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ON PSEUDO-ROTATIONS OF THE ANNULUS

WITH GENERIC ROTATION NUMBER

BARNEY BRAMHAM AND ZHIYUAN ZHANG

ABSTRACT. We show that for a Baire generic rotation number α ∈ R/Z,
the set of area preserving C∞-pseudo-rotations of the annulus A with
rotation number α equals the closure of the set of area preserving C∞-
pseudo-rotations which are smoothly conjugate to the rotation Rα. As a
corollary, a C∞-generic area preserving pseudo-rotation of the annulus
with a Baire generic rotation number α is weakly mixing.

1. INTRODUCTION

In this paper we denote the 2-dimensional annulus by A = R/Z × [0, 1]
equipped with the standard area-form ω. We let F∞

A denote the set of ω-
preserving C∞ pseudo-rotations of A (the precise definition will appear in
Definition 2.9). Namely, we set

F∞
A := { f ∈ Diff∞(A, ω) | f is isotopic to Id and has no periodic points}.

The study of pseudo-rotations can be essentially traced back to the ques-
tion of Birkhoff [B41] (see also [H98]) as to whether there are non-trivial
analytic diffeomorphisms of the 2-sphere with 2 fixed points (the existence
of such diffeomorphisms was recently announced by Berger [B22]). The
name “pseudo-rotation”was introduced by Béguin, Crovisier, Le Roux and
Patou in [BCLP04]. By a result of Franks [F88], for ω-preserving home-
omorphisms of A, the notion of irrational pseudo-rotations in [BCLP04]
coincides with ours. In particular, each f ∈ F∞

A admits a rotation number
ρ( f ) ∈ (0, 1)/Q (see Definition 2.10 for the details). For each α ∈ (0, 1) \ Q

we set

F∞
A (α) := { f ∈ F∞

A | ρ( f ) = α},

O∞
A(α) := {hRαh−1 | h ∈ Diff∞(A, ω)}

where Rα denotes the rotation (x, y) 7→ (x + α, y). It is clear that O∞
A(α) ⊂

F∞
A (α) for any α ∈ (0, 1) \ Q. It is not hard to see that F∞

A (α) is closed in the

C∞-topology for each irrational α. In particular, O∞
A
(α) ⊂ F∞

A (α) for any
α ∈ (0, 1) \ Q, where the closure is taken in the C∞-topology. Our main
result is the following.
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THEOREM 1. For a Baire generic α ∈ (0, 1) \ Q, we have

F∞
A (α) = O∞

A
(α)

where the closure is taken in Diff∞(A).

In other words, for a Baire generic α, any pseudo-rotation f with rotation
number α is the C∞-limit of a sequence fk of area preserving diffeomor-
phisms, which up to a smooth area preserving change of coordinates, is the
standard rotation Rα. In particular f is approximable by integrable systems.

We can see Theorem 1 as a natural analogue of a well-known theorem
of Herman in [H79]. Recall that one of the most prominent results in the
study of circle diffeomorphisms is the following.

THEOREM 2 (Herman-Yoccoz). For any irrational α ∈ R/Z, we denote by
F∞(α) the set of C∞ circle diffeomorphisms with rotation number α, and denote
by O∞(α) the set of C∞ circle diffeomorphisms which are C∞-conjugate to the
standard rotation Rα. Then we have

F∞(α) =

{

O∞(α) = O∞(α) if α is Diophantine,

O∞(α) 6= O∞(α) if α is Liouville.

Here in the above the closures are taken under the C∞-topology.

The above result for Diophantine α was conjectured by Arnold, who
showed in [A78] that any Cω circle diffeomorphism with a Diophantine
rotation number α which is sufficiently close to Rα in the Cω-topology, is
infact Cω-conjugate to Rα. Arnold’s result was then generalised to the C∞-
category by Moser in [M66]. This is the beginning of what is now known as
the Kolmogorov-Arnold-Moser theory. The global picture was for the first
time established by Herman in the seminal paper [H79]. In [H79], Theorem
2 was proved for a subset of α with full Lebesgue measure. Khanin and
Sinai gave in [KS89] a different proof of the main result in [H79] building
on a renormalization theory for circle diffeomorphisms. The Diophantine
part of Theorem 2 was completed by Yoccoz in [Y84]. We also mention
Katznelson-Ornstein’s papers [KO89a, KO89b] on circle diffeomorphisms
with low regularity, and Yoccoz’s paper in [EKMY02] on Cω-linearization
under the sharp arithmetic condition, i.e., H-condition. For a recent survey
of this development and beyond, we refer the reader to [EFK18].

The Liouville part of Theorem 2 was conjectured by Herman in [H79,
Conjecture 7.1]. In fact Herman already showed that Theorem 2 holds for
a Baire generic set of α, see [H79, Theorem 7.3]. However, his proof was
based on the Diophantine part of Theorem 2 (at least for a full measure
set of α), and used certain properties of the function t 7→ ρ(Rt f ) of a cir-
cle diffeomorphism f . It is still an open question of Herman whether the
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Diophantine rigidity holds within pseudo-rotations. Moreover, it is un-
clear how to deform a general pseudo-rotation within the set of pseudo-
rotations, and change the rotation number. This blocks a direct generalisa-
tion of Herman’s approach for pseudo-rotations. The full answer to Her-
man’s conjecture was provided by Yoccoz in [Y95b]. Yoccoz showed that
any C∞ circle diffeomorphsim with a Liouville rotation number can be C∞-
approximated by a quasi-rotation: this is a class of circle diffeomorphisms
which, among other things, admits a renormalization that is a standard ro-
tation. Our proof of Theorem 1 is somewhat similar to the proof of Yoccoz:
we also consider certain renormalizations of a pseudo-rotation. However,
the type of estimates are very different. We are unable to transfer the strong
estimates for circle diffeomorphisms, such as Denjoy’s inequality in [Y84],
to general pseudo-rotations, due to the possible occurrence of complicated
geometry which does not appear in dimension 1. On the other hand, the
area-preserving hypothesis provides us with certain strong C0-estimates
established in [AFLXZ20]. Combining such estimates with a suitable arith-
metic condition, we are able to extract some useful information from a se-
quence of suitably renormalized pseudo-rotations.

We can also compare Theorem 1 with the main result in [B15b], which
says that any smooth area preserving pseudo-rotation f on the closed 2-
disc, meaning that f fixes the origin and has no periodic points on the
annulus complementary to the origin, is the C0-limit of smooth periodic
disc maps fk, that each fix the origin. In the latter there are no restrictions
on the (irrational) rotation number of f , but in this current paper our inte-
grable approximations are in every way stronger: 1) In [B15b] the sequence
of approximations fk, while C∞-smooth, only converge in the C0 topology
to f . 2) In [B15b] the fk’s are not necessarily area preserving. 3) In [B15b]
the approximation maps fk have rational rotation numbers pk/qk ∈ Q con-
verging to the rotation number α of f as k → ∞. One cannot perturb the fk

in [B15b] in an obvious way to make the rotation number equal to α while
retaining closeness to f . On the other hand, it is easy to modify the fk’s in
the current article, if one so wishes, to make the rotation number rational
and keep the closeness to f . In short, the fact that in this paper we are able
to find integrable approximations without altering the rotation number is
also a stronger conclusion than in [B15b].

Another motivation behind our result is the important work of Anosov
and Katok [AK70] and the extensions in Fayad-Saprykina [FS05], see also
Fayad-Katok [FK04], in which, for generic rotation numbers, more pre-
cisely all Liouville rotation numbers, examples of pseudo-rotations are con-
structed which are dynamically interesting, that is, not conjugate to a rota-
tion. These “exotic”pseudo-rotations of Anosov-Katok lie, by construction,
in the C∞-closure of ∪t∈QO∞

A(t) rather than the closure of O∞
A(α). It how-

ever follows from our main result that, for a possibly smaller Baire-generic
set of rotation numbers than the Liouville numbers, that the Anosov-Katok
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constructions do indeed lie in the closure of O∞
A(α) with fixed rotation num-

ber α. Moreover, we have the following interesting corollary.

COROLLARY A. For a Baire generic α ∈ (0, 1) \ Q, the set of weakly mixing
pseudo-rotations in F∞

A (α) forms a Baire set with empty interior, with respect to
the C∞ topology.

Proof. On the one hand, Anosov and Katok, see [AK70], show that for a

Baire generic α, weak mixing is a C∞-generic property in O∞
A
(α). Thus by

Theorem 1 weak mixing is a C∞-generic property in F∞
A (α).

On the other hand, the second statement follows since elements of O∞
A(α)

are never weak mixing and by Theorem 1 the complement F∞
A (α)\O∞

A(α)
has empty interior. �

REMARK 1. Corollary A is seen to be rather sharp in the following sense:

(1) the genericity of α cannot be improved into any subset of (0, 1) with pos-
itive Lebesgue measure. This follows from the KAM result of Fayad-
Krikorian [FK09] (attributed by the authors to Herman), that a neigh-
borhood of Rα in F∞

A (α) lies in O∞
A(α), for any Diophantine α.

(2) Weakly mixing cannot be replaced by mixing. In fact, it follows from the
proof of [B15a] and [AFLXZ20] that for a Baire generic α, F∞

A (α) contains
no topologically mixing maps. See also Theorem 3.

Recently, Avila and Krikorian have announced 1 an improvement of The-

orem 1: for every non-Brjuno α, one has F∞
A (α) = O∞

A
(α). Moreover, they

have announced the following result: for every pseudo-rotation f in an
open neighborhood of the rigid rotations on D, there exists a sequence of
area-preserving diffeomorphism hn such that hn f h−1

n converges to Rρ( f ) in
the C∞ topology. Their method involves delicate estimates on high iterates
of the maps, while our method for getting this weaker result relies only on
rather soft estimates.

Acknowledgements. Z.Z. would like to thank Artur Avila and Raphaël
Krikorian for discussion on one occasion. Z.Z. would also like to acknowl-
edge the online talk by Raphaël Krikorian during the Workshop “Between
Dynamics and Spectral Theory ”at the Simons Center for Geometry and
Physics back in 2016, which inspired this article. This work was initi-
ated in 2019 while the authors were at the Institute for Advanced Study
both supported by the National Science Foundation under Grant No. DMS-
1638352. We thank them for their hospitality and excellent working envi-
ronment. B.B. was also partially supported by the SFB/TRR 191 ‘Symplec-
tic Structures in Geometry, Algebra and Dynamics’, funded by the DFG (B1
281071066 – TRR 191)

1See the minicourse of Krikorian in the program “Renormalization and universality in
Conformal Geometry, Dynamics, Random Processes, and Field Theory ”in 2020 at Simons
Center for Geometry and Physics.
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NOTATION

In the rest of this paper, we use the following notation. For a subset
A ⊂ R2 we denote by Int(A) the interior of A. For a Cr diffeomorphism
f : U → V between open subsets U, V ⊂ R2 and r ∈ N, we set ‖Dr f‖ =
maxx∈U,|α|=r{‖∂α f (x)‖}, ‖ f‖Cr = sup1≤ℓ≤r ‖Dℓ f‖ and ‖ f‖Diffr(U) = ‖ f‖Cr(U)+

‖ f−1‖Cr(V). For Cr diffeomorphisms f , g : U → V, we denote dDiffr(U)( f , g) =

max(‖ f−1g‖Diffr(U), ‖g−1 f‖Diffr(U)). We abbreviate ‖ f‖Diffr(U), resp. dDiffr(U),

as ‖ f‖Diffr , resp. dDiffr , when there is no confusion. For two homeomor-
phisms f , g : U → V, we denote ‖ f − g‖ = supx∈U d( f (x), g(x)), where
d(·, ·) is the euclidean metric.

2. PRELIMINARIES

We denote the boundary components of A by

Bi := R/Z × {i} i = 0, 1.

The universal covering of A is Ã = R × [0, 1]. We write B̃i = R × {i} for
i = 0, 1. We let

π : Ã → A

be the natural projection, and let T : Ã → Ã be the translation in the first
coordinate, i.e., T(x, y) = (x + 1, y). Given a homeomorphism f : A →
A there is a lift F : Ã → Ã of f , also a homeomorphism, unique up to
composition by a power of T, such that πF = f π. Moreover, any such lift
commutes with T.

We have the following lemma, whose proof is elementary and left to the
readers.

LEMMA 2.1. Suppose f : A → A is a homeomorphism with ‖ f − Id‖ < 1/2.
Then there is a unique lift F : Ã → Ã satisfying ‖F − Id‖ < 1/2. This lift
satisfies

d
(

F(x̃), x̃
)

= d
(

f (x), x
)

(2.1)

for all x ∈ A and all x̃ ∈ Ã with π(x̃) = x.

DEFINITION 2.1. We say that γ ⊂ A is a simple regular curve connecting B0

and B1 if γ = φ([0, 1]) where φ : [0, 1] → A is an injective continuous map
mapping 0, resp. 1, into B0, resp. B1, that maps (0, 1) into A\∂A. We define
simple regular curves in Ã connecting B̃0 and B̃1 in a similar way.

DEFINITION 2.2. For a pair of simple regular curves γ1, γ2 in Ã we will say
that γ1 is to the left of γ2, or γ2 is to the right of γ1, and write

γ1 < γ2

if γ1 ∩ γ2 = ∅ and γ1 lies in the component of Ã\γ2 containing points with
arbitrarily negative R-coordinate. This defines a partial ordering on simple
regular curves in Ã.
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DEFINITION 2.3. Let f be a homeomorphism of A. A simple regular curve
γ in A connecting B0 and B1, satisfying

γ ∩ f (γ) = ∅

is called a Brouwer curve for f . A Brouwer curve γ is called smooth if γ is
a C∞-curve. Brouwer curves for homeomorphisms of Ã are defined in a
similar way.

Note that if F is a lift of a homeomorphism f : A → A and γ̃ is a lift of a
Brouwer curve γ ⊂ A for f , then

TkF(γ̃) ∩ γ̃ = ∅ ∀k ∈ Z.

DEFINITION 2.4. Let f be a homeomorphism of A and Q ≥ 2 an integer.
We say that γ is a Q-good smooth curve if γ is a smooth Brouwer curve for
each of the maps f , f 2, · · · , f Q−1.

DEFINITION 2.5. Let γ1, γ2 be two disjoint simple regular curves in A con-
necting B0 and B1. There is a unique closed region R in A with left bound-
ary γ1 and right boundary γ2. More precisely, if each γi is oriented from
B0 to B1, then ∂R∩ (A\∂A) has orientation agreeing with γ2 − γ1. We say
that R is the region bounded by (γ1, γ2).

DEFINITION 2.6. Let {Kr}r≥1 be an increasing sequence of positive real
numbers. Let U, V be smooth surfaces, possibly with boundary, and let
φ : U → V be a C∞-diffeomorphism. We say that φ is {Kr}r≥1-smooth if

‖φ‖Diffr(U) < Kr ∀r ∈ Z+.

DEFINITION 2.7. Let γ be a Brouwer curve for f , and let R ⊂ A be the
closed region bounded by (γ, f (γ)). We say that an orientation preserving
C∞ -diffeomorphism

φ : U → R′

from an open neighborhood U ⊂ Ã of [0, 1]2 to an open neighborhood
R′ ⊂ A of R is an admissible coordinate for (R, f ) if the following hold:

(1) φ has constant Jacobian,
(2) φ satisfies

φ({0} × [0, 1]) = γ,(2.2)

φ({1} × [0, 1]) = f (γ),(2.3)

φ([0, 1]× {0}) ⊂ B0,(2.4)

φ([0, 1]× {1}) ⊂ B1,(2.5)

(3) there is a neighborhood UL of {0} × [0, 1] in U , so that

f φ(x) = φT(x) ∀x ∈ UL.

Without loss of generality we may assume that T(UL) ⊂ U by choosing UL

sufficiently small.
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We make a similar definition for lifts. Namely, let γ̃ be a lift of a Brouwer
curve γ for f , let F be an lift of f such that F(γ̃) is on the right of γ̃, and let
R̃ be the region bounded by (γ̃, F(γ̃)). We say that a C∞-diffeomorphism

φ : U → R′

from an open neighborhood U of [0, 1]2 in Ã to an open neighborhood R′

of R̃ in Ã is an admissible coordinate for (R̃, F) if φ satisfies the analogous
properties above with (R, A, f ) replaced by (R̃, Ã, F).

REMARK 2. We notice that by item (3) in Definition 2.7, an admissible coordinate
φ : U → R′ is determined by its restriction to [0, 1]2 in the following sense: if
φi : Ui → Ri, i = 1, 2 are two admissible coordinates for (R, f ) such that
φ1|[0,1]2 = φ2|[0,1]2 , then there exists an open neighborhood U3 of [0, 1]2 in Ã such

that φ1|U3
= φ2|U3

. For this reason, we will sometimes identify an admissible
coordinate for (R, f ) or (R, F) with a map from [0, 1]2 to R.

DEFINITION 2.8. Let r ∈ N and K ∈ (0, ∞). We say that φ : [0, 1]2 → R
is a (r, K)-admissible coordinate for (R, f ) if φ is an admissible coordinate, in
the sense of Definition 2.7, defined on an open neighborhood U of [0, 1]2,
satisfying

‖φ‖Diffr(U ) < K.

Analogously for lifts: We say that φ : U → R̃ is a (r, K)-admissible coor-
dinate for (R̃, F) if φ is an admissible coordinate for (R̃, F), in the sense
of Definition 2.7, defined on an open neighborhood U of [0, 1]2, satisfying
‖φ‖Diffr(U ) < K.

DEFINITION 2.9. A pseudo-rotation is a non-wandering homeomorphism f :
A → A that is isotopic to the identity, maps B0 (resp. B1) to itself, and has
no periodic points.

Recall that a homeomorphism f : A → A is said to be non-wandering if
for every open subet U ⊂ A, there exists an integer n > 0 such that f n(U)∩
U 6= ∅. In this paper we will only be considering C∞-smooth pseudo-
rotations that preserve a smooth area form ω. By a slight abuse of notation,
we denote by ω both the area form on Ã and A. If f is an ω-preserving
diffeomorphism then so is each lift F an ω-preserving diffeomorphism.

DEFINITION 2.10. Let f : A → A be a pseudo-rotation with lift F : Ã → Ã.
Denote by p1 : Ã → R the projection on the first coordinate. We define
ρ(F) ∈ R by

ρ(F) := lim
n→∞

1

n
(p1(Fn(x, y))− x) x ∈ R, y ∈ [0, 1].

It is known that the limit on the right hand side above exists for all (x, y)
and is independent of (x, y), see [F88, FH12]. Moreover, we always have
ρ(F) /∈ Q, see [F88]. For any pseudo-rotation f , there exists a unique lift F
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of f such that ρ(F) ∈ (0, 1) \ Q, which we denote by ρ( f ). We call ρ( f ) the
rotation number of f .

Let us recall a few well known facts about the best rational approxima-
tions to α ∈ (0, 1) \ Q and its continued fraction expansion. Readers can
consult [HW, Chapters X, XI] for more details.

First, for x ∈ R we will write

⌊x⌋ := max{n ∈ Z | n ≤ x} ∈ Z,

q(x) := ⌊1/x⌋ ∈ Z

for the integer parts of x and 1/x respectively. Moreover, if x ∈ R \ Q then

‖x‖R/Z := d(x, Z) ∈ (0, 1/2).

The Gauss map G : [0, 1) → [0, 1) is defined by

G(x) =
1

x
− q(x)

on (0, 1) and G(0) := 0. If x is irrational then so is G(x).

DEFINITION 2.11. For any α ∈ (0, 1) \ Q, we define the sequences (αn)n≥0

and (βn)n≥0 in (0, 1) \ Q by

α0 := α, αn := Gn(α0) ∀n ≥ 1,

βn :=
n

∏
i=0

αi ∀n ≥ 0.

Furthermore we define sequences of non-negative integers (an)n≥0, (qn)n≥0

as follows:

a0 := 0, an := q(αn−1) ∀n ≥ 1,(2.6)

q0 := 1, q1 := q(α), qn+2 := qn + qn+1an+2 ∀n ≥ 1.(2.7)

We also define (pn)n≥0 by p0 = 0, and for n ≥ 1, define pn to be the closest
integer to qnα, which is unique by irrationality of α. We will use the notation
αn(α), qn(α) and pn(α) when it is necessary to indicate the dependence of
the sequences on α.

Note that

α−1
n−1 = an + αn ∀n ≥ 1,(2.8)

since αn = G(αn−1) = 1/αn−1 − q(αn−1) = 1/αn−1 − an. It is also well
known that

pn+1qn − pnqn+1 = (−1)n(2.9)

βn = (−1)n(qnα − pn) > 0 ∀n ≥ 0.(2.10)
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In particular for each n ≥ 1, βn = |qnα − pn| = d(qnα, Z), and

α =
1

a1 +
1

a2 +
1

. . .
+

1

an + αn

pn

qn
=

1

a1 +
1

a2 +
1

. . .
+

1

an

For any n ≥ 1, the integers pn and qn are relatively prime, and pn/qn is
called the n-th best rational approximation of α. The following simple in-
equalities are known, and will be used later:

1

2qn+1
<

1

qn + qn+1
< βn <

1

qn+1
,(2.11)

αn, q(αn)
−1 ∈

(

qn

2qn+1
,

2qn

qn+1

)

.(2.12)

3. EXISTENCE OF A BROUWER CURVE WITH UNIFORM BOUNDS

In order to avoid lengthy computations, in the rest of the paper we will
introduce various increasing functions to keep track of parameter depen-
dence. We say that a function A : U → R defined on an open subset
U ⊂ Rn is increasing if for any x = (x1, · · · , xn) and y = (y1, · · · , yn) ∈ U
with xi ≥ yi for all 1 ≤ i ≤ n, we have A(x) ≥ A(y). We define decreas-
ing functions in a similar way. Typically, all the variables and values of the
increasing/decreasing functions that we will consider lie in R+.

The following theorem, essentially proven in [AFLXZ20], allows one to
control the Cr-distance of a pseudo-rotation to the identity in terms of its
rotation number.

THEOREM 3. There is a sequence of increasing functions

Ar : (0, 1/2) × R+ → R+,

lim
t→0

Ar(t, · ) ≡ 0

for each r ∈ N, so that for any {Kr}r≥1-smooth ω-preserving pseudo-rotation
f : A → A there holds

‖ f − Id‖ < A0(‖ρ( f )‖R/Z , K1),

‖Dr f‖ < Ar(‖ρ( f )‖R/Z , Kr+1), ∀r ≥ 1.

Proof. By [AFLXZ20, Corollary A], we know that

‖ f − Id‖ < (1 + 2K1)‖ρ( f )‖1/2
R/Z

=: A0(‖ρ( f )‖R/Z , K1).
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By the Hadamard-Kolmogorov convexity theorem, we get corresponding
bounds on the “inbetween” derivatives: for any r ≥ 1

‖Dr f‖ ≤ Cr‖ f − Id‖
1

r+1‖ f‖
r

r+1

Diffr+1

≤ Cr‖ρ( f )‖
1

2(r+1)

R/Z
(1 + 2Kr+1) =: Ar(‖ρ( f )‖R/Z , Kr+1).

�

By Theorem 3, there is a decreasing function

ρ∗ : R+ → (0, 1/2)(3.1)

such that for any smooth ω-preserving pseudo-rotation f satisfying

‖ρ( f )‖R/Z < ρ∗(‖D f‖),(3.2)

we have

‖ f − Id‖ ≤ A0(‖ρ( f )‖R/Z , ‖D f‖) < A0(ρ∗(‖D f‖), ‖D f‖) < 1/2.

Then by Lemma 2.1, there is a unique lift F of f satisfying

‖F − Id‖ = ‖ f − Id‖ < 1/2.(3.3)

LEMMA 3.1. There are increasing functions

C′, C′′ : R+ × (0, 1) → R+

with limt→0 C′′(t, ·) ≡ 0 and

C′′(α, K−1) < ρ∗(K
α−1

) ∀(α, K) ∈ (0, 1)× (1, ∞)(3.4)

such that the following holds: if α ∈ (0, 1)\Q satisfies

α ∈ (0, ρ∗(K)),(3.5)

G(α) < C′′(α, K−1)(3.6)

for some K > 1, where ρ∗ is given in (3.1), then every C1-smooth ω-preserving
pseudo-rotation with ‖D f‖ < K and ρ( f ) = α satisfies

inf
x∈A

d(x, f (x)) ≥ C′(α, K−1).(3.7)

Proof. Fix K > 0 and α ∈ (0, 1)\Q satisfying (3.5) and (3.6). Let f be a
C1-smooth ω-preserving pseudo-rotation with ‖D f‖ < K and ρ( f ) = α.
Denote by F the lift of f with ρ(F) = ρ( f ). We abbrieviate q := q(α) =
⌊1/α⌋.

Choose the function C′′ : R+ × (0, 1) → R+, with limt→0 C′′(t, ·) ≡ 0,
sufficiently small so that for each t ∈ (0, 1), the condition

s < C′′(t, K−1)

implies

A0(s, Kt−1
) < 1/2.(3.8)
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Without loss of generality we may arrange that C′′ is increasing and satis-
fies (3.4). By Theorem 3, we have

‖ f q − Id‖ ≤ A0(‖ρ( f q)‖R/Z, ‖D f q‖) ≤ A0(‖qρ( f )‖R/Z , Kq).

Since ‖qρ( f )‖R/Z = 1 − qα = αG(α) ≤ G(α) and Kq ≤ Kα−1
, the above

gives

‖ f q − Id‖ ≤ A0(G(α), Kα−1
).

Thus, if α satisfies (3.6), then by (3.8),

‖ f q − Id‖ < 1/2.(3.9)

The unique lift of f q with rotation number in (−1/2, 1/2) is T−1Fq, since
ρ(T−1Fq) = qρ(F)− 1 = qα − 1 ∈ (−1/2, 1/2). So by Lemma 2.1

‖Fq − T‖ = ‖T−1Fq − Id‖ = ‖ f q − Id‖.

Thus for all x̃ ∈ Ã

d(Fq(x̃), x̃) ≥ d(T(x̃), x̃)− d(Fq(x̃), T(x̃)) > 1 − 1/2 = 1/2.(3.10)

On the other hand, for each x̃ ∈ Ã, there holds

d(Fq(x̃), x̃) ≤
q−1

∑
j=0

d
(

Fj+1(x̃), Fj(x̃)
)

≤
q−1

∑
j=0

‖DF‖jd
(

F(x̃), x̃
)

≤ Cd(F(x̃), x̃)

where C = Kq−1
K−1 ≤ Kα−1

−1
K−1 . Combining the last line with (3.10) and (3.3), we

obtain

‖F(x̃)− x̃‖ ≥
1

2C
∀x̃ ∈ Ã.(3.11)

By Lemma 2.1 and (3.5), we conclude that (3.7) holds if we define C′ by

C′(t, K−1) =
1

2

K − 1

Kt−1 − 1
.

�

DEFINITION 3.1. For each K > 1 let L(K) be the set of α ∈ (0, 1/2) \ Q such
that

α ∈
(

0, ρ∗(K)
)

,(3.12)

G(α) < C′′(α, K−1)(3.13)

where ρ∗ is from (3.1) and C′′ is from Lemma 3.1.

LEMMA 3.2. There is a sequence of increasing functions

C′
r : R2

+ → R+ ∀r ≥ 1,

such that the following is true. If {Kr}r≥1 is any sequence in (1, ∞) and α ∈
L(K1), then every {Kr}r≥1-smooth ω-preserving pseudo-rotation f with ρ( f ) =
α has for each r ∈ N a Brouwer curve γ = γr for which the closed region in A

bounded by (γ, f (γ)) admits a (r, C′
r(α

−1, Kr+1))-admissible coordinate.
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Proof. Fix a sequence (Kr)r≥1 in (1, ∞). Fix r ≥ 1. For each c > 0 and K ≥ 1
define the following subset of Diffr(A, ω):

Hr(c, K) :=
{

g ∈ Diffr(A, ω)
∣

∣

∣
‖g‖Diffr ≤ K, inf

x∈A
d(x, g(x)) ≥ c

}

.

Denote by

Hr+1(c, K) ⊂ Diffr(A, ω)

the closure of Hr+1(c, K) in the Cr-topology. We observe that Hr+1(c, K)
is compact in Diffr(A) and contains only diffeomorphisms without fixed

points. Moreover, for c′ ≥ c and K′ ≤ K we have Hr+1(c′, K′) ⊂ Hr+1(c, K).

We now prove a version of the lemma for elements of Hr+1(c, K), for

each fixed c > 0, K ≥ 1. Then we argue that the union of Hr+1(c, Kr+1)
over c ∈ (0, 1] contains all pseudo-rotations satisfying the assumptions of
the Lemma.

To this end, fix c > 0, K ≥ 1 and consider g ∈ Hr+1(c, K). Since g has no
fixed points, a strong refinement of Brouwer’s plane translation theorem
due to Guillou [G94, Théorèm 5.1] yields a C0 Brouwer curve γ0 for g in
the sense of Definition 2.3. Any sufficiently C0-close smooth approxima-
tion of γ0 that continues to connect the two boundary components yields a
smooth Brouwer curve γ for g. Clearly we can choose such a γ to meet both
boundary components of the annulus orthogonally. We can then apply the
following lemma.

LEMMA 3.3. Let r ≥ 1 and θ ∈ (0, 1). Suppose g ∈ Diffr,θ(A, ω) has a smooth
Brouwer curve γ that meets both boundary components orthogonally. Then there

exist D = D(g, γ, r) > 1, and a neighborhood V of g in Diffr,θ(A, ω) such
that for every g′ ∈ V , the region (γ, g′(γ)) has admissible coordinates φ′ whose
Cr-norm is bounded by D.

Proof. LetR denote the region (γ, g(γ)). We first construct a C∞-diffeomorphism
ψL with constant Jacobian ω(R) from a neighborhood of {0} × [0, 1] in Ã

onto its image a neighborhood of γ in A. Indeed, without loss of gen-
erality γ : [0, 1] → A meets the boundary of A orthogonally near both
end points and is parametrised by arclength so that ‖γ̇‖ = L is constant,
L ≥ 1. Then n := −iγ̇/L is a normal vector field along γ and the map
Ã → R2, (x, y) 7→ γ(y) + xω(R)n(y)/L extends γ to a smooth diffeomor-
phism from a sufficiently small tubular neighborhood of {0}× [0, 1] in Ã to
a neighborhood of the image of γ in A, with constant Jacobian ω(R) along
{0} × [0, 1] and also near to the boundary of Ã. The Jacobian of this map
away from {0} × [0, 1] depends only on the y variable and therefore by a
further change of coordinates it is easily modified to have constant Jacobian
on a whole neighborhood of {0} × [0, 1] while still mapping {0} × [0, 1] to
γ. The resulting map, which we denote by ψL, clearly has finite Cr,θ-norm.

Then gψLT−1 is a Cr,θ-diffeomorphism ψR with constant Jacobian ω(R)
from a neighborhood of {1} × [0, 1] in Ã onto its image, a neighborhood
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of g(γ) in A. We construct the chart φ : [0, 1]2 → A by first specifying its
restriction to a neighborhood of {0}× [0, 1], resp. {1}× [0, 1], to be ψL, resp.
ψR. Then we extend it by hand to neighborhoods of [0, 1]× {0} and [0, 1]×
{1}, also with constant Jacobian ω(R). Finally, using [A10, Corollary 4] (or,
in our simple application, using directly [A10, Theorem 3] which follows
from [DM90]), we extend the map to all of [0, 1]2 so as to have constant
Jacobian, and the Cr norm of the resulting map is bounded in terms of the
Cr,θ norm of g. By construction the conditions in Definition 2.7 hold.

Each g has a C0-small (and hence also Cr-small) neighborhood in Diffr(A, ω)
for which the same γ can be applied. The uniform bounds for the Cr-norm
of φ is an immediate consequence of the construction. We omit the proof of
this latter fact and refer the readers to [A10, DM90] for details. �

By Lemma 3.3 and by compactness of Hr+1(c, K) ⊂ Diffr,1/2(A, ω) ⊂
Diffr(A, ω), we find a finite collection of neighborhoods (with respect to

the Cr,1/2-topology) as in Lemma 3.3 whose union covers Hr+1(c, K), and
thus obtain a uniform bound Er(c, K) > 0 on the Cr-norm of admissible

coordinates that applies to all elements of Hr+1(c, K). Due to the inclusions

Hr+1(c′, K′) ⊂ Hr+1(c, K) for c′ > c, K′ < K, we can assume that Er(c, K) is
decreasing in c and increasing in K.

Now, suppose f is as in Lemma 3.2. That is, f is a (Kr)r≥1-smooth ω-
preserving pseudo-rotation with rotation number ρ( f ) = α ∈ L(K1). By
Lemma 3.1,

f ∈ Hr+1

(

C′(α, K−1
1 ), Kr+1

)

.

Thus there exists a region (γ, f (γ)) having admissible coordinates whose

Cr-norm is bounded by Er(C′(α, K−1
1 ), Kr+1), for some smooth Brouwer

curve γ. Hence Lemma 3.2 holds with C′
r(α

−1, Kr+1) := Er(C′(α, K−1
1 ), Kr+1).

Evidently C′
r is an increasing function, since C′ is increasing and Er(c, K) is

decreasing in c and increasing in K. �

It will be useful to fix the following notation:

DEFINITION 3.2. For each integer r ≥ 1 and each K > 1 let Lr(K) be the set
of α ∈ L(K) such that

A0(αG(α), Kq(α)) < K−q(α)C′
r(α

−1, K)−1(3.14)

where C′
r : R2

+ → R+, r ≥ 1 are the increasing functions produced by
Lemma 3.2.

We will see later that each Lr(K) is non-empty for each integer r ≥ 1 and
each K > 1. Moreover, by (3.13) and (3.14) we have

Lr(K
′) ⊂ Lr(K) ∀K′

> K.(3.15)

Now we can strengthen Lemma 3.2. Indeed, we show that if more restric-
tions are placed on the rotation number of a ω-preserving pseudo-rotation
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f , then the produced Brouwer curve is actually Q-good, for some large Q
depending on the rotation number of f :

PROPOSITION 3.1. Let f be a {Kr}r≥1-smooth ω-preserving pseudo-rotation. If
ρ( f ) ∈ Lr(Kr+1) for some integer r ≥ 1, then the Brouwer curve γ for f produced
by Lemma 3.2 (corresponding to r) is q(ρ( f ))-good.

Note that the condition ρ( f ) ∈ Lr(Kr+1) in this Proposition includes the
condition on ρ( f ) used in Lemma 3.2, since Lr(K) ⊂ L(K) by definition.

Proof. We denote by dH the Hausdorff distance on Ã, i.e. for any two sub-
sets A, B of Ã,

dH(A, B) = sup
x∈A,y∈B

max(d(x, B), d(y, A)).

Set α = ρ( f ) ∈ Lr(Kr+1) for some r ≥ 1. Let γ be the Brouwer curve
given by Lemma 3.2 for this value of r. Let R ⊂ A be the region bounded
by (γ, f (γ)) and let ψ : R → [0, 1]× [0, 1] be the inverse of some (r, C′

r(α
−1, Kr+1))-

admissible coordinates produced by Lemma 3.2. Applying the intermedi-
ate value theorem to ψ yields

dH(γ, f (γ)) > C′
r(α

−1, Kr+1)
−1.(3.16)

Fix a lift γ̃ ⊂ Ã of γ, and let F be the lift of f for which ρ(F) = α. Since
γ̃ ∩ F(γ̃) = ∅ it follows from α > 0 and the order of boundary points that
γ̃ < F(γ̃). By Definition 2.7, (3.16) and Kr+1 ≥ K1, we can see that

dH(Fq(α)−1(γ̃), Fq(α)(γ̃)) > K
−q(α)
1 dH(γ̃, F(γ̃))

≥ K
−q(α)
r+1 C′

r(α
−1, Kr+1)

−1.(3.17)

Here we implicitely used that the analogue of (3.16) holds for the lifts, since
dH(γ̃, F(γ̃)) ≥ dH(γ, f (γ)) holds - infact for all choice of lifts F and γ̃.
Moreover, since F is injective, for each i ∈ N we have Fi(γ̃) ∩ Fi+1(γ̃) = ∅

and so from the order of boundary points we have for all i ∈ N,

γ̃ < F(γ̃) < F2(γ̃) < · · · < Fi(γ̃).(3.18)

Thus it suffices to show that

Fq(α)−1(γ̃) < Tγ̃(3.19)

and it will follow that the iterates F(γ̃), . . . , Fq(α)−1(γ̃) all lie strictly in the
region between γ̃ and T(γ̃) in Ã and therefore that the iterates f (γ), . . . ,

f q(α)−1(γ) are all disjoint from γ as required.
To show (3.19) we argue by contradiction. Assuming (3.19) is not true,

we have

Fq(α)−1(γ̃) ∩ Tγ̃ 6= ∅(3.20)

because of the order of boundary points. We will show that this means that

Fq(α)−1(γ̃) and Fq(α)(γ̃) pass somewhere very close to each other, because

Fq(α)(γ̃) is close to Tγ̃. This will contradict (3.17).
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First, notice that by α ∈ Lr(Kr+1), (3.4) and that ρ∗ is decreasing, we have

‖ρ( f q(α))‖R/Z = |q(α)α − 1| = αG(α) < G(α) < C′′(α, K−1
r+1)

< ρ∗(K
α−1

r+1) ≤ ρ∗(‖D f‖q(α)) ≤ ρ∗(‖D f q(α)‖).

Then by (3.3), we have

dH(Fq(α)(γ̃), Tγ̃) ≤ ‖Fq(α) − T‖ = ‖T−1Fq(α) − Id‖ = ‖ f q(α) − Id‖.

The last equality can be justified by Lemma 2.1, just as in the proof of
Lemma 3.1. Thus by Theorem 3 and Kr+1 ≥ K1, we have

dH(Fq(α)(γ̃), Tγ̃) ≤ A0(‖ρ( f q(α))‖R/Z, K
q(α)
1 )

≤ A0(αG(α), K
q(α)
r+1 ).(3.21)

Then along with (3.17), (3.14), and the hypothesis α ∈ Lr(Kr+1), we have

dH(Fq(α)−1(γ̃), Tγ̃) ≥ dH(Fq(α)(γ̃), Fq(α)−1(γ̃))− dH(Fq(α)(γ̃), Tγ̃)

≥ K
−q(α)
r+1 C′

r(α
−1, Kr+1)

−1 − A0(αG(α), K
q(α)
r+1 ) > 0.

However this contradicts (3.20). Thus we have (3.19). �

4. SMOOTH DOMAIN BOUNDED BY GOOD CURVES

4.1. Renormalization of pseudo-rotations. Given a C∞ pseudo-rotation f
on A and an integer n ≥ 1, we denote by Fn the unique lift of f n to Ã such
that ρ(Fn) ∈ (0, 1). Given a smooth Brouwer curve γn for f n, we let γ̃n be
an arbitrary lift of γn to Ã. We let Ωn be the unique closed region in Ã

bounded by (γ̃n, Fn(γ̃n)).
Given a C∞ admissible coordinate H : [0, 1]2 → Ωn for (Ωn, Fn) (see

Remark 2), we can uniquely extend H to a C∞ diffeomorphism of Ã with
constant Jacobian, denoted again by H, satisfying

HT = FnH.(4.1)

We notice that although the Cr norms of Fn and T are uniformly bounded
throughout Ã, the Cr norm of H need not be uniformly bounded. However
it is clear from (4.1) that for any integer L > 0, the norm ‖Dr H‖[−L,L]×[0,1] is

bounded in terms of L and ‖Fn‖Diffr(Ã).

Denote α = ρ( f ) ∈ (0, 1) \ Q. We have ρ(F1) = α. We abbrieviate

Fa,b := TbFa
1 ∀a, b ∈ Z.

By our previous definition, we have Fn = Fn,−⌊nα⌋. Denote by J : Ã → Ã

the orientation reversing diffeomorphism

J(x, y) = (−x, y).

Notice that by (4.1) we have

JH−1FnHJ = JTJ = T−1.(4.2)
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We set

Fa,b
H := JH−1Fa,bHJ ∀a, b ∈ Z.(4.3)

Since Fa,b is ω-preserving and commutes with Fn, and since H has con-

stant Jacobian, we deduce from (4.2) that Fa,b
H is also ω-preserving, and

commutes with T. Consequently Fa,b
H descends to an ω-preserving C∞ dif-

feomorphism f a,b
H : A → A.

We have the following lemma.

LEMMA 4.1. There is a sequence of increasing functions {Er : N2 × R2
+ →

R+}r≥1 such that the following is true. Let f be a {Kr}r≥1-smooth ω-preserving
pseudo-rotation with ρ( f ) = α; let n 6= 0 be an integer; let Ωn be the region
bounded by (γ̃n, Fn(γ̃n)) where γ̃n is some lift of a Brouwer curve for f n. Assume
that (Ωn, Fn) admits a (r, Lr)-admissible coordinate H. Then for any a, b ∈ Z

with a⌊nα⌋+ bn 6= 0, f a,b
H is a pseudo-rotation in Diff∞(A, ω) with

ρ( f a,b
H ) =

{

−aα − b

{nα}

}

.

Moreover, we have

‖ f a,b
H ‖Diffr ≤ Er(|a|, |b|, Kr , Lr).

Proof. We first show that f a,b
H has no periodic points. Assume to the con-

trary there are integers p ∈ Z, q > 0 and some z ∈ Ã such that

(Fa,b
H )q(z) = Tp(z).

Then by (4.2) and (4.3) we have

z = (Fa,b
H )qT−p(z) = JH−1F

(qa+pn)
1 T(qb−p⌊nα⌋)HJ(z).(4.4)

However, (4.4) and the condition a⌊nα⌋ + bn 6= 0 implies that HJ(z) de-
scends to a perodic point for f , which contradicts the hypothesis that f is a

pseudo-rotation. We conclude that f a,b
H is a pseudo-rotation in Diff∞(A, ω).

To compute ρ( f a,b
H ), it suffices to study the trajectory of an arbitrary z ∈

Ã under the iterates of (Fa,b
H )qT−p using the second equality in (4.4); for

example a point on the boundary. This standard argument is left to the
readers.

For the Cr-norm of f a,b
H , it suffices to control the Cr-norm of Fa,b

H restricted

to (−1, 2) × [0, 1]. By (4.3), ‖DrFa,b
H ‖(−1,2)×[0,1] depends only on the Cr-

norms of Fa,b, and the Cr-norm of J and H on

Fa,b
H ((−1, 2)× [0, 1]) ∪ (−1, 2)× [0, 1].

This yields a bound depending only on r, |a|, |b|, Kr , Lr as required. �



ON PSEUDO-ROTATIONS OF THE ANNULUS WITH GENERIC ROTATION NUMBER 17

4.2. Finding a good curve. In the following statement we consider n ∈ N

even, so that qnα − pn > 0.

PROPOSITION 4.1. There is a sequence of increasing functions {Gr : R2
+ →

R+}r≥1 such that the following is true.
Let f be a pseudo-rotation in Diff∞(A, ω), let F be a lift with ρ(F) = ρ( f ) =

α ∈ (0, 1) \ Q, and let n ≥ 2 be an even integer. Suppose γ ⊂ A is a smooth
Brouwer curve for f qn with a lift γ† ⊂ Ã such that the closed region Ω in Ã

bounded by (γ†, Fqn,−pn(γ†)) admits an (r, Kr)-admissible coordinate

H : [0, 1]2 → Ω

for some r ≥ 1. Suppose further that γn ⊂ A is an an+2-good smooth curve for

f
qn+1,−pn+1

H ,2 for which the closed region Ωn ⊂ A bounded by (γn, f
qn+1,−pn+1

H (γn))
admits an (r, Mr)-admissible coordinate. Then there exists a qn+2-good smooth
curve γ̂ ⊂ A for f , for which the closed region Ω∗ ⊂ A bounded by ( f qn+1(γ̂), γ̂)
admits a (r, Gr(Kr, Mr))-admissible coordinate for f qn+1 .

Proof. We set

S0 = Fqn,−pn, S = Fqn+1,−pn+1.

As explained in Section 4.1, we extend H to a C∞-diffeomorphism of Ã

with constant Jacobian by the formula

HT = S0H.

By definition, we know that

(1) JH−1S0HJ = JTJ = T−1 on Ã;

(2) S̃ := JH−1SHJ commutes with T on Ã, and descends to f
qn+1,−pn+1

H .

Moreover, we have ρ(S̃) = ρ( f
qn+1,−pn+1

H ) = αn+1 ∈ (0, 1
2).

Let γ̃ be an arbitrary lift of γn. As γn is a simple regular curve and is

disjoint from f
qn+1,−pn+1

H (γn), we know by item (1), (2) above that γ̃ is also a
simple regular curve, and

T−1(γ̃) ∩ γ̃ = S̃(γ̃) ∩ γ̃ = ∅.(4.5)

We let γ′ = HJ(γ̃). Then γ′ is also a simple regular curve, and by (4.5) and
item (1), (2) above, we have

S0(γ
′) ∩ γ′ = S(γ′) ∩ γ′ = ∅.(4.6)

Moreover, we can see that

S(γ′) < γ′
< S0(γ

′)(4.7)

by considering their boundary points on B0 and B1. We let γ̂ = π(γ′) (recall
that π is the canonical projection from Ã to A).

LEMMA 4.2. The curve γ̂ is a simple regular curve connecting B0 and B1. Namely,
it has no self-intersection.

2Recall that by Lemma 4.1 we have ρ( f
qn+1,−pn+1

H ) = αn+1 and an+2 = q(αn+1).
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Proof. Since γ̂ = π(γ′), and since γ′ is a simple regular curve in Ã con-
necting B0 to B1, it suffices to show that γ′ is disjoint from all its translates

Tk(γ′) for k ∈ Z\{0}. Since γ′ connects the two boundary components it
is enough to show γ′ is disjoint from T(γ′).

By definition and by (2.9), we have T = S
qn+1

0 S−qn . Then by (4.7), we
obtain that γ′ < T(γ′). This completes the proof. �

By item (2) above, the region Ω̃n bounded by (γ̃, S̃(γ̃)) is a lift of Ωn

Moreover, the (r, Mr)-admissible coordinate for Ωn lifts to a (r, Mr)-admissible
coordinate for Ω̃n. We notice that the push forward HJ(Ω̃n) is the region in
Ã between S(γ′) and γ′. Moreover, from the proof of Lemma 4.2, we see
that

T−1(γ′) < S(γ′) < γ′.

Thus the map π induces a diffeomorphism from HJ(Ω̃n) to the region in
A between f qn+1(γ̂) and γ̂, that is, to the region Ω∗. We conclude that the
(r, Mr)-admissible coordinate for Ω̃n, after composing with HJ and project-
ing, yield (r, Gr(Kr, Mr))-admissible coordinates for Ω∗, for some functions
Gr as in the proposition.

It remains to show that γ̂ is a qn+2-good curve. We divide the proof into
two cases.

Case I: Assume that there are integers p and 0 < k < qn+2 such that
kα + p < 0 and

Fk,p(γ′) ∩ γ′ 6= ∅.(4.8)

We assume further that for any integers p′ and 0 < k′ < qn+2 such that

k′α + p′ < 0 and Fk′,p′(γ′) ∩ γ′ 6= ∅, we have

k′α + p′ ≤ kα + p.

• First, we observe that either qn+2 > k ≥ qn+2 − qn or

−{qnα} = pn − qnα < kα + p < 0.

Indeed, if k < qn+2 − qn and pn − qnα > kα + p, then we have k+ qn < qn+2

and

kα + p < (k + qn)α + p − pn < 0.

In particular, the endpoints of S0Fk,p(γ′) are on the left hand side of those

of γ′. Then by (4.8) and S0Fk,p(γ′) > Fk,p(γ′), we have that

Fk+qn,−pn+p(γ′) ∩ γ′ 6= ∅.

This contradicts the choice of k.
• If qn+2 > k ≥ qn+2 − qn, then by (4.6), (4.8) and (2.7), we know that

k > qn+1. We notice that

kα + p < (k − qn+1)α + p + pn+1 < 0.
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In particular, the endpoints of S−1Fk,p(γ′) are on the left hand side of those

of γ′. Then by (4.8) and S−1Fk,p(γ′) > Fk,p(γ′), we have that

Fk−qn+1,p+pn+1(γ′) ∩ γ′ 6= ∅.

This contradicts the choice of k.
• If −{qnα} < kα + p < 0, then we have

k ∈ {qn+1, · · · , an+2qn+1}.

If k = iqn+1 with i > 1, then we have

−1 < i(qn+1α − pn+1) < (i − 1)(qn+1α − pn+1) = (k − qn+1)α − (i − 1)pn+1 < 0.

Then we must have p = −ipn+1, and the endpoints of S−1Fk,p(γ′) are on

the left hand side of those of γ′. Then by (4.8) and S−1Fk,p(γ′) > Fk,p(γ′),
we have that

Fk−qn+1,−(i−1)pn+1(γ′) ∩ γ′ 6= ∅.

If k = qn+1, we would have

Fqn+1(γ′) ∩ (γ′ + Z) = ∅.

Both cases contradict the choice of k.

Case II: Assume that there are integers p and 0 < k < qn+2 such that
kα + p > 0 and

Fk,p(γ′) ∩ γ′ 6= ∅.(4.9)

We assume further that for any integers p′ and 0 < k′ < qn+2 such that

k′α + p′ > 0 and Fk′,p′(γ′) ∩ γ′ 6= ∅, we have

k′α + p′ ≥ kα + p.

• First, we observe that either qn ≥ k > 0 or

{qnα} = qnα − pn > kα + p > 0.

Indeed, if k > qn and qnα − pn < kα + p, then we have qn+2 > k − qn > 0
and

kα + p > (k − qn)α + p + pn > 0.

In particular, the endpoints of S−1
0 Fk,p(γ′) are on the right hand side of

those of γ′. Then by (4.9) and Fk−qn,pn+p(γ′) = S−1
0 Fk,p(γ′) < Fk,p(γ′), we

have that

Fk−qn,pn+p(γ′) ∩ γ′ 6= ∅.

This contradicts the choice of k.
• If qn ≥ k > 0, then by (4.6) and (4.9), we have qn > k and consequently

k + qn+1 < qn+2. Moreover we notice that

kα + p > (k + qn+1)α + p − pn+1 > 0.
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In particular, the endpoints of SFk,p(γ′) are on the right hand side of those

of γ′. By (4.9) and SFk,p(γ′) < Fk,p(γ′), we have that

Fk+qn,p−pn(γ′) ∩ γ′ 6= ∅.

This contradicts the choice of k.
• If {qnα} > kα + p > 0 (and 0 < k < qn+2), then it is straightforward to

verify that

(k, p) ∈ {(qn + iqn+1, pn + ipn+1) | 0 < i < an+2}.

By the hypothesis that γn is a an+2-good curve, we have

T−1S̃i(γ̃) ∩ γ̃ = ∅ ∀1 ≤ i < an+2.

By T−1 = JH−1S0HJ, S̃ = JH−1SHJ and γ′ = HJ(γ̃), we obtain

Fqn+iqn+1,−pn−ipn+1(γ′) ∩ γ′ = S0Si(γ′) ∩ γ′ = ∅

for all integer 0 < i < an+2. This again gives a contradiction.
In summary, we see that for all integer 0 < i < qn+2,

Fi(γ′) ∩ (γ′ + Z) = ∅.

Hence γ̂ is qn+2-good. This completes the proof of Proposition 4.1. �

We can now prove the following:

COROLLARY B. For each integer r ≥ 1, there exist increasing functions Pr :
R2

+ → R+ and Wr : N × R+ → R+ such that the following is true. Suppose
that there is an odd integer n ≥ 3 such that

(4.10)

qn > Pr(Kr+2, qn−1), qn+1 > Pr(Kr+2, qn) and qn+2 > Pr(Kr+2, qn+1)

where {qk}k≥0 is the sequence of denominators associated to some α ∈ (0, 1)\Q.
Then for any {Kk}k≥1-smooth pseudo-rotation f ∈ Diff∞(A, ω) with ρ( f ) = α
has a qn+1-good smooth curve γ such that the closed region in A bounded by
( f qn(γ), γ) admits a (r, Wr(qn+1, Kr+2))-admissible coordinate for f−qn .

Proof. Fix r ≥ 1. Let {Lk : N × R+ → R+}k≥1 be a sequence of increas-
ing functions independent of f such that for each integer m ≥ 0, f m is
{Lk(m, Kk)}k≥1-smooth. Let us abbreviate

L′
k := Lk(qn−1, Kk) ∀k ≥ 1.

For each n ≥ 2 we have ρ( f qn−1) = βn−1 ∈ (0, 1/2). If (4.10) holds and Pr is
chosen appropriately, then

βn−1 ∈ L(L′
1).(4.11)

This allows us to apply Lemma 3.2 to f qn−1 . By Lemma 3.2, there is a smooth
Brouwer curve γ for f qn−1 for which the closed region R′

n−1 ⊂ A bounded
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by (γ, f qn−1(γ)) admits a (r + 1, Yr+1)-admissible coordinate H′ : [0, 1]2 →
R′

n−1 where

Yr+1 := C′
r+1(β−1

n−1, L′
r+2).(4.12)

We lift H′ to an admissible coordinate H : [0, 1]2 → Rn−1 where Rn−1

is a lift of R′
n−1 in Ã. More precisely, Rn−1 is a connected component of

π−1(R′
n−1). As in Section 4.1, we extend H to a diffeomorphism of Ã sat-

isfying

HT = Fqn−1,−pn−1 H

and set fn := f
qn,−pn

H : A → A. That is, fn is the projection of F
qn,−pn

H :=
(HJ)−1Fqn,−pn(HJ) : Ã → Ã. By Lemma 4.1, fn is a pseudo-rotation in
Diff∞(A, ω) with ρ( fn) = βn/βn−1 = αn such that

‖ fn‖Diffr+1 ≤ Er+1(qn, pn, Kr+1, Yr+1).(4.13)

By (4.12), and using that

Kr+1 ≤ Kr+2, max(pn, β−1
n−1) ≤ 2qn

we can rewrite (4.13) as

‖ fn‖Diffr+1 < Vr+1(qn, Kr+2)(4.14)

where Vr+1 : N × R+ → (1, ∞) is an increasing function independent of f .
Now we choose Pr : R2

+ → R+ to be any increasing function that is
sufficiently large that the following conditions are fulfilled:

Pr(D, y) > 2yρ∗(Vr+1(y, D))−1(4.15)

2y

Pr(D, y)
< C′′

(

1

2y
, Vr+1(y, D)−1

)

,(4.16)

for all D, y > 0, where ρ∗ is the decreasing function introduced in (3.1).
We moreover choose Pr sufficiently large that whenever x > Pr(D, y) there
holds

A0

(

2y

x
, Vr+1(y, D)2y

)

< Vr+1(y, D)−2yC′
r(2y, Vr+1(y, D))−1(4.17)

for all D, y > 0. This we can arrange because limt→0 A0(t, ·) = 0.
Assume now that (4.10) holds for a fixed odd integer n ≥ 3. By (4.15)

and then the second inequality in (4.10), we have

2qn < ρ∗(Vr+1(qn, Kr+2))Pr(Kr+2, qn) < ρ∗(Vr+1(qn, Kr+2))qn+1

and therefore by (2.12)

αn <
2qn

qn+1
< ρ∗(Vr+1(qn, Kr+2)).(4.18)
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Also, by (2.12), the third inequality in (4.10), and (4.16), we obtain

G(αn) = αn+1 <
2qn+1

qn+2
<

2qn+1

Pr(Kr+2, qn+1)
(4.19)

< C′′

(

1

2qn+1
, Vr+1(qn+1, Kr+2)

−1

)

< C′′(αn, Vr+1(qn, Kr+2)
−1)(4.20)

where the last inequality uses the monotonicity of C′′. We claim that

ρ( fn) = αn ∈ Lr(Vr+1(qn, Kr+2))(4.21)

where Lr is as in Definition 3.2. Equivalently, we show that

(4.22)

A0

(

αnG(αn), Vr+1(qn, Kr+2)
q(αn)

)

< Vr+1(qn, Kr+2)
−q(αn)C′

r

(

α−1
n , Vr+1(qn, Kr+2)

)−1
.

Using (2.12) we have αnG(αn) = αnαn+1 < 4qn/qn+2 ≤ 2qn+1/qn+2 and
q(αn) ≤ 2qn+1 and α−1

n < 2qn+1/qn ≤ 2qn+1. Therefore by the monotonicity
of A0, and by (4.17) together with the third inequality in (4.10), we obtain

A0

(

αnG(αn), Vr+1(qn, Kr+2)
q(αn)

)

< A0

(

2qn+1

qn+2
, Vr+1(qn+1, Kr+2)

2qn+1

)

< Vr+1(qn+1, Kr+2)
−2qn+1C′

r(2qn+1, Vr+1(qn+1, Kr+2))
−1.

Now inequality (4.22) follows from the monotonicity of Vr+1 and C′
r, and

because α−1
n < 2qn+1/qn ≤ 2qn+1 from (2.12). This proves (4.21).

Combining (4.21) with (4.14) we see that fn satisfies the hypotheses of
Proposition 3.1, and therefore fn has a q(ρ( fn))-good Brouwer curve γn say.
By (2.8) q(ρ( fn)) = q(αn) = an+1. Thus γn is an an+1-good Brouwer curve
for fn. Moreover, by Lemma 3.2, the region in A bounded by (γn, fn(γn))
admits an (r, C′

r(α
−1
n , K̂r+1))-admissible coordinate, provided K̂r+1 ≥ ‖ fn‖Diffr+1

and ρ( fn) = αn ∈ L(K̂) where K̂ ≥ ‖ fn‖Diff1 . By (4.21) and (4.14) we may

take K̂r+1 = K̂ = Vr+1(qn, Kr+2) and conclude that the region in A bounded
by (γn, fn(γn)) admits a (r, Ur)-admissible coordinate where

Ur := C′
r(α

−1
n , Vr+1(qn, Kr+2)).

We define Wr by

Wr(q, K) := Gr(C
′
r(2q, Lr+1(q, K)), C′

r(2q, Vr+1(q, K))).

By (2.11) and (2.12), we have β−1
n−1, α−1

n < 2qn+1. Then by Kr+2 ≥ Kr+1, we
have

C′
r(2qn+1, Lr+1(qn+1, Kr+2)) > Yr

and C′
r(2qn+1, Vr+1(qn+1, Kr+2)) > Ur.

Thus we have

Wr(qn+1, Kr+2) ≥ Gr(Yr, Ur).
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Then by Proposition 4.1, there is a qn+1-good smooth curve of f , denoted by
γ̂, such that the region in A bounded by ( f qn(γ̂), γ̂) admits a (r, Wr(qn+1, Kr+2))-
admissible coordinate for f−qn . �

5. CONSTRUCTION OF APPROXIMANTS

This section is mostly occupied by the proof of the following theorem,
from which the main result of this paper, Theorem 1, will then follow easily.

THEOREM 4. For each (r0, M, ǫ) ∈ Z≥2 × N × (0, 1], there is an increasing
function

P = Pr0,ǫ,M : N → R+

so that for any pseudo-rotation f ∈ Diff∞(A, ω) with

‖ f‖Diffr0+2(A) < M,(5.1)

whose rotation number ρ( f ) = α ∈ (0, 1) \ Q satisfies the property that there
exists an odd integer n ≥ 3 for which

qn > P(qn−1), qn+1 > P(qn) and qn+2 > P(qn+1),(5.2)

then there exists h0 ∈ Diff∞(A, ω) with

dDiffr0−1(A)(h0Rαh−1
0 , f ) < ǫ.(5.3)

Proof. Fix some (r0, M, ǫ) in Z≥2 × N × (0, 1]. Let f ∈ Diff∞(A, ω) denote
a pseudo-rotation and set α = ρ( f ).

It will be convenient to use the following notation: for an increasing
function S : N → N we define

C(S) :=
{

θ ∈ (0, 1)\Q | ∃n ∈ N odd, so that(5.4)

qn(θ) > S(qn−1(θ)), qn+1(θ) > S(qn(θ)), qn+2(θ) > S(qn+1(θ))
}

where {pn(θ)/qn(θ)}n≥0 is the sequence of continued fractions of θ intro-
duced in Section 2. Our successive restrictions on the rotation number α
will take the form:

α ∈ C(Si)(5.5)

for a finite collection of functions S1, S2, . . . to be determined. We will set

P := max
i

Si

and then when α ∈ C(P), all conditions in (5.5) will be met.
For our first condition on the rotation number, set

S1 := Pr0(M, ·)(5.6)

where Pr0 : R2
+ → R+ is defined in Corollary B. From now on we assume

α ∈ C(S1).
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Fix any odd n ≥ 3 for which

qn > S1(qn−1), qn+1 > S1(qn) and qn+2 > S1(qn+1).(5.7)

Then by Corollary B, f has a qn+1-good Brouwer curve γ ⊂ A for which
the closed region

D0 ⊂ A

bounded by ( f qn(γ), γ) admits a (r0, Ŵr0)-admissible coordinate for f−qn ,
where

Ŵr0 := Wr0(qn+1, Kr0+2).

Recall that γ is qn+1-good for f means that the curves f i(γ), 0 ≤ i ≤ qn+1 −
1 are mutually disjoint. Then it is clear that the curves

f qn(γ), · · · , f qn+qn+1−1(γ)(5.8)

are mutually disjoint as well. In particular f qn+1(γ) and f qn(γ) are disjoint
and so we can consider the closed region

D ⊂ A

bounded by ( f qn(γ), f qn+1(γ)).

CLAIM 1. The annulus A is covered by the regions

D, f (D), · · · , f qn−1(D), f qn(D0), · · · , f qn+1−1(D0)

with mutually disjoint interiors. Moreover, the intersection of any two such neigh-
boring regions equals one of the curves in (5.8).

Proof. The restriction of f to the boundary circle B0 is an orientation pre-
serving homeomorphism with rotation number α. It is then a well-known
fact that for any fixed x0 ∈ B0 the intervals

[ f qn+i(x0), f qn+1+i(x0)], 0 ≤ i ≤ qn − 1,

and [ f qn+j(x0), f j(x0)], qn ≤ j ≤ qn+1 − 1

together form a covering for B0 with mutually disjoint interiors. In partic-
ular we may take x0 := γ ∩ B0. An analogous statement holds for the other
boundary component B1. The claim then follows from the disjointness of
the curves in (5.8) and our definition of simple regular curve. �

Fix a lift γ̃ of γ to Ã. Let F : Ã → Ã be the unique lift of f satisfying

ρ(F) = ρ( f ) ∈ (0, 1). Recall the notation from section 4.1 that Fa,b = TbFa

for all a, b ∈ Z. We define D̃0 ⊂ Ã to be the region bounded by
(

Fqn,−pn(γ̃), γ̃
)

and D̃ ⊂ Ã to be the region bounded by
(

Fqn,−pn(γ̃), Fqn+1,−pn+1(γ̃)
)

.

We claim that T−pn Fqn(γ̃) is contained in the fundamental domain of π
bounded by T−1γ̃ and γ̃. Indeed, this follows from comparing the order of
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their endpoints, and by the disjointness of their projections f qn(γ) and γ.
Thus π restricts to a diffeomorphism from D̃0 to D0. Similarly, π restricts
to a diffeomorphism from D̃ to D as well.

The following qn+1 regions have disjoint interiors:

B̃i :=

{

Fi(D̃) 0 ≤ i ≤ qn − 1,

Fi(D̃0) qn ≤ i ≤ qn+1 − 1.
(5.9)

By Claim 1, Ã is covered by the union of the following regions with mutu-
ally disjoint interiors:

T−kB̃j, k ∈ Z, 0 ≤ j ≤ qn+1 − 1.(5.10)

The intersection of any two neighboring regions in (5.10) therefore equals
to one of the following curves

T−kFj(γ̃), k ∈ Z, qn ≤ j ≤ qn + qn+1 − 1.(5.11)

We denote by Γ the union of the curves in (5.11). The region

U0 :=
qn+1−1
⋃

i=0

int(B̃i)(5.12)

satisfies that:

(1) T j(U0) ∩ Tk(U0) = ∅ for any j 6= k ∈ Z;

(2) ∪k∈ZTk(U0) = Ã \ Γ.

By Corollary B, there is an admissible coordinate φ (see Definition 2.7)
from a neighborhood of [0, 1]2 in Ã to a neighborhood of D0, satisfying
(2.2)-(2.5) for ( f−qn , f qn(γ)) in place of ( f , γ), and

‖φ‖Diffr0 < Ŵr0 ,

φ ◦ T(x) = f−qn ◦ φ(x) ∀x ∈ V

where V is some neighborhood of {0} × [0, 1] in Ã. As we have seen in
Remark 2, there is no loss of information by regarding φ as a mapping from
[0, 1]2 to D0. Since the restriction π : D̃0 → D0 is a diffeomorphism we may
set

ψ := π−1 ◦ φ

which therefore gives us a C∞-smooth diffeomorphism that extends to a
C∞-smooth diffeomorphism with constant Jacobian from a neighborhood
of [0, 1]2 in Ã to a neighborhood of D̃0 satisfying

‖ψ‖Diffr0 < Ŵr0 ,(5.13)

ψ ◦ T(x) = F−qn,pn ◦ ψ(x) ∀x ∈ V.(5.14)

There is a unique extension to a C∞-diffeomorphism with constant Jacobian
to the whole strip Ã, which we still denote by

ψ : Ã → Ã
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and which satisfies

ψ ◦ T = F−qn,pn ◦ ψ.(5.15)

To summarise thus far, we have proven the following:

LEMMA 5.1. For each (r0, M) ∈ Z≥2 × N there is an increasing function

S1 = S1(r0, M) : N → R+

so that for any pseudo-rotation f ∈ Diff∞(A, ω) satisfying (5.1) whose rotation
number ρ( f ) = α satisfies the property that there exists an odd integer n ≥ 3 for
which

qn > S1(qn−1), qn+1 > S1(qn) and qn+2 > S1(qn+1),

there exists a qn+1-good Brouwer curve γ ⊂ A, so that for any lift γ̃ ∈ Ã, there
exists a C∞-diffeomorphism,

ψ : Ã → Ã

with constant Jacobian which satisfies

‖ψ‖Diffr0 ([0,1]2) < Ŵr0 := Wr0(qn+1, M)(5.16)

where Wr0 is the function produced by Corollary B, and

ψ ◦ T = F−qn,pn ◦ ψ(5.17)

on the whole of Ã, where F is the unique lift of f with rotation number in (0, 1).
Moreover ψ maps [0, 1]2 onto the region D̃0 bounded by

(

F̃qn,−pn(γ̃), γ̃
)

.

To continue our proof of Theorem 4 we require the following:

LEMMA 5.2. For each (r0, M) ∈ Z≥2 × N, there is an increasing function

Qr0,M : R2
+ → R+ with lim

t→0
Qr0,M(t, ·) ≡ 0,

and there is an increasing function

S2 = S2(r0, M) : N → R+

with S2 ≥ S1, so that for any pseudo-rotation f ∈ Diff∞(A, ω) satisfying (5.1)
whose rotation number ρ( f ) = α satisfies the property that there exists an odd
integer n ≥ 3 for which

qn > S1(qn−1), qn+1 > S1(qn) and qn+2 > S1(qn+1),

then the following holds for the unique lift F : Ã → Ã of f with ρ(F) ∈ (0, 1):
let γ be a qn+1-good Brouwer curve for f given by Lemma 5.13, and let γ̃ be any
lift of γ. Let D̃ and D̃0 be the regions in Ã bounded by

(

Fqn,−pn(γ̃), Fqn+1,−pn+1(γ̃)
)

,
(

Fqn,−pn(γ̃), γ̃
)

3Lemma 5.1 is applicable since by hypothesis S2 ≥ S1.
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respectively. Then there are open neighborhoods D̂ of D̃ and D̂0 of D̃0; a C∞-
diffeomorphism

h : D̂ → D̂0;

and neighborhoods UL of Fqn,−pn(γ̃) and UR of Fqn+1,−pn+1(γ̃), so that

h|UL
= Id, h|UR

= F−qn+1,pn+1,(5.18)

‖h − Id‖Diffr0 (D̃, D̃0)
< Qr0,M

(

βn+1, qn+1

)

.(5.19)

Proof. By Lemma 5.1 there is a diffeomorphism ψ : Ã → Ã satisfying (5.16)
and which maps [0, 1]2 onto D̃0. Set

γ′ := Fqn+1,−pn+1(γ̃).

By letting qn+2 be sufficiently large depending on qn+1 and M, we have

A0(βn+1, Mqn+1) < 1/2

where A0 is produced by Theorem 3. Then

‖ f qn+1 − Id‖ ≤ A0(‖ρ( f qn+1)‖R/Z, Mqn+1) = A0(βn+1, Mqn+1) < 1/2.

Using Theorem 3, Lemma 2.1 and (2.11), we obtain

dH(γ̃, γ′) = dH( f qn+1(γ), γ) < A0(βn+1, Mqn+1).(5.20)

Notice that by (5.16) and (5.17) we also have that ‖ψ‖Diffr0 ([0,2]×[0,1]) is bounded
in terms of qn+1, M, r0. Then by (5.20) and by letting βn+1 be sufficiently
large depending on qn+1, M, r0, we have

γ′ ⊂ ψ([1/2, 3/2] × [0, 1]).

We define

γ′′ = ψ−1(γ′).

Then

{1/2} × [0, 1] < γ′′
< {3/2} × [0, 1]

if βn+1 is sufficiently large depending on qn+1, M, r0. Denote by U ′ the re-
gion in Ã bounded by {0} × [0, 1] and γ′′. It remains to construct a C∞-
diffeomorphism

ϕ : U ′ → [0, 1]2

such that ϕ equals Id near {0} × [0, 1]; equals ψ−1F−qn+1,pn+1ψ near γ′′; and
tends to Id in the Cr0-topology as βn+1 tends to 0 for each fixed qn+1, M, r0.
Indeed, after the above ϕ is constructed, we can define h = ψϕψ−1.

By Theorem 3, for given qn+1, M, r0, we see that F−qn+1,pn+1 tends to Id in
the Cr0-topology as qn+2 tends to infinity. Thus it suffices to construct ϕ by
smooth interpolation. �
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Continuing the proof of Theorem 4, we first construct a periodic approx-
imation of f as follows. We define G on U0 (see (5.12)) by

G|U =























F U = ∪
qn−2
i=0 int(B̃i),

FqnhF1−qn U = int(B̃qn−1),

F U = ∪
qn+1−2
i=qn

int(B̃i),

Tpn+1h−1F1−qn+1 U = int(B̃qn+1−1).

(5.21)

By property (1),(2) below (5.12), we may extend G to a self-map of Ã \ Γ,
still denoted by G, satisfying

GT = TG.(5.22)

Moreover, by (5.21) the following identity holds on Ã \ Γ:

Gqn+1 = Tpn+1.(5.23)

By construction, for any two curves γa, γb in (5.11), there are integers i, j
such that

γb = TiGj(γa).(5.24)

By (5.21) in the definition of G, we also have that

B̃i = Gi(B̃0), 0 ≤ i ≤ qn+1 − 1.(5.25)

We denote

B̃qn+1
:= Gqn+1(B̃0) = Tpn+1(B̃0).(5.26)

Now we set

φ := ψ−1h

where ψ is in Lemma 5.1 and h is in Lemma 5.2.

LEMMA 5.3. There is a neighborhood V ′ ⊂ Ã of Fqn+1,−pn+1(γ̃) so that Gqn ex-
tends to a C∞ map on V ′, and

Tφ(x) = φT−pn Gqn(x), x ∈ V ′.(5.27)

Proof. To see this, we first notice that

Fqn+1,−pn+1(γ̃) = B̃0 ∩ Tpn−pn+1(B̃qn+1−qn),

and B̃0 ∪ Tpn−pn+1(B̃qn+1−qn) is a neighborhood of Fqn+1,−pn+1(γ̃) in Ã. Let
UL, UR be given by Lemma 5.2. The set V ′ defined by

V ′ = Fqn+1−qn,−pn+1+pn(UL) ∩ UR ∩ (B̃0 ∪ Tpn−pn+1(B̃qn+1−qn))

is a neighborhood of Fqn+1,−pn+1(γ̃).
By (5.21), (5.25) and (5.22), we have

Gqn |Int(B̃0)
= Fqn h,(5.28)

Gqn |T pn−pn+1(Int(B̃qn+1−qn ))
= Tpn h−1Fqn−qn+1Tpn+1−pn .(5.29)
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By Lemma 5.2, we see that

RHS of (5.28)|V′ = RHS of (5.29)|V′ = Tpn+1 Fqn−qn+1.

Then it is clear that Gqn extends to a C∞ map on V ′. Again by Lemma 5.2,
we have for any x ∈ V ′

φT−pn Gqn(x) = ψ−1hTpn+1−pn Fqn−qn+1(x) = ψ−1Tpn+1−pn Fqn−qn+1(x),

Tφ(x) = Tψ−1h(x) = Tψ−1T−pn+1 Fqn+1(x).

Thus (5.27) follows from (5.17). �

We have the following corollary.

COROLLARY C. The map G on Ã \ Γ extends to an element in Diff∞(Ã).

Proof. By (5.23), clearly Gqn+1 extends to a smooth map Tpn+1 on Ã. By
Lemma 5.3, (5.22) and (5.24), we see that Gqn also extends to a map in
Diff∞(Ã). To conclude the proof it suffices to notice that

G = (Gqn)−pn+1(Gqn+1)pn .

�

By a slight abuse of notation, we again write G ∈ Diff∞(Ã) for the ex-
tension provided in Corollary C. Clearly (5.22) continues to hold. Conse-
quently G descends to a periodic diffeomorphism g ∈ Diff∞(A) satisfying

gqn+1 = Id.

We define map H̃ : Ã → Ã by

H̃(x) := T−kqn+1+jpn+1φG−jTk(x), x ∈ T−kB̃j(5.30)

for all k ∈ Z and all 0 ≤ j ≤ qn+1 − 1. Then by (5.23), (5.25), (5.26) and
(5.30) we have

H̃T = Tqn+1 H̃, H̃G = Tpn+1 H̃.(5.31)

We set H1 := Dqn+1
H̃, where

Dλ(x, y) = (λ−1x, y), λ ∈ R \ {0}.

Notice that for every λ ∈ R \ {0} and every p ∈ R we have

DλTpD−1
λ = T p

λ

where for each c ∈ R, Tc : Ã → Ã denotes the map Tc(x, y) = (x + c, y).
Then by (5.31), we see that H1 : Ã → Ã satisfies

TH1 = H1T, H1G = Tpn+1/qn+1
H1.(5.32)

We now show that H̃ ∈ Diff∞(Ã). By construction, H̃ is C∞-smooth in

the interior of each T−kB̃j, k ∈ Z, 0 ≤ j ≤ qn+1 − 1. Thus it remains to show

that H̃ is C∞ in a neighborhood of each of the curves in (5.11).
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By (5.9), we can see that the set

B̃∗ := B̃0 ∪ T−pnB̃qn(5.33)

is a neighborhood of T−pn Fqn(γ̃). By (5.24), we deduce that every curve

in (5.11) has a neighborhood of the form TiGj(B̃∗). By (5.31), it remains to
verify that H̃ is C∞ over B̃∗. This follows from a similar argument as in
the proof of Lemma 5.3 using (5.27) and (5.30). Consequently H̃ and H1

are C∞-smooth diffeomorphisms of Ã. Then by (5.32) H1 descends to a
C∞-diffeomorphism h1 : A → A satisfying

g = h−1
1 Rpn+1/qn+1

h1.(5.34)

Moreover, we have the claim that:

‖H1‖Diffr0 (Ã), and hence ‖h1‖Diffr0 (A) as well, are bounded in terms of qn+1, M, r0.

Indeed, by definition it is clear that ‖φ‖Diffr0 is bounded in terms of
qn+1, M, r0; and for each integer 0 ≤ j ≤ qn+1 − 1, ‖G‖Diffr0 (B̃j,B̃j+1)

is bounded

in terms of qn+1, M, r0. Our claim follows immediately from (5.30) and the
fact that H1 commutes with T.

Recall that r0, M and ǫ are fixed. In the following we will show that:

LEMMA 5.4. For sufficiently fast growing P depending on r0, M and ǫ the follow-
ing holds. Assume n satisfies the conditions in Lemma 5.1 and Lemma 5.2; and
moreover (5.2) holds for n. Then we have:

(1) dDiffr0 (A)( f , g) < ǫ/4;

(2) dDiffr0 (A)(h
−1
1 Rαh1, g) < ǫ/4;

(3) there is h2 ∈ Diff∞(A) such that (h2h1)∗ω = ω and

dDiffr0−1(A)(h
−1
1 h−1

2 Rαh2h1, h−1
1 Rαh1) < ǫ/4.

Proof. Proof of (1): By (5.21), there is D > 0 depending only on r0 such that

dDiffr0 (A)( f , g) ≤ D max(dDiffr0 (A)( f qn h f−qn , Id), dDiffr0 (A)(h
−1 f−qn+1, Id)).

By Theorem 3, Lemma 5.2, and by letting qn+2 be sufficiently large depend-
ing on ǫ, r0, M, qn+1, we have

dDiffr0 (A)( f qn h f−qn , Id), dDiffr0 (A)(h
−1 f−qn+1, Id) < (4D)−1ǫ.

Thus we have

dDiffr0 (A)( f , g) < ǫ/4.

Proof of (2): Since ‖h1‖Diffr0 (A) admits an upper bound depending only on
qn+1, M and r0, by letting qn+2 be sufficiently large depending on ǫ, r0, M, qn+1,
we have

dDiffr0 (A)(h
−1
1 Rαh1, g) < ǫ/4.
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Proof of (3): Set

λ0 = det(H1) =
1

qn+1
det(H̃) ∈ C∞(Ã).

Recall that both ψ and F have constant Jacobians, hence by (5.30), on each
B̃j we have

log λ0 = log det h ◦ (G−j) + log det(G−jFj) ◦ Fj + c1

for some constant c1. On T−kB̃j we have a similar formula. Thus

sup
1≤r≤r0

‖Dr log λ0‖ ≤ (1 + dDiffr0 (A)( f , Id))Cqn+1r0(dDiffr0 (A)(h, Id) + dDiffr0 (A)(g, f )).

By Lemma 5.2 and the argument above for bounding dDiffr0 (A)(g, f ), we see

that sup1≤r≤r0
‖Dr log λ0‖ can be made arbitrarily small by making qn+2

sufficiently large while keeping qn+1, M and r0 fixed. By (5.32), we have
∫

[0,1]2
λ0dω = 1.

Then it is direct to see, for some absolute constant C > 0, that

‖λ0 − 1‖ < C‖D log λ0‖

given that ‖D log λ0‖ < 1. Consequently, for any δ > 0, we have ‖λ0 −
1‖Cr0 < δ if qn+2 is sufficiently large depending on δ, qn+1, M and r0.

By Dacorogna-Moser’s theorem ([DM90, Theorem 1]), there exists h2 ∈
Diff∞(A) such that

(h2)∗(λ0ω) = ω.

Moreover, by [DM90, Theorem 2 and Lemma 3], we can choose h2 with
dDiffr0−1(A)(h2, Id) arbitrarily small provided ‖λ0 − 1‖Cr0 is sufficiently small.

In summary, if qn+2 is sufficiently large depending on ǫ, qn+1, M and r0,
we can choose h2 ∈ Diff∞(A) sufficiently close to Id in Diffr0(A) so that

dDiffr0−1(A)(h
−1
1 h−1

2 Rαh2h1, h−1
1 Rαh1) < ǫ/4.

�

We set h0 = h2h1. By Lemma 5.4(3) we have h0 ∈ Diff∞(A, ω). Then by
Lemma 5.4, we have

dDiffr0 (A)(h
−1
0 Rαh0, f ) < ǫ

This completes the proof of Theorem 4. �

We can now prove the main result with the aid of the following lemma
whose straightforward proof is omitted.



32 BARNEY BRAMHAM AND ZHIYUAN ZHANG

LEMMA 5.5. For any function P : N → N, the set

C := {α ∈ (0, 1) \ Q | ∃n ≥ 3 odd such that qn(α) > P(qn−1(α)),

qn+1(α) > P(qn(α)), qn+2(α) > P(qn+1(α))}

is open and dense in (0, 1) \ Q.

Proof of Theorem 1. We have seen in the introduction that O∞
A
(α) ⊂ F∞

A (α)
for any α ∈ (0, 1)/Q. It remains to show that for a Baire generic α ∈
(0, 1)/Q

F∞
A (α) ⊂ O∞

A
(α)(5.35)

with the closure taken in the C∞-topology. For each tuple (r0, M, k) in Z3
≥1,

with r0 ≥ 2, let Pr0,M,k−1 be the function produced by Theorem 4. Therefore
by Lemma 5.5 the set

A(r0, M, k) :=
{

α ∈ (0, 1) \ Q | there is an odd n ≥ 3 such that

qn(α) > Pr0,M,k−1(qn−1(α)), qn+1(α) > Pr0,M,k−1(qn(α))

and qn+2(α) > Pr0,M,k−1(qn+1(α))
}

is open and dense in (0, 1) \ Q. Thus the countable intersection

A := ∩r≥2 ∩k≥1 ∩M≥2A(r, M, k)

is a residual subset of (0, 1) \Q. Fix α ∈ A and suppose f ∈ F∞
A (α). Then for

any ǫ > 0 and r ∈ N with r ≥ 2 choose M ∈ N so that ‖ f‖Diffr+2(A) < M,

then by α ∈ A(r, M, ⌈ǫ⌉−1) and by Theorem 4 there exists h ∈ Diff∞(A, ω)
so that

dCr−1( f , hRαh−1) < ǫ.

This gives F∞
A (α) ⊂ O∞

A
(α) with the closure in the Cr−1-topology. Since r is

arbitrary we easily conclude (5.35) holds with closure in the C∞-topology.
�
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théorème de Poincaré-Birkhoff, Topology, 33 (1994), no 2, 331–351.

[HW] G.H. HARDY AND E.M. WRIGHT, An introduction to the theory of numbers, 6th
edition Oxford Univ. Press

[H98] M. HERMAN, Some open problems in dynamical systems, Proceedings of the ICM,
vol. II (Berlin 1998), Doc. Maath. 1998, Extra, vol. II, 797-808.

[FH12] J. FRANKS AND M. HANDEL, Entropy zero area preserving diffeomorphisms of S2,
Geom. Topol., 16 (2012), 2187-2284.

[H79] M.R. HERMAN, Sur la conjugasion différentiable des difféomorphismes du cercle a
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