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GEOMETRIC PROPERTIES OF PARTIALLY HYPERBOLIC MEASURES AND APPLICATIONS TO MEASURE RIGIDITY

We give a geometric characterization of the quantitative joint non-integrability, introduced by Katz in [Ka], of strong stable and unstable bundles of partially hyperbolic measures and sets in dimension 3. This is done via the use of higher order templates for the invariant bundles. Using the recent work of Katz, we derive some consequences, including the measure rigidity of uu-states and the existence of physical measures.

Definition 1.1. We say that a compact invariant set Λ of a partially hyperbolic diffeomorphism f : M Ñ M is jointly integrable up to order ℓ if

Introduction

Let f : M Ñ M be a partially hyperbolic diffeomorphism of a closed 3manifold: the tangent bundle T M " E u ' E c ' E s splits into Df -invariant one dimensional bundles with the property that there is some integer N ą 0 such that for every x P M , we have

}Df N | E s pxq } ď 1 2 mint1, }Df N | E c pxq }u ă 2 maxt1, }Df N | E c pxq }u ď }Df N | E u pxq }.
Any such diffeomorphism f admits (uniquely defined) f -invariant foliations W s and W u tangent respectively to the bundles E s and E u (see e.g. [CP]). Consider a lamination Λ Ă M which is f -invariant and W u -saturated. The geometric properties of its leaves, when projected along stable holonomy, are very relevant to understanding several problems: ergodicity of conservative systems (e.g. [BW]), finiteness of attractors (e.g. [CPS]), mixing properties (e.g. [TZ]), among other properties. More recently, some quantitative measures of joint non-integrability have been used by Katz [Ka] to obtain measure rigidity results based on ideas coming from homogeneous and Teichmuller dynamics [EL, EM] (related progress is that of random dynamical systems [BRH], see also [Ob] for its connection with partially hyperbolic dynamics). In this paper, we intend to look into the notion of quantitative non-joint integrability (QNI) proposed by [Ka]. We consider here exclusively C 8 diffeomorphisms, and obtain in this setting equivalent notions that seem more conceptual and easier to verify and work with.

there is ρ ą 0 and a continuous family of C ℓ smooth surfaces tS x u xPΛ which verifies that:

(i) W u ρ pxq Y W s ρ pxq Ă S x , (ii) for every x P Λ and y P W u ρ pxq X Λ (resp. y P W s ρ pxq X Λ) we have that W s loc pyq is tangent to order ℓ to S x at y (resp. W u loc pyq is tangent to order ℓ to S x at y).

Here, when we say that the curve γ is tangent to order ℓ to S x we mean that there is a constant C ą 0 1 such that when parametrized by arc-length the distance from a point y P γ to the surface S x is less than Ct ℓ where t is the arc-length from y to x.

Our main results concern the study of uu-states of partially hyperbolic systems. By definition, an ergodic uu-state is an ergodic invariant measure that is absolutely continuous with respect to strong unstable manifolds of the foliation W u . These measures always exist (see e.g. [START_REF] Bonatti | Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective[END_REF]§11]) and are usually the place to look for physical measures (i.e. those for which the statistical basin has positive Lebesgue measure).

The results in this paper are also obtained in the more general setting of partially hyperbolic measures where analogous results hold. While very similar, the proofs require more careful analysis in some parts of the argument. We refer the reader to §2 for precise statements.

Combined with the recent results of [Ka] our results give:

Theorem 1.2. Let f : M Ñ M be a C 8 partially hyperbolic diffeomorphism on a closed 3-manifold and let µ be a uu-state with positive center Lyapunov exponent, then, either µ is physical, or the support of µ is jointly integrable up to order ℓ for every ℓ ą 0.

Note that in [ABV] the physicality of uu-states is proved under the assumption that every such measure has positive center exponents.

In principle similar results may hold in higher dimensions which may be worth investigating. This may involve adapting some definitions to take care of some higher dimensional phenomena that may occur. We decided to restrict to the 3-dimensional case since it already presents some challenges and applications. We note that right now the results in [Ka] require one-dimensional center, but it may be possible to extend this to higher dimensional centers by incorporating the techniques of the work in progress [BEFRH].

We also note that our results require very high regularity to compensate for the fact that we deal with the case where holonomies are not regular (which is the usual case). In some cases, there are reasons that force more regularity of holonomies, even in open sets, and in those cases recently arguments have been made to obtain similar results assuming less regularity of the map, see [ALOS]. Theorem 1.2 will be used in [ACEPWZ] to understand uu-states of partially hyperbolic Anosov diffeomorphisms in dimension 3 (addressing a conjecture of [GKM]) and will be strengthened to show that if one assumes that the strong unstable foliation of a partially hyperbolic 1 Later in the paper we will also work with a measurable version of this, for partially hyperbolic measures, see Definition 2.21.

diffeomorphism of a 3-dimensional manifold fills center unstable disks 2 , then joint integrability up to order ℓ implies actual joint integrability.

The main technical contribution of this paper is to extend the notion of templates introduced in [TZ] to partially hyperbolic dynamics, in particular, dealing with higher order templates to deduce quantitative forms of nonintegrability of dynamically defined bundles.

Context and main technical result

Throughout this paper we let f : M Ñ M be a C 8 -diffeomorphism 3 of a closed 3-manifold M . We fix a smooth Riemannian metric } ¨}0 on M .

2.1. Partially hyperbolic measures. An ergodic f -invariant measure µ is partially hyperbolic if the following is true:

' f has simple spectrum. Namely, f has three different Lyapunov exponents χ 1 ą χ 2 ą χ 3 , ' χ 1 ą 0 ą χ 3 . We denote by E 1 , E 2 , E 3 the Oseledets bundles for µ corresponding to χ 1 , χ 2 , χ 3 respectively, and denote by W 1 , W 3 the Pesin laminations associated to E 1 , E 3 respectively (see [BP] and also §2.3 for a statement that makes more precise the properties of these manifolds). We fix some 0 ă ǫ ! min iPt1,2u |χ i ´χi`1 |, and denote by } ¨} the Lyapunov norm (with parameter ǫ) for µ satisfying the following property. For µ-almost every x P M we have, for i P t1, 2, 3u:

(2.1) }D x f | E i pxq } " }D x f pvq} }v} P pe χ i ´ǫ, e χ i `ǫq , v P E i pxqzt0u.

If we fix an orientation on each of the (one dimensional) bundles E i we get a unit vector e i pxq in E i pxq for almost every x P M and i P t1, 2, 3u. We define λ i,x P R by equation:

(2.2) D x f pe i pxqq " λ i,x e i pf pxqq, and we have that λ i,x P t˘}D x f | E i pxq }u.

The general theory allows us to disintegrate the measure µ along the leaves of W 1 and W 3 . We will denote by µ i

x (with i P t1, 3u) the conditional measure along the leaves of W i , i P t1, 3u, (see [BP]).

Definition 2.1. An ergodic f -invariant partially hyperbolic measure µ will be called non-degenerate if for almost every x P M the measures µ 1

x and µ 3

x are without atoms.

A measure µ is called a uu-state if for µ-a.e. x the measure µ 1

x is absolutely continuous with respect to the length induced by the Riemannian metric on the leaves of W 1 . Note that if χ 2 ą 0 then E 1 ' E 2 is µ-a.e. tangent to the leaves of the Pesin unstable lamination which we denote by W 12 . We denote 2 More precisely, a minimal subset of the strong unstable foliation verifies that it 'fills center unstable disks' if it contains open sets in some center unstable disk.

3 All results hold in finite regularity which depends on the properties (Lyapunov exponents) of the measure one looks at as well as some uniform constants of f around the support of the measure. We will not attempt to estimate the precise regularity since in any case it will be usually very high.

the disintegration of µ along W 12 at a µ-typical point x by µ 12

x . A measure µ is said to be SRB (Sinai-Ruelle-Bowen) in this context if µ 12

x is absolutely continuous with respect to the Riemannian volume induced on the leaves of W 12 .

Remark 2.2. Note that by Ledrappier-Young's entropy formula in [START_REF] Ledrappier | The metric entropy of diffeomorphisms: Part II: Relations between entropy, exponents and dimension[END_REF], any uu-state which has χ 2 ą 0 must be non-degenerate.

2.2. Partially hyperbolic sets. A particularly important case in our discussion is the one where the diffeomorphism f : M Ñ M is partially hyperbolic. More generally, we let f : M Ñ M be a smooth diffeomorphism of a closed 3-manifold and Λ be a compact f -invariant set admitting a partially hyperbolic splitting T Λ M " E u ' E c ' E s which is Df -invariant and verifies that there is an integer N ą 0 so that for every x P Λ we have:

}Df N | E s pxq } 0 ă mint1, }Df N | E c pxq } 0 u ă maxt1, }Df N | E c pxq } 0 u ď }Df N | E u pxq } 0 .
We call Λ a (uniformly) partially hyperbolic set for f . We can assume that N " 1 by choosing an appropriate (adapted) metric that we will denote by } ¨} in analogy with the Lyapunov metric in the case of partially hyperbolic measures. See [CP].

Note that in this case, every ergodic f -invariant measure supported in Λ is partially hyperbolic.

We note that it is a standard result that every partially hyperbolic diffeomorphism admits at least one ergodic uu-state, but the existence of SRB measures is not clear in general (see [START_REF] Bonatti | Dynamics beyond uniform hyperbolicity: A global geometric and probabilistic perspective[END_REF]Chapter 11]). We state the following for later reference: Fact 2.3. Let f : M Ñ M be a partially hyperbolic diffeomorphism. Then there exists a partially hyperbolic measure µ which is a uu-state.

We note that the same holds if there is a partially hyperbolic attractor (i.e. there is an open set U such that f pU q Ă U and the set Λ " Ş ną0 f n pU q is partially hyperbolic).

2.3. Normal Forms. We refer the reader to [START_REF] Kalinin | Invariant measures for actions of higher rank abelian groups[END_REF]§3.1] for more details and [KS] for more general results.

Proposition 2.4. Let µ be a partially hyperbolic measure. Then for i P t1, 3u and µ-almost every x P M there exists Φ i x : T x W i pxq Ñ W i pxq a smooth diffeomorphism such that:

(i) x Þ Ñ Φ i x varies measurably 4 , (ii) Φ i x p0q " x and D 0 Φ i x " id, (iii) f pΦ i
x ptqq " Φ i f pxq pλ i,x tq for every t P R, (iv) if y P W i pxq then pΦ i y q ´1 ˝Φi x is an affine map. In the following, for µ-a.e. x, we identify T x W i pxq with R so that 1 corresponds to a vector of norm 1 in T x W i pxq with respect to the Lyapunov norm } ¨}. We will fix a collection of maps Φ i

x , i " 1, 3, given by Proposition 2.4. We can naturally identify Φ i

x with a diffeomorphism from R to W i pxq. Remark 2.5. The sign of the values of λ i,x depends on the chosen orientations of the bundles E i . It is sometimes impossible to find a continuous orientation of the bundles, so it cannot be made so that the values are always positive even after taking iterates or finite covering. For the purposes of this paper, this is not an issue, so we will sometimes assume that the value of λ i,x is always positive to simplify the exposition when it is possible to treat the general case in a similar way.

We denote W i r pxq " Φ i x pp´r, rqq, i P t1, 3u. We denote by W i loc pxq a neighborhood of x in W i pxq whose size may vary from line to line. Since we will use some dynamically defined scales, we introduce the following notation for each integer k ą 0 and each ρ ą 0:

(2.3) W 1,k ρ pxq :" f ´kpW 1 ρ pf k pxqqq, W 3,k ρ pxq :" f k pW 3 ρ pf ´kpxqqq.
We will use the following notation for i P t1, 3u:

(2.4) μi

x " rpΦ i x q ´1s ˚µi x .

The above conditions determine μi

x as a Radon measure on R up to a multiple. Given i P t1, 3u, we have μi f pxq " cf ˚μ i x for some c ą 0. In the following we normalise μi

x so that its restriction to p´1, 1q is a probability measure. With a slight abuse of notation, we use μi

x to denote the probability measure restricted to p´1, 1q.

The following is an alternative way to characterize uu-states.

Proposition 2.6. The measure µ is an uu-state if and only if the measures μ1

x defined in (2.4) are Lebesgue.

See [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]§6.5] for a proof based on the rigidity result of Ledrappier-Young [LY].

In a similar way as in §2.3 one can find continuous5 normal form coordinates in the uniform partially hyperbolic setting in dimension 3 (see [KK]):

Proposition 2.7. Let f : M Ñ M be a smooth diffeomorphism of a 3manifold M and Λ a compact f -invariant and partially hyperbolic set. For every x P Λ there exists Φ i x : T x W i pxq Ñ W i pxq a smooth diffeomorphism such that:

(i) x Þ Ñ Φ i x varies continuously, (ii) Φ i x p0q " x and D 0 Φ i x " id, (iii) f pΦ i
x ptqq " Φ i f pxq pλ i,x tq for every t P R, (iv) if y P W i pxq then pΦ i y q ´1 ˝Φi x is an affine map. Remark 2.5 applies to this proposition too.

2.4. Quantitative non-integrability. Recently, in [Ka] the author proposed a geometric condition on uu-states that allows one to apply the scheme introduced in [EM, EL]. Let us recall the following crucial definition in [Ka] (although this notion is only defined for uu-states in [Ka], it can be stated for partially hyperbolic measure considered here): Definition 2.8. A partially hyperbolic measure µ has the quantitative nonintegrability property (QNI) if:

' there is α ą 0 and, ' for every ε ą 0 a subset P Ă M of measure µpPq ą 1 ´ε and, ' for every ν ą 0 constants C :" Cpν, εq ą 0 and k 0 :" k 0 pν, εq ą 0 such that: if an integer k ě k 0 and x P P satisfy f k pxq, f ´kpxq P P then ' there is a subset S x Ă W 3,k 1 pxq6 with µ 3

x pS x q ą p1 ´νqµ 3 x pW 3,k 1 pxqq satisfying the following property: ' for every y P S x there exists U y Ă W 1,k 1 pxq with µ 1 x pU y q ą p1 νqµ

1 x pW 1,k 1 pxqq so that if z P U y then (2.5)
dpW 1 1 pyq, W 3 1 pzqq ą Ce ´αk . We do not assume that the measure is a uu-state because this allows us to define the notion in a more general setting; and even though our main application is for uu-states we wish to make the arguments symmetric: Proposition 2.9. A partially hyperbolic measure µ has QNI for f if and only if it has QNI for f ´1.

The proof is a simple Fubini argument that we postpone to Appendix A. In Appendix A we also discuss this definition as well as other formulations and compare them with the ones in the work of Katz [Ka].

Remark 2.10. The main difference between our definition and that of [Ka] is the notion of local stable and local unstable manifolds. For notational simplicity (helped by the fact that we are working with one dimensional stable and unstable strong manifolds) we chosen to use local manifolds to be of a certain length with respect to the normal form coordinates. In [Ka] the local stable and unstable manifolds are considered with respect to a measurable partition of the stable/unstable measurable (Pesin) lamination; this is more natural and it extends better to higher dimensions. We could have chosen to use this formalism, but some arguments where we reduce to cocycles defined on fixed intervals would be more cumbersome to write. We explain the equivalence of the definitions in more detail in Appendix A.

2.5. Cocycle normal forms and good charts. We will consider good coordinate charts that incorporate the normal coordinates as in [START_REF] Tsujii | Smooth mixing Anosov flows in dimension three are exponential mixing[END_REF]§4].

Definition 2.11 (0-good unstable charts). Let µ be a partially hyperbolic measure. A measurable collection of smooth diffeomorphisms tı x : p´}Df }, }Df }q 3 Ñ M u xPM is a family of unstable charts if it verifies that for µ-almost every x P M we have that ı x pt 1 , 0, 0q " Φ 1

x pt 1 q, ı x p0, 0, t 3 q " Φ 3

x pt 3 q for t 1 , t 3 P p´1, 1q, B 2 ı x p0, 0, 0q is a unit vector in E 2 pxq. Moreover, if we write F x :" ı ´1 f pxq ˝f ˝ıx " pF x,1 , F x,2 , F x,3 q then the map

F x : p´}Df }, }Df }q 3 Ñ R 3 verifies that: (i) B 2 F x,2 pt, 0, 0q " λ 2,
x for all t P p´1, 1q, (ii) B 3 F x,3 pt, 0, 0q " λ 3,x for all t P p´1, 1q, (iii) B 2 F x,3 pt, 0, 0q " 0 for all t P p´1, 1q. We say that a family of unstable charts is 0-good if for some constant d (independent of x) we have that (2.6) B 3 F x,2 pt, 0, 0q is a polynomial of degree ď d in t P p´1, 1q.

Note that in [START_REF] Tsujii | Smooth mixing Anosov flows in dimension three are exponential mixing[END_REF]§4] similar charts are constructed for Anosov flows. It is not hard to adapt the argument to our case. We will prove the following in §3.

Proposition 2.12. For every partially hyperbolic measure µ there is a family of 0-good unstable charts.

Given a family of unstable charts, for µ-a.e. x, the map F x satisfies that for every t 1 P p´1, 1q we have that F x pt 1 , 0, 0q " pλ 1,x t 1 , 0, 0q and

(2.7) ¨BF x,2 Bx 2 BF x,2 Bx 3 BF x,3 Bx 2 BF x,3 Bx 3 'pt 1 , 0, 0q " ˆλ2,x r x pt 1 q 0 λ 3,x ˙.
We think of this as a linear cocycle over the unstable manifolds. This means that for each point of the unstable manifold (seen in normal coordinates) we have a linear transformation between linear spaces above each point, and as we iterate these get composed with the corresponding linear transformations depending on the base dynamics. See §3 for more details.

In equation (2.7) the function r x is a smooth function. It follows from the general theory of cocycle normal forms, developed in [BEFRH], that one can change coordinates in order to make r x a polynomial of degree depending only on the values of the functions λ 2,x and λ 3,x (see Proposition 3.3 below). This is how Proposition 2.12 is proven.

Note that the strong stable bundle along the strong unstable manifold can be modeled as a section of this cocycle (cf. §3.1)), what will be referred to as a template. Since the cocycle is 2 dimensional and can be taken smoothly into an upper triangular form (cf. equation (2.7)) we can think of this template, under the normal form coordinates, as a function on the strong unstable manifold. Therefore this reduction allows one to distinguish between the case where such template is a polynomial or not. This is a reformulation of one of the main observations from [Ts, TZ] (see [START_REF] Tsujii | Exponential mixing for generic volume-preserving Anosov flows in dimension three[END_REF]Remark 1.2]). We will show that whenever the template is not a polynomial, then the QNI condition is verified. Else, one can continue doing this for higher order ℓ `1-good charts of the stable manifolds along a strong unstable manifold, see Theorem 2.24. When we look at ℓ-order jets, we obtain in this way a two-dimensional cocycle over the unstable manifolds, whose diagonal entries are λ 2,x and λ ℓ 3,x . We refer the reader to §3 for more details on the particular case of cocycle normal forms we will use and to [BEFRH, Appendix A] for a more detailed account.

We introduce the following notion.

Definition 2.13 (ℓ-good unstable charts). Let tı x u xPM be a family of unstable charts for a partially hyperbolic measure µ. Let ℓ be a positive integer. We say that the family is ℓ-good if for µ-almost every x P M there is a unique 7 collection of measurable functions T ℓ x : p´1, 1q Ñ R, a x , b x : p´1, 1q 2 Ñ R such that for μ1

x -almost every t P p´1, 1q we have that: (2.8) ı ´1 x pW 3 loc pΦ 1 x ptqqq " tpt `ax pt, sqs, T ℓ x ptqs ℓ`1 `bx pt, sqs ℓ`2 , sq : s P p´1, 1qu and for some constant d :" dpℓ, f, µq (independent of x) we have that (2.9) B ℓ`1 3 F x,2 pt, 0, 0q is a polynomial of degree ď d in t P p´1, 1q. In this case, we call T ℓ

x in equation (2.8) a stable template of ℓ-jets at x. One can define in a similar way ℓ-good stable charts for µ.

Remark 2.14. We point out again the fact that the relevant conditions about ℓ-good unstable charts at a point x all concern information that can be read in arbitrarily small neighborhoods of W 1

1 pxq and therefore to analyze the existence of such charts it is enough to understand the associated linear cocycles along the unstable manifold. This will be expanded in §3.

We note that since the leaves of the invariant laminations are smooth, the functions a x pt, sq and b x pt, sq are smooth in s for μ1

x -almost every t P p´1, 1q. In particular, there is a (measurable) function c x : p´1, 1q Ñ R `such that for μ1

x -almost every t P p´1, 1q and for any |s| ă 1 we have (2.10) |a x pt, sq|, |b x pt, sq| ă c x ptq.

Moreover, we have the following, which will be used in Section 7.

Lemma 2.15. For every ε ą 0, there exist a constant C ą 1 and a subset P Ă M such that µpPq ą 1 ´ε, and for every x P P and every r P p0, C ´1q, the set of t P p´r, rq satisfying |c x ptq| ă C has μ1

x -measure at least p1 έqμ 1

x pp´r, rqq. Proof. Fix an arbitrary ε ą 0. By Lusin's lemma, we can find a compact subset Q Ă M such that µpQq ą 1 ´ε2 , and W 1 loc pxq, W 3 loc pxq as well as the chart ı x are continuous restricted to x P Q. Then by definition, for any x P Q and t P p´1, 1q such that Φ 1

x ptq P Q, we see that |c x ptq| can be chosen uniformly bounded from above. Then the lemma follows immediately from Proposition B.1.

Remark 2.16. Note that the stable templates depend on the charts. In [TZ] the stable templates at x are taken to be the family of all possible T 0

x as we change the underlying 0-good unstable charts. We emphasize that we usually expect to have non-smooth T ℓ

x . Indeed, one of the main points here is that if T ℓ

x is smooth in some regions, then one can produce a higher order approximation.

Remark 2.17. The existence of ℓ-good charts implies that the stable Hopf brush at a point x, by which we mean H s

x " Ť tPp´1,1q W 3 1 pΦ 1 x ptqq, is more regular than expected: it can be approximated to order ℓ by the stable templates of ℓ-jet. One has a similar approximation for the unstable Hopf brush defined by H u

x " Ť tPp´1,1q W 1 1 pΦ 3 x ptqq. Note that the regularity of H s

x and H u x may be pretty bad, but the templates used to approximate these sets to high order may have good regularity.

One useful consequence of (2.9) is the following simple computation: Remark 2.18. Note that the condition (2.8) together with the properties of unstable normal coordinate charts imply that:

(2.11)

λ 2,x λ ℓ`1 3,x T ℓ x ptq `1 λ ℓ`1 3,x B ℓ`1 3 F x,2 pt, 0, 0q pℓ `1q! " T ℓ f pxq pλ 1,x tq.
If (2.9) is verified, we know that

1 pℓ`1q!λ ℓ`1 3,x B ℓ`1
3 F x,2 pt, 0, 0q is a polynomial in t which depends only on the coordinates we have chosen. Consequently, the property that T ℓ

x is a polynomial of degree ď d is independent of the choice of the ℓ-good chart. See Proposition 3.13 for more details.

Before we state the main inductive step for proving Theorem 1.2, we recall the notion about Whitney smoothness.

For a function ϕ : p´1, 1q Ñ R and K Ă p´1, 1q a compact set, we say that ϕ is C r in the sense of Whitney on K if there exists a C r function φ on an open neighborhood of K such that φ| K " ϕ. Another equivalent condition (cf. Whitney's extension theorem, see [W]) is given by the existence of continuous functions a i : K Ñ R, 1 ď i ď r, satisfying a family of compatibility conditions (see [W]). In particular, for any t, s P K we have (2.12)

|ϕpsq ´pϕptq `a1 ptqps ´tq `. . . `ar ptqps ´tq r q| " op|s ´t| r q.

We say that ϕ is smooth in the sense of Whitney on K if it is C r in the sense of Whitney on K for every integer r ą 0. We will prove in §4 the following proposition.

Proposition 2.19 (Dichotomy). Let µ be a partially hyperbolic measure with ℓ-good unstable charts. Then either there are pℓ `1q-good unstable charts, or, for almost every x P M we have that T ℓ x as defined in (2.8) is not Whitney smooth restricted to any subset of W 1 pxq with positive µ 1

x -measure (in particular, it is not a polynomial of degree ď d).

We can see from the above proposition that the smoothness of T ℓ

x (an intrinsic property about pf, µq) can be expressed naturally using normal coordinates (see Proposition 2.6 for another application of such an idea).

It says that the assertion that the ℓ-order jets of the strong stable lamination are smooth along the strong unstable direction is equivalent to the a priori stronger condition that they are polynomial in the normal coordinates.

2.6. Compatible charts. Note that for the time one map of the geodesic flow on a constant negatively curvatured surface, the volume measure verifies that for every ℓ ą 0 the map admits ℓ-good stable and unstable charts, and, at the same time, verifies a strong form of quantitative non-integrability due to the contact structure. Thus, to be able to extract more information from the existence of ℓ-good stable and unstable charts, we will show that there is some compatibility between these charts assuming that the QNI condition is not verified.

Definition 2.20 (Compatible charts). For a partially hyperbolic measure µ we say that it admits ℓ-compatible good charts if there exist L :" Lpℓ, f q ě ℓ, L-good stable charts tı x u xPM and L-good unstable charts tı 1

x u xPM such that for µ almost every x P M we have that: for all pt 1 , t 3 q close to p0, 0q, (2.13) pı 1 x q ´1 ˝ıx pt 1 , 0, t 3 q " ps 1 , Opp|s 1 | `|s 3 |q ℓ q, s 3 q.

We say that µ admits compatible good charts if it admits ℓ-compatible good charts for every ℓ ą 0.

The existence of compatible good charts implies that the measure is jointly integrable up to order l, a notion defined below: Definition 2.21. We say that a partially hyperbolic measure µ is jointly integrable up to order l if there is a measurable family of C l smooth surfaces (with boundaries) tS x u xPM in M such that for µ almost every x P M , there is ρ x ą 0 such that :

(i) W 1 ρx pxq Y W 3 ρx pxq Ă S x , and, (ii) for µ 1

x almost every y P W 1 ρx pxq (resp. µ 3

x almost every y in W 3 ρx pxq) we have that W 3 1 pyq is tangent to S x to order l at y (resp. W 1 1 pyq is tangent to S x to order l at y).

It is natural to compare the above definition with Definition 1.1.

Proposition 2.22. Let µ be a partially hyperbolic measure with compatible good charts. Then µ is jointly integrable up to order l for every l ą 0.

Proof. We fix an arbitrary integer l ą 0, and let ℓ " 10l. We let L ą ℓ be a large integer, let tı x u xPM be a collection of L-good stable charts, and let tı 1

x u xPM be a collection of L-good unstable charts such that (2.13) is satisfied for ℓ. Let x be a µ-typical point such that ı x and ı 1

x are defined at x, and (2.13) holds.

For all pt 1 , t 3 q close to p0, 0q, we write pı 1 x q ´1 ˝ıx pt 1 , 0, t 3 q " ph 1 pt 1 , t 3 q, h 2 pt 1 , t 3 q, h 3 pt 1 , t 3 qq. Here h 1 , h 2 , h 3 are smooth functions, and we have

h 1 pt 1 , 0q " t 1 , h 3 p0, t 3 q " t 3 , |h 2 pt 1 , t 3 q| ď C x p|t 1 | ℓ `|t 3 | ℓ q (2.14)
for some C x ą 1.

Let ρ x ą 0 be a small constant to be determined, and we set E " p´ρ x , ρ x qˆt0uYt0uˆp´ρ x , ρ x q. For any integers i, j ě 0 such that i`j ď l, we define ϕ i,j pt 1 , t 3 q " # B i t 1 B j t 3 h 2 p0, t 3 q, t 1 " 0, t 3 P p´ρ x , ρ x qzt0u, 0, t 3 " 0, t 1 P p´ρ x , ρ x q.

By (2.14), the above formula gives a collection of continuous functions on E. Moreover, by 2l ď ℓ and Taylor's expansion of h 2 at the origin, we see that |ϕ i,j pt 1 , t 3 q| ď C 1 x p|t 1 | `|t 3 |q l for the above i, j and some C 1 x ą 0. Then we have the following compatibility conditions: for any i, j as above, for any pt 1 , t 3 q and ps 1 , s 3 q on E, we have ϕ i,j pt 1 , t 3 q " ÿ i 1 `j1 ďl´i´j ϕ i`i 1 ,j`j 1 ps 1 , s 3 q pi 1 q!pj 1 q! pt 1 ´s1 q i 1 pt 3 ´s3 q j 1 `opp|s 1 ´t1 | `|s 1 ´t1 |q l´i´j q.

Here the implicit constant depends only on l and x. Then by Whitney's extension theorem, there exists a C l function ϕ defined in a neighborhood of p0, 0q such that B i t 1 B j t 3 ϕ| E " ϕ i,j for any integers i, j ě 0 such that i`j ď l.

We define Hpt 1 , t 2 , t 3 q " pt 1 , t 2 `ϕpt 1 , t 3 q, t 3 q, and define a map ı 5 x : p´ρ x , ρ x q 3 Ñ M by ı 5

x " ı 1 x ˝H. We denote T 0 " tpt 1 , t 2 , t 3 q : t 2 " 0u and define S x " pı 5

x q ´1pT 0 q, S s x " pı x q ´1pT 0 q, S u x " pı 1 x q ´1pT 0 q. By construction, we see that S x and S s

x are tangent to order l along W s loc pxq, and S x and S u

x are tangent to order l along W u loc pxq. Then it is straightforward to see that µ is jointly integrable up to order l. This concludes the proof.

2.7. Main technical statement. We have the following dichotomy, which proposes a more geometric way to deal with the QNI condition (at least when the diffeomorphism is sufficiently smooth).

Theorem 2.23. Let µ be a partially hyperbolic measure for a C 8 smooth diffeomorphism f of a closed 3-manifold. Then, µ has the QNI property if and only if it does not admit compatible good charts (cf. Definition 2.20).

It is easy to check that if µ admits compatible good charts then it cannot verify QNI, so the main point of the Theorem is to establish that if µ does not admit compatible good charts, then it has to have the QNI property. We divide the proof into two natural steps: Theorem 2.24. Let µ be a partially hyperbolic measure and assume that it does not admit ℓ-good unstable charts for some integer ℓ ą 0, then µ verifies the QNI property.

The proof of this theorem will be given in §6. The symmetric statement holds for the existence of ℓ-good stable charts (cf. Proposition 2.9).

The second part is to show that the ℓ-good charts must be compatible unless QNI holds:

Theorem 2.25. Let ℓ ě 1 and let µ be a partially hyperbolic measure. Then there is an integer L ą 0 such that if µ admits L-good stable charts and L-good unstable charts and µ does not have QNI then there is a family of ℓ-compatible good charts.

This will be shown in §7. In §2.9 we discuss and prove some uniform versions of these results when the diffeomorphism is (uniformly) partially hyperbolic.

2.8. Applications. We restate here a consequence of the main result of [Ka].

Theorem 2.26 (Katz [Ka]). Assume that µ is an ergodic partially hyperbolic measure with χ 2 ą 0 which is a uu-state and verifies the QNI property. Then, µ is SRB.

It is worth pointing out that in [Ka] the flow case is treated. Note that for diffeomorphisms one can take the suspension flow and the results from [Ka] will apply and thus give the statement we just quoted.

Therefore, our main technical statement has the following consequence:

Corollary 2.27. Assume that an ergodic partially hyperbolic measure µ is a uu-state with χ 2 ą 0, then either µ is SRB or µ is jointly integrable up to order ℓ for every ℓ ą 0.

2.9. Uniform versions of the results. We come back to the context of the introduction.

Remark 2.28. We will use normal form coordinates for points in Λ as in §2.3. In the setting of one dimensional stable and unstable manifolds we are working on, it turns out that one can choose the normal form coordinates to vary continuously on the point x P Λ. This will be relevant for our statements, and in higher dimensions presents a challenge to generalize our results. See [KS] and references therein.

The results announced in the introduction are not a direct consequence of their measurable counterparts stated in the previous subsections due to the fact that the estimates are measurable functions instead of continuous ones. In order to obtain the continuous version, it is just necessary to check that the arguments in the measurable case do give uniform estimates when necessary since there is a continuous invariant splitting to start with. We will explain this in §8 (pointing out how the arguments simplify in some places for the uniform case). Here we will provide the corresponding definitions and main statements for the convenience of the reader.

We will consider a continuous orientation on E i up to finite cover 8 and the induced unit vector fields e i pxq. For x P Λ and i P t1, 2, 3u, we define

λ i x P ˘}D x f | E i pxq } by equation: (2.15) D x f e i pxq " λ i x e i pf pxqq
, where E 1 " E u , E 2 " E c and E 3 " E s . We know by the choice of the Riemannian metric that these are continuous functions which verify that

|λ 1 x | ą |λ 2 x | ą |λ 3 x | as well as |λ 1 x | ą 1 ą |λ 3 x |.
We consider the laminations W 1 , W 3 tangent respectively to E 1 and E 3 given by the stable manifold theorem with their corresponding normal form coordinates (cf. Remark 2.28 or Proposition 2.7 below).

The notion of quantitative non-joint integrability which one obtains in the uniform case is also a bit stronger due to the uniform assumptions.

We have the following result:

Theorem 2.29. Let Λ be a partially hyperbolic set of a smooth diffeomorphism f . Then, if there is a fully supported non-degenerate measure µ on Λ which does not have the QNI property, then the set Λ is jointly integrable up to order ℓ for every ℓ ą 0 (cf. Definition 1.1).

One consequence of this theorem is that having one measure without QNI forces every measure with the same support to have this property: Definition 2.30. We say that a partially hyperbolic set Λ has topological QNI if every measure which is fully supported on Λ has QNI.

Theorem 2.29 implies that either Λ has topological QNI, or every fully supported measure is degenerate, or Λ is jointly integrable up to order ℓ for 8 Note that if Λ Ă M is not everything, there many not be a finite cover of M that orients the bundles (e.g. the Plykin attractor), however, we are only interested on the dynamics in a neighborhood of Λ and one can always find a finite cover of such neighborhood with the desired properties. Note that this is just a notational issue, to avoid having to add signs in each equation. every ℓ. The second case happens for instance when the set Λ is contained in a normally hyperbolic surface tangent to E u ' E c . Remark 2.31. We note that it has been proved in [BC] that if Λ has no strong connections (i.e. for every x P Λ we have that W s loc pxq X Λ " txu) then Λ is contained in a locally invariant surface, that is, there is a compact surface with boundary S containing Λ in its interior and an open neighborhood U of Λ in S such that f pU q Ă S. In this case, every fully supported measure in Λ is degenerate.

Existence of normal coordinate charts and cocycle normal forms

In this section we prove Proposition 2.12 and Proposition 3.9. We restate some results which are done in more generality in [BEFRH, Appendix A] but in a somewhat different form.

3.1. Cocycle normal forms. Let f : M Ñ M be a smooth diffeomorphism preserving a partially hyperbolic measure µ. We let E Ñ M be a (measurable) vector bundle over pM, µq and A : E Ñ E a vector bundle automorphism that lifts pf, µq (i.e. for µ-a.e. x P M we have that

A x :" A| Ex : E x Ñ E f pxq is a linear automorphism).
We will be concerned only with two dimensional vector bundles (i.e. dimpE x q " 2 for µ-a.e. x P M ). We refer to [BEFRH, Appendix A] for more general results.

We say that a bundle E is smooth along unstable manifolds if for µ-a.e. x, the restriction of E to W 1 pxq is smooth. In this case, a smooth trivialization along unstable manifolds of E is a family of pairs S " tS x " pξ x , ξ K

x qu xPM such that for µ-a.e. x P M , ξ x , ξ K

x : p´}Df }, }Df }q Ñ E are smooth maps such that ξ x ptq, ξ K

x ptq are linearly independent vectors in E Φ 1 x ptq . Remark 3.1. We note that for a partially hyperbolic measure µ almost every point has a well defined strong unstable manifold, however, not every point in this manifold is generic with respect to µ.

We start by presenting an example which corresponds to the first step of our induction.

Example 3.2. Consider the two dimensional vector bundle E Ñ M defined for µ-a.e. x P M as the quotient E x " T x M { E 1 pxq . We fix a non-degenerate inner product on E x on each x which we denote by x¨, ¨yE . Clearly, since the cocycle Df preserves E 1 , it induces a vector bundle automorphism A given by:

Arvs " rD x f pvqs " D x f pvq `E1 pf pxqq P T f pxq M { E 1 pf pxqq
where v P T x M and rvs P T x M { E 1 pxq denotes v `E1 pxq the representative of v in the quotient. We note that for µ-a.e. x P M , the restriction E x of the bundle E to W 1 1 pxq is a smooth vector bundle because the local unstable manifold is smooth.

We choose a trivialization of E as follows. We choose a smooth map

ξ x : p´}Df }, }Df }q Ñ E such that Φ 1 x ptq Þ Ñ ξ x ptq P pE 1 pΦ 1 x ptqq ' E 2 pΦ 1 x ptqqq{ E 1 pΦ 1 x ptqq
is a section of the bundle E Ñ M . The existence of such smooth map ξ x is guaranteed by the fact that the weak-unstable bundle E 1 ' E 2 of the Oseledets decomposition is smooth along strong unstable manifolds (see Proposition C.1). We let ξ K x : p´}Df }, }Df }q Ñ E be a smooth map such that ξ K

x ptq is a unit vector in E x , and xξ K x ptq, ξ x ptqy E " 0. In this way, if we set S x " pξ x , ξ K

x q, then we can write the matrix corresponds to the action of Df from E Φ 1 x ptq to E Φ 1 f pxq pλ 1,x tq in the basis S x ptq " pξ x ptq, ξ K

x ptqq and S f pxq pλ 1,x tq " pξ f pxq pλ 1,x tq, ξ K f pxq pλ 1,x tqq, for t P p´1, 1q, as

A S ptq :" ˆαx ptq r x ptq 0 β x ptq ẇhere α x , r x , β x are smooth functions. ♦
We can write the vector bundle automorphism A in a smooth trivialization as a measurable function

A S : M ˆp´1, 1q Ñ GL 2 pRq
such that A S px, tq denotes the matrix associated to A Φ 1 x ptq from the ordered basis pξ x ptq, ξ K

x ptqq to the ordered basis pξ f pxq pλ 1,x tq, ξ K f pxq pλ 1,x tqq. We say that the vector bundle automorphism A is smooth along unstable manifolds if there is a smooth trivialization of E such that for µ-a.e. x P M the entries of A S px, ¨q are smooth functions of t. Note that if there is one such trivialization, the same holds for all smooth trivializations.

The following is the main result from normal forms for cocycles which are smooth along unstable manifolds that we will need. We refer the reader to Appendix C for more discussion on the notions of smoothness along strong unstables and exponents of cocycles.

Proposition 3.3. Let µ be a partially hyperbolic measure of a diffeomorphism f : M Ñ M , let E Ñ M be a µ-measurable two dimensional vector bundle which is smooth along unstable manifolds, and let A be a linear cocycle over pf, µq which is smooth along unstable manifolds and has exponents α ą β. Then there exists S " tS x " pξ x , ξ K

x qu xPM , a smooth trivialization along unstable manifolds of E, satisfying that for µ-a.e. x P M we have that for t P p´1, 1q (3.1) A S px, tq " ˆαx p x ptq 0 β x ẇhere α x and β x depend measurably on x such that ş log α x dµpxq " α and ş log β x dµpxq " β and p x : p´1, 1q Ñ M is a polynomial of degree at most d which depends only on χ 1 , α, β.

Proof. Being smooth along unstable manifolds, we can define a measurable non-degenerate inner product } ¨}E on the fibers of E which is smooth along unstable manifolds.

By Proposition C.1, there exists a family of smooth trivializations S " tS 0,x " pξ 0,x , ξ K 0,x qu xPM such that the cocycle A S 0 is upper triangular along unstable manifolds. That is, there are smooth functions α x , β x , r x : p´1, 1q Ñ R such that:

(3.2)

A S 0 px, tq " ˆαx ptq r 0 x ptq 0 β x ptq ˙.
We remark that ξ 0,x ptq belongs to the Oseledets bundle associated to the exponent α in the fiber E Φ 1

x ptq (whenever it is defined9 ). Note that to get the smoothness of the trivialization we are considering the orthogonal bundle with respect to the smooth Riemannian metric rather than the Lyapunov metric (which we use to compute contraction and expansion). This is no problem since we only use this to produce a reference smooth bundle that we will later change to make our cocycle be in normal form.

We now make the diagonals to be constant.

Claim 3.4. There exists a unique measurable family of smooth functions ta x : p´1, 1q Ñ R ą0 u xPM so that a x p0q " 1 and Apx, tqξ 1,x ptq " α x p0qξ 1,x pλ 1,x tq where ξ 1,x ptq " a x ptqξ 0,x ptq. Similarly, there is a family of smooth func-

tions ta K x : p´1, 1q Ñ R ą0 u xPM so that ξ K 1,x ptq " a K x ptqξ K 0,
x ptq so that if we take S 1 " tS 1,x " pξ 1,x , ξ K 1,x qu xPM as a smooth trivialization along unstable manifolds of E, then there is a measurable family of smooth functions r x : p´1, 1q Ñ R so that:

(3.3) A S 1 px, tq " ˆαx p0q r x ptq 0 β x p0q ˙.
Proof. The proof is similar to the unstable manifold theorem. Let us spell out the computations. First we construct ξ 1,x from ξ 0,x . We can put coordinates pt, sq x on the one-dimensional bundle Rξ 0,x so that pt, sq x represents the vector v :" sξ 0,x ptq P E Φ 1 x ptq . This way, we can write, for t P p´1, 1q and s P R:

Ψ x pt, sq x :" pλ 1,x t, α x ptqsq f pxq .
that corresponds to the action of A on vectors in the chosen coordinates (from now on we will remove the subindex of the point where the coordinates are chosen in the notation).

Write α x ptq " ˘exppb x ptqq for some positive smooth function b x : p´1, 1q Ñ R (we will assume from now on that α x ptq is positive for simplicity).

We need to find functions c x : p´1, 1q Ñ R so that c x p0q " 0 with the property that Ψ x pt, exppc x ptqqq " pλ 1,x t, α x p0q exppc f pxq pλ 1,x tqqq which we can write as:

(3.4) c f pxq pλ 1,x tq `bx p0q " b x ptq `cx ptq.
This holds for almost every x P M , so we can solve c x as follows: Denote

b m " b f ´mpxq , c m " c f ´mpxq , λ 1,m " }D f ´mpxq f m | E 1 } ´1 " pλ 1 f ´1pxq ¨¨¨λ 1 f ´mpxq q ´1.
Then we get that for every k P Z ą0 that

(3.5) c x ptq " c k pλ 1,k tq `k ÿ j"1
´bj pλ 1,j tq ´bj p0q ¯.

Since λ 1,j tends to 0 exponentially fast and c k is smooth satisfying c k p0q " 0, we get that c k pλ 1,k tq tends to 0 exponentially fast for a µ-typical x by Birkhoff's theorem. Similarly, we have that the value of b j pλ 1,j tq ´bj p0q is also exponentially small so that the sum converges uniformly in t. Thus for a typical x we have

c x ptq " 8 ÿ j"1 ´bj pλ 1,j tq ´bj p0q ¯.
It is clear that the above expression gives the unique solution of equation (3.5). Notice also that the derivatives of c x can be solved by an analogous computation. Consequently we can show that the functions c x are C 8 smooth and derivatives of all orders vary measurably on the point x.

To get the family of sections ξ K 1,x one argues in the same spirit by looking at the bundle E Φ 1 x ptq quotiented by Rξ 1,x ptq, the same considerations on the smoothness apply.

Finally, we will need to add some component of ξ 1,x to ξ K 1,x in order to change the function r x in (3.3) into a polynomial. In the following let us abbreviate α x p0q and β x p0q as α x and β x respectively. Claim 3.5. There exists a measurable family of smooth functions tu x : p´1, 1q Ñ Ru xPM such that if we take ξ x ptq " ξ 1,x and ξ 1

x ptq " u x ptqξ x ptq ξK 1,x ptq and S " tS x " pξ x , ξ 1

x qu xPM we get that:

(3.6) A S px, tq " ˆαx p x ptq 0 β x ẇhere p x is a polynomial of degree ď d 0 where10 d 0 " t α´β χ 1 u `1. Proof. Let us then compute the map A in the coordinates S 1 . We have ξ 1

x ptq " u x ptqξ x ptq `ξK x ptq Þ Ñ pr x ptq `αx u x ptqqξ f pxq pλ 1,x tq `βx ξ K f pxq pλ 1,x tq. We can write r x ptq " p x ptq `r x ptq where p x ptq is a polynomial of degree ď d 0 and rx ptq " Opt d 0 `1q. We need to solve:

(3.7) u f pxq pλ 1,x tq " 1 β x pr x ptq `αx u x ptqq.
Let us then solve u x formally to see that one can only get a solution for sufficiently large d 0 . This is why one can only get to remove r x ptq up to a polynomial of that degree. Write u n ptq " u f ´npxq ptq, rn ptq "

rf ´npxq ptq, λ 1,m " }D f ´mpxq f m | E 1 } ´1 " pλ 1 f ´1pxq ¨¨¨λ 1 f ´mpxq q ´1, α n " α f ´1pxq ¨¨¨α f ´npxq and β n " β f ´1pxq ¨¨¨β f ´npxq so that: (3.8) u x ptq " α k β k u k pλ 1,k tq `k ÿ j"1 ˆαj´1 β j rj pλ 1,j tq ˙.
Note that 1 j logpλ 1,j q d converges to ´dχ 1 while 1 j log α j β j converges to α β we can then choose d 0 so that for every x and d ě d 0 we have that pλ 1,j q d β ´1 j α j´1 converges exponentially fast to 0 (uniformly in t) as j Ñ `8. This happen as long as d 0 verifies that α ´β ´d0 χ 1 ă 0.

Using that rj pλ 1,j tq " pλ 1,j q d 0 `1Opt d 0 `1q we deduce that the function

u x ptq " 8 ÿ j"1 ˆαj´1 β j rj pλ 1,j tq (3.9)
is well defined and smooth along unstable manifolds.

This completes the proof of the proposition.

Remark 3.6. Note that if f is uniformly partially hyperbolic; E is Hölder continuous over M and smooth along unstable manifolds of f ; and A : E Ñ E is Hölder continuous over M , and smooth along unstable manifolds of f , then we can choose both sections ξ x , ξ K x to depend Hölder continuously on x near any predetermined point in M .

3.2. Construction of 0-good unstable coordinate charts. In this subsection we complete the proof of Proposition 2.12. Let us recall the statement.

Proposition 3.7. Every partially hyperbolic measure µ admits a family of 0-good unstable charts.

Proof. Fix first a family of Pesin charts tı 0

x u x (which are smooth charts varying measurably) from p´100λ 1,x , 100λ 1,x q 3 Ñ M as in [BP]. These are chosen to verify:

' ı 0 x p0, 0, 0q " x, ' B i ı 0
x p0, 0, 0q P E i x are unit vectors. Using the normal form coordinates, we can make a coordinate change (which we still call tı 0

x u x ) and further assume that the charts verify:

' ı 0 x pt, 0, 0q " Φ 1 x ptq, ' ı 0
x p0, 0, tq " Φ 3 x ptq. Recall the construction in Example 3.2. The derivative map Df on T M descends to a vector bundle automorphism on E " T M {E 1 over f . This vector bundle automorphism is clearly smooth along the unstable manifolds. We now write F 0

x :" pı 0 f pxq q ´1 ˝f ˝pı 0 x q " pF 0 x,1 , F 0 x,2 , F 0 x,3 q. Then tı 0 x u x gives us a smooth trivialization of E along unstable manifolds under which the bundle map takes form

t Þ Ñ ˆB2 F 0 x,2 pt, 0, 0q B 3 F 0 x,2 pt, 0, 0q B 2 F 0 x,3 pt, 0, 0q B 3 F 0 x,3 pt, 0, 0q ˙.
Now, if we apply Proposition 3.3 to this cocycle we can find a change of coordinates of the form:

px 1 , x 2 , x 3 q Þ Ñ px 1 , x 2 `a2 px 1 qx 2 `a3 px 1 qx 3 , x 3 `b2 px 1 qx 2 `b3 px 1 qx 3 q
that produces new charts ı x for which the conditions of 0-good charts are verified since it takes the derivative cocycle along unstable manifolds to normal form.

Remark 3.8. As in Remark 3.6, the 0-good unstable chart in Proposition 3.7 depends Hölder continuously on the base point near any predetermined point in M .

3.3. Two-dimensional cocycles for the ℓ-jets of the stable manifolds. We have the following. Proposition 3.9. If there is a family of pℓ´1q-good unstable charts tı x u xPM which moreover verify (2.8) for µ-almost every x P M and some functions T ℓ

x , a x , b x , then: (i) the derivatives B k 3 F x,2 pt, 0, 0q " 0 for μ1 x -a.e. t P p´1, 1q and 1 ď k ď ℓ, (ii) there is a ℓ-good family of unstable charts (i.e. so that (2.9) also holds).

The proof of this proposition relies on the study of cocycle normal forms. Related results have appeared in [BEFRH, Appendix A] and [START_REF] Tsujii | Smooth mixing Anosov flows in dimension three are exponential mixing[END_REF]Section 4].

In the rest of this subsection, we will assume that pf, µq admits a family of pℓ ´1q-good unstable charts verifying property (2.8) for some ℓ ě 2. Our goal here is to construct a two-dimensional cocycle in order to apply Proposition 3.3 to obtain Proposition 3.9(ii).

Given x P M and set y " f pxq. We are going to work in the pℓ ´1q-good charts centered at x and y. Let F x " pF 1 , F 2 , F 3 q be f written out in the pℓ ´1q-good chart coordinates as in equation (2.7), then we have ' F x p0, 0, 0q " p0, 0, 0q, ' and

(3.10)

F x px 1 , 0, 0q " pλ 1,x x 1 , 0, 0q
' and for μ1

x -a.e. x 1 we have that

˜BF 2 Bx 2 BF 2 Bx 3 BF 3 Bx 2 BF 3 Bx 3 ¸" ˆλ2,x 0 0 λ 3,x
ẇhere derivatives in the above expression are evaluated at p " px 1 , 0, 0q, and λ 2,x and λ 3,x are constants depending only on x.

Let x 1 P p´1, 1q be a μ1

x -typical value. In other words, Φ 1

x px 1 q is a µtypical point. In particular, we may assume that W 3 1 pΦ 1

x px 1 qq is defined. By (2.8), we may define apx 1 , sq, bpx 1 , sq by ı ´1 x pW 3 loc pΦ 1

x px 1 qqq " tpx 1 `apx 1 , sq, bpx 1 , sqs ℓ`1 , sq : s P p´1, 1qu. We can deduce Proposition 3.9(i) from the following lemma.

Lemma 3.10. If a family of unstable normal coordinate charts verifies (2.8) then for every multi-index α " pα 1 , α 3 q with α 1 ě 0 and 0 ď α 3 ď ℓ, if we denote BX α " Bx α 1 1 Bx α 3 3 we have that B |α| F 2 BX α px 1 , 0, 0q " 0 for μ1 x -a.e. x 1 P p´1, 1q.

Proof. Since F 2 px 1 , 0, 0q " 0, then, for every i ě 0, we have that B i 1 F 2 px 1 , 0, 0q " 0 for all i ě 0. Also, by (2.8) and the f -invariance of W 3 we have that for μ1

x -a.e. x 1 P p´1, 1q, F 2 px 1 `apx 1 , sq, bpx 1 , sqs ℓ`1 , sq " Ops ℓ`1 q.

Here we allow the implicit constant in Op¨q on the right hand side above to depend on F and x 1 , but of course independent of s. We deduce that for every i P t1, ¨¨¨, ℓu, and μ1

x -almost every x 1 P p´1, 1q we have 0 " B i s tF 2 px 1 `apx 1 , sq, bpx 1 , sqs ℓ`1 , squ| s"0 " B i 3 F 2 px 1 , 0, 0q. By our hypothesis that μ1

x is not atomic, there is a subset of x 1 with full μ1

x -measure and no isolated points. Then we deduce for every i as above and every m ě 0 and μ1

x -a.e.

x 1 that B i`m F 2 Bx m 1 Bx i 3 px 1 , 0, 0q " 0.
This concludes the proof.

For a μ1

x -typical x 1 , we consider the collection of (germs of) curves of the form:

t Þ Ñ px 1 `Optq, bt ℓ`1 `Opt ℓ`2 q, ct `Opt 2 qq. We consider two curves to be equivalent if their values of b and c coincide. Then for each x 1 P p´1, 1q, we may use pb, cq in R 2 to parametrize the equivalence classes of smooth curves through px 1 , 0, 0q. This gives rise to a R 2 bundle over p´1, 1q for µ-almost every x P M .

We now show that the above construction gives rise to a R 2 bundle defined µ-almost everywhere.

Proposition 3.11. Let tĩ x u xPM be another pℓ´1q-good unstable chart which verifies (2.8). For µ-a.e. x, we define H x " ĩ´1

x ˝ıx . Given a µ-typical x and μ1

x -typical x 1 , H x maps an equivalence class of curves through p " px 1 , 0, 0q in the chart ı x to an equivalence class of curves through p in the chart ĩx .

Proof. First, we notice that the following analogous statement as in Lemma 3.10 holds.

Lemma 3.12. For every multi-index α " pα 1 , α 3 q with α 1 ě 0 and 0 ď α 3 ď ℓ, if we denote BX α " Bx α 1 1 Bx α 3 3 we have that B |α| Hx BX α px 1 , 0, 0q " 0 for μ1

x -a.e. x 1 P p´1, 1q.

We omit the proof of Lemma 3.12, which is almost identical to that of Lemma 3.10.

We write H x " pH 1 , H 2 , H 3 q. By definition, we have for every s P p´1, 1q that H 1 ps, 0, 0q " s, H 2 ps, 0, 0q " H 3 ps, 0, 0q " 0. (3.11) Take a curve γptq " px 1 ptq, x 2 ptq, x 3 ptqq of form γptq " px 1 `Optq, bt ℓ`1 `Opt ℓ`2 q, ct `Opt 2 qq.

Then by Lemma 3.12 and (3.11) we can write H x ˝γptq as

px 1 `Optq, r BH 2 Bx 2 ppqb `1 pℓ `1q! B ℓ`1 H 2 Bx ℓ`1 3 ppqc ℓ`1 st ℓ`1 `Opt ℓ`2 q, BH 3 Bx 3 ppqct `Opt 2 qq.
From the above expression it is straightforward to conclude the proof.

We can thus construct a measurable R 2 bundle Ẽℓ over a µ-full measure subset of M that is smooth along unstable manifolds, and the action of f corresponds to a self-map F of Ẽℓ over f . Notice that F is not a linear bundle automorphism.

The following proposition says that p Ẽℓ , F q has pE ℓ , F q a linear bundle automorphism as a factor, after a polynomial change of coordinates pb, cq Þ Ñ pb, c ℓ`1 q. Proposition 3.13. Let F x denote the action of f in pℓ ´1q-good unstable charts tı x u xPM as above and assume that equation (2.8) is verified, then, for every p " px 1 , 0, 0q we have

(3.12) ˆBpℓ`1q y 2 pBy 3 q ℓ`1 ˙" ˜λ2,x B ℓ`1 F 2 Bx ℓ`1 3 ppq 0 λ ℓ`1 3,x ¸ˆB pℓ`1q x 2 pBx 3 q ℓ`1
ẇhere t Þ Ñ px 1 ptq, x 2 ptq, x 3 ptqq represents a curve through p in the chart at x, and t Þ Ñ py 1 ptq, y 2 ptq, y 3 ptqq " F x px 1 ptq, x 2 ptq, x 3 ptqq represents a curve through F x ppq in the chart at f pxq.

Proof. Consider p " px 1 , 0, 0q with a μ1

x -typical x 1 . We look at the image by F x of a curve γ : p´ε, εq Ñ p´1, 1q 3 through p of the form (for some values of b, c P R):

t Þ Ñ px 1 `Optq, bt ℓ`1 `Opt ℓ`2 q, ct `Opt 2 qq. Using Lemma 3.10 and Taylor's expansion we get that the map F x ˝γ is of the form:

t Þ Ñpλ 1,x px 1 `Optqq, λ 2,x bt ℓ`1 `1 pℓ `1q! B ℓ`1 F 2 Bx ℓ`1 3 ppqc ℓ`1 t ℓ`1 `Opt ℓ`2 q, λ 3,x ct `Opt 2 qq.
By a substitution pb, ĉq " pb, c ℓ`1 q, we have

pb, ĉq Þ Ñ pλ 2,x b `1 pℓ `1q! B ℓ`1 F 2 Bx ℓ`1 3 ppqĉ, λ ℓ`1 3,x ĉq.
Since we have pb, cq " p 1 pℓ`1q! B pℓ`1q x 2 ptq| t"0 , Bx 3 ptq| t"0 q, this completes the proof.

This will be used in the next subsection to complete the proof of Proposition 3.9.

Remark 3.14. The bundles defined in this section correspond to some components of the pℓ `1q-jet bundle of curves through typical points in unstable manifolds of generic points.

3.4. Construction of ℓ-good charts. Proposition 3.9 is a consequence of the following proposition.

Proposition 3.15. Assume that f admits pℓ ´1q-good unstable charts tı x u x and that equation (2.8) is verified, then there is a smooth change of coordinates which produces ℓ-good unstable charts for f .

Besides proving Proposition 3.9, the proof of this proposition allows us to obtain a formula for the change of coordinates.

Proof. We are in the situation of Proposition 3.13 and thus we can write the action on pℓ `1q-jets as a cocycle as in formula (3.12). Applying Proposition 3.3 one can obtain a smooth change of coordinates of the form (3.13) px 1 , x 2 , x 3 q Þ Ñ px 1 , x 2 `ux,ℓ px 1 qx ℓ`1 3 , x 3 q giving that the action on pℓ`1q-jets is polynomial and thus providing ℓ-good unstable charts as desired.

Remark 3.16. Assume that f is uniformly partially hyperbolic, then we can inductively show that ℓ-good unstable charts, if they exist, can be made to depend Hölder continuously in a neighborhood of any predetermined x P M .

When ℓ " 0, this is the content of Remark 3.8. Now we consider the general case. Given an arbitrary x P M , and a family of pℓ´1q-good unstable charts tι x u xPM depending Hölder continuously on the base point near x, both the bundle Ẽℓ and F constructed above depend Hölder continuously on the base point near x. Since x is arbitrary, the bundle Ẽℓ and F are Hölder, and smooth along the unstable manifolds. Then by Remark 3.6, the chart we obtained by applying Proposition 3.15 satisfies the inductive hypothesis: they can be made Hölder, possibly after a coordinate change, in a neighborhood of any predetermined x.

Improvement of charts.

Here we prove the following proposition that is the starting point of the proof of Theorem 2.24.

Proposition 3.17. Let µ be a partially hyperbolic measure and tı x u a family of ℓ-good unstable charts. If there exists an integer d 0 ą 0 such that the stable templates of pℓ`1q-jets T ℓ

x (given by (2.8)) are polynomials of degree at most d 0 for almost every x P M , then µ admits pℓ `1q-good unstable charts. The symmetric statement holds for ℓ-good stable charts.

Proof. By equation (2.8) we have:

ı ´1 x pW 3 loc pΦ 1
x ptqqq " tpt `Opsq, T ℓ x ptqs ℓ`1 `Ops ℓ`2 q, sq : s P p´1, 1qu for some ρ 1 ą 0 depending only on f and ℓ.

Since we know by assumption that T ℓ x is a polynomial, we can consider the new smooth charts ı 1

x " ı x ˝ψx where: (3.14) ψ x pt, u, sq " pt, u `Tℓ x ptqs ℓ`1 , sq. We have ψ ´1

x pt, u, sq " pt, u ´Tℓ x ptqs ℓ`1 , sq. Then pı 1

x q ´1pW 3 ρ 1 pΦ 1 x ptqqq " ψ ´1

x ˝ı´1

x pW 3 ρ 1 pΦ 1 x ptqqq " tpt`Opsq, Ops ℓ`2 q, sq : s P p´1, 1qu. Thus the new charts verify condition (2.8). Using Proposition 3.9 we complete the proof of the proposition.

3.6. The uniform case. The results in this section extend to the uniform setting with minor modifications. Let us state the results we will use and discuss briefly the adaptations needed to obtain such statements.

We first need the notion of ℓ-good uniform unstable charts, where the measurability is changed to continuity. This makes sense in view of the uniformity and the fact that normal form coordinates vary continuously with the point. (This is one of the main issues in extending this study to higher dimensions.) Definition 3.18 (0-good uniform unstable charts). Let Λ be a partially hyperbolic set of a smooth diffeomorphism f on a closed 3-manifold. A continuous collection of smooth diffeomorphisms tı x : p´2}Df }, 2}Df }q 3 Ñ M u xPM is a familly of uniform unstable coordinate charts if it verifies that for every x P Λ we have that ı x pt 1 , 0, 0q " Φ 1

x pt 1 q, ı x p0, 0, t 3 q " Φ 3 x pt 3 q for t 1 , t 3 P p´1, 1q, B 2 ı x p0, 0, 0q is a unit vector in E 2 pxq and if we write F x :" ı ´1 f pxq ˝f ˝ıx " pF x,1 , F x,2 , F x,3 q then we have that F x : p´1, 1q 3 Ñ R 3 verifies:

(i) B 2 F x,2 pt, 0, 0q " λ 2,x for all t P p´1, 1q, (ii) B 3 F x,3 pt, 0, 0q " λ 3,x for all t P p´1, 1q.

(iii) B 2 F x,3 pt, 0, 0q " 0 for all t P p´1, 1q. A familly of unstable uniform coordinate charts is called 0-good if moreover, there is some d ě 1(independent of x P Λ) such that (3.15) B 3 F x,2 pt, 0, 0q is a polynomial of degree ď d in t P p´1, 1q.

Remark 3.19. Technically, since Λ may have some topology, it is possible that the tangent space T Λ M which splits in 3-bundles E 1 ' E 2 ' E 3 cannot be coherently oriented. This imposes an obstruction for the existence of uniform coordinate charts. There are several solutions for this issue. One is to take a finite cover of (a neighborhood of) Λ and work there. Note that our results are independent of this finite cover and thus this will not result in a loss of generality. Taking charts defined on a fixed square is convenient to avoid charging the notation. We will thus implicitly assume throughout that the bundles are orientable and therefore this obstruction is not existing. The reader not comfortable with this assumption can consider either local families of smooth diffeomorphisms or directly parametrize the charts in cubes defined in the tangent space of each point.

We can use the cocycle normal forms which admit continuous versions to improve the charts and get: Definition 3.20 (ℓ-good uniform unstable charts). Let tı x u xPΛ be a family of 0-good unstable charts a partially hyperbolic set Λ. We say the family is ℓ-good if for every x P Λ there are (unique) continuous functions T ℓ

x : p´1, 1q Ñ R, a x : p´1, 1q 2 Ñ R and b x : p´1, 1q 2 Ñ R such that for every t P p´1, 1q so that Φ 1

x ptq P Λ we have that: (3.16) ı ´1 x pW 3 1 pΦ 1 x ptqqq " tpt `ax pt, sqs, T ℓ x ptqs ℓ`1 `bx pt, sqs ℓ`2 , sq : s P p´1, 1qu. and for some uniform constant d :" dpℓ, f q (independent of x) we have that (3.17) B ℓ 3 F x,2 pt, 0, 0q is a polynomial of degree ď d in t P p´1, 1q.

We will need the following result whose proof in the uniform setting is identical and left to the reader (note in particular that the same steps can be used as explained in Remark 3.16).

Proposition 3.21. Every partially hyperbolic set Λ admits a famiily of 1good uniform unstable charts. Moreover, if Λ admits a familly of ℓ-good uniform unstable charts and the template T ℓ

x given by equation (3.16) is a polynomial of degree dpℓq for every x, then Λ admits pℓ `1q-good uniform unstable charts.

Proof of the dichotomy: Proposition 2.19

We let f : M Ñ M be a smooth diffeomorphism and let µ be a nondegenerate partially hyperbolic ergodic measure (cf. Definition 2.1) with ℓ-good unstable charts (cf. Definition 2.13).

For a compact set K Ă M and x P K we denote Kx " pΦ 1 x | p´1,1q q ´1pK q. Under our non-degeneracy assumption we have: Lemma 4.1. For every compact subset K Ă M with µpKq ą 0 we have that for µ-almost every x P K the set W 1 1 pxq X K is infinite. Proof. Let A " tx P M : μ1

x has at least one atomu. Since A is f -invariant, by ergodicity it either has zero or full µ-measure. Since µ is non-degenerate, A has zero measure. For almost every x P K, we have x R A and µ 1

x pW 1 1 pxqX Kq ą 0 since µpKq ą 0. For any such x, W 1 1 pxq X K is infinite. Proposition 2.19 is a consequence of the following: Proposition 4.2. Let µ be a partially hyperbolic measure admitting ℓ-good unstable charts. Then there exists an integer d :" dpℓ, f, µq ą 0 such that:

(i) either for µ-a.e. x P M we have that T ℓ x is a polynomial of degree d when restricted to a full measure set with respect to μ1

x , (ii) or for µ-a.e. x P M if S x Ă p´1, 1q is a subset with positive μ1

x measure, then T ℓ x | Sx is not smooth in the sense of Whitney. Proof. We write λ pnq i,x :" λ i,f n´1 pxq ¨¨¨λ i,x P t˘}D x f n | E i pxq }u for i P t1, 3u, for each integer n ě 0 and for µ-a.e. x. We will use the notation J pnq x :" p´pλ pnq 1,x q ´1, pλ pnq 1,x q ´1q. Since we have ℓ-good unstable charts, by definition there is an integer d such that (2.9) holds. Iterating (2.11) we get the following formula for t P J x q m q ă 0 for every m ě d and µ-a.e. x P M. Note that it suffices to take d ą χ 2 ´pℓ `1qχ 3 `pℓ `2qǫ χ 1 ´ǫ .

We denote by A Ă M the set of x P M with the following property: there is a compact set S x of positive μ1

x -measure such that T ℓ x is smooth in the sense of Whitney on S x . We assume that µpAq ą 0, for otherwise we already have (ii). Then by ergodicity and by (2.11), we have µpAq " 1. By definition, it is clear that for every x P A and for almost every y (with respect to µ 1

x ) in a neighborhood of x, we have y P A. We may upgrade the set A in the following the way. We denote by B Ă M the subset of x P M such that for every x P B, there is a compact set S x of positive μ1

x -measure such that T ℓ x is smooth in the sense of Whitney on S x and moreover x is a density point of S x with respect to μ1

x . By definition, we see that for every x P A, the set B X W 1 loc pxq has positive μ1

x -measure. Since we have seen that A is a full measure set. This means that µpBq ą 0. Then by ergodicity, we have µpBq " 1.

We fix some small constant ε ą 0. By Lusin's lemma, there is a compact subset Q Ă B such that µpQq ą 1 ´ε 100 , and the conditional measure µ 1 x depend continuously on x P Q. Moreover, by slightly reducing the size of Q if necessary, we may assume in addition to the above that T ℓ

x , as a function defined μ1

x -almost everywhere, depends continuously on x P Q, in the following sense. For every Cauchy sequence tx n u ně0 in Q converging to some x P Q, there exists a compact subset E n Ă p´1, 1q for each n ě 0 such that, as n tends to infinity, μ1

xn pE n q converges to 1, and E n converges in Hausdorff's distance to a compact subset E of μ1

x -measure 1, such that for every sequence tt n P E n u ně0 converging to t P E, we have that T ℓ xn pt n q converges to T ℓ x ptq. Summarizing the above, we deduce that there is a point x P Q with the following properties:

' one has that µptf n pxqu ně0 X Qq " µpQq, ' there is a compact set Ŝx Ă supppμ 1 x q so that T ℓ x | Ŝx is smooth in the sense of Whitney, and

' μ1 x p ŜxXJ pnq x q μ1 x pJ pnq x q
tends to 1 as n tends to infinity.

We can write (cf. (2.12)) for some c ą 1 that: (4.4)

T ℓ x ptq " a x,1 t`. . .`a x,d t d `T ℓ x ptq where | Tℓ x ptq| ă c|t| d`1 if t P ˆ´1 c , 1 c ˙X Ŝx .
Pick y P Q so that µpB ε pyq X Qq ą 0 for all ε ą 0, and a sequence n i Ñ 8 so that f n i pxq P Q, and converges to y. Notice that we can deduce from (4.2) and (4.4):

(4.5)

T ℓ f n i pxq ptq " Qpn i q f n i pxq ptq `αpn i q

f n i pxq Tℓ x pβ pn i q f n i pxq tq
where Qpn i q x ptq is a polynomial of degree ď d. If

β pn i q f n i pxq t P Ŝx X J pn i q x
we have that (4.6) α

pn i q f n i pxq Tℓ x pβ pn i q f n i pxq tq ď α pn i q f n i pxq cpβ pn i q f n i pxq q d`1 |t| d`1 .
Notice that the μ1 f n i pxq -measure of the set of t satisfying β pn i q f n i pxq t P Ŝx X J pn i q x is at least μ1 x p Ŝx X J pn i q x q{μ 1 x pJ pn i q x q which tends to 1 as i tends to infinity.

Up to passing to a subsequence of pn i q iě0 , we have that for every i ě 0 there exist a polynomial R i of degree ď d, and a subset E i Ă p´1, 1q such that: as i tends to infinity, μ1 f n i pxq pE i q converges to 1; E i converges in the Hausdorff's distance to a subset E Ă p´1, 1q of full μ1 y -measure; and for every sequence tt i P E i u iě0 , we have R i pt i q converges to T ℓ y ptq. Since a polynomial with degree ď d is determined by its values at d `1 points, we deduce that T ℓ y is a polynomial of degree d on a full μ1 y -measure set for every y P Q. By letting ε tend to 0 we deduce that T ℓ y is a polynomial of degree d when restricted to the support of μ1

x for µ-a.e. x P M .

Polynomials and rational functions

We consider the collections of functions Poly d " tp : r´1, 1s Ñ R : p is a polynomial of degree ď du and Rat d " t q p : r´1, 1s Ñ R : p, q P Poly d ; pptq ‰ 0 @t P r´1, 1su. Clearly we have that Poly d Ă Rat d . We note that Poly d is a linear subspace of C 0 pr´1, 1sq, but Rat d is not.

We will need a compactness result which is standard for polynomials. We first give a definition. Given constants k P Z ą0 , σ, η ą 0, we say that a subset E Ă r´1, 1s is pk, σ, ηq-spread if for any intervals I 0 , . . . , I k such that ř i |I i | ă η we have that Ez Ť I i has at least k `1 points with pairwise distances strictly larger than σ.

Proposition 5.1. For every d P Z ą0 , σ, η ą 0 there is C :" Cpd, σ, ηq ą 0 such that for any pd, σ, ηq-spread subset E Ă r´1, 1s, and any R P Rat d satisfying sup tPE |Rptq| " 1, the following is true:

(i) there are intervals I 0 , . . . , I d such that ř i |I i | ă η and |R 1 ptq| ă C for every t P r´1, 1sz Ť I i , (ii) there are intervals J 0 , . . . , J 2d such that

ř i |J i | ă η and |Rptq| ą C ´1 for every t P r´1, 1sz Ť J i .
Remark 5.2. We will use this result in intervals of varying length (not always r´1, 1s) and for rational functions with possibly different normalizations (not always sup tPE |Rptq| " 1). If the rational function R is defined in ra, bs and sup tPE |Rptq| " A with E Ă ra, bs is such that ξpEq is pd, σ, ηq-spread where ξ : ra, bs Ñ r´1, 1s is the unique affine bijection, then we can apply the result to Rptq " 1 A Rpξ ´1ptqq which is a rational function of the same degree defined on r´1, 1s. We obtain that the derivative of R is less than C " Cpd, σ, ηq except in a finite family of intervals which cover a small proportion (less than η) and thus the derivative of R is less than C Apb´aq by the chain rule. In the same way, the lower bound for |Rptq| in (ii) becomes A C . To prove this proposition we will need the following elementary result that will also serve other purposes: Lemma 5.3. Let C 0 , σ ą 0 and let pR n P Rat d q ně1 be a sequence of rational functions such that for every n ě 1 there exist points t 0,n , . . . , t d,n P r´1, 1s with pairwise distances strictly larger than σ verifying that sup i |R n pt i,n q| ď C 0 . Then, there exist a subsequence n j Ñ 8, points s 1 , . . . , s d P D 2 , and a rational function R 8 P Rat d (whose poles are contained in ts 1 , . . . , s d u) such that R n j converges to R 8 uniformly on compact subsets of D 2 zts 1 , . . . , s d u (where D 2 " tz P C : |z| ď 2u).

To see the need to take out some points from the interval, we may consider the sequence tR n pzq " 1 nz 2 `1 u ně1 . Proof. We can write (5.1) R n pzq " c n ś kn i"1 pz ´ai,n q ś mn j"1 pz ´bj,n q .

where c n , a i,n , b j,n P C and 0 ď k n , m n ď d 11 . Up to considering a subsequence, we can assume that k n " k and m n " m are constant for all n and that

c n Ñ c 8 , a i,n Ñ a i,8 , b j,n Ñ b j,8 all converge in C " C Y t8u.
We order a i,n and b j,n so that they decrease in modulus. We let k P t1, . . . , k`1u and m P t1, . . . m`1u the smallest integers so that a k,8 , b m,8 P C (so that a i,8 " 8 if i ă k and b j,8 " 8 if j ă m; if k " k `1 or m " m`1 means that all coefficients diverge).

We will use the fact that the functions are bounded to show the following:

Claim 5.4. Up to taking further a subsequence we have that the sequence of functions ĉn pzq :" c n ś k´1 i"1 pz ´ai,n q ś m´1 j"1 pz ´bj,n q converges uniformly in D 2 to a constant function ĉ8 P C.

Proof. Up to taking a subsequence we can assume that the tuple of points pt i,n q d i"0 converge to the tuple of points pt i,8 q d i"0 P r´1, 1s d which are pairwise at distance ě σ. By k ´k ď d, we can assume without loss of generality that t 0,n is uniformly far from a i,n for all k ď i ď k (and therefore for all

1 ď i ď k as a i,n Ñ 8 if i ă k).
It is enough to show that the functions ĉn pzq are bounded uniformly in some point of D 2 since one can compute the logarithmic derivative as:

ĉ1 n pzq ĉn pzq " k´1 ÿ i"1 1 z ´ai,n ´m´1 ÿ j"1 1 z ´bj,n ,
which converges uniformly to 0 in D 2 because the coefficients a i,n and b j,n diverge.

11 We use the convention that ś 0 i"1 pz ´γiq " 1.

To get the uniform boundedness, we compute the value of ĉn in the point t 0,n P r´1, 1s Ă D 2 . Notice that R n pt 0,n q " ĉn pt 0,n q ś k i" kpt 0,n ´ai,n q ś m i" mpt 0,n ´bi,n q is uniformly bounded. Since the product ś k i" kpt 0,n ´ai,n q is uniformly bounded from below and R n pt 0,n q is uniformly bounded from above, we get the desired result. Now it is easy to show that outside any given neighborhood of tb m,8 , . . . , b m,8 u in D 2 the sequence pR n q ně1 converges uniformly to (5.2) R 8 pzq " ĉ8

ś k i"
kpz ´ai,8 q ś m i" mpz ´bi,8 q .

The rational function R 8 verifies the desired properties.

Proof of Proposition 5.1. We proceed by contradiction and find a sequence R n " Qn Pn P Rat d so that there are pd, δ, ηq-spread sets E n Ă r´1, 1s so that |R n ptq| ď 1 for all t P E n and for every family of intervals I 1 , . . . , I d whose sum of lengths do not excede δ there is some t P r´1, 1sz

Ť I i so that |R 1 n ptq| ą n.
Using Lemma 5.3 we can find a rational function R 8 P Rat d , a subsequence n j Ñ 8 and points s 1 , . . . , s d P C containing the poles of R 8 such that R n j Ñ R 8 on every compact subset of D 2 zts 1 , . . . , s d u. In particular, on every compact subset of D 2 zts 1 , . . . , s d u we have that R 1 n j Ñ R 1 8 uniformly. By covering the points s 1 , . . . , s d P R with small intervals whose lengths add up to less than σ we find a contradiction since R 1 8 is bounded away of those intervals. This proves (i).

To prove (ii), one can use that R 8 has the form given by equation (5.2) and use logarithmic derivatives (i.e. consider the derivative of logpR 8 q) to see that

R 1 8 pzq R 8 pzq " ÿ i 1 z ´ai ´ÿ j 1 z ´bj , a i , b j P C.
It follows that by a contradiction argument we can bound R 8 pzq from below away from the 2d points a i , b j (counted with multiplicity). This concludes the proof of the proposition.

Distance to rational functions

This section is devoted to showing the following statement.

Proposition 6.1. Let µ be a partially hyperbolic measure with ℓ-good unstable charts tı x u such that the stable templates T ℓ x (cf. (2.8)) are not in Poly d for some d " dpf, ℓq " Opℓq. Then µ has QNI.

As a consequence, using Proposition 3.17 we deduce the following. Corollary 6.2. If µ does not have QNI then it admits ℓ-good stable and unstable charts for every integer ℓ ě 1.

Remark 6.3. The proof of Proposition 6.1 can be simplified if one knows that the center unstable direction is more regular, for instance, if f where an Anosov diffeomorphism with expanding center direction, then it gets simpler as the full unstable foliation is of class C 1`. This allows us to consider only polynomials instead of general rational functions in the proof below. However, to apply the result for f ´1 one would need to deal with the lack of integrability and regularity of the center stable subspaces (note that it is very rare for both the center stable and the center unstable subspaces be more regular than Hölder).

6.1. Some uniform distance. We now deduce some consequences from the hypothesis that the functions T ℓ

x are not polynomials. Let d 1 be a sufficiently large positive integer depending only on f, ℓ, to be determined later. The underlying assumption of this section is that µ is a non-degenerate partially hyperbolic measure with ℓ-good charts and the functions T ℓ

x are not polynomials of degree ď d 1 restricted to the support of μ1

x for almost every x. By ergodicity, we see that item (ii) of Proposition 4.2 holds. Proposition 6.4. For every ε ą 0, for every integer d ą 0, there is a compact set K Ă M with µpKq ą 1 ´ε such that for every ν ą 0 there is c :" cpd, ν, εq ą 0 such that for any x P K and any polynomials P, Q of degree ď d, the set (6.1) I P,Q x,c " " t P p´1, 1q : ˇˇˇT ℓ x ptq ´Qptq P ptq ˇˇˇď c * satisfies that μ1

x pI P,Q x,c q ď ν.

Note that since T ℓ x is defined on a μ1

x -full measure set, the set I P,Q x,c is also only defined up to a μ1

x -null measure set (also recall that μ1

x is normalized so that it is a probability measure in p´1, 1q).

Proof. We proceed by contradiction. We notice that if c ă c 1 then I P,Q

x,c Ă I P,Q

x,c 1 . If the result does not hold then there exist an integer d ą 0, a constant ν ą 0, and a compact set K 0 Ă M with µpK 0 q ą 0 such that for every x P K 0 , for every integer n ą 0 there exist polynomials P n , Q n : p´1, 1q Ñ R of degree ď d such that μ1

x pI Pn,Qn x,1{n q ą ν. By reducing the size of K 0 if necessary, we may assume in addition that all objects we will consider vary continuously on K 0 (cf. Proposition B.1).

We now show that there exists δ ą 0 such that each set I Pn,Qn x,1{n contains d `1 points with pairwise distances larger than δ.

Since by assumption µ is non-degenerate, we may assume that μ1

x are nonatomic probabilities varying continuously on x restricted to the compact set K 0 , for any ν ą 0 there exists δ ą 0 (which depends on µ, ν, d and K 0 ) so that for every x P K 0 , every subset of p´1, 1q with μ1

x -measure larger than ν must contain d `1-points with pairwise distances larger than δ.

Let us fix an arbitrary x P K 0 . Up to taking some subsequence, we can apply Lemma 5.3 to obtain a rational function R 8 P Rat d such that Qn Pn Ñ R 8 uniformly away from finitely many points in r´1, 1s. We deduce that T ℓ

x coincides with a rational function in a set of positive μ1

x measure (this is because we can remove intervals of uniform size around the points where the convergence is not uniform, and this will cover no more than half the measure of μ1

x , so there is a positive measure set where the template coincides with a rational function, in particular smooth). Since µpK 0 q ą 0 and x is arbitrary, we can apply Proposition 4.2 to get a contradiction. Remark 6.5. Note that we cannot ensure with the limiting process that the template will coincide with a smooth function in some open set of the support a priori. This is why we need to deal with density points and apply Proposition 4.2.

Before stating the next proposition, we recall the notation (2.3): W 1,k 1 pxq " f ´kpW 1 1 pf k pxqqq and W 3,k 1 pxq " f k pW 3 1 pf ´kqq. Proposition 6.6. There exists δ :" δpf, ℓ, µq ą 0 such that for every integer d 1 ą 0, every ε ą 0 there is Q Ă M with µpQq ą 1 ´ε 10 such that for every ν ą 0, there is c :" cpf, µ, d 1 , ε, νq ą 0 such that for every x P Q, every k ą 0 such that f k pxq P Q and every pair of polynomials Q, P of degree

ď d 1 there is a set U Q,P,x,k Ă W 1,k 1 pxq such that µ 1 x pU Q,P,x,k X W 1,k 1 pxqq ą p1 ´νqµ 1
x pW 1,k 1 pxqq and (6.2) ˇˇˇT ℓ

x ptq ´Qptq P ptq ˇˇˇą ce ´δk , @t P pΦ 1

x q ´1pU Q,P,x,k q.

Proof. Let Q 0 be a compact set such that µpQ 0 q ą 1 ´ε 100 and every object we will consider varies continuously as in Proposition B.1. We apply Proposition 6.4 to ε{100 and get a set Q 1 verifying Proposition 6.4 in place of K (in particular, µpQ 1 q ą 1 ´ε 100 ). Then the set Q " Q 0 X Q 1 satisfies µpQq ą 1 ´ε 10 . Proposition 6.4 gives a constant c 0 ą 0 so that for every pair of polynomials P 0 , Q 0 of degree ď d 1 and a point x P M with f k pxq P Q, we have that μ1

f k pxq pI P 0 ,Q 0 f k pxq,c 0 q ă νµ 1 f k pxq pW 1 1 pf k pxqqq " ν (recall that µ 1
f k pxq is of unit mass restricted to W 1 1 pf k pxqq). Let d 1 be sufficiently large so that B ℓ`1 3 F x,2 p¨, 0, 0q is a polynomial of degree ď d 1 for µ-a.e. x. Now fix some point x P Q such that f k pxq P Q and polynomials P, Q of degree ď d 1 . By formula (2.11) and the fact that f has ℓ-good charts, we see that there is a polynomial of degree ď d 1 , denoted by R, such that for every t P p´pλ pkq 1,x q ´1, pλ pkq 1,x q ´1q we have that

(6.3) T ℓ x ptq " pλ pkq 3,x q ℓ`1 λ pkq 2,x T ℓ f k pxq pλ pkq 1,x tq `Rpλ pkq 1,x tq.
Therefore, to estimate ˇˇT ℓ x ptq ´Qptq P ptq ˇˇfor t P p´pλ pkq 1,x q ´1, pλ pkq 1,x q ´1q it is enough to estimate:

(6.4) ˇˇˇˇp λ pkq 3,x q ℓ`1 λ pkq 2,x
pT ℓ f k pxq pλ pkq 1,x tq ´Q0 ptq P 0 ptq q ˇˇˇf or some polynomials P 0 , Q 0 of degree at most 2d 1 . We let U P,Q,x,k be the set of points in W 1,k 1 pxq such that their images under f k do not belong to I P 0 ,Q 0 f k pxq,c 0 . Since the measure µ is invariant, we have that

µ 1 x pU P,Q,x,k q µ 1 x pW 1,k 1 pxqq " 1 ´µ1 f k pxq pΦ 1 f k pxq pI P 0 ,Q 0 f k pxq,c 0 qq µ 1 f k pxq pW 1 1 pf k pxqqq ě 1 ´ν.
Since x and f k pxq both belongs to Q, there exist δ " δpf, ℓ, µq ą 0 and c 1 " c 1 pf, Qq ą 0, so that λ pkq 2,x pλ pkq 3,x q ℓ`1 ě c 1 e ´δk . By (6.4) and ( 6.3), we can choose c " c 0 c 1 so that (6.2) holds for points in U P,Q,x,k . 6.2. Proof of Proposition 6.1. To show that Definition 2.8 is verified we will use the equivalent characterization of QNI in Lemma A.1.

Let V, α ą 0 be two constants, and let d 1 ą 0 be an integer, chosen depending only on f, µ at the end of proof. We fix an arbitrary constant ε ą 0. Using Proposition B.1, we choose a compact set P 1 Ă M with µpP 1 q ą 1 ´ε{100 which verify the following properties:

(i) W 1 1 pxq and W 3 1 pxq vary Hölder continuously with respect to x P P 1 in the smooth topology (see [START_REF] Barrira | Nonuniform hyperbolicity: dynamics of systems with non-zero Lyapunov exponents[END_REF]§8]); and the chart ı x has uniformly bounded smooth norm for all x P P 1 ; (ii) given ν ą 0, we have that for large enough j ą 0 and for every x P P 1 one has µ i x pW i,j 1 pxq X P 1 q ą p1 ´ν 10 qµ i x pW i,j 1 pxqq for i P t1, 3u. Consider ν n " 2 ´n and let Q n be the set given by Proposition 6.6 for the values ν n so that µpQ n q ą 1 ´pε{100q2 ´n. Consider Q " XQ n and P 0 " P 1 X Q which also verifies the previous properties (and µpP 0 q ą 1 ´ε). Moreover, we know that given ν ą 0 we know that if x, f k pxq P Q then equation (6.2) is verified for every rational function Q P of degree at most d 1 with δ depending only on f, ℓ, µ; and c depending only on f, ℓ, ν, ε, µ.

We fix some ν P p0, 1q from now on. In the following, we say that a constant C is uniform if C ą 0 and it depends only on f, µ and the sets given above. We will use c to denote a generic uniform constant which may vary from line to line.

We fix an arbitrary x 1 P P 0 . The Hölder condition in (i) ensures that there exist uniform constants c 1 , c 2 , γ 1 , γ 2 , r 0 ą 0 such that for y 1 " Φ 3

x 1 psq P W 3 r 0 px 1 q X P 1 , we may write (6.5) ı ´1 x 1 pW 1 loc py 1 qq " tpt 1 , Qpt 1 q, P pt 1 qqq : t 1 P p´r 0 , r 0 qu, where Q and P are smooth functions (with uniformly bounded derivatives of any given order) such that for t 1 P p´r 0 , r 0 q

(6.6) c 2 |s| γ 2 ă | P pt 1 q| `| Qpt 1 q| ă c 1 |s| γ 1 .
By making r 0 smaller if necessary, for any t P p´r 0 , r 0 q, we denote z 1 " Φ 1

x 1 ptq, and we have a well-defined t 1 as the unique constant depending on t and y such that pt 1 , P pt 1 qq belongs to π 1,3 pı ´1 x 1 pW 3 1 pz 1 qqq where π 1,3 is the projection from R 3 to its 1st and 3rd coordinates. By the Hölder condition, we deduce that |t 1 | ď C|t| γ 3 for some γ 3 ą 0 depending only on f and µ. We may write (6.7) ı ´1 x 1 pW 3 loc pz 1 qq " tpt `aptqu `ez 1 pt, uq, T ℓ x 1 ptqu ℓ`1 `ê z 1 puq, uq : u P p´r 0 , r 0 qu. Now assume that t is chosen as that z 1 P P 1 . Then there is a uniform constant c 3 ą 0 such that |aptq| ď c 3 , |e z 1 puq| ď c 3 u 2 and |ê z 1 puq| ď c 3 u ℓ`2 . Notice that we may deduce from the above bound that (6.8)

|t ´t1 | ă c 3 | P pt 1 q| `c3 | P pt 1 q| 2 ď 2c 3 | P pt 1 q|.
Lemma 6.7. There is a uniform constant c 4 ą 0 such that we have dpW 3 1 pz 1 q, W 1 1 py 1 qq ě c 4 | P pt 1 q ℓ`1 T ℓ x 1 ptq ´Qpt 1 q| ´c´1 4 | P pt 1 q| ℓ`2 . (6.9) Proof. Since tı x u is a family of ℓ-good unstable coordinates, we can see that the tangent spaces of the curves ı ´1 x 1 pW 3 loc pz 1 qq and ı ´1 x 1 pW 1 loc py 1 qq are both disjoint from a closed cone tpv 1 , v 2 , v 3 q : |v 1 | `|v 3 | ď c|v 2 |u for some constant c ą 0 independent of all choices of x 1 P P 0 , y 1 , z 1 P P 1 given above. Thus, by matching the 1st and 3rd coordinates of the expressions in (6.5) and (6.7), we have dpW 3

1 pz 1 q, W 1 1 py 1 qq ě c| P pt 1 q ℓ`1 T ℓ x 1 ptq `ê z 1 p P pt 1 qq ´Qpt 1 q|. By (6.7) and the choices of t, t 1 , we deduce that c| P pt 1 q ℓ`1 T ℓ

x 1 ptq `ê z 1 p P pt 1 qq ´Qpt 1 q| ě c 4 | P pt 1 q ℓ`1 T ℓ x 1 ptq ´Qpt 1 q| ´c´1 4 | P pt 1 q| ℓ`2 for some uniform constant c 4 ą 0. This concludes the proof.

We first consider the case where | P pt 1 q| ă c 2 |s| γ 2 {2. In this case, by (6.6), we have

| Qpt 1 q| ą c 2 |s| γ 2 {2. (6.10)
Then by Lemma 6.7 and by reducing the size of r 0 if necessary, we have RHS of (6.9) ě c 4 | Qpt 1 q| ´c´1 4 | P pt 1 q ℓ`1 T ℓ x 1 ptq| ´c´1 4 | P pt 1 q| ℓ`2 (6.11)

ě c 4 c 2 |s| γ 2 {2 ´cc ´1 4 pc 2 |s| γ 2 {2q ℓ`1 ě c 4 c 2 |s| γ 2 {4.
Now it remains to consider the case where | P pt 1 q| ě c 2 |s| γ 2 {2. Then we have (6.12)

c 2 |s| γ 2 {2 ď | P pt 1 q| ă c 1 |s| γ 1 .
We let d 1 be large depending only on f , µ and ℓ. Fix some s P p´r 0 , r 0 q. Denote r s " |s| C˚w here C ˚" 2γ 2 p2ℓ `3q γ 3 pd 1 `1q . (6.13) Now we fix an arbitrary t P p´r s , r s q such that z 1 P P 1 . Then we have |t 1 | ď 2r s , and RHS of (6.9) ě c 4 | P pt 1 q| ℓ`1 ˇˇˇˇT ℓ x 1 ptq ´Qpt 1 q P pt 1 q ℓ`1 ˇˇˇˇ´c ´1 4 | P pt 1 q| ℓ`2 . (6.14) Since y 1 P P 1 , there exists a uniform constant c 5 ą 0 so that Taylor's expansion gives Qpτ q " Qpτ q `qpτ q and P ℓ`1 pτ q " P pτ q `ppτ q such that |qpτ q|, |ppτ q| ă c 5 |τ | d 1 `1, and P, Q are polynomials of degree ď d 1 . By C ˚ą 2γ 2 pℓ`1q γ 3 pd 1 `1q and by reducing r 0 if necessary, we deduce |P pt 1 q| ě | P pt 1 q| ℓ`1 {2 ą 0 by (6.12) and |t 1 | ď Cr γ 3 s . Enlarging c 5 if necessary, the function β 5 pt 1 q :" | Qpt 1 q P pt 1 q ℓ`1 ´Qpt 1 q P pt 1 q | satisfies that (6.15)

β 5 pt 1 q ď 2c 1 c 5 |t 1 | d 1 `1|s| γ 1 | P 2pℓ`1q pt 1 q| .
Denote Rptq " Qptq P ptq P Rat d 1 . We have Rp0q " 0. By (6.9) and our choice of Q, P , we get

dpW 3 1 pz 1 q, W 1 1 py 1 qq ě c 4 | P pt 1 q| ℓ`1 |T ℓ x 1 ptq ´Rpt 1 q| ´c´1 4 | P pt 1 q| ℓ`2 ´c´1 4 | P pt 1 q| ℓ`1 β 5 ptq.
Then by (6.15) and by reducing c 4 if necessary, the distance dpW 3 1 pz 1 q, W 1 1 py 1 qq is bounded from below by

c 4 | P pt 1 q| ℓ`1 |T ℓ x 1 ptq ´Rpt 1 q| ´c´1 4 p| P pt 1 q| ´pℓ`1q |t 1 | d 1 `1|s| γ 1 `| P pt 1 q| ℓ`2 q ě c 4 | P pt 1 q| ℓ`1 |T ℓ x 1 ptq ´Rpt 1 q| ´cc ´1 4 | P pt 1 q| ℓ`2 . (6.16)
The last inequality above follows from (6.12), (6.13) and |t 1 | ď Cr γ 3 s . Recall that ν ą 0 is small constant that we have fixed at the beginning of the proof. We have the following. Claim 6.8. There exist constants V 0 , m 0 ą 0, d 1 " Opℓq and α 0 , C 0 ą 0 such that the following is true. Given any m ě m 0 , denote by I pmq " p´pλ pmq 1,x 1 q ´1, pλ pmq 1,x 1 q ´1q. Then, if x 1 P Q is such that f m px 1 q P Q, and s P p´r 0 , r 0 q is such that (6.17) ´log s

log λ pmq 1,x 1 P " 3 5 V 0 , 5 3 V 0  ,
and y 1 " Φ 3

x 1 psq P P 1 , there is a subset U y 1 of W 1,m 1 px 1 q " Φ 1 x 1 pI pmq q such that µ 1

x 1 pU y 1 q ą p1 ´νqµ 1 x 1 pW 1,m 1 px 1 qq, and for any z 1 " Φ 1 x 1 ptq P U y 1 we have (6.18) dpW 3 1 pz 1 q, W 1 1 py 1 qq ą C 0 e ´α0 m . Proof. Given some s P p´r 0 , r 0 q with Φ 3

x 1 psq P Q we can define the functions P and Q as in equation (6.5). We will find constants V 0 , m 0 and d 1 depending only on f, µ, ℓ and constants α 0 , C 0 so that if f m px 1 q P Q for some m ą m 0 and s verifies bounds in equation (6.17) with y 1 " Φ 3

x 1 psq P P 1 , then we verify (6.18). Note that the functions P and Q are well defined as longs as y 1 P P 1 so the rest of the constructions can be made.

We will fix V 0 ą 2 γ 1 and d 1 ą 10V 0 γ ´1 3 γ 2 pℓ `1q. Note that this will ensure that C ˚ă 3 5V 0 from our choice of C ˚. We will consider C 0 sufficiently small and α 0 , m 0 sufficiently large verifying some conditions that will be explicit in the proof. For a given m ą m 0 and s verifying condition (6.17) and Φ 1

x 1 psq P P 1 , we consider U s to be the set of points on which (6.18) holds.

We will divide the set I pmq " I Note that if we have | P pt 1 q| ď c 2 |s| γ 2 {2 (i.e. t 1 P I pmq ă ), then by (6.9) and (6.11), we have

dpW 3 1 pz 1 q, W 1 1 py 1 qq ě c 2 c 4 |s| γ 2 {4.
We can then deduce (6.18) with appropriate C 0 , α 0 and m 0 for all t 1 P I pmq ă . Thus, if C 0 is sufficiently small and α 0 sufficiently large and m sufficiently large, we have that I pmq ă can be considered fully contained in U s . We will now deal with I pmq ą and show that for an appropriate choice of C 0 , α 0 , if m is large we get that U s X I pmq ą covers I pmq ą except for a subset whose measure is at most ν μ1

x 1 pI pmq q. There exists σ ą 0 so that for every subset T Ă I pmq with μ1

x 1 pT q ě p1 ´ν{2qμ 1

x 1 pI pmq q it verifies that T is pd 1 , σ, ν{2q-spread in I pmq . By Proposition 5.1 (see Remark 5.2) there exists C :" Cpd 1 , σ, ν{2q ą 1 such that if R P Rat x -measure at most ν 2 μ1

x 1 pI pmq q. We can without loss of generality assume that t 1 P I pmq ą since we already know that I pmq ă Ă U s for well chosen values of the constants.

We choose the intervals so that there are I i Ť Îi with Îi containing the κ|I i |-neighborhood of I i , where κ ą 0 depends only on µ, f and Q, but is independent of i, x and m.

Let the rational function R be constructed as before so that (6.16) holds. Consider D " sup tPp´1,1q |Rptq| and D " sup tPp´1,1q |T ℓ x 1 ptq|. Assume first that D ě C D `1. Then, it follows that choosing t 1 P I pmq z Ť Îi we have that |Rpt 1 q ´Tℓ x 1 ptq| ą 1 and therefore by equation (6.16) we have that:

dpW 3 1 pz 1 q, W 1 1 py 1 q ě c 4 2 | P pt 1 q| ℓ`1 ě C 0 e ´α0 m ,
Where C 0 ! c 4 c ℓ`1 2 and α 0 and m 0 are large enough so that |s| γ 2 pℓ`1q ě e ´α0 m if m ě m 0 . So in this case it holds that U s contains I pmq z Ť i Îi . We can therefore assume from now on that D ď C D `1. By Proposition 6.6 and our choice of c ν , there exist δ " δpf, ℓ, µq ą 0 and a subset U 1 s Ă I pmq such that (as long as m 0 is sufficiently large) μ1

x 1 pU 1 s q ą p1 ´ν{10qµ 1

x 1 pI pmq q and if t P pΦ 1 x 1 q ´1pU 1 s q, then |T ℓ x 1 ptq ´Rptq| ą ce ´δm . We claim that U s contains U 1 s X pI pmq z Ť Îi q for well chosen values of C 0 , α 0 and sufficiently large m. By (6.8), (6.12) and the way we chose the intervals I i Ť Îi by letting |s| be smaller than some uniform constant, for any t P U s we have that t and t 1 belong to the same component of I pmq z Ť i I i , and consequently we have

|Rptq ´Rpt 1 q| ď CDλ pmq 1,x 1 |t ´t1 | ď c 6 λ pmq 1,x 1 | P pt 1 q| (6.19)
for some uniform constant c 6 ą 0 (note that here we used that D is uniformly bounded).

Putting together (6.16) and (6.19), we get that if t R J then there is a constant β 7 ptq and a uniform constant c 7 ą 0 such that dpW 3 1 pz 1 q, W 1 1 py 1 qq ě c 4 | P pt 1 q| ℓ`1 |T ℓ x 1 ptq ´Rptq| ´β7 ptq (6.20) where |β 7 ptq| ď c ´1 4 p| P pt 1 q| ℓ`1 |Rptq ´Rpt 1 q| `| P pt 1 q| ℓ`2 q ď c 7 λ pmq 1,x 1 | P pt 1 q| ℓ`2 . By (6.12), we have

| P pt 1 q| ℓ`1 ą c ℓ`1
2 |s| γ 2 pℓ`1q and | P pt 1 q| ď c 1 |s| γ 1 . By (6.20) we deduce that for any t 1 P U 1 s X pI pmq z Ť Îi q, we have

dpW 3 1 pz 1 q, W 1 1 py 1 qq ě c 4 | P pt 1 q| ℓ`1 ˜ce ´δm ´|β 7 ptq| | P pt 1 q| ℓ`1 ȩ c 4 | P pt 1 q| ℓ`1 ´ce ´δm ´c7 λ pmq 1,x 1 | P pt 1 q| ě c 8 |s| γ 2 pℓ`1q
´c8 e ´δm ´c´1 8 λ pmq 1,x 1 |s| γ 1 (6.21) for some uniform constant c 8 ą 0.

We fix a large constant m 0 ą 0 such that for every m ą m 0 , and every |s| ă pλ pmq 1,x 1 q ´3V 0 {5 , we have

λ pmq 1,x 1 |s| γ 1 ă c 2 8 2 e ´δm .
Then for every s satisfying (6.17), we have

dpW 3 1 pz 1 q, W 1 1 py 1 qq ě c 2 8 2 e ´δm pλ pmq 1,x 1 q ´5V 0 γ 2 pℓ`1q{3 .
which gives (6.18) for C 0 ă c 2 8 2 and α 0 so that e ´δm pλ pmq 1,x 1 q ´5V 0 γ 2 pℓ`1q{3 ě e ´α0 m .

Notice that, by the hypothesis that |t| ă r s , we need to ensure that

C ˚log |s| ě ´5C 3 V 0 log λ pmq 1,x 1 ě ´log λ pmq 1,x 1 ě log |t|, which is ensured by our choice of V 0 and d 1 .
This shows that U s contains U 1 s X pI pmq z Ť Îi q for well chosen values of C 0 , α 0 , m 0 and thus completes the proof.

Note that Claim 6.8 has put us under the conditions of Lemma A.1 from which we can deduce that QNI is verified for f . Indeed, let V 0 , α 0 , be given by Claim 6.8. Then by slightly reducing the size of P 0 if necessary, and by letting integer k 0 ě m 0 be sufficiently large depending only on f, µ, we may assume that for any x P P 0 and any k ą k 0 , we have k ´1 log λ k 3,f ´k pxq P p 99 100 χ 3 , 100 99 χ 3 q and k ´1 log λ pkq 1,x P p 99 100 χ 1 , 100 99 χ 1 q. We set V " ´χ1 V 0 {χ 3 and α " α 0 . Then for any integers k 1 , k 2 ě k 0 such that k 2 k 1 P p 2 3 V, 3 2 V q we choose S x " W 3,k 2 1 pxq X P 1 . Then for each y " Φ 3 x psq P S x , we have (6.17) for m " k 1 . We set U y " Φ 1

x pU s q where U s is given by Claim 6.8. Then we can see that the conditions of Lemma A.1 is satisfied.

7. Compatibility of good charts or QNI: Proof of Theorem 2.25

Throughout this section, we let µ be a partially hyperbolic measure of f , which admits L-good stable charts tı x u xPM and L-good unstable charts tı 1

x u xPM for some large integer L, which will be determined later depending on f, µ and ℓ.

To facilitate the proof, we introduce the following notation. We denote by T 0 the hyperplane tpt 1 , t 2 , t 3 q : t 2 " 0u. Given a function φ : p´1, 1q 2 Ñ R, we denote by τ φ : R 3 Ñ R 3 the diffeomorphism τ φ px, y, zq " px, y`φpx, zq, zq. We define T φ " τ φ pT 0 q.

Given x P M . We define

S 1,x " ı ´1 x ¨ď tPp´1,1q
W 1 1 pΦ 3 x ptqq '.

In the following, we say that S 1,x and T φ (for some function φ) are tangent to order L on a subset U Ă W 3 1 pxq if there exists C ą 0 depending on f, µ, x and U such that for any t with Φ 3

x ptq P U we have τ ´1 φ ı ´1 x pW 1 loc pΦ 3 x ptqqq " tps, OpC|s| L q, t `OpCsqq : s P p´1, 1qu. (7.1) Similarly, we define S 1 3,x " pı 1 x q ´1 ¨ď tPp´1,1q

W 3 1 pΦ 1 x ptqq ', and say that S 1 3,x and T φ are tangent to order L on a subset U 1 Ă W 1 1 pxq if there exists C ą 0 depending on f , µ, x and U 1 such that for any t with Φ 1

x ptq P U 1 we have τ ´1 φ pı 1 x q ´1pW 3 loc pΦ 1 x ptqqq " tpt `OpCsq, OpC|s| L q, sq : s P p´1, 1qu. (7.2) Given a µ-typical x, the smooth surface pı 1

x q ´1 ˝ıx pT 0 q contains a graph of a function ψ x : p´r x , r x q 2 Ñ R for some r x P p0, 1q. Notice that ψ x is only defined for x in a µ-full measure set. We also denote

I x " tpa, bq P N 2 : a `b ď 2ℓ and B a 1 B b 3 ψ x p0, 0q ‰ 0u. By definition, B k 1 ψ x p0, 0q " B k 3 ψ x p0
, 0q " 0 for every integer k ě 0, and consequently we have ptp0, iq : 0 ď i ď 2ℓu Y tpi, 0q : 0 ď i ď 2ℓuq X I x " H. (7.3)

We have the following.

Lemma 7.1. Given x P M such that ψ x is defined. If I x " H then we have I f pxq " H, and (2.13) holds at x. Proof. Assume that x P M satisfies that I x " H. We can deduce (2.13) from Taylor's expansion.

Assume to the contrary that I f pxq ‰ H. Then by Lemma 2.15, there exists C x ą 0 such that for every ε ą 0 there exist t 1 , t 3 with |t 1 |, |t 3 | ă ε satisfying dpW 3 1 pΦ 1

x pt 1 qq, W 1 1 pΦ 3 x pt 3 qqq ď C x ε 2ℓ`1 and dpf pW 3 1 pΦ 1

x pt 1 qqq, f pW 1 1 pΦ 3 x pt 3 qqqq ě ε 2ℓ {C x . We obtain a contradiction by letting ε be sufficiently small. Consequently, we deduce that I f pxq " H.

The main result of this section is the following.

Proposition 7.2. Given an integer ℓ ą 0, there exists L " Lpµ, f, ℓq ą 0 such that the following is true. Assume that there is a set P 0 Ă M with µpP 0 q ą 0 such that for any x P P 0 we have I x ‰ H. Then µ has QNI.

Proof. By Lemma 7.1, the set of x such that I x ‰ H is f -invariant. Then by ergodicity we may assume without loss of generality that µpP 0 q " 1. By Pesin's theory, there is a constant δ ą 0, depending only on f, µ, such that for any ε ą 0, there is a compact set P ε Ă M with µpP ε q ě 1 ´ε such that E 1 and E 3 are uniformly δ-Holder continuous on P ε . By (7.3), there are numbers ´10χ 1 ℓ 2 χ 3 δ 2 ą V ą ´10χ 1 χ 3 δ 2 and K ą 1 such that for any V 1 P p ´χ3 4χ 1 V δ 2 , ´4χ 3 χ 1 V δ ´2q, for any x P P 0 , the set ta `bV 1 : pa, bq P I x u admits a unique minimum KpV 1 , xq ď K. By the choices of V and K, we may assume that there exists a measurable positive function x Þ Ñ c x such that for every x P P 0 , for any s 1 , s 3 P p´c x , c x qzt0u with log |s 3 | log |s 1 | P p ´χ3 4χ 1 V δ 2 , ´4χ 3 χ 1 V δ ´2q, we have

|ψ x ps 1 , s 3 q| ě c x |s 1 | K . (7.4)
We fix a small constant ε ą 0. Let C 1 ą 1 be a large constant to be determined in due course. By Lusin's theorem and by enlarging C 1 if necessary, we may take a compact subset B 0 Ă P 0 with µpB 0 q ą 1 ´ε{2, (7.5) satisfying the following properties:

(i) we have r x , c x ą C ´1 1 , x P B 0 ; (7.6) (ii) the smooth norms of the charts ı x and ı 1

x are bounded by C 1 whenever x P B 0 ; (iii) for any n P Z, for any i P t1, 3u and any x P B 0 we have By Proposition B.1, there is a compact subset B Ă B 0 with µpBq ą 1 ´ε, (7.8) such that the following holds: for every ν ą 0, there exist m 0 ą 0 such that for every x P B and every m ą m 0 there exist a subset U 1,m x Ă B 0 XW 1,m 1 pxq such that µ 1

C ´1 1 e npχ i ´ǫq ă }D x f n | E i pxq } ă C 1 e npχ i
x pU 1,m x q ą p1 ´νqµ 1 x pW 1,m 1 pxqq, (7.9) and S 1 3,x , T 0 are tangent to order L on U 1,m x ; and a subset U 3,m

x Ă B 0 X W 3,m 1 pxq such that µ 3

x pU 3,m x q ą p1 ´νqµ 3 x pW 3,m 1 pxqq, (7.10) and S 1,x , T 0 are tangent to order L on U 3,m

x . Moreover, by Lemma 2.15, we may assume that the implicit constants for above tangencies are uniformly bounded.

Let us denote S 1 1,x " pı 1 x q ´1 ˝ıx pS 1,x q. (7.11) Then S 1 1,x and pı 1 x q ´1 ˝ıx pT 0 q " T ψx are tangent to order L on U 3,m x . By enlarging C 1 if necessary, we may assume that (v) (7.1) holds for C " C 1 whenever x P B, U " U 3,m x and φ " ψ x ; and (7.2) holds for C " C 1 whenever x P B, U 1 " U 1,m x and φ " 0.

We may assume without loss of generality that U 3,m

x , resp. U 1,m x , is disjoint from W 1,m r pxq, resp. W 3,m r pxq, for some r " rpf, µ, ν, εq ą 0. Now take an arbitrary x P B and two large integers k 1 , k 2 ą m 0 such that f k 1 pxq, f ´k2 pxq P B and

k 2 k 1 P p 2 3 V, 3 2 V q. (7.12)
Let us now suppose that t 1 , t 3 P p´C ´1 1 , C ´1 1 qzt0u satisfy that Φ 3

x pt 3 q P r U 3

x :" U 3,k 2 x Ă W 3,k 2 1 pxq; (7.13) and Φ 1 x pt 1 q P r U 1 x :" U 1,k 1 x Ă W 1,k 1 1 pxq. (7.14)
By (7.9) and (7.10), we have

µ 1 x p r U 1 x q µ 1 x pW 1,k 1 1 pxqq , µ 3 x p r U 3 x q µ 3 x pW 3,k 2 1 pxqq ą 1 ´ν. (7.15)
Thus, by (7.12) and by enlarging k 1 , k 2 if necessary, we may assume that for any t 1 , t 3 satisfying (7.13) and (7.14), the following also holds:

log |t 3 | log |t 1 | P p ´3χ 3 5χ 1 V, ´5χ 3 3χ 1 V q. (7.16)
Recall that π 1,3 : p´1, 1q 3 Ñ p´1, 1q 2 denotes the projection to the first and the third coordinates. Consider the curves γ 3 " pı 1

x q ´1pW 3 1 pΦ 1 x pt 1 qqq and γ 1 " pı 1 x q ´1pW 1 1 pΦ 3 x pt 3 qqq. Their projections π 1,3 pγ 3 q and π 1,3 pγ 1 q have a unique intersection ps 1 , s 3 q. In other words, there exist r 1 , r 3 P R such that ps 1 , r 1 , s 3 q P S 1 1,x , ps 1 , r 3 , s 3 q P S 1 3,x . (7.17) We denote r 1

1 " ψ x ps 1 , s 3 q. (7.18) By definition, we have ps 1 , r 1 1 , s 3 q P T ψx . By the tangency between S 1 1,x and pı 1

x q ´1 ˝ıx pT 0 q " T ψx on r U 3

x ; and the tangency between S 1 3,x and T 0 on r U 1 x , we have

|r 1 1 ´r1 | ď C 1 |s 1 | L , |r 3 | ď C 1 |s 3 | L . (7.19)
Moreover, by the δ-Holder continuity of E 1 and E 3 on B 0 , we have

C ´1 1 |t 1 | 1{δ ă |s 1 | `|r 1 | ă C 1 |t 1 | δ , |s 3 | ă C 1 |t 3 | δ . (7.20)
Let us first assume that |r 1 | ě p2C 1 q ´1|t 1 | 1{δ . Then by (7.20), the second inequality in (7.19) and a similar argument as in Lemma 6.7, we deduce that By (7.16), and by assuming that

dpW 3 1 pΦ 1 x pt 1 qq, W 1 1 pΦ 3 x pt 3 qqq ě C ´1|r 1 ´r3 | ě C ´1|r 1 | ´C´1 |r 3 | ě C ´1C ´1 1 |t 1 | 1{δ ´2CC 1 |t 3 | Lδ .
L ą ´4χ 1 χ 3 δ 2 V ,
we have

dpW 3 1 pΦ 1 x pt 1 qq, W 1 1 pΦ 3 x pt 3 qqq ą 1 2 C ´1C ´1 1 |t 1 | 1{δ . (7.21)
Now we assume that |r 1 | ă p2C 1 q ´1|t 1 | 1{δ . In this case we have that

|s 1 | ą p2C 1 q ´1|t 1 | 1{δ .
Then, together with (7.20) and (7.16), we deduce that

log |s 3 | log |s 1 | P p ´χ3 4χ 1 V δ 2 , ´4χ 3 χ 1 V δ ´2q. (7.22)
In particular, we have |s 3 | ă |s 1 |. By our choice of V , by (7.4), (7.18), and by enlarging C 1 if necessary, we have

|r 1 1 | ą C ´1 1 |s 1 | K ą C ´1C ´K´1 1 |t 1 | K{δ . (7.23) Thus we have dpW 3 1 pΦ 1 x pt 1 qq, W 1 1 pΦ 3 x pt 3 qqq ě C ´1|r 1 ´r3 | ě C ´1|r 1 1 | ´C´1 |r 1 1 ´r1 | ´C´1 |r 3 | ě C ´1C ´K´1 1 |t 1 | K{δ ´CC 1 p|s 1 | L `|s 3 | L q ě C ´1C ´K´1 1 |t 1 | K{δ ´2CC 1 |t 1 | Lδ .
By assuming that L ą 2δ ´2K, (7.24) we have that for any x P B, for any sufficiently large k 1 , k 2 satisfying (7.12), for any t 1 , t 3 satisfying (7.13), (7.14) and (7.16), we have 

dpW 3 1 pΦ 1 x pt 1 qq, W 1 1 pΦ 3 x pt 3 qqq ą 1 2 C ´1C ´K´1 1 |t 1 | K{δ . ( 7 

Continuous and uniform versions for partially hyperbolic diffeomorphisms

In this section we explain how to adapt the results in the previous sections to the case where the measure is supported in a (uniformly) partially hyperbolic set.

Let f : M Ñ M be a smooth diffeomorphism and Λ Ă M a compact f -invariant subset. Assume that there is a continuous splitting of T Λ M " E u ' E c ' E s " E 1 ' E 2 ' E 3 and consider the functions λ i,x defined in equation (2.15) which are continuous on Λ and verify (for an appropriate metric) that |λ 1

x | ą |λ 2 x | ą |λ 3 x | as well as |λ 1 x | ą 1 ą |λ 3 x |.
We wish to show: Theorem 8.1. Let f : M Ñ M be a smooth diffeomorphism of a closed 3 manifold M and Λ Ă M a compact f -invariant partially hyperbolic subset. Then, for every µ with full support on Λ there is the following dichotomy:

' Either µ has QNI (cf. Definition 2.8), or, ' for every ℓ ě 1, the set Λ is jointly integrable up to order ℓ (cf. Definition 1.1).

Note that the second condition is independent of the measure, and forces every measure with full support on Λ to not verify QNI. Also, while not obvious from the definition of the QNI property, our result implies that having this property for all invariant measures with full support on some partially hyperbolic subset with good continuation properties (e.g. the whole manifold) is an open property in the smooth topology. 8.1. Proof of Theorem 8.1. As for the measurable case, the proof has three stages12 :

' First show that if QNI is not verified, then there are ℓ-good stable and unstable charts for all ℓ. In this case, we will need to check that, since the normal form coordinates vary continuously on the point, these ℓ-good charts will turn out to be continuous. The proof mimics what is done in §6. ' Then, show that if QNI is not verified, then, the approximations of the stable and unstable Hopf brushes are at the same up to order ℓ. This proof mimics the one done in §7 and indeed, in this case, no continuity is needed.

' Finally, show that this compatibility of charts implies that there is a continuous family of surfaces that approximates well the Hopf brushes up to order ℓ. Let us give the main arguments and see how to adapt what has already been done: Lemma 8.2. Let µ be a measure of full support on Λ and assume that Λ does not admit ℓ-good uniform unstable charts for some ℓ ě 1. Then, µ has QNI.

Proof. First, let k ď ℓ be the largest k ě 1 such that Λ admits k-good uniform unstable charts. We claim that if the templates T k

x are not polynomial, then µ has QNI.

To see this, note first that we can apply Proposition 6.4 since the templates cannot verify option (i) in Proposition 4.2 as continuity of the templates (cf. Remark 3.19) would imply that they are polynomial everywhere and that would allow to construct pk`1q-good uniform unstable charts using Proposition 3.21. Now, the rest of the proof of Proposition 6.1 works verbatim.

The rest of the proof of Theorem 8.1 follows using results that we previously discussed. Note first that what we have so far allows us to construct continuous families of smooth surfaces S s

x and S u x that approximate the Hopf brushes H s

x and H u x to arbitrary good order. These surfaces are constructed by mapping the set tpx, y, zq : y " 0u by the compatible ℓ-good charts as considered in §7. So, if we show that these surfaces are mutually tangent to high order we would be done. Note that the surfaces are constructed using the templates, so, they coincide with the ones constructed in §7, and thus, the proof in §7 shows that if they are not tangent to high order almost everywhere, then, the measure has QNI. Since the measure is full support and the surfaces vary continuously, this concludes (note that this requires the uniform ℓ-good charts to vary continuously, which is the content of Remark 3.19).

Appendix A. Discussion on the notion of QNI

In this appendix we provide some alternative ways to understand the QNI property and prove Proposition 2.9.

Proof of Proposition 2.9. Assume µ has the QNI property for f as stated in Definition 2.8. We wish to show that it also verifies the property for f ´1. For this, consider α ą 0, ε ą 0 and ν ą 0 and we will consider the set P given by the fact that µ has the QNI property and some value of C " Cpν, εq (which may differ from the one given for µ) and k 0 as given for µ.

To get the result, it is enough to show that there is a function ρpνq such that ρpνq Ñ 0 as ν Ñ 0 so that if k ą k 0 and x, f k pxq, f ´kpxq P P there is a subset Ûx Ă W 1,k 1 pxq with µ 1 x p Ûx q ą p1´ρpνqqµ 1 x pW 1,k 1 pxqq with the property that given z P Ûx there is Ŝz Ă W 3,k 1 pxq with µ 3 x p Ŝz q ą p1´ρpνqqµ 3 x pW 3,k 1 pxqq so that if y P Ŝz then (A.1) dpW 1 1 pyq, W 3 1 pzqq ą Ĉe ´αk .

We now show that the statement in Definiton 2.8 is satisfied for this P.

Fix some ν P p0, 1q. We let k ˚" k ˚pε, νq be given by the hypothesis of the lemma.

Let us take some x P P and an integer k ě k 0 such that f k pxq P P and f ´kpxq P P.

We denote k 1 " p a 0 `b0 2b 0 qk. By the definition of P, we have |ta 0 k ă l ă b 0 k 1 : f l pxq P P 0 u| ą p1 ´b0 ´a0 2b 0 qb 0 k 1 ´a0 k ´1 ą 0.

Consequently, there exists some j P ta 0 k `1, ¨¨¨, b 0 k 1 u such that x 1 :" f j pxq P P 0 . Denote k 2 " k `j and k 1 " k ´j. Then we have f k 1 px 1 q P P 0 , f ´k2 px 1 q P P 0 and

k 2 k 1 P p 2 3 V, 3 2 V q.
By the hypothesis of the lemma, there exists a subset S 1 P W 3,k 2 1 px 1 q with µ 3

x 1 pS 1 q ą p1 ´νqµ 3 x 1 pW 3,k 2 1 px 1 qq such that for any y P S 1 there exists U 1 y Ă W 1,k 1 1 px 1 q with µ 1 x 1 pU 1 y q ą p1 ´νqµ 1 x 1 pW 1,k 1 1 px 1 qq such that if z P U 1 y , then dpW 1 1 pyq, W 3 1 pzqq ą Ce ´αk . (A.8)

We define S x " f ´j pS 1 q and for each y P S x , define U y " f ´j pU 1 f j pyq q. Notice that µ 3

x 1 " pf j q ˚µ3

x and µ 1 x 1 " pf j q ˚µ1

x . Then it is clear that the statement in Definition 2.8 holds for x by letting α be larger.

We end this appendix by commenting the difference between our definition of QNI and that in [Ka].

The only difference between the definitions is the choice of the notion of local stable/unstable manifolds. We have chosen to work with W i 1 pxq (with i P t1, 3u) to be the unstable/stable manifold of lenght 1 with respect to the normal form coordinates. Note that the Riemannian length of these manifolds is not continously variating as the normal form coordinates are just measurable, but they vary continuously in sets of arbitrarily large measure. To choose the scales, we have chosen to use W 1,k 1 pxq " f ´kpW 1 1 pf k pxqqq and W 3,k 1 pxq " f k pW 3 1 pf ´kpxqq. In [Ka] he first introduces a (sufficiently small) measurable partition B of the lamination with a Markov property and defines W 1 loc pxq " W 1 1 pxq X Bpxq. Then, he takes W 1,k loc pxq to be f ´kpW 1 loc pf k pxqq (a symmetric partition allows to define local stable manifolds). The definition of QNI in [Ka] it is then identical to Definition 2.8 where the sets W 1,k 1 pxq and W 3,k 1 pxq are replaced by W 1,k loc pxq and W 3,k loc pxq. As it is usual, to see the equivalence, one considers large measure sets of points where the 'boundary'of the leaves W 1 loc pxq and W 3 loc pxq is 'far' from the center point x. In those sets, and for iterates which return to those sets there is an easy way to relate the sets W i,k loc pxq and W i,k 1 pxq and thus one can go from one definition to the other without difficulty.

Appendix B. Some measurable considerations

Here we state an abstract result about measurable dynamics.

Proposition B.1. Let µ be a partially hyperbolic measure for a diffeomorphism f of a 3-dimensional closed manifold M . Assume that c 1 , . . . , c k are measurable functions with respect to µ. Then, for every ε ą 0 and compact set Q Ă M with µpQq ą 1´ε{2 there exists compact subsets P Ă P 0 Ă P 1 Ă Q and C, k 0 ą 0 such that µpPq ą 1 ´ε and such that:

(i) all functions c 1 , . . . , c k are uniformly continuous on P 1 , (ii) for every ν ą 0, there exists an integer m 0 ą 1 such that for every m ą m 0 , for every x P P 0 and for both i P t1, 3u we have that µ i x pP 1 X W i,m 1 pxqq ě p1 ´νqµ i x pW i,m 1 pxqq. Proof. Item (i) is a standard application of Lusin's theorem. Without loss of generality, let us assume that µpP 1 q ą 1 ´2ε{3.

To see item (ii), we define for any integers q, m ě 2 a subset of P 1 by the formula Q q,m " tx P P 1 : µ i x pP 1 X W i,m 1 1 pxqq ě p1 ´q´1 qµ i x pW i,m 1 1 pxqq, @i P t1, 3u, m 1 ě mu.

Fix an arbitrary integer q ě 2. We have lim mÑ8 µpP 1 zQ q,m q " 0. We choose some m q ě 2 such that µpP 1 zQ q,mq q ă ε{p100q 2 q. Then we take P 0 " X qě2 Q q,mq . It is clear that µpP 0 q ą 1 ´3ε{4, and satisfies item (ii).

Appendix C. Some statements about cocycles

Here we give some proofs of some results which are probably well-known but not available in the literature. The reason is that not many references deal with cocycles which are only smooth along unstable manifolds. We state a particular case since it is the one we will use, but of course it holds in more generality. We use the notation and definitions from §3. Note that this can be seen as just a generalization of the fact that Pesin unstable manifolds are smooth. Note that the following result is implicit in [START_REF] Ruelle | Ergodic theory of differentiable dynamical systems[END_REF]Remark 5.2(b)].

Proposition C.1. Let f : M Ñ M be a C 8 smooth diffeomorphism preserving an ergodic partially hyperbolic measure µ. Let E Ñ M be a (measurable) two-dimensional vector bundle over pM, µq and let A : E Ñ E be a vector bundle automorphism which is smooth along unstable manifolds. Assume that the Lyapunov exponents of A with respect to µ are α ą β, corresponding to Oseledets subspaces E α and E β respectively. Then there exists a family of smooth trivializations S 0 " tS 0,x " pξ 0,x , ξ K 0,x qu xPM such that for µ-a.e. x, A S 0 px, tq " ˆαx ptq r 0

x ptq 0 β x ptq ẇhere α x , β x , r x : p´1, 1q Ñ R are smooth functions. Moreover, for µ-a.e. x, we have that ξ 0,x p0q P E α pxq.

Let us recall that the fact that A is smooth along unstable manifolds implicitly requires the bundle E to be defined and be smooth along unstable manifolds (see Remark 3.1). This means that for µ-almost every x P M , the bundle E is defined over W 1 1 pxq and admits a smooth trivialization S making A S px, ¨q smooth as a function from p´1, 1q to GLp2, Rq.

Remark C.2. Under the assumption that: (1) f is a partially hyperbolic diffeomorphism on a 3-dimensional closed manifold M ; (2) E Ñ M is a Hölder continuous, two-dimensional vector bundle over M that is smooth along unstable manifolds of f ; and (3) A : E Ñ E is a Hölder continuous, vector bundle automorphism which is smooth along unstable manifolds of f , we can require S 0 in Proposition C.1 to consist of sections with uniformly bounded smooth norms. Moreover, all the statements in Proposition C.1 hold for every x P M , and α x , β x , r x are smooth functions with uniformly bounded smooth norms. These facts follow immediately from the proof below.

Proof. By hypothesis, there is a family of trivializations S " tS x " pξ x , ξ K

x qu xPM such that for µ almost every x P M , ξ x , ξ K

x : p´1, 1q Ñ E are smooth maps so that ξ x ptq, ξ K

x ptq P E Φ 1 x ptq are linearly independent. Moreover, we may assume without loss of generality that for µ-a.e. x P M , ξ x p0q P E α pxq and ξ K

x p0q P E β pxq.

The restriction of the bundle map A on E| W 1 1 pxq , seen under the basis pξ x , ξ K

x q and pξ f pxq , ξ K f pxq q, is given by the matrix A S px, tq " " α x ptq r x ptq q x ptq β x ptq  .

Here functions α x , r x , β x , q x are smooth. Moreover, we have q x p0q " 0 by our choices of ξ x p0q and ξ K x p0q. Let us define another family of trivializations Ŝ " t Ŝx " p ξx , ξ K

x qu xPM by setting ξx " η x ξ x `px ξ K x where p x is a smooth function on p´1, 1q satisfying p x p0q " 0; and η x is a non-vanishing smooth function on p´1, 1q satisfying η x p0q " 1. Then the restriction of the bundle map A on E| W 1 1 pxq , seen under the basis p ξx , ξ K x q and p ξfpxq , ξ K f pxq q, is given by the matrix A Ŝpx, tq " " η f pxq pλ 1,x tq ´1 0 ´ηfpxq pλ 1,x tq ´1p f pxq pλ 1,x tq 1  A S px, tq " η x ptq 0 p x ptq 1  " " αx ptq rx ptq qx ptq βx ptq  where (C.1) qx ptq " η x ptqq x ptq `px ptqβ x ptq ´pη ´1 f pxq p f pxq qpλ 1,x tqpη x ptqα x ptq `px ptqr x ptqq. We will choose η x and p x such that for µ-a.e. x we have the equations η x ptqq x ptq `px ptqβ x ptq " α x p0qp f pxq pλ 1,x tq, (C.2) η x ptqα x ptq `px ptqr x ptq " α x p0qη f pxq pλ 1,x tq. (C.3) If we denote λ 1,m pxq " pλ 1,f ´1pxq ¨¨¨λ 1,f ´mpxq q ´1, we can solve the equation (C.2) by setting p x ptq " 8 ÿ n"1 r n´1 ź j"1 α f ´j pxq p0qs ´1r n´1 ź j"1 β f ´j pxq pλ 1,j pxqtqsα f ´n pxq p0q ´1pη f ´npxq q f ´npxq qpλ 1,n pxqtq. α f ´j pxq pλ 1,j pxqtqsα f ´n pxq p0q ´1pp f ´npxq r f ´npxq qpλ 1,n pxqtq.

Thus the equations (C.2) and (C.3) are simultaneously solvable. We see that A Ŝpx, ¨q is of form " ˚0 ˚ . This concludes the proof.

'

  t 1 P I pmq ą if | P pt 1 q| ą c 2 |s| γ 2 {2 (cf. equation (6.12)) and, ' t 1 P I pmq ă if | P pt 1 q| ď c 2 |s| γ 2 {2.

  d 1 and D " sup tPI pmq | Rptq| then | R1 pτ q| ď CDλ pmq 1,x 1 and | Rpτ q| ą D{C for every τ P I pmq z Y I i where I i Ť Îi , 0 ď i ď 3d, are open subintervals of I pmq such that Î0 , ¨¨¨, Î3d are mutually disjoint, whose union is of μ1

  `ǫq ; (7.7) (iv) E 1 and E 3 are uniformly δ-Holder continuous on B 0 , with δ-Holder norms bounded by C 1 .

  .25) By Lemma A.1, we see that f has the QNI property. Proof of Theorem 2.25. It suffices to combine Lemma 7.1 and Proposition 7.2.

  Notice that the above sum converges since α ą β,

One can locally trivialize E i pxq -TxW i pxq using the vector fields in (2.2) as it is a measurable with respect to x and therefore use a common domain for all maps to make sense of the variation of the maps.

Note that here the one-dimensionality of the bundle is crucial for this.

Recall notation (2.3).

It is unique almost everywhere and up to zero measure.

Note that actually, the bundle associated to α is defined on backward regular points, so it would make sense to say it is well defined for all t, though we will not use this fact in the proof.

Caution, here α and β denote the Lyapunov exponents of the cocycle, which are the integral of the functions x Þ Ñ log αx and x Þ Ñ log βx. Similarly, χ1 denotes the first Lyapunov exponent of pf, µq and can be computed as the integral of x Þ Ñ log λ1,x.

Note that whenever possible, we will use the results from previous sections, particularly §6 and §7. We note that in those sections, the fact that templates where measurable functions included an extra difficulty that here we could do without if we wanted to show the results here directly. We leave those simplifications to the interested reader.
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Consider the set of pairs py, zq P W 3,k 1 pxq ˆW 1,k 1 pxq which verify equation (A.2). It follows from the fact that µ verifies QNI that this set has measure larger than p1 ´νq 2 with respect to the probability measure

and thus, by Fubini's theorem it follows that considering ρpνq " 2 ? ν the result follows.

The following characterization of QNI is the one we establish to prove our main results.

Lemma A.1. Assume that µ is a partially hyperbolic measure for a smooth diffeomorphism f satisfying the following property.

' there exist V ą 2, α ą 0 and, ' for every ε ą 0, there exists a subset P 0 Ă M of measure µpP 0 q ą 1 ´ε and, ' for every ν ą 0, there exist k ˚" k ˚pν, εq, and a constant C " Cpν, εq so that such that:

x pS x q ą p1 ´νqµ 3 x pW 3,k 2 1 pxqq with the following property: ' For all y P S x there exists U y Ă W 1,k 1 1 pxq with µ 1

x pU y q ą p1 νqµ 1

x pW 1,k 1 1 pxqq so that if z P U y then (A.2) dpW 3 1 pzq, W 1 1 pyqq ą Ce ´αk 1 . Then µ has the QNI property (cf. Definition 2.8).

Note that the condition on k 1 , k 2 says that equation (A.2) (up to possibly changing α) is the same as asking that dpW 1 1 pyq, W 3 1 pzqq ą Ce ´α mintk 1 ,k 2 u or other variations.

Proof. We fix some ε P p0, 1q. We set

We can without loss of generality suppose that P 0 satisfies that

We define in the following way the set P in Definition 2.8. Given a constant N ą 0, we let P " Ppε, N q be the set of points x P P 0 such that for every k ą N , 1 k |t0 ď j ď k ´1 : f j pxq P P 0 u| ą 1 ´minp ε 50 , b 0 ´a0 2b 0 q, (A.5) 1 k |t´k ď j ď ´1 : f j pxq P P 0 u| ą 1 ´minp ε 50 , b 0 ´a0 2b 0 q. (A.6) Using Birkhoff's theorem we may assume by letting N be sufficiently large that µpPq ą 1 ´ε. (A.7)