep learning[END_REF][START_REF] Townshend | Geometric deep learning of rna structure[END_REF][START_REF] Wang | Scaffolding protein functional sites using deep learning[END_REF].

Interpretabilty, reproducibility, and transparency. These three principles play pivotal roles in advancing our understanding of complex systems. Interpretability involves elucidating the underlying mechanisms of intricate phenomena, such as tumor growth and immune responses, which demand holistic strategies. Contrarily, deep learning models are black-box systems with limited immediate interpretability as they produce outputs that can be hard to interpret. This poses challenges in domains where clear insights are imperative. For instance, while dimensionality reduction techniques and graph representation learning algorithms produce compressed representations of high-dimensional data and graphs, respectively, they often sacrifice the interpretability of the features they produce. Conversely, graph-theoretic signatures, which might capture network motifs, graphlets, or other substructures, can amplify our understanding of the data by elucidating relevant structural patterns.

Reproducibility in network biology research is a multifaceted challenge due to several reasons. (1) Graph construction: How a graph is constructed can drastically impact the insights drawn from it. For example, consider the problem of inferring an association PPI network. The decision to include only direct interactions versus both direct and indirect interactions can lead to vastly different network topologies. Choosing a threshold to determine an edge (e.g., a particular strength of interaction or confidence level) can also significantly alter the graph. (2) Edge definitions: What constitutes an edge can be subjective and is often based on the specific context. In a gene co-expression network, for instance, the definition of an edge might be based on a particular correlation coefficient threshold. A slight variation in this threshold can lead to including or excluding numerous interactions, thus changing the network's structure and potentially its inferred properties. (3) Latent embeddings: Graph-based machine learning methods used to compute embeddings can have a significant effect on the results. Different embedding techniques capture different types of structural and feature-based information, leading to variations in tasks like node classification or link prediction. (4) Dynamic nature of biological networks: Biological systems are inherently dynamic.

A PPI network at one point in time or under one set of conditions might differ from the network under another state. Thus, reproducing results requires the same methodology and the same or equivalent biological conditions. (5) Finally, graph sampling: In many cases, a subgraph or sample is taken due to the massive size of networks or computational constraints. The method and randomness inherent in this sampling can lead to non-reproducible results if not carefully controlled.

Consistency in methodology and complete transparency in all decisions (from graph construction to analysis) is crucial. Workflow management systems, such as Nextflow [START_REF] Di Tommaso | Nextflow enables reproducible computational workflows[END_REF] and Snakemake [START_REF] Köster | Snakemake-a scalable bioinformatics workflow engine[END_REF], can enable rapid prototyping and deployment of computational workflows by combining software packages and various tools.

Clear documentation, open-source sharing of code and algorithms, and making raw and processed data available can ensure that results are not just a one-off finding but can be consistently reproduced and built upon by the broader scientific community.

Towards wide adoption and translation of algorithmic innovation into practical and societal impact. The recommended method evaluation and data generation improvements discussed above are needed not just for method developers -typically, computational scientists -to be able to properly evaluate their new approaches against existing ones, but even more importantly, for adoption by end users -experimental scientists and in the long run, clinicians, healthcare workers, and patients (Section 8 comments more on this topic, including training needed for non-computational folks to use network approaches). The disconnect between computational and experimental scientists, even those dedicated to the common scientific goals [START_REF] Ramola | The field of protein function prediction as viewed by different domain scientists[END_REF], suggests that efforts are necessary to overcome both technical and social challenges in interdisciplinary research fields. Computational scientists might need to consider not only traditionally algorithmic evaluation measures, such as precision, recall, and other performance criteria, but also measures that evaluate the utility and feasibility of integrating methods into scientific and clinical workflows [START_REF] Huang | Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design[END_REF][START_REF] Huang | Artificial intelligence foundation for therapeutic science[END_REF]. Additionally, computational scientists are primarily incentivized to develop new algorithms and prototype software. In contrast, experimental and clinical scientists expect tools that are robust, trustworthy, and exhibit few glitches in practice. Authoritative evaluations, carried out by independent and interdisciplinary researchers on tasks directly relevant to downstream applications, are essential [START_REF] Choobdar | Assessment of network module identification across complex diseases[END_REF][START_REF] Marbach | Wisdom of crowds for robust gene network inference[END_REF]. Rapid and broad dissemination of these evaluations, recommendations, and guidelines for best practices should be prioritized in network biology.

Major milestones in network biology. The pinnacle of success for network biology would likely be a comprehensive and dynamic understanding of the entire cellular or organismal interactome across different conditions and life stages. This would include PPIs, gene regulation, metabolic pathways, cell signaling, and more. We can imagine a complete map of every biological interaction in an organism, from the level of genes and molecules up to tissues and organs, with the ability to zoom in on details and see dynamic changes over time or under different conditions. Another significant milestone would be the seamless integration of network biology with other disciplines to provide a holistic understanding of life. This means connecting the molecular interactome with tissue-level networks, organ systems, and inter-organismal interactions, such as those seen in symbiosis or ecosystems. From a practical standpoint, a significant success measure would be the application of network biology insights to develop novel and more effective therapeutic interventions. This could mean identifying critical network nodes or interactions to target diseases, leading to innovative treatments.

Drawing parallels from the reference human genome, the equivalent for network biology could be a reference interactome-a standardized and comprehensive map of all known biological interactions within a human cell. This would serve as a baseline for studying disease, development, aging, and other biological processes. Any deviations from this reference in specific cell types, conditions, or diseases could be studied in detail.

Just as AlphaFold has made waves in predicting protein structures, a comparable success in network biology might be the development of tools that can accurately predict the emergent properties of a biological system from its underlying network. Given a set of interactions, this would mean the tool could foresee the system's response to a drug, its behavior under certain conditions, or its evolution over time.

Additional discussion on scientific communities, education, and diversity

The question of who are network biologists or computational biologists is hard. At our workshop, a consensus was reached that a computational biologist would have the interest and knowledge to both develop core computational methods and understand fundamental biological mechanisms. That raises the question of how to properly train more of such researchers to advance computational biology, including its subarea of network biology that models and analyzes biological systems as networks. For example, based on their personal experience, some of the workshop participants noted that in a network biology course, computationally-focused students might enjoy computational but not biological aspects (e.g., in a general network science course, students typically choose a non-biology domain to work on, such as technological or social networks). In contrast, biology students might enjoy biological but not computational aspects. So, efforts might be needed to convince students to be genuinely excited about both developing computational approaches and understanding biological mechanisms. Systematically identifying and addressing gaps in current computational biology training programs or starting new interdisciplinary training programs might be needed, along with appropriate support and resources from funding agencies. Some of these gaps were discussed at the workshop. An essential part of efficient training would be to have robust, well-known, and trustworthy software tools that are readily available and easy to use, especially by those who are not proficient in computing; clearly, both developing and sustaining such software requires resources. Similar holds for building and making available datasets easily accessible by people who are not proficient in biology to help them get involved easily. Another important part would be exposing students to interdisciplinary collaborative teams to train them to work together on the same research questions with scientists from different disciplines.

Another vital part of training relates to hiring and promoting computational biology faculty who would offer the training. A challenge here, based on the personal experience of some of the workshop participants, seems to be as follows. When hiring a computational biologist in a traditional computationally-focused department (e.g., computer science, applied mathematics, statistics, or physics), someone who is more trained in biology may be viewed as not enough of a computational scientist, even when they are proficient in using existing computational methods to uncover new biological knowledge and possibly also at least occasionally develop new computational methods for studying biological systems. Similarly, in a traditional biology-focused department, a more computationally trained person may be viewed as not enough of a biological scientist, even when they evaluate their new computational methods on biological data and possibly at least occasionally yield new knowledge about biological systems. Yet, both kinds of candidates can be great for both department types. Hence, hiring and promotion groups might need to think differently about interdisciplinary computational biology research. This is especially true in departments where these groups do not have computational biologists or where there are no specific, interdisciplinary departments like biomedical data science or computational biology.

Another challenge exists even when focusing on computationally-oriented researchers within computational biology. Scientific communities that could benefit (from) the field of network biology include graph theory, network science, data mining, machine learning, and artificial intelligence. These communities often use different terminology for the same concepts (e.g., network alignment versus graph matching or graph clustering versus network community detection). Distinct scientific communities may all analyze biological network data, or they may address identical computational challenges across various application domains, such as biological versus social networks. However, they often do not attend the same research forums. For instance, attendees of the prominent computational biology conference, Intelligent Systems for Molecular Biology (ISMB), might not necessarily participate in data mining conferences like Knowledge Discovery and Data Mining (KDD) or artificial intelligence conferences such as Neural Information Processing Systems (NeurIPS), and vice versa.

Consequently, advancements in one domain might remain obscure in another. Our computationally-focused workshop sought to bridge this gap by bringing together scientists from traditionally disparate network biology communities, centering discussions on universally pertinent topics. We anticipate further endeavors echoing this objective in forthcoming years.

The above discussion items can be seen as diversity-focused, be it diversity in one's training and skills or scientific communities they belong to [START_REF] Nielsen | Making gender diversity work for scientific discovery and innovation[END_REF]. Many other aspects of diversity exist in science, and we focus on some of them here. At our workshop, 42% of workshop participants were female. This is higher than the reported female International Society for Computational Biology (ISCB) membership. Note that because ISCB is a globally recognized entity advocating for and advancing scholarship, research, training, outreach, and inclusive community building in computational biology and its professions, we rely on its demographic statistics being representative of the current state in the computational biology field. According to a demographic survey of the ISCB membership, whose results are publicly available in the 2022/2023 ISCB Equity, Diversity, and Inclusion (EDI) report 9 , among those who responded, 32.8% indicated "female", 60% indicated "male", 0.4% indicated "non-binary", and 6.8% indicated "prefer not to declare". Regarding ethnic origin, in the same report, 53% of those who responded with anything but "prefer not to declare" indicated a non-European descent. Some additional EDI statistics are as follows. At the time of the 2020/2021 ISCB EDI report (the latest report that offered this type of information), 41% of the ISCB Board of Directors were female, and 57% of the Executive Committee (elected officers) were female; 61% of selected keynote speakers at the Intelligent Systems for Molecular Biology (ISMB), ISCB's flagship and most prestigious conference, were female since 2016. Regarding ISCB awards, fellows election, and other honors, the final selection shows a good gender balance that reflects the membership. However, during the nomination stage, in 2022/2023, for the innovator award, senior scientist award, and fellows election, 22%, 28%, and 25% of the nominees were female, respectively, compared to 32.8% of the entire ISCB membership being female. ISCB does not have such data yet on ethnicity. Our workshop discussed the need to improve the bias at the nomination stage.

Enhancing awareness and mitigating biases when nominating candidates for honors or inviting candidates as workshop participants or conference speakers is a pathway to improving diversity in the computational biology field. Another, more ambitious goal is to achieve diversity statistics in the field that mirror those of the general population. This should be accomplished for all of undergraduate students, graduate students, postdoctoral fellows, and faculty (across various ranks), not only by addressing the 'leaky pipeline' issue [START_REF] Alper | The pipeline is leaking women all the way along[END_REF][START_REF] Sarraju | The leaky pipeline of diverse race and ethnicity representation in academic science and technology training in the United States, 2003-2019[END_REF], but also by identifying and eliminating institutional barriers to establish an inclusive support infrastructure [START_REF] Stevens | Fund Black scientists[END_REF]. It was noted at our workshop that this might only be achievable over a longer period. Also, it was pointed out that biology-focused subfields of computational biology are currently more gender-diverse than its computationally-focused subfields. Thus, diversity in computational biology might be more readily achieved by recruiting trainees from biology-focused subfields and equipping them with the requisite computational skills, rather than the reverse. However, sourcing from computational subfields remains essential. Yet, disciplines like computer science, mathematics, and physics can act as gatekeepers and entering these fields without the appropriate background can be challenging [START_REF] Mervis | Fix the system, not the students[END_REF][START_REF] Torbey | Algebra I before high school as a gatekeeper to computer science participation[END_REF]. Because innovative concepts can emerge from diverse sources and all individuals, it is imperative to eliminate gatekeeping barriers.

Additional diversity-related challenges include the need to recognize and mitigate potential implicit biases; limited access to registration and travel funds to conferences based on their locations, especially for those in middle and low-income countries; current lack of ethnicity data to evaluate diversity efforts of computational biology conferences and communities, including ISCB; empirical research into equity in science, etc. Systematic and properly funded initiatives by universities and professional societies are necessary to achieve this. And so are individual efforts by the members of the scientific community. Everyone should be responsible for contributing to joint diversity efforts for the field to make significant and sufficient progress.
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 1 Figure1: Overview of the network biology field and five research topics discussed in this paper. The word cloud in the center, generated using WordClouds.com, contains the top 30 most representative words from this paper. Note that each word's rank is based on the sum of the weights of the core word (e.g., learn) and its derived words (e.g., learns, learning, learned).
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 2 Figure 2: Prominent topics related to network inference and comparison. (A) Inference of an association (left), correlation (middle), or regulatory (right) network from non-network data. (B) Link prediction: inference of new interactions from existing network data via neighborhood-(left) or embedding-based (middle) approaches, or from sequence data (right). For the former, shown are nodes that may be linked by new edges because two given nodes have high degrees (preferential attachment, green) or share many common neighbors (red); other neighborhood-based approaches exist, as discussed in the text. (C) Inference of a condition-specific network.The second approach category is illustrated. The thicker an edge in the network for a given condition, the more relevant the edge is for that condition. (D) Differential network analysis. Illustrated is a potential differential network between conditions 1 and 2, in which the edges that are highly relevant for condition 1 but not condition 2 are in purple, and the edges that are highly relevant for condition 2 but not condition 1 are in orange; all other edges, which have consistent relevance patterns in both conditions, are shown in black.
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 3 Figure 3: (A) Heterogeneous networks can naturally represent multimodal data. A heterogeneous network can have only a single node type, with different data modalities representing multiple edge types. Or, there can exist both multiple node and edge types. Different node types can exist at different biological scales; e.g., in a network-of-networks, nodes at a given scale are networks at the lower scale. (B)-(E) Prominent topics related to heterogeneous networks. (B) Inference of a heterogeneous network aims to learn the graph topology from multimodal -to date, typically multi-omic -measurements. (C) Pathway reconstruction for interpretation of multi-omic data: the input is multi-omic data and a background molecular network, and the output is a sparse subnetwork. Typically input biomolecules with higher scores (indicated by node sizes) and higher-quality connections (indicated by edge thickness) are prioritized in the output. (D) Network alignment: input can be individual homogeneous networks (left) or heterogeneous networks. Even alignment of homogeneous networks leads to a heterogeneous network (right) whose "supernodes" contain mapped nodes and whose edge types indicate which edges of the original networks are conserved (blue and orange between two "supernodes") versus non-conserved (blue only or orange only between two "supernodes") under the given node mapping. (E) Inference of and reasoning on BKGs. Shown is a condition-aware BKG. The middle nodes (hexagons) are statement sentences. The layers on their left represent fact tuples and those on their right represent the conditions associated with the facts. The tuples have relation nodes (circles), concept nodes (squares), and optional attribute nodes (triangles).
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  A) Directed hypergraph (biochemical reactions) (B) Undirected hypergraph (protein complexes) (C) Mixed pairwise graph (physical interactions) (D) Graphlet embedding (E) Hypergraphlet embedding
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 4 Figure 4: Graph representations of nine reactions from Reactome's TGFβ signaling pathway.(A) In a directed hypergraph, each hyperedge captures a reaction ("p" denotes phosphorylation). (B) In an undirected hypergraph, each hyperedge captures a protein complex. (C) In a (mixed) pairwise graph, each edge captures a pairwise interaction. "Mixed" refers to having both directed and undirected edges in the graph. Black undirected edges denote physical interactions; green directed edges denote phosphorylation; red directed edges denote dephosphorylation. (D) A node in a pairwise graph can be represented as a vector of graphlet counts. The number of 2-, 3-, and 4-node graphlet instances that include TGFB1 in the graph on the left are shown.(E) A node in an undirected hypergraph can be represented as a vector of hypergraphlet counts. The number of 2-and 3-node hypergraphlet instances that include TGFB1 in the hypergraph on the left are shown. In panels (D)-(E), only the (hyper)graphlet-level counts are shown for simplicity, i.e., (hyper)graphlet orbits are not shown nor considered when doing the counting. However, in practice, the more detailed orbit-level counts are computed rather than "just" the (hyper)graphlet-level counts.
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 5 Figure5: Overview of the various components of machine learning on networks. The core of this approach (left) is a machine learning model, typically a neural network, that takes one or more biological networks as input and learns representations (embeddings) of various graph elements in an unsupervised, self-supervised, or supervised manner. These representations can be used for exploratory analysis or as input to train a new machine learning model to perform a downstream task. Models can also be trained end-to-end, i.e., a single model that learns representations and performs downstream prediction, or trained for one task with abundant labels and transferred (modified and fine-tuned) to a new related task with limited labels. Generative network-based machine learning models can also be used to create novel graph-structured data based on the learned representations. Critical to continued development, wide adoption, and practical utility of network-focused machine learning is a parallel improvement in frameworks for rigorous benchmarking, explainability of predictions, and uncertainty quantification.
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 6 Figure 6: Prominent topics in network-based precision medicine. (A) Groups of patients that correspond to their communities (clusters) in a patient similarity network may shed light on distinct disease subtypes and thus lead to tailored, group-specific therapeutic strategies. (B) Identification of pathways (sparse, tree-like subnetworks) or functional modules (dense, clique-like subnetworks) associated with disease (subtypes) is related to inference of a condition-specific network (Section 2) and pathway reconstruction (Section 3). (C) Drug repurposing evaluates the fit of existing drugs to new diseases based on network "relatedness" between protein targets of the existing drugs and proteins associated with the new diseases. E.g., existing drug D2 may be a good treatment for the new pathogen because D2 targets two proteins (d and e), both of which directly interact with two of the proteins associated with the pathogen (a and c); the four proteins (a, c, d, e) form a clique, which further adds to their "relatedness". (D) An important application of medical imaging lies in brain disorders. In connectome genetics, network structure of the brain meets -omics data. (E) An individual's position in their social/contact network, along with demographic, personality, physical/mental health, etc. information about the other individuals, can give insights into the given individual's health.

  Perhaps algorithmic approaches such as active learning can help prioritize what data should be collected, e.g., from specific populations or about particular biological functions. How do we develop principled guidelines for suggesting what kind of data to collect for what type of research question? As success in experimentally collecting or computationally inferring various types of biological networks continues to improve, research efforts likely should shift towards obtaining a predictive understanding of personalized networks. Moreover, even within a single individual, molecular networks vary across tissues and cell types, posing additional challenges in defining an individual-specific network. Another data component that is currently missing or is very scarce is network dynamics.

	Network dynamics.
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Higher-order network analysisNeed for higher-order graph representations of biological systems. This paper, unless explicitly noted otherwise, deals with traditional pairwise graphs (or simply graphs). Such a graph represents the organization of a biological system as a network of pairwise interactions between biomolecules (e.g., a PPI is
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