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Multifractal Analysis of the Riemann's Series

Introduction

The wavelet analysis is a widely used mathematical tool. First introduced in the 80's, it is now used to study temporal data such as functions, processes or signals and their regularity. A well known example of continuous function which regularity changes from point to point is the Riemann's series. So we consider a slightly generalised type of function defined from the Riemann's series 

R s (x) = +∞ n=1 sin(πn 2 x) n s , x ∈ R, s > 1/2.

Definition of p-Exponents

Let p ∈ [1, +∞), f ∈ L p loc (R), t 0 ∈ R and α ≥ -1/p. The function f belongs to T p α (t 0 ) when there exists a polynomial P t 0 , K, R > 0 such that for all 0 < r ≤ R,

1 r t 0 +r t 0 -r |f (t) -P t 0 (t -t 0 )| p dt 1 p ≤ Kr α . The p-exponent of f is h (p) f (t 0 ) = sup{α : f ∈ T p α (t 0 )}. When p = +∞, we have the Hölder's exponent h f (t 0 ) = h (+∞) f (t 0 ).

Wavelets and p-leaders

Definition 1.1. A wavelet is a function ψ which is compactly supported, oscillating, sufficiently regular and with several vanishing moments, such that the family

2 j/2 ψ j,k (x) = 2 j/2 ψ(2 j x -k) j,k∈Z form an orthonormal basis of L 2 (R). Thus ∀f ∈ L 2 (R), f L 2 = j∈Z k∈Z c j,k ψ j,k with c j,k = 2 j R f (x)ψ(2 j x -k)dx. Let's denote λ j,k = [k2 -j , (k + 1)2 -j ] the dyadic inter- val. The exponent of uniform regularity of f , h min f , is given (through log -log regression) by sup k |c j,k | ∼ 2 -jh min f . Theorem 1.2. If h min f > 0, then f ∈ L ∞ loc (R). The leaders of f are l j,k = sup λ ′ ⊂3λ j,k |c λ ′ |.
We have the characterization for x ∈ λ j,k :

l j,k ∼ 2 -jh f (x) . If h min f < 0, we consider p > 0 such that η(p) > 0 for η given by 2 -j k |c j,k | p ∼ 2 -jη(p) . If 0 < p ≤ 1, then f ∈ H p (R) and if p > 1, f ∈ L p loc (R). The p-leaders are then l (p) j,k =   λ ′ ⊂3λ j,k |c λ ′ | p 2 j-j ′   1 p .
We have the characterization for x ∈ λ j,k :

l (p) j,k ∼ 2 -jh (p) f (x) .

p-Spectre

The multifractal p-spectrum of f ∈ L p loc (R), is

D (p) f : H → dim H x ∈ R : h (p) f (x) = H , with dim H the Hausdorff dimension. Let S (p) f (j, q) = 2 -j k l (p) j,k q . The p-scaling function ζ (p) f (q) is defined by the relation S p (j, q) ∼ 2 -jζ (p) f (q) . Theorem 1.3. D (p) f (H) ≤ L (p) f (H) where L (p) f is the Legendre transform of ζ (p) f . ∀H ∈ R, L (p) f (H) = inf q∈R {1 + qH -ζ (p) f (q)}.

Multifractal spectra

With the Meyer wavelet, the wavelet coefficients of R s are given by

c j,k = +∞ n=1 1 n s exp -in 2 2k -1 2 j+1 B 3 n 2 2 j
with B 3 the 3rd-order B-spline. Wavelet analysis is therefore ideal for studying regularity.

In figure 2, we estimate L R 2 numerically. But the same analysis can be performed for R 0.7 with p-spectra (since R 0.7 / ∈ L ∞ loc (R)). 

h min R 2 c 1 R 2 h max R 2

Oscillating singularities and fractional integration

The fractional integral of order γ of a function f , denoted I γ f , is defined via its Fourier transform by the formula (

I γ f )(ξ) = (1 + |ξ| 2 ) -γ/2 f (ξ).
We know D 

I γ f (h(x) + K • γ) = D (p) f (h(x)) with K > 1.
In order to study the presence of oscillating singularities like the one in figure 5, we study the fractional integrations of the Riemann series. Observation: The distance h min R s -c 1 R s remains constant, while the distance c 1 R s -h max R s increases linearly with integration orders.

Conclusion:

We can conjecture that the functions R s display oscillating singularities for all values of s.
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 1 Figure 1: The usual Riemann's series R 2 on [0, 1]

Figure 2 :

 2 Figure 2: Multifractal spectrum D R 2 in red and estimated Legendre spectrum L R 2 in black. For almost any x ∈ R, h min R 2 = 3/4 since c 1 R 2 = 3/4.

Figure 3 :

 3 Figure 3: Multifractal 2-spectrum D (2) R 0.7 in red and estimated p-Legendre spectra L (p) R 0.7 for multiple value of p. For almost any x ∈ R, h min R 0.7 = 1/10 since c 1 R 0.7 = 0.1.
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  γ f for any γ such that I γ f ∈ L p loc therefore • for all fractional integrations (γ > 0), • for some fractional derivatives (γ < 0). If a point x display no oscillating singularity, D (p) I γ f (h(x) + γ) = D (p) f (h(x)). However, for points displaying oscillating singularities like the chirp in figure 4, we have D (p)
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 4 Figure 4: Singularity of type cusp and chirp in x 0 = 0.
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 5 Figure 5: Oscillating singularity of R 2 in x 0 = 1.
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 6 Figure 6: Characteristic values of the spectra of I γ R 2 Figure 7: 2-Legendre spectra of fractional integrates of R 0,7