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GEOMETRIC PROPERTIES OF PARTIALLY HYPERBOLIC
MEASURES AND APPLICATIONS TO MEASURE
RIGIDITY

ALEX ESKIN, RAFAEL POTRIE, AND ZHIYUAN ZHANG

ABSTRACT. We give a geometric characterization of the quantitative
joint non-integrability, introduced by Katz in [I{a], of strong stable and
unstable bundles of partially hyperbolic measures and sets in dimension
3. This is done via the use of higher order templates for the invariant
bundles. Using the recent work of Katz, we derive some consequences,
including the measure rigidity of uu-states and the existence of physical
measures.

1. INTRODUCTION

Let f: M — M be a partially hyperbolic diffeomorphism of a closed 3-
manifold: the tangent bundle TM = E*® E°® E° splits into D f-invariant
one dimensional bundles with the property that there is some integer N > 0
such that for every x € M, we have

1 .
IDfN | gl < §mln{1,||DfN|Ec(x)||}

< 2max{L, [DfY|ge) |} < [DFY|puiayl-

Any such diffeomorphism f admits (uniquely defined) f-invariant foliations
W? and W* tangent respectively to the bundles E* and E* (see e.g. [CP]).
Consider a lamination A < M which is f-invariant and W"-saturated.
The geometric properties of its leaves, when projected along stable holo-
nomy, are very relevant to understanding several problems: ergodicity of
conservative systems (e.g. [BW]), finiteness of attractors (e.g. [CP5]), mix-
ing properties (e.g. [T7Z]), among other properties. More recently, some
quantitative measures of joint non-integrability have been used by Katz [I<a]
to obtain measure rigidity results based on ideas coming from homogeneous
and Teichmuller dynamics [F1,, EM] (related progress is that of random
dynamical systems [BRH], see also [Ob] for its connection with partially
hyperbolic dynamics). In this paper, we intend to look into the notion of
quantitative non-joint integrability (QNI) proposed by [[Ka]. We consider
here exclusively C™ diffeomorphisms, and obtain in this setting equivalent
notions that seem more conceptual and easier to verify and work with.

Definition 1.1. We say that a compact invariant set A of a partially hy-
perbolic diffeomorphism f : M — M is jointly integrable up to order ¢ if

Rafael Potrie was partially supported by CSIC. Zhiyuan Zhang was supported by the
National Science Foundation under Grant No. DMS-1638352. This work was started while
the authors were members of IAS and they would like to thank the IAS for the excellent
conditions offered.

1


http://arxiv.org/abs/2302.12981v1

2 A. ESKIN, R. POTRIE, AND Z. ZHANG

there is p > 0 and a continuous family of C* smooth surfaces {Sz}zen which
verifies that:
(i) Wg(az) U WZ(Q:) c Sy,
(ii) for every x € A and y € Wi (x) n A (resp. y € Wi(z) n A) we have
that W}, .(y) is tangent to order £ to S, at y (resp. W} .(y) is tangent
to order £ to S, at y).

Here, when we say that the curve v is tangent to order ¢ to S, we mean
that there is a constant C' > 0 ! such that when parametrized by arc-length
the distance from a point y €  to the surface S, is less than Ct’ where t is
the arc-length from y to x.

Our main results concern the study of wu-states of partially hyperbolic
systems. By definition, an ergodic uu-state is an ergodic invariant measure
that is absolutely continuous with respect to strong unstable manifolds of
the foliation W*. These measures always exist (see e.g. [BDV, §11]) and
are usually the place to look for physical measures (i.e. those for which the
statistical basin has positive Lebesgue measure).

The results in this paper are also obtained in the more general setting of
partially hyperbolic measures where analogous results hold. While very sim-
ilar, the proofs require more careful analysis in some parts of the argument.
We refer the reader to §2 for precise statements.

Combined with the recent results of [[<a] our results give:

Theorem 1.2. Let f : M — M be a C™ partially hyperbolic diffeornorphism
on a closed 3-manifold and let i be a uu-state with positive center Lyapunov
exponent, then, either u is physical, or the support of u is jointly integrable
up to order £ for every £ > 0.

Note that in [ABV] the physicality of uu-states is proved under the as-
sumption that every such measure has positive center exponents.

In principle similar results may hold in higher dimensions which may be
worth investigating. This may involve adapting some definitions to take
care of some higher dimensional phenomena that may occur. We decided
to restrict to the 3-dimensional case since it already presents some chal-
lenges and applications. We note that right now the results in [I{a] require
one-dimensional center, but it may be possible to extend this to higher di-
mensional centers by incorporating the techniques of the work in progress
[BEFRH].

We also note that our results require very high regularity to compensate
for the fact that we deal with the case where holonomies are not regular
(which is the usual case). In some cases, there are reasons that force more
regularity of holonomies, even in open sets, and in those cases recently ar-
guments have been made to obtain similar results assuming less regularity
of the map, see [ALLOS]. Theorem 1.2 will be used in [ACEPWZ] to under-
stand uu-states of partially hyperbolic Anosov diffeomorphisms in dimension
3 (addressing a conjecture of [GIX)M]) and will be strengthened to show that
if one assumes that the strong unstable foliation of a partially hyperbolic

Water in the paper we will also work with a measurable version of this, for partially
hyperbolic measures, see Definition 2.21.
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diffeomorphism of a 3-dimensional manifold fills center unstable disks? , then
joint integrability up to order ¢ implies actual joint integrability.

The main technical contribution of this paper is to extend the notion of
templates introduced in [T7] to partially hyperbolic dynamics, in particular,
dealing with higher order templates to deduce quantitative forms of non-
integrability of dynamically defined bundles.

2. CONTEXT AND MAIN TECHNICAL RESULT

Throughout this paper we let f : M — M be a C*-diffeomorphism?® of a
closed 3-manifold M. We fix a smooth Riemannian metric || - o on M.

2.1. Partially hyperbolic measures. An ergodic f-invariant measure p
is partially hyperbolic if the following is true:

e f has simple spectrum. Namely, f has three different Lyapunov
exponents xi1 > x2 > X3,
e x1>0> xs.

We denote by E', E?, E? the Oseledets bundles for y corresponding to
X1, X2, X3 respectively, and denote by W', W3 the Pesin laminations as-
sociated to E', E® respectively (see [BP’] and also §2.3 for a statement
that makes more precise the properties of these manifolds). We fix some
0 < € « minge(y oy [Xi — Xi+1], and denote by | - || the Lyapunov norm (with
parameter €) for p satisfying the following property. For p-almost every
x € M we have, for i € {1,2,3}:

D,
21)  IDeflpil = P2

o] € (eXiT¢,eXite) | we E'(z)\{0}.

If we fix an orientation on each of the (one dimensional) bundles E' we
get a unit vector e'(z) in E'(z) for almost every x € M and i € {1,2,3}. We
define \; , € R by equation:

(2.2) Dy f(e'(x)) = Nige'(f(2)),
and we have that \; » € {£]Daflgi(y)l}-

The general theory allows us to disintegrate the measure p along the
leaves of W' and W?. We will denote by . (with i € {1,3}) the conditional
measure along the leaves of W', i € {1, 3}, (see [BP]).

Definition 2.1. An ergodic f-invariant partially hyperbolic measure p will
be called non-degenerate if for almost every x € M the measures p) and p2
are without atoms.

A measure p is called a uu-state if for y-a.e. x the measure . is absolutely
continuous with respect to the length induced by the Riemannian metric on
the leaves of W!. Note that if yo > 0 then E' @ E? is p-a.e. tangent to the
leaves of the Pesin unstable lamination which we denote by W2, We denote

2More precisely, a minimal subset of the strong unstable foliation verifies that it fills
center unstable disks’ if it contains open sets in some center unstable disk.

3All results hold in finite regularity which depends on the properties (Lyapunov ex-
ponents) of the measure one looks at as well as some uniform constants of f around the
support of the measure. We will not attempt to estimate the precise regularity since in
any case it will be usually very high.
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the disintegration of ; along W'? at a p-typical point = by ul2. A measure
p is said to be SRB (Sinai-Ruelle-Bowen) in this context if u1? is absolutely
continuous with respect to the Riemannian volume induced on the leaves of

W2,

Remark 2.2. Note that by Ledrappier-Young’s entropy formula in [[.Y 2], any
uu-state which has 2 > 0 must be non-degenerate.

2.2. Partially hyperbolic sets. A particularly important case in our dis-
cussion is the one where the diffeomorphism f: M — M is partially hyper-
bolic. More generally, we let f : M — M be a smooth diffeomorphism of a
closed 3-manifold and A be a compact f-invariant set admitting a partially
hyperbolic splitting TaM = E*@® E°@® E?® which is D f-invariant and verifies
that there is an integer N > 0 so that for every z € A we have:

I1DF¥ s @yllo < min{L, [DfY|geq)lo}
< max{L, [DfNge( o} < IDfN gu)lo-

We call A a (uniformly) partially hyperbolic set for f. We can assume that
N =1 by choosing an appropriate (adapted) metric that we will denote by
|- || in analogy with the Lyapunov metric in the case of partially hyperbolic
measures. See [CP].

Note that in this case, every ergodic f-invariant measure supported in A
is partially hyperbolic.

We note that it is a standard result that every partially hyperbolic dif-
feomorphism admits at least one ergodic uu-state, but the existence of SRB
measures is not clear in general (see [BDV, Chapter 11]). We state the
following for later reference:

Fact 2.3. Let f : M — M be a partially hyperbolic diffeomorphism. Then
there exists a partially hyperbolic measure p which is a uu-state.

We note that the same holds if there is a partially hyperbolic attractor
(i.e. there is an open set U such that f(U) < U and the set A = ("), f"(U)
is partially hyperbolic).

2.3. Normal Forms. We refer the reader to [KI<, §3.1] for more details
and [IKS] for more general results.

Proposition 2.4. Let p be a partially hyperbolic measure. Then for i €
{1,3} and p-almost every x € M there exists ! : T, W'(z) — W'(z) a
smooth diffeomorphism such that:
(i) z— ! waries measymblg/l,
(i) @3(0) =z and Do®;, = id,
(iii) f(@;(t)) = q)}(m)()\m't) for every teRR,
(iv) if y € Wi(x) then (®)~" o ®L is an affine map.
In the following, for p-a.e. =z, we identify T, Wi(x) with R so that 1

corresponds to a vector of norm 1 in 7, W'(z) with respect to the Lyapunov

4One can locally trivialize E'(z) >~ T, W(z) using the vector fields in (2.2) as it is a
measurable with respect to x and therefore use a common domain for all maps to make
sense of the variation of the maps.
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norm || - |. We will fix a collection of maps i i =1,3, given by Proposition
2.4. We can naturally identify ®!, with a diffeomorphism from R to W*(z).

Remark 2.5. The sign of the values of \; , depends on the chosen orientations
of the bundles E’. It is sometimes impossible to find a continuous orientation
of the bundles, so it cannot be made so that the values are always positive
even after taking iterates or finite covering. For the purposes of this paper,
this is not an issue, so we will sometimes assume that the value of \;; is
always positive to simplify the exposition when it is possible to treat the
general case in a similar way.

We denote W/(z) = ®L((—r,r)), i € {1,3}. We denote by W} (z) a
neighborhood of z in W¥(x) whose size may vary from line to line. Since we
will use some dynamically defined scales, we introduce the following notation
for each integer k > 0 and each p > 0:

(2.3) Wy k@) == R W (M (@), Wik () == ROV (" (@)
We will use the following notation for i € {1, 3}:
(2.4) Ao = [(25) st
The above conditions determine ik as a Radon measure on R up to a multi-
ple. Given i € {1, 3}, we have [y = cf«fil, for some ¢ > 0. In the following

we normalise /i’ so that its restriction to (—1,1) is a probability measure.
With a slight abuse of notation, we use fi’, to denote the probability
measure restricted to (—1,1).
The following is an alternative way to characterize uu-states.

Proposition 2.6. The measure i is an uu-state if and only if the measures
il defined in (2.4) are Lebesgue.

See [BRH, §6.5] for a proof based on the rigidity result of Ledrappier-
Young [LY].

In a similar way as in §2.3 one can find continuous® normal form coordi-
nates in the uniform partially hyperbolic setting in dimension 3 (see [[XI]):

Proposition 2.7. Let f : M — M be a smooth diffeomorphism of a 3-
manifold M and A a compact f-invariant and partially hyperbolic set. For
every x € A there exists ®. : T,Wi(z) — Wi(x) a smooth diffeomorphism
such that:
(i) =+~ @ varies continuously,
(i) ®%(0) = x and Dy®: = id,
(iii) f(®L(t)) = @;(m)()\mt) for every t € R,
(iv) if y € Wi(z) then (<I>§/)_1 o ® is an affine map.
Remark 2.5 applies to this proposition too.

2.4. Quantitative non-integrability. Recently, in [Ka] the author pro-
posed a geometric condition on uu-states that allows one to apply the scheme
introduced in [NV, EL]. Let us recall the following crucial definition in [I<a]
(although this notion is only defined for uu-states in [[Ka], it can be stated
for partially hyperbolic measure considered here):

SNote that here the one-dimensionality of the bundle is crucial for this.
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Definition 2.8. A partially hyperbolic measure p has the quantitative non-
integrability property (QNI) if:
e there is o > 0 and,
e for every € > 0 a subset P € M of measure p(P) > 1 — ¢ and,
e for every v > 0 constants C' := C(v,e) > 0 and ko := ko(v,e) > 0
such that:
if an integer k > ko and x € P satisfy f*(x), f~%(x) € P then

e there is a subset S, < Wf”k(:c)G with p3(S;) > (1 — V),U,i(WIB’k(CU))
satisfying the following property:

e for every y € S, there exists U, — Wll’k(:v) with pl(U,) > (1 —
V)u;(Wllk(x)) so that if z € U, then

(2.5) d(Wi(y), Wi(z)) > Ce ",

We do not assume that the measure is a uu-state because this allows us
to define the notion in a more general setting; and even though our main
application is for uu-states we wish to make the arguments symmetric:

Proposition 2.9. A partially hyperbolic measure i has QNI for f if and
only if it has QNI for f=1.

The proof is a simple Fubini argument that we postpone to Appendix A.
In Appendix A we also discuss this definition as well as other formulations
and compare them with the ones in the work of Katz [I<a].

Remark 2.10. The main difference between our definition and that of [I<a]
is the notion of local stable and local unstable manifolds. For notational
simplicity (helped by the fact that we are working with one dimensional
stable and unstable strong manifolds) we chosen to use local manifolds to
be of a certain length with respect to the normal form coordinates. In [I<a]
the local stable and unstable manifolds are considered with respect to a
measurable partition of the stable/unstable measurable (Pesin) lamination;
this is more natural and it extends better to higher dimensions. We could
have chosen to use this formalism, but some arguments where we reduce to
cocycles defined on fixed intervals would be more cumbersome to write. We
explain the equivalence of the definitions in more detail in Appendix A.

2.5. Cocycle normal forms and good charts. We will consider good
coordinate charts that incorporate the normal coordinates as in [17, §4].

Definition 2.11 (0-good unstable charts). Let p be a partially hyper-
bolic measure. A measurable collection of smooth diffeomorphisms {2, :
(—=IIDfI,IDfI)? — M}aenr is a family of unstable charts if it verifies that
for p-almost every z € M we have that 1,(¢1,0,0) = ®L(¢1), 1,(0,0,3) =
®3(t3) for t1,t3 € (—1,1), 021,(0,0,0) is a unit vector in E?(z). More-
over, if we write F, := z;(lx) ofou = (Fyi,Fy2, Fy3) then the map
Fy : (—=|Df|,||IDf])* — R? verifies that:

(i) 02F;2(t,0,0) = Ao, for all t € (—1,1),

(i) 03Fz3(t,0,0) = Az, for all t € (—1,1),

6Recall notation (2.3).
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(ili) 02F;3(t,0,0) =0 forall te (—1,1).

We say that a family of unstable charts is 0-good if for some constant d
(independent of z) we have that
(2.6) 03F;2(t,0,0) is a polynomial of degree < d in t € (—1,1).

Note that in [T7Z, §4] similar charts are constructed for Anosov flows. It
is not hard to adapt the argument to our case. We will prove the following
in §3.

Proposition 2.12. For every partially hyperbolic measure y there is a fam-
ily of 0-good unstable charts.

Given a family of unstable charts, for p-a.e. x, the map F) satisfies that
for every t; € (—1,1) we have that F,(¢1,0,0) = (A 4t1,0,0) and

0Fy 2 0Fy 2 \ (t )
o0x2 ox3 . 2,z Tz(l1

(27) an,3 an,3 (t1’ 07 O) o ( 0 )\3,1‘ ) '
0x2 or3

We think of this as a linear cocycle over the unstable manifolds. This
means that for each point of the unstable manifold (seen in normal coor-
dinates) we have a linear transformation between linear spaces above each
point, and as we iterate these get composed with the corresponding linear
transformations depending on the base dynamics. See §3 for more details.

In equation (2.7) the function r, is a smooth function. It follows from the
general theory of cocycle normal forms, developed in [BEFRH], that one can
change coordinates in order to make 7, a polynomial of degree depending
only on the values of the functions Ay ; and A3, (see Proposition 3.3 below).
This is how Proposition 2.12 is proven.

Note that the strong stable bundle along the strong unstable manifold
can be modeled as a section of this cocycle (cf. §3.1)), what will be re-
ferred to as a template. Since the cocycle is 2 dimensional and can be taken
smoothly into an upper triangular form (cf. equation (2.7)) we can think
of this template, under the normal form coordinates, as a function on the
strong unstable manifold. Therefore this reduction allows one to distinguish
between the case where such template is a polynomial or not. This is a re-
formulation of one of the main observations from [T's, T7Z] (see [Ts, Remark
1.2]). We will show that whenever the template is not a polynomial, then the
QNI condition is verified. Else, one can continue doing this for higher order
£ + 1-good charts of the stable manifolds along a strong unstable manifold,
see Theorem 2.24. When we look at f-order jets, we obtain in this way a
two-dimensional cocycle over the unstable manifolds, whose diagonal entries
are Ao, and )\gx. We refer the reader to §3 for more details on the particular
case of cocycle normal forms we will use and to [BEFRH, Appendix A] for
a more detailed account.

We introduce the following notion.

Definition 2.13 (¢/-good unstable charts). Let {¢, }ens be a family of unsta-
ble charts for a partially hyperbolic measure u. Let ¢ be a positive integer.
We say that the family is ¢-good if for y-almost every x € M there is a unique’

Tt is unique almost everywhere and up to zero measure.
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collection of measurable functions T : (—1,1) — R, az, by : (—1,1)> - R
such that for jil-almost every t € (—1,1) we have that:

(2.8)

to (Wike(@5(1) = {(t + au(t, )5, To ()™ + ba(t,5)s72,5) s € (~1,1)}

and for some constant d := d(¢, f, ) (independent of ) we have that
(2.9) 05T E, 5(t,0,0) is a polynomial of degree < d inte (—1,1).

In this case, we call T in equation (2.8) a stable template of (-jets at .
One can define in a similar way ¢-good stable charts for p.

Remark 2.14. We point out again the fact that the relevant conditions about
f-good unstable charts at a point x all concern information that can be read
in arbitrarily small neighborhoods of W{(z) and therefore to analyze the
existence of such charts it is enough to understand the associated linear
cocycles along the unstable manifold. This will be expanded in §3.

We note that since the leaves of the invariant laminations are smooth, the
functions a,(t, s) and by (t, s) are smooth in s for fil-almost every t € (—1,1).
In particular, there is a (measurable) function ¢, : (—1,1) — R, such that
for fil-almost every t € (—1,1) and for any |s| < 1 we have

(2.10) lag(t, s)], bz (L, s)] < cx(t).
Moreover, we have the following, which will be used in Section 7.

Lemma 2.15. For every € > 0, there exist a constant C' > 1 and a subset
P < M such that u(P) > 1 — ¢, and for every x € P and every r € (0,C71),
the set of t € (—r,r) satisfying |c.(t)] < C has jil-measure at least (1 —
&)tz ((=r.7)).

Proof. Fix an arbitrary € > 0. By Lusin’s lemma, we can find a compact
subset Q < M such that p(Q) > 1 — &2, and Wl (z), W} (z) as well as
the chart 2, are continuous restricted to z € Q. Then by definition, for any
reQandte (—1,1) such that ®1(¢) € Q, we see that |c,(t)| can be chosen
uniformly bounded from above. Then the lemma follows immediately from
Proposition B.1. [

Remark 2.16. Note that the stable templates depend on the charts. In [17]
the stable templates at x are taken to be the family of all possible TO as
we change the underlying 0-good unstable charts. We emphasize that we
usually expect to have non-smooth ‘J'i. Indeed, one of the main points here
is that if ‘J'ﬁ is smooth in some regions, then one can produce a higher order
approximation.

Remark 2.17. The existence of ¢-good charts implies that the stable Hopf
brush at a point x, by which we mean 3G = (Jie(_1) W3(®L(t)), is more
regular than expected: it can be approximated to order ¢ by the stable
templates of /-jet. One has a similar approximation for the unstable Hopf
brush defined by 33 = Ue(_1) W(®3(t)). Note that the regularity of 3
and HY may be pretty bad, but the templates used to approximate these
sets to high order may have good regularity.

One useful consequence of (2.9) is the following simple computation:
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Remark 2.18. Note that the condition (2.8) together with the properties of
unstable normal coordinate charts imply that:

Ao n 1 51 F,9(¢,0,0
2, ‘J.[( ) 3 72( g )

/+1°T /41
3,+x )\3; ¢+ 1)!

If (2.9) is verified, we know that W@éﬂﬂc,g(t, 0,0) is a polynomial in
3,

t which depends only on the coordinates we have chosen. Consequently, the
property that T¢ is a polynomial of degree < d is independent of the choice
of the ¢-good chart. See Proposition 3.13 for more details.

(2.11) = Ty (A1)

Before we state the main inductive step for proving Theorem 1.2, we recall
the notion about Whitney smoothness.

For a function ¢ : (—1,1) - R and K < (—1,1) a compact set, we say
that ¢ is C" in the sense of Whitney on K if there exists a C" function
¢ on an open neighborhood of K such that ¢|x = ¢. Another equivalent
condition (cf. Whitney’s extension theorem, see [W]) is given by the exis-
tence of continuous functions a; : K — R, 1 < ¢ < r, satisfying a family of
compatibility conditions (see [W]). In particular, for any ¢,s € K we have

(212)  foo(s) = (o(t) + ar(t)(s — 1) + ... + ar(t)(s —1)")| = of|s — 1[").
We say that ¢ is smooth in the sense of Whitney on K if it is C" in the
sense of Whitney on K for every integer r > 0.

We will prove in §4 the following proposition.

Proposition 2.19 (Dichotomy). Let u be a partially hyperbolic measure
with (-good unstable charts. Then either there are (¢ + 1)-good unstable
charts, or, for almost every x € M we have that T as defined in (2.8) is not
Whitney smooth restricted to any subset of W!(x) with positive pl-measure
(in particular, it is not a polynomial of degree < d).

We can see from the above proposition that the smoothness of T% (an
intrinsic property about (f,u)) can be expressed naturally using normal
coordinates (see Proposition 2.6 for another application of such an idea).

It says that the assertion that the f-order jets of the strong stable lami-
nation are smooth along the strong unstable direction is equivalent to the a
priori stronger condition that they are polynomial in the normal coordinates.

2.6. Compatible charts. Note that for the time one map of the geodesic
flow on a constant negatively curvatured surface, the volume measure verifies
that for every £ > 0 the map admits ¢-good stable and unstable charts, and,
at the same time, verifies a strong form of quantitative non-integrability due
to the contact structure. Thus, to be able to extract more information from
the existence of £-good stable and unstable charts, we will show that there is
some compatibility between these charts assuming that the QNI condition
is not verified.

Definition 2.20 (Compatible charts). For a partially hyperbolic measure p
we say that it admits ¢-compatible good charts if there exist L := L(¢, f) = ¢,
L-good stable charts {1, },epr and L-good unstable charts {2, },car such that
for ;1 almost every x € M we have that: for all (¢1,¢3) close to (0,0),

(2.13) (1) " 0 10(t1,0,3) = (s1,0((Is1] + [s3])"). 53)-
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We say that p admits compatible good charts if it admits ¢-compatible good
charts for every ¢ > 0.

The existence of compatible good charts implies that the measure is jointly
integrable up to order [, a notion defined below:

Definition 2.21. We say that a partially hyperbolic measure u is jointly
integrable up to order  if there is a measurable family of C! smooth surfaces
(with boundaries) {S;}zens in M such that for p almost every x € M, there
is p; > 0 such that :
(i) Wplx (x) U ng (x) = S, and,
(ii) for pl almost every y € Wplz (z) (resp. u2 almost every y in W;’z (x))
we have that W3 (y) is tangent to S, to order [ at y (resp. Wi (y) is
tangent to S, to order I at y).

It is natural to compare the above definition with Definition 1.1.

Proposition 2.22. Let u be a partially hyperbolic measure with compatible
good charts. Then i is jointly integrable up to order l for every l > 0.

Proof. We fix an arbitrary integer [ > 0, and let £ = 10l. We let L > ¢ be
a large integer, let {1;},ens be a collection of L-good stable charts, and let
{4} zenr be a collection of L-good unstable charts such that (2.13) is satisfied

for ¢. Let x be a u-typical point such that 1, and 7, are defined at x, and

(2.13) holds.
For all (¢1,t3) close to (0,0), we write

()" 0 12(t1,0,t3) = (hi(ty, ts), ha(t1,t3), ha(t1, t3)).
Here hq, ho, hg are smooth functions, and we have
(2.14) ha(t1,0) = t1, hs(0,ts) = ts, |ha(tr,ts)] < Ca(fta| + [t3]°)

for some C} > 1.

Let p, > 0 be a small constant to be determined, and we set F =
(—pu, pz) X {0} U {0} X (—pg, p). For any integers 4, j = 0 such that i+ 5 <,
we define

@i j(ti,t3) = {

By (2.14), the above formula gives a collection of continuous functions on
E. Moreover, by 2l < ¢ and Taylor’s expansion of hy at the origin, we see
that |¢; j(t1,t3)] < CL(|t1] + |t3])! for the above i, j and some C’ > 0. Then
we have the following compatibility conditions: for any i, j as above, for any
(t1,t3) and (s1,s3) on E, we have

Pivit j+s'(51,53) % %
@it ts) = > - Z<Z.],),]< 7 (t1 = s1)" (t3 — s3)’
i+ <l—i—j s

+0((‘81 — tl‘ + ‘81 — t1|)l7i7j).

a%'lag;hg(o,tg), tl = 07t3 € (_p$7pl')\{0}7
0, ts = 0,11 € (—pu, pa)-

Here the implicit constant depends only on [ and x. Then by Whitney’s
extension theorem, there exists a C! function ¢ defined in a neighborhood
of (0,0) such that 6};1 8§3¢|E = ; j for any integers 4, j > 0 such that i+j < [.
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We define H(ty,ta,t3) = (t1,t2 + @(t1,t3),t3), and define a map 7, :
(—parpz)® — M by . = o), o H. We denote Ty = {(t1,t2,t3) : t» = 0}
and define

Se = ()" (To), 85 = (1) (To), Sy = (&)~ (Tv).

T
By construction, we see that S, and S; are tangent to order [ along W} (),
and S, and S are tangent to order [ along W} (x). Then it is straightfor-
ward to see that p is jointly integrable up to order [. This concludes the
proof. O

2.7. Main technical statement. We have the following dichotomy, which
proposes a more geometric way to deal with the QNI condition (at least
when the diffeomorphism is sufficiently smooth).

Theorem 2.23. Let i be a partially hyperbolic measure for a C* smooth
diffeomorphism f of a closed 3-manifold. Then, u has the QNI property if
and only if it does not admit compatible good charts (cf. Definition 2.20).

It is easy to check that if p admits compatible good charts then it cannot
verify QNI, so the main point of the Theorem is to establish that if u does
not admit compatible good charts, then it has to have the QNI property.
We divide the proof into two natural steps:

Theorem 2.24. Let p be a partially hyperbolic measure and assume that it
does not admit £-good unstable charts for some integer £ > 0, then p verifies
the QNI property.

The proof of this theorem will be given in §6. The symmetric statement
holds for the existence of ¢-good stable charts (cf. Proposition 2.9).

The second part is to show that the f-good charts must be compatible
unless QNI holds:

Theorem 2.25. Let £ > 1 and let p be a partially hyperbolic measure.
Then there is an integer L > 0 such that if u admits L-good stable charts
and L-good unstable charts and p does not have QNI then there is a family
of £-compatible good charts.

This will be shown in §7. In §2.9 we discuss and prove some uniform
versions of these results when the diffeomorphism is (uniformly) partially
hyperbolic.

2.8. Applications. We restate here a consequence of the main result of
[Ka].
Theorem 2.26 (Katz [[<a]). Assume that u is an ergodic partially hyperbolic

measure with xo > 0 which is a uu-state and verifies the QNI property.
Then, p is SRB.

It is worth pointing out that in [Ka] the flow case is treated. Note that
for diffeomorphisms one can take the suspension flow and the results from
[KKa] will apply and thus give the statement we just quoted.

Therefore, our main technical statement has the following consequence:

Corollary 2.27. Assume that an ergodic partially hyperbolic measure [ is
a uu-state with xo > 0, then either p is SRB or u is jointly integrable up to
order £ for every £ > 0.
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2.9. Uniform versions of the results. We come back to the context of
the introduction.

Remark 2.28. We will use normal form coordinates for points in A as in
§2.3. In the setting of one dimensional stable and unstable manifolds we are
working on, it turns out that one can choose the normal form coordinates
to vary continuously on the point x € A. This will be relevant for our
statements, and in higher dimensions presents a challenge to generalize our
results. See [K(S] and references therein.

The results announced in the introduction are not a direct consequence
of their measurable counterparts stated in the previous subsections due to
the fact that the estimates are measurable functions instead of continuous
ones. In order to obtain the continuous version, it is just necessary to check
that the arguments in the measurable case do give uniform estimates when
necessary since there is a continuous invariant splitting to start with. We will
explain this in §8 (pointing out how the arguments simplify in some places
for the uniform case). Here we will provide the corresponding definitions
and main statements for the convenience of the reader.

We will consider a continuous orientation on E* up to finite cover® and
the induced unit vector fields e’(x). For x € A and i € {1,2,3}, we define
A, € £| Dy f|gi(z)| by equation:

(2.15) D, fe'(x) = Nye'(f (),
where E' = E*, E? = E° and E? = E°. We know by the choice of the
Riemannian metric that these are continuous functions which verify that
IAL| > [A2] > [A3] as well as [AL| > 1 > |A3]. We consider the laminations
W W3 tangent respectively to E' and E® given by the stable manifold
theorem with their corresponding normal form coordinates (cf. Remark
2.28 or Proposition 2.7 below).

The notion of quantitative non-joint integrability which one obtains in
the uniform case is also a bit stronger due to the uniform assumptions.

We have the following result:

Theorem 2.29. Let A be a partially hyperbolic set of a smooth diffeomor-
phism f. Then, if there is a fully supported non-degenerate measure j on
A which does not have the QNI property, then the set A is jointly integrable
up to order £ for every £ > 0 (cf. Definition 1.1).

One consequence of this theorem is that having one measure without QNI
forces every measure with the same support to have this property:

Definition 2.30. We say that a partially hyperbolic set A has topological
QNI if every measure which is fully supported on A has QNI.

Theorem 2.29 implies that either A has topological QNI, or every fully
supported measure is degenerate, or A is jointly integrable up to order £ for

8Note that if A © M is not everything, there many not be a finite cover of M that orients
the bundles (e.g. the Plykin attractor), however, we are only interested on the dynamics
in a neighborhood of A and one can always find a finite cover of such neighborhood with
the desired properties. Note that this is just a notational issue, to avoid having to add +
signs in each equation.
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every £. The second case happens for instance when the set A is contained
in a normally hyperbolic surface tangent to E* @ E°.

Remark 2.31. We note that it has been proved in [BC] that if A has no strong
connections (i.e. for every x € A we have that W (x) n A = {z}) then A is
contained in a locally invariant surface, that is, there is a compact surface
with boundary S containing A in its interior and an open neighborhood U
of A in S such that f(U) < S. In this case, every fully supported measure
in A is degenerate.

3. EXISTENCE OF NORMAL COORDINATE CHARTS AND COCYCLE NORMAL
FORMS

In this section we prove Proposition 2.12 and Proposition 3.9. We restate
some results which are done in more generality in [BEFRH, Appendix A]
but in a somewhat different form.

3.1. Cocycle normal forms. Let f : M — M be a smooth diffeomor-
phism preserving a partially hyperbolic measure p. We let € — M be
a (measurable) vector bundle over (M,u) and A : € — &€ a vector bun-
dle automorphism that lifts (f,u) (i.e. for p-a.e. = € M we have that
Ay = Ale, 1 €x — Ep(y) is a linear automorphism).

We will be concerned only with two dimensional vector bundles (i.e.
dim(€;) = 2 for p-a.e. x € M). We refer to [BEFRH, Appendix A] for
more general results.

We say that a bundle € is smooth along unstable manifolds if for p-a.e. x,
the restriction of & to W!(x) is smooth. In this case, a smooth trivialization
along unstable manifolds of € is a family of pairs 8 = {S, = (&, Yuens
such that for p-a.e. x € M, &,&65 - (—|Df|,|Df|) — & are smooth maps
such that &,(t),&F(t) are linearly independent vectors in Ep1(1)-

Remark 3.1. We note that for a partially hyperbolic measure p almost every
point has a well defined strong unstable manifold, however, not every point
in this manifold is generic with respect to p.

We start by presenting an example which corresponds to the first step of
our induction.

Ezample 3.2. Consider the two dimensional vector bundle € — M defined
for p-a.e. x € M as the quotient €, = TmM/El(JC). We fix a non-degenerate
inner product on €, on each x which we denote by (-, -)e. Clearly, since the
cocycle D f preserves E', it induces a vector bundle automorphism A given
by:
A[v] = [Dof (v)] = Do f(v) + E'(f (%)) € Ty M /5152

where v € T, M and [v] € To M /g (,) denotes v + El(z) the representative
of v in the quotient.

We note that for y-a.e. z € M, the restriction €, of the bundle € to Wi (z)
is a smooth vector bundle because the local unstable manifold is smooth.

We choose a trivialization of £ as follows. We choose a smooth map

& : (~|DfI,[Df]) — € such that
L(E) > &,(1) € (B (L(1) @ EX(@L(0))/ 51 @10
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is a section of the bundle € — M. The existence of such smooth map
&, is guaranteed by the fact that the weak-unstable bundle E!' @ E? of
the Oseledets decomposition is smooth along strong unstable manifolds (see
Proposition C.1). We let & : (=|Df|,|Df|) — & be a smooth map such
that £ (t) is a unit vector in &, and (€1 (1), £, (t))e = 0.

In this way, if we set 8, = (£,,&1), then we can write the matrix corre-
sponds to the action of Df from Eg1 ) to 84’}(1)(%1,@) in the basis 8,(t) =

(&;(t),fi‘(t)) and Sf(a:)()‘l,art) = (ff(m)()‘l,xt)aSf(m)()‘l,xt))a forte (—1,1), as

0= (% 50)

where ay, 7., 5, are smooth functions.

%

We can write the vector bundle automorphism A in a smooth trivialization
as a measurable function

AS M x (—1,1) - GLy(R)

such that A%(x,t) denotes the matrix associated to Ag1 () from the ordered
basis (£,(t), €L (t)) to the ordered basis (€f(2)(M12t), 5]%(96)()\17@)).

We say that the vector bundle automorphism A is smooth along unstable
manifolds if there is a smooth trivialization of € such that for p-a.e. x € M
the entries of A%(x,-) are smooth functions of . Note that if there is one
such trivialization, the same holds for all smooth trivializations.

The following is the main result from normal forms for cocycles which are
smooth along unstable manifolds that we will need. We refer the reader to
Appendix C for more discussion on the notions of smoothness along strong
unstables and exponents of cocycles.

Proposition 3.3. Let p be a partially hyperbolic measure of a diffeomor-
phism f: M — M, let € — M be a p-measurable two dimensional vector
bundle which is smooth along unstable manifolds, and let A be a linear cocy-
cle over (f,u) which is smooth along unstable manifolds and has exponents
o > B. Then there exists 8 = {8y = (&2, &) Yuers, a smooth trivialization
along unstable manifolds of €, satisfying that for p-a.e. x € M we have that
forte (—1,1)

(3.1) A3 (2, 1) — (Cg pg))

where oy and B, depend measurably on x such that (log azdu(z) = a and
§log Bydu(x) = B and py : (—1,1) — M is a polynomial of degree at most d
which depends only on x1,a, 5.

Proof. Being smooth along unstable manifolds, we can define a measurable
non-degenerate inner product | - [|¢ on the fibers of & which is smooth along
unstable manifolds.

By Proposition C.1, there exists a family of smooth trivializations § =
{80 = (5071,50%33)}161\4 such that the cocycle A% is upper triangular along
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unstable manifolds. That is, there are smooth functions o, Bz, 7, : (—1,1) —
R such that:

)]

We remark that £y ,(t) belongs to the Oseledets bundle associated to the
exponent « in the fiber €¢1(;) (Whenever it is defined?).

Note that to get the smoothness of the trivialization we are considering
the orthogonal bundle with respect to the smooth Riemannian metric rather
than the Lyapunov metric (which we use to compute contraction and ex-
pansion). This is no problem since we only use this to produce a reference
smooth bundle that we will later change to make our cocycle be in normal
form.

We now make the diagonals to be constant.

Claim 3.4. There exists a unique measurable family of smooth functions
{az : (—1,1) > Raoo}zenm so that a,(0) = 1 and A(z,t)&1 5 (t) = az(0)&1 2 (A1 2t)
where &1 4(t) = az(t)éox(t). Similarly, there is a family of smooth func-
tions {at : (—1,1) — Regleers so that éix(t) = ai(t)ﬁo%z(t) so that if we
take 81 = {81, = (51,33,5%’33)}161\4 as a smooth trivialization along unsta-
ble manifolds of €, then there is a measurable family of smooth functions
re: (=1,1) > R so that:

(3.3) A5 (2, t) = (%0(0) };E?)) .

Proof. The proof is similar to the unstable manifold theorem. Let us spell
out the computations.

First we construct &, from &y,. We can put coordinates (¢,s), on
the one-dimensional bundle R¢y , so that (t,s), represents the vector v :=
560,2(t) € Ep1(y). This way, we can write, for ¢ € (—=1,1) and s € R:

ot )z := (Mot 2z (t)$) f(z)-

that corresponds to the action of A on vectors in the chosen coordinates
(from now on we will remove the subindex of the point where the coordinates
are chosen in the notation).

Write a, (t) = fexp(b,(t)) for some positive smooth function b, : (—1,1) —
R (we will assume from now on that «(t) is positive for simplicity).

We need to find functions ¢, : (—1,1) — R so that ¢,(0) = 0 with the
property that W.(t,exp(c.(t))) = (A2t @z(0) exp(cp(g)(M1,2t))) which we
can write as:

(3.4) Cf(z)()q,xt) + bx(O) = bgg(t) + Cx(t).

This holds for almost every z € M, so we can solve ¢, as follows: Denote
- m —1 _ ()1 1 -1
by = bf—m(x), Cm = Cf—m(g), )\Lm = ”Df—m(z)f |E1 H = ()\ffl(x) R Af*m(x)) .

INote that actually, the bundle associated to « is defined on backward regular points,
so it would make sense to say it is well defined for all ¢, though we will not use this fact
in the proof.
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Then we get that for every k € Z-( that
k
(3.5) er(t) = auAiet) + ) (bOT,0) — b (0))
j=1

Since A\| ; tends to 0 exponentially fast and ¢, is smooth satisfying ¢ (0) =
0, we get that ci(A],t) tends to 0 exponentially fast for a u-typical = by
Birkhoff’s theorem. Similarly, we have that the value of b;(A; ;t) — b;(0) is

also exponentially small so that the sum converges uniformly in ¢. Thus for
a typical x we have

alt) = i (BsA5,0) — ;).

It is clear that the above expression gives the unique solution of equation
(3.5). Notice also that the derivatives of ¢, can be solved by an analo-
gous computation. Consequently we can show that the functions ¢, are C*®
smooth and derivatives of all orders vary measurably on the point x.

To get the family of sections fiz one argues in the same spirit by looking
at the bundle €41 ;) quotiented by R¢1 »(t), the same considerations on the
smoothness apply. O

Finally, we will need to add some component of &, to §1L7$ in order to
change the function r, in (3.3) into a polynomial. In the following let us
abbreviate a,(0) and 5,(0) as a, and S, respectively.

Claim 3.5. There exists a measurable family of smooth functions {u, :
(—1,1) = R}gens such that if we take §,(t) = &1, and EL(t) = uy(t)E4(t) +
{f’x(t) and 8 = {8, = (&4,&.) }rers we get that:

(3.6) A (1) = <06$ p%iw)

where py is a polynomial of degree < dy where'’ dy = [O‘X;IBJ + 1.
Proof. Let us then compute the map A in the coordinates 8;. We have
glz (t) = us ()€ (t) + 5;[ (t) = (rz(t) + agug (t))éf(z)(Al,xt) + Bzfjf(g;)oﬂ,xt)-

We can write r,(t) = p;(t) + 7, (t) where p,(t) is a polynomial of degree
< dp and 7, (t) = O(t%*1). We need to solve:

1

= — (7 (t) + aguy(t)).
B
Let us then solve u, formally to see that one can only get a solution for suf-

ficiently large dy. This is why one can only get to remove 7,(¢) up to a poly-

nomial of that degree. Write un(t) = wp-n(5)(t), Tn(t) = Fp-n(z)(t), AL

1,m

(37) uf(a:) ()\th)

1OCaution, here a and 8 denote the Lyapunov exponents of the cocycle, which are
the integral of the functions « +— loga, and z +— log B,. Similarly, x1 denotes the first
Lyapunov exponent of (f, 1) and can be computed as the integral of x +— log A1 z.
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1D f ™ = Ny A omey) ™l @ = @poae o agpong) and
,Bn = ﬁf—l(z) s ,Bf—n(x) so that:

k
(677 _ Qi1 . _
(3.8) ux(t) = IB—uk()\th) + Z (#Tj()\ldt)) .
k j=1 9

Note that %log()\ij)d converges to —dy; while %log g—j converges to o —
B we can then choose dy so that for every z and d > dy we have that
(AL j)dﬁj*laj,l converges exponentially fast to 0 (uniformly in ) as j — +00.
This happen as long as d verifies that o — 8 — dgx1 < 0.

Using that 7;(\; ;1) = (A;j)d0+10(td0+1) we deduce that the function

(39) wi =3 (B000)

j=1
is well defined and smooth along unstable manifolds. O
This completes the proof of the proposition. O

Remark 3.6. Note that if f is uniformly partially hyperbolic; € is Holder
continuous over M and smooth along unstable manifolds of f; and A: & — &
is Holder continuous over M, and smooth along unstable manifolds of f, then
we can choose both sections &, &5 to depend Holder continuously on 2 near
any predetermined point in M.

3.2. Construction of 0-good unstable coordinate charts. In this sub-
section we complete the proof of Proposition 2.12. Let us recall the state-
ment.

Proposition 3.7. Every partially hyperbolic measure p admits a family of
0-good unstable charts.

Proof. Fix first a family of Pesin charts {12}, (which are smooth charts
varying measurably) from (—100A; ;;, 100A\1 ;)®> — M as in [BP]. These are
chosen to verify:

¢ 19(0,0,0) =z,

e 0729(0,0,0) € B! are unit vectors.

Using the normal form coordinates, we can make a coordinate change
(which we still call {12},) and further assume that the charts verify:

e 10(t,0,0) = L(1),
e 12(0,0,t) = ®3(¢).

Recall the construction in Example 3.2. The derivative map D f on T'M
descends to a vector bundle automorphism on & = TM/E" over f. This
vector bundle automorphism is clearly smooth along the unstable manifolds.
We now write F0 := (’L?c(x))_l ofo() = (F£71,F£72,F£,3). Then {0}, gives
us a smooth trivialization of € along unstable manifolds under which the
bundle map takes form

P 02 FY 5(t,0,0) 03 5(t,0,0)
02 FY5(t,0,0) 03F) 5(t,0,0) )
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Now, if we apply Proposition 3.3 to this cocycle we can find a change of
coordinates of the form:

(21,2, 23) — (21,22 + az(x1)x2 + as(x1)xs, x3 + ba(x1)x2 + b3(21)23)

that produces new charts 72, for which the conditions of 0-good charts are
verified since it takes the derivative cocycle along unstable manifolds to
normal form. O

Remark 3.8. As in Remark 3.6, the 0-good unstable chart in Proposition
3.7 depends Holder continuously on the base point near any predetermined
point in M.

3.3. Two-dimensional cocycles for the /-jets of the stable manifolds.
We have the following.

Proposition 3.9. If there is a family of ({—1)-good unstable charts {15} rens
which moreover verify (2.8) for p-almost every x € M and some functions
T, ag, by, then:
(i) the derivatives 05 F, 5(t,0,0) = 0 for fit-a.e. t € (—1,1) and 1 < k <
¢,
(ii) there is a ¢-good family of unstable charts (i.e. so that (2.9) also
holds).

The proof of this proposition relies on the study of cocycle normal forms.
Related results have appeared in [BEFRH, Appendix A] and [T7Z, Section
4].

In the rest of this subsection, we will assume that (f, 1) admits a family
of (¢ — 1)-good unstable charts verifying property (2.8) for some ¢ > 2.
Our goal here is to construct a two-dimensional cocycle in order to apply
Proposition 3.3 to obtain Proposition 3.9(ii).

Given z € M and set y = f(z). We are going to work in the (¢ — 1)-good
charts centered at x and y. Let F, = (Fy, Fy, F3) be f written out in the
(¢ — 1)-good chart coordinates as in equation (2.7), then we have

b FJB(O’ 0, 0) = (Oa 0, 0),
e and

(3.10) Fx(ml, 0, O) = ()\1793.%'1, O, 0)
e and for jil-a.e. 1 we have that
oF: OF:
(Wi Wi) B <)\2,:1: 0 >
oFy  ors |
%2 Oms 0 Ase

where derivatives in the above expression are evaluated at p =
(1,0,0), and A2, and A3, are constants depending only on z.

Let 1 € (—1,1) be a fil-typical value. In other words, ®L(z1) is a p-
typical point. In particular, we may assume that W3(®L(x1)) is defined. By
(2.8), we may define a(z1,s),b(z1,s) by

to (Wige(®r(21))) = {(21 + al1, 5), bz, 5)s,5) 1 s € (~1, 1)}

We can deduce Proposition 3.9(i) from the following lemma.



GEOMETRIC PROPERTIES OF PARTIALLY HYPERBOLIC MEASURES 19

Lemma 3.10. If a family of unstable normal coordinate charts verifies (2.8)
then for every multi-inder o = (a1, a3) with o = 0 and 0 < ag < £, if
we denote 0X® = 0x{"0x5® we have that a(l;;l(? (21,0,0) = 0 for jl-a.e.
X1 € (*1, 1)

Proof. Since Fy(z1,0,0) = 0, then, for every i > 0, we have that 0 Fy(x1,0,0)
0 for all 4 > 0. Also, by (2.8) and the f-invariance of W3 we have that for
jl-ae. z1e(—1,1),

Fy(z1 + a(z1, 5),b(z1, s)s" L, 5) = O(s+h).

Here we allow the implicit constant in O(-) on the right hand side above to
depend on F' and 1, but of course independent of s. We deduce that for
every i € {1,--- ¢}, and fil-almost every z1 € (—1,1) we have

0 = O{Fa(z1+al1,5),b(x1,5)s" ", 5)}sm0
04 Fy(21,0,0).
By our hypothesis that fil is not atomic, there is a subset of x1 with full

jil-measure and no isolated points. Then we deduce for every i as above
and every m > 0 and fil-a.e. 71 that

ai+mF2
— 0,0) =0.
Sz #100.0

This concludes the proof. O

For a jil-typical 21, we consider the collection of (germs of) curves of the
form:

t e (z1 4+ Ot), bt + O(t"F?), et + O(t%)).

We consider two curves to be equivalent if their values of b and ¢ coincide.
Then for each z; € (—1,1), we may use (b,¢) in R? to parametrize the
equivalence classes of smooth curves through (z1,0,0). This gives rise to a
R? bundle over (—1,1) for p-almost every x € M.

We now show that the above construction gives rise to a R? bundle defined
p-almost everywhere.

Proposition 3.11. Let {7, },enr be another (€—1)-good unstable chart which
verifies (2.8). For p-a.e. x, we define Hy = i, ' o1,. Given a pu-typical x and
al-typical x1, Hy maps an equivalence class of curves through p = (z1,0,0)
in the chart 1, to an equivalence class of curves through p in the chart i,.

Proof. First, we notice that the following analogous statement as in Lemma
3.10 holds.

Lemma 3.12. For every multi-inder o = (a1,a3) with ap = 0 and 0 <
az < £, if we denote 0X = 0x{" 0x5* we have that alail({f” (1,0,0) = 0 for
ji-a.e. x1 e (—1,1).

We omit the proof of Lemma 3.12, which is almost identical to that of
Lemma 3.10.

We write H, = (Hi, Ha, H3). By definition, we have for every s € (—1,1)
that

(3.11) Hy(s,0,0) =s, Hs(s,0,0) = Hs(s,0,0) = 0.
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Take a curve y(t) = (x1(t), z2(t), x3(t)) of form
v(t) = (z1 + O(t), bt + O(t"+?), et + O(?)).
Then by Lemma 3.12 and (3.11) we can write H, o y(t) as

0H> 1 Hy, OH;
__Z b +1 75€+1 O t€+2 Yot
51'2 (p) (£ + 1)! 8m§+1 (p)c ] ( ), 8953

From the above expression it is straightforward to conclude the proof. [

(r1 + O(1),] (p)ct + O(t?)).

We can thus construct a measurable R? bundle &, over a p-full measure
subset of M that is smooth along unstable manifolds, and the action of f
corresponds to a self-map F of & over f. Notice that F is not a linear
bundle automorphism.

The following proposition says that (€, F) has (&, F) a linear bundle
automorphism as a factor, after a polynomial change of coordinates (b, ¢) —

(b, cz+1).

Proposition 3.13. Let F, denote the action of f in (¢ — 1)-good unstable
charts {1z }zers as above and assume that equation (2.8) is verified, then, for
every p = (x1,0,0) we have

4
(312 (o) = (™ S ) (20
‘ (Oy3)* 0 )\gJ;1 (0x5)t+1
where t — (x1(t),z2(t), z3(t)) represents a curve through p in the chart at

x, and t — (y1(t),y2(t),y3(t)) = Fp(x1(t),z2(t), z3(t)) represents a curve
through Fy(p) in the chart at f(x).

Proof. Consider p = (z1,0,0) with a jil-typical 1. We look at the image by
F, of a curve v : (—¢,¢) — (—1,1)3 through p of the form (for some values
of b,c e R):
t— (z1 + O(t), bt + Ot F?), et + O(t?)).
Using Lemma 3.10 and Taylor’s expansion we get that the map F}, o~y is
of the form:

t—(Az(z1 +O(1)),

1 o+lR,
(0+1)! pgltt
By a substitution (b,¢) = (b, ¢*1), we have

L onn
(0 +1)! oxftt
Since we have (b,¢) = (70D ao(t) |10, 023(t)|s=0), this completes

T+
the proof. O

Ao bt ¢ (p) 1 1 O(t2), Az pct + O(t?)).

(b, ¢) > (Nazb + (p)é, A5hre).

This will be used in the next subsection to complete the proof of Propo-
sition 3.9.

Remark 3.14. The bundles defined in this section correspond to some com-
ponents of the (£+ 1)-jet bundle of curves through typical points in unstable
manifolds of generic points.



GEOMETRIC PROPERTIES OF PARTIALLY HYPERBOLIC MEASURES 21

3.4. Construction of /-good charts. Proposition 3.9 is a consequence of
the following proposition.

Proposition 3.15. Assume that f admits (£ —1)-good unstable charts {1},
and that equation (2.8) is verified, then there is a smooth change of coordi-
nates which produces £-good unstable charts for f.

Besides proving Proposition 3.9, the proof of this proposition allows us to
obtain a formula for the change of coordinates.

Proof. We are in the situation of Proposition 3.13 and thus we can write the
action on (¢+1)-jets as a cocycle as in formula (3.12). Applying Proposition
3.3 one can obtain a smooth change of coordinates of the form

(3.13) (1,29, x3) > (21,29 + ug p(x1)25™, 23)

giving that the action on (¢4 1)-jets is polynomial and thus providing ¢-good
unstable charts as desired. (]

Remark 3.16. Assume that f is uniformly partially hyperbolic, then we can
inductively show that ¢-good unstable charts, if they exist, can be made to
depend Holder continuously in a neighborhood of any predetermined x € M.

When ¢ = 0, this is the content of Remark 3.8. Now we consider the
general case. Given an arbitrary x € M, and a family of (/—1)-good unstable
charts {iy}zens depending Holder continuously on the base point near z,
both the bundle & and F constructed above depend Holder continuously
on the base point near z. Since z is arbitrary, the bundle & and F are
Holder, and smooth along the unstable manifolds. Then by Remark 3.6,
the chart we obtained by applying Proposition 3.15 satisfies the inductive
hypothesis: they can be made Holder, possibly after a coordinate change,
in a neighborhood of any predetermined =x.

3.5. Improvement of charts. Here we prove the following proposition
that is the starting point of the proof of Theorem 2.24.

Proposition 3.17. Let u be a partially hyperbolic measure and {1,} a family
of £-good unstable charts. If there exists an integer dg > 0 such that the stable
templates of (£+1)-jets T, (given by (2.8)) are polynomials of degree at most
do for almost every x € M, then u admits (£ + 1)-good unstable charts. The
symmetric statement holds for £-good stable charts.

Proof. By equation (2.8) we have:
1 Wihe(@3(1))) = {(t + O(s), To ()™ + O(s"2), ) = se(=1,1)}

loc

for some p’ > 0 depending only on f and /.
Since we know by assumption that T% is a polynomial, we can consider
the new smooth charts ¢, = 1, 0 1, where:

(3.14) UV (t,u, 8) = (tu+ TE(t)s 1, s).
We have ;1 (t,u,s) = (t,u — TE(t)s"T1, 5). Then
(1)~ (Wi (23(1))) = 5 tory (W (@5(1)) = {(t+0(5), O(s™*?), ) = s € (~1,1)}.

Thus the new charts verify condition (2.8). Using Proposition 3.9 we
complete the proof of the proposition. O
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3.6. The uniform case. The results in this section extend to the uniform
setting with minor modifications. Let us state the results we will use and
discuss briefly the adaptations needed to obtain such statements.

We first need the notion of ¢-good uniform unstable charts, where the
measurability is changed to continuity. This makes sense in view of the
uniformity and the fact that normal form coordinates vary continuously
with the point. (This is one of the main issues in extending this study to
higher dimensions.)

Definition 3.18 (0-good uniform unstable charts). Let A be a partially
hyperbolic set of a smooth diffeomorphism f on a closed 3-manifold. A
continuous collection of smooth diffeomorphisms {2, : (—2|Df|,2|Df])* —
M} penr is a familly of uniform unstable coordinate charts if it verifies that
for every x € A we have that 2,(t1,0,0) = ®L(t1), 1,(0,0,t3) = ®3(t3)
for t1,t3 € (—1,1), 092,(0,0,0) is a unit vector in E?(x) and if we write
F, = z;(lx) o fouy = (Fypa,Fy 2, Fy3) then we have that F, : (—1, 1)7? - R3
verifies:

(1) O2Fy2(t,0,0) = Aoy for all te (—1,1),

(i) 03Fz3(t,0,0) = Az, for all t € (—1,1).

(ili) 02F%3(t,0,0) =0 for all t € (—1,1).
A familly of unstable uniform coordinate charts is called 0-good if moreover,
there is some d > 1(independent of = € A) such that

(3.15) 03F32(t,0,0) is a polynomial of degree <dinte (—1,1).

Remark 3.19. Technically, since A may have some topology, it is possible
that the tangent space Th M which splits in 3-bundles E'® E?® E? cannot
be coherently oriented. This imposes an obstruction for the existence of
uniform coordinate charts. There are several solutions for this issue. One
is to take a finite cover of (a neighborhood of) A and work there. Note
that our results are independent of this finite cover and thus this will not
result in a loss of generality. Taking charts defined on a fixed square is
convenient to avoid charging the notation. We will thus implicitly assume
throughout that the bundles are orientable and therefore this obstruction is
not existing. The reader not comfortable with this assumption can consider
either local families of smooth diffeomorphisms or directly parametrize the
charts in cubes defined in the tangent space of each point.

We can use the cocycle normal forms which admit continuous versions to
improve the charts and get:

Definition 3.20 (/-good uniform unstable charts). Let {1;},ea be a family
of 0-good unstable charts a partially hyperbolic set A. We say the family
is (-good if for every z € A there are (unique) continuous functions T :
(-1,1) - R, az : (-1,1)> - R and b, : (—1,1)> — R such that for every
te (—1,1) so that ®L(¢) € A we have that:

(3.16)

1 F(WE(OL()) = {(t + ax(t,s)s, TE(t)s" T + bu(t,s)s" 72 s) = se (—1,1)}.

and for some uniform constant d := d(¢, f) (independent of x) we have that

(3.17) 05y 5(t,0,0) is a polynomial of degree < dinte (—1,1).
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We will need the following result whose proof in the uniform setting is
identical and left to the reader (note in particular that the same steps can
be used as explained in Remark 3.16).

Proposition 3.21. Every partially hyperbolic set A admits a famiily of 1-
good uniform unstable charts. Moreover, if A admits a familly of {-good
uniform unstable charts and the template T given by equation (3.16) is a
polynomial of degree d(£) for every x, then A admits (¢ + 1)-good uniform
unstable charts.

4. PROOF OF THE DICHOTOMY: PROPOSITION 2.19

We let f : M — M be a smooth diffeomorphism and let y be a non-
degenerate partially hyperbolic ergodic measure (cf. Definition 2.1) with
(-good unstable charts (cf. Definition 2.13).

For a compact set K = M and z € K we denote K, = (@1 ](1,1)) HEK).
Under our non-degeneracy assumption we have:

Lemma 4.1. For every compact subset K < M with u(K) > 0 we have that
for u-almost every x € K the set Wi(z) n K is infinite.

Proof. Let A = {x € M : fi} has at least one atom}. Since A is f-invariant,
by ergodicity it either has zero or full u-measure. Since p is non-degenerate,
A has zero measure. For almost every = € K, we have = ¢ A and pl(Wi(z)n
K) > 0 since u(K) > 0. For any such x, Wi(x) n K is infinite. O

Proposition 2.19 is a consequence of the following;:

Proposition 4.2. Let i be a partially hyperbolic measure admitting £-good
unstable charts. Then there exists an integer d := d(¢, f, ) > 0 such that:

(i) either for p-a.e. x € M we have that ‘J'i s a polynomial of degree d
when restricted to a full measure set with respect to fil,

(ii) or for p-a.e. x € M if S, < (—1,1) is a subset with positive fi}
measure, then ‘J'i|gz is mot smooth in the sense of Whitney.

Proof. We write A" := A; pn-1() -+ Aiw € {#] Do f™ i} for i € {1,3},
for each integer n > 0 and for p-a.e. . We will use the notation Jé") =
(DL AED .

Since we have ¢-good unstable charts, by definition there is an integer

d such that (2.9) holds. Iterating (2.11) we get the following formula for
(n),
te Jy
Y (n) )\gn) Y (n)
(4.1) Tpn@y(Aigt) = W‘Iz(t) + PV (t)

where Pm(n) is a polynomial of degree < d. After a change of variables in
(4.1) we get:

(4.2) Ta(t) = af T (B0 + Q7 (1)
where
Mohnia) ()
(n) _ Sz (n) _ ()\ n )_1
o
r (n) T 1,f="(x)
(As,f—n(x))ﬂl
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and Q(mn) (t) = P](ff)n(x) (Bén)t) is also a polynomial of ¢ of degree < d. By
enlarging d if necessary, we may assume without loss of generality that

(4.3) hm log( (M) <0 for every m = d and p-a.e. z € M.

Note that it sufﬁces to take
x2— (L +1)xs+ (£ +2)e
X1 —€ '

We denote by A < M the set of x € M with the following property:
there is a compact set S, of positive jil-measure such that J% is smooth
in the sense of Whitney on S,. We assume that u(A) > 0, for otherwise
we already have (ii). Then by ergodicity and by (2.11), we have p(A) = 1.
By definition, it is clear that for every z € A and for almost every y (with
respect to pl) in a neighborhood of z, we have y € A.

We may upgrade the set A in the following the way. We denote by B < M
the subset of x € M such that for every z € B, there is a compact set S, of
positive fil-measure such that T% is smooth in the sense of Whitney on S,
and moreover x is a density point of S, with respect to il. By definition,
we see that for every x € A, the set B n WL () has positive fil-measure.
Since we have seen that A is a full measure set. This means that u(B) > 0.
Then by ergodicity, we have u(B) = 1.

We fix some small constant € > 0. By Lusin’s lemma, there is a compact
subset Q < B such that u(Q) > 1 — 155, and the conditional measure pl
depend continuously on z € Q. Moreover, by slightly reducing the size
of Q if necessary, we may assume in addition to the above that T%, as a
function defined jil-almost everywhere, depends continuously on = € Q, in
the following sense. For every Cauchy sequence {x,},>0 in Q converging
to some z € Q, there exists a compact subset F,, c (—1,1) for each n > 0
such that, as n tends to infinity, ﬂin(En) converges to 1, and F),, converges

d >

in Hausdorff’s distance to a compact subset E of fil-measure 1, such that
for every sequence {t,, € E,},>0 converging to ¢t € E, we have that T% (¢,)
converges to T (t).

Summarizing the above, we deduce that there is a point z € Q with the
following properties:

e one has that u({f"(2)}p=0 N Q) = (),

e there is a compact set S, < supp(jil) so that T| zlg, 1s smooth in the

sense of Whitney, and

llalc(gacﬁl]a(cn))
A (J5")
We can write (cf. (2.12)) for some ¢ > 1 that:

(4.4)

. . 11
TE(t) = agat+.. . +ag gt +TE(t) where |TE(1)] < cft|¥t! if t e (f—, —) NS,
CcC C

. tends to 1 as n tends to infinity.

Pick y € Q so that u(B:(y) n Q) > 0 for all € > 0, and a sequence n; — o0
so that f™(x) € Q, and converges to y. Notice that we can deduce from
(4.2) and (4.4):

(4.5) Tho ) (1) = Qi) () + a0 TEBG 1)
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where Qén")(t) is a polynomial of degree < d. If frffl)(x te S, Jgﬁni) we have
that

i Z 1 i) \d d
Notice that the ji! fmi (- measure of the set of ¢ satisfying B](fffi)(x)t e Sy Jm)
is at least
fia(Se 0 I /g (78)
which tends to 1 as ¢ tends to infinity.

Up to passing to a subsequence of (n;);>0, we have that for every i = 0
there exist a polynomial R; of degree < d, and a subset E; < (—1,1) such
that: as ¢ tends to infinity, [ fm (x)( E;) converges to 1; E; converges in the
Hausdorfl’s distance to a subset £ < (—1,1) of full /lll/—measure; and for
every sequence {t; € E;};>0, we have R;(t;) converges to ‘J’f (t).

Since a polynomial with degree < d is determined by its values at d + 1
points, we deduce that ‘J’f is a polynomial of degree d on a full ﬂ;—measure
set for every y € Q. By letting ¢ tend to 0 we deduce that ‘J'é is a polynomial

of degree d when restricted to the support of il for y-a.e. z € M.
O

5. POLYNOMIALS AND RATIONAL FUNCTIONS

We consider the collections of functions Poly? = {p : [-1,1] — R
p is a polynomial of degree < d} and Rat? = {% [-1,1] = R : p,qe
Poly?; p(t) # 0 Vt e [~1,1]}. Clearly we have that Poly? c Rat?. We note
that Poly? is a linear subspace of C%([—1,1]), but Rat? is not.

We will need a compactness result which is standard for polynomials. We
first give a definition. Given constants k € Z~q, o,n > 0, we say that a
subset E < [—1,1] is (k,0,n)-spread if for any intervals Iy, ..., I} such that
> [Lil < n we have that E\|JI; has at least k + 1 points with pairwise
distances strictly larger than o.

Proposition 5.1. For every d € Z~g, o,n > 0 there is C := C(d,o,n) >0
such that for any (d,o,n)-spread subset E < [—1,1], and any R € Rat?
satisfying supep |R(t)| = 1, the following is true:
(i) there are intervals Iy, ..., 14 such that >, |I;| < n and |R'(t)] < C
for every t e [-1,1\ L,
(ii) there are intervals Jy, ..., Jag such that >, |J;| < n and |R(t)] > C~!
for every t € [-1,1\|J J;.

Remark 5.2. We will use this result in intervals of varying length (not always
[—1,1]) and for rational functions with possibly different normalizations (not
always sup,cp |R(t)| = 1). If the rational function R is defined in [a, b] and
sup,ep |R(t)] = A with E c [a,b] is such that {(F) is (d, o,n)-spread where
¢ : [a,b] — [—1,1] is the unique affine bijection, then we can apply the result
to R(t) = L R(€71(t)) which is a rational function of the same degree defined

n [—1,1]. We obtain that the derivative of R is less than C' = C(d,0,n)
except in a finite family of intervals which cover a small proportion (less
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than 7) and thus the derivative of R is less than A(b ) by the chain rule.

In the same way, the lower bound for |R(¢)| in (ii) becomes %.

To prove this proposition we will need the following elementary result
that will also serve other purposes:

Lemma 5.3. Let Cy,0 > 0 and let (R, € Ratd)n>1 be a sequence of rational
functions such that for every n =1 there exist points to,, ..., to, € [—1,1]
with pairwise distances strictly larger than o verifying that sup; | Ry (tin)| <
Co. Then, there exist a subsequence nj — o0, points si,...,54 € Da, and a
rational function Ro, € Rat? (whose poles are contained in {si,...,sq}) such
that Ry, converges to Ro, uniformly on compact subsets of [DQ\{sl, ., 84}
(where [D2 ={zeC : |z] <2})

To see the need to take out some points from the interval, we may consider
the sequence {R,,(z) = nz++1}n>1'

Proof. We can write

Hf (Z — Qa; n)
(5.1) R,(2) = cnimme -
" nH;n:1(Z — bjn)
where ¢, a;pn,bj, € C and 0 < k,,m,, < d''. Up to considering a subse-
quence, we can assume that k, = k and m,, = m are constant for all n and
that ¢, — ¢, @in — @i, bjn — bjo all converge in C = C U {o0}.

We order a;, and bj, so that they decrease in modulus. We let k €
{1,...,k+1} and 7 € {1,... m+1} the smallest integers so that a; ., b, €
C (so that a; o = w0 if ¢ <IA<:andbj7oo =wifj <m; ifk=k+lorm=m+1
means that all coefficients diverge).

We will use the fact that the functions are bounded to show the following;:

Claim 5.4. Up to taking further a subsequence we have that the sequence
of functions

Hf;ll(z - ai,n)
H;n:_f(z — bjn)

converges uniformly in Do to a constant function ¢« € C.

én(z) i=cp

Proof. Up to taking a subsequence we can assume that the tuple of points
(tin)lo converge to the tuple of points (tio)ly € [—1,1]¢ which are pair-
wise at distance > 0. By k— k< < d, we can assume without loss of generality
that tp,, is uniformly far from a;, for all E<i<k (and therefore for all
1<i<kzasai,naooifi<l%).

It is enough to show that the functions é,(z) are bounded uniformly in
some point of Dy since one can compute the logarithmic derivative as:

G(z) _ kZ (S
én(2) oz —ain

which converges uniformly to 0 in Dy becaus the coefﬁcients a;n and b,
diverge.

H\We use the convention that H?zl(z —7) = 1.
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To get the uniform boundedness, we compute the value of ¢, in the point
ton € [—1,1] < Dy. Notice that

[T (ton — aim)
H;lm (tO,n - bz,n)
is uniformly bounded. Since the product Hi;;;(to,n — @) is uniformly

bounded from below and R, (o) is uniformly bounded from above, we get
the desired result. O

Rn (tO,n) = én (tO,n)

Now it is easy to show that outside any given neighborhood of {by, w0, - - ., b0 }
in Dy the sequence (R;,),>1 converges uniformly to

ko 2= Qim0
(5.2) Roo(2) = é gﬁi'f(@ . b;m)) .

The rational function R, verifies the desired properties. O

Proof of Proposition 5.1. We proceed by contradiction and find a sequence
R, = %: e Rat? so that there are (d,d,7)-spread sets E, < [—1,1] so
that |R,(¢)] < 1 for all ¢ € E,, and for every family of intervals Iy,...,1I;
whose sum of lengths do not excede § there is some ¢ € [—1, 1]\ | I; so that
R, (1)] > n.

Using Lemma 5.3 we can find a rational function R, € Rat?, a subse-
quence nj; — o0 and points s1,...,54 € C containing the poles of Ry such
that R,, — Ry on every compact subset of D2\{s1,...,sq}. In particular,
on every compact subset of Do\{s1,...,sq} we have that R}, — R}, uni-
formly. By covering the points si,...,sq € R with small intervals whose
lengths add up to less than o we find a contradiction since R, is bounded
away of those intervals. This proves (i).

To prove (ii), one can use that Ry has the form given by equation (5.2)
and use logarithmic derivatives (i.e. consider the derivative of log(Ry)) to

see that
R/ (2) 1 1
— — ’l?b G:.
Roo(Z) ZZ*CLZ' ;ij’ @i, 05 €

7

It follows that by a contradiction argument we can bound R, (z) from below
away from the 2d points a;, b; (counted with multiplicity).
This concludes the proof of the proposition. O

6. DISTANCE TO RATIONAL FUNCTIONS

This section is devoted to showing the following statement.

Proposition 6.1. Let p be a partially hyperbolic measure with £-good un-
stable charts {1} such that the stable templates T (cf. (2.8)) are not in
Poly? for some d = d(f,0) = O(¢). Then p has QNI.

As a consequence, using Proposition 3.17 we deduce the following.

Corollary 6.2. If u does not have QNI then it admits £-good stable and
unstable charts for every integer £ > 1.
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Remark 6.3. The proof of Proposition 6.1 can be simplified if one knows
that the center unstable direction is more regular, for instance, if f where
an Anosov diffeomorphism with expanding center direction, then it gets
simpler as the full unstable foliation is of class C'*. This allows us to
consider only polynomials instead of general rational functions in the proof
below. However, to apply the result for f~! one would need to deal with the
lack of integrability and regularity of the center stable subspaces (note that
it is very rare for both the center stable and the center unstable subspaces
be more regular than Holder).

6.1. Some uniform distance. We now deduce some consequences from
the hypothesis that the functions T% are not polynomials.

Let di be a sufficiently large positive integer depending only on f,/, to
be determined later. The underlying assumption of this section is that p is
a non-degenerate partially hyperbolic measure with ¢-good charts and the
functions T are not polynomials of degree < d; restricted to the support
of fi} for almost every x. By ergodicity, we see that item (ii) of Proposition

4.2 holds.

Proposition 6.4. For every e > 0, for every integer d > 0, there is a
compact set K < M with u(K) > 1 — e such that for every v > 0 there
is ¢ = c(d,v,e) > 0 such that for any x € K and any polynomials P,Q of
degree < d, the set

Q)

(6.1) 109 = {t e (—1,1) : |T¢1) — W’ < c}

satisfies that ﬂ;([g’cQ) <.

Note that since T% is defined on a fi1-full measure set, the set Ig]: 9 is also
only defined up to a jil-null measure set (also recall that fil is normalized
so that it is a probability measure in (—1,1)).

Proof. We proceed by contradiction. We notice that if ¢ < ¢’ then If, CQ c
Iﬁf}z. If the result does not hold then there exist an integer d > 0, a constant
v > 0, and a compact set Ky ¢ M with u(Ky) > 0 such that for every
x € Ky, for every integer n > 0 there exist polynomials P,,,Q,, : (—1,1) - R
of degree < d such that ﬂ;([fﬁ’/g") > v. By reducing the size of Kj if
necessary, we may assume in addition that all objects we will consider vary
continuously on Ky (cf. Proposition B.1).

We now show that there exists 6 > 0 such that each set If’{/%" contains
d 4+ 1 points with pairwise distances larger than J.

Since by assumption p is non-degenerate, we may assume that fil are non-
atomic probabilities varying continuously on x restricted to the compact set
Ky, for any v > 0 there exists § > 0 (which depends on pu, v, d and Kj) so
that for every x € Ko, every subset of (—1,1) with jil-measure larger than
v must contain d + 1-points with pairwise distances larger than 9.

Let us fix an arbitrary x € Ky. Up to taking some subsequence, we
can apply Lemma 5.3 to obtain a rational function R, € Rat? such that

P — Ry uniformly away from finitely many points in [—1,1]. We deduce

that T% coincides with a rational function in a set of positive /il measure
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(this is because we can remove intervals of uniform size around the points
where the convergence is not uniform, and this will cover no more than half
the measure of fil, so there is a positive measure set where the template
coincides with a rational function, in particular smooth). Since p(Kp) > 0
and x is arbitrary, we can apply Proposition 4.2 to get a contradiction. [J

Remark 6.5. Note that we cannot ensure with the limiting process that
the template will coincide with a smooth function in some open set of the
support a priori. This is why we need to deal with density points and apply
Proposition 4.2.

Before stating the next proposition, we recall the notation (2.3): Wll’k(:v) =
FRWVE(fR(@))) and W (@) = fRWP(FH)).

Proposition 6.6. There exists 6 := 0(f, ¢, u) > 0 such that for every integer
dy >0, every e > 0 there is Q < M with u(Q) > 1 — {5 such that for every
v > 0, there is ¢ := c(f,pu,dy,e,v) > 0 such that for every x € Q, every
k > 0 such that f*(z) € Q and every pair of polynomials Q,P of degree
< dy there is a set Ug pgr C Wllk(x) such that pt(Ug pax N Wllk(x)) >
(1= )Wy (2)) and
TH(t) — %’ > e, Ve (9 (Ug.pai)-

(t)
Proof. Let Qp be a compact set such that 1(Qg) > 1 — 155 and every object
we will consider varies continuously as in Proposition B.1.

We apply Proposition 6.4 to £/100 and get a set Q; verifying Proposition
6.4 in place of K (in particular, ;1(Q1) > 1—155). Then the set Q = Q1 Qy
satisfies 11(Q) > 1 — 15. Proposition 6.4 gives a constant co > 0 so that for
every pair of polynomials Py, Q¢ of degree < d; and a point z € M with
f¥(x) € Q, we have that ,&}k(m) (Iﬁ&fﬁm) < Vu}k(x)(Wll(fk(x))) = v (recall
that '“}k(m) is of unit mass restricted to Wi (f*(x))).

(6.2)

Let di be sufficiently large so that 0§+1Fm72(-,0,0) is a polynomial of
degree < d; for p-a.e. z. Now fix some point = € Q such that f*¥(x) € Q and
polynomials P, @ of degree < d;. By formula (2.11) and the fact that f has
f-good charts, we see that there is a polynomial of degree < dy, denoted by

R, such that for every t € (—()\(llf))*l, ()\(k))*l) we have that

T 1,x
g EDE (*)
(6.3) Tolt) = ST A20 + RO,
2.z

TE(t) — Q“)\ for t € (—(AF)=1, (AF)=1) it is enough

Therefore, to estimate 1Z0)] J

to estimate:

D™ Qo)
(6.4) |T’;(7 k() (Alat) — W)

for some polynomials Py, Qg of degree at most 2d; .
We let Up 1 be the set of points in Wllk(x) such that their images
under f* do not belong to I70:%0

X . Since the measure p is invariant, we
f ({L’),CQ
have that
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1 1 Py,Qo
1Urou) _ ) FreProlios)
LRy Lo WE(fR@)  —
pt (W% () NS

Since = and f*(x) both belongs to Q, there exist 6 = &(f,¢, 1) > 0 and
(k)
> cie %, By (6.4) and (6.3), we can

, T

2
k
(g

g = c1(f,Q) > 0, so that

choose ¢ = ¢ypcy so that (6.2) holds for points in Upg 4 k- O

6.2. Proof of Proposition 6.1. To show that Definition 2.8 is verified we
will use the equivalent characterization of QNI in Lemma A.1.

Let V,a > 0 be two constants, and let d; > 0 be an integer, chosen
depending only on f,u at the end of proof. We fix an arbitrary constant
e > 0. Using Proposition B.1, we choose a compact set P1 < M with
w(P1) > 1 — /100 which verify the following properties:

(i) Wi(x) and W} (z) vary Holder continuously with respect to = € Py
in the smooth topology (see [BP, §8]); and the chart 7, has uniformly
bounded smooth norm for all z € Py;

(ii) given v > 0, we have that for large enough j > 0 and for every = € P;
one has pl (W7 () n P1) > (1 — )l (W17 () for i€ {1,3}.

Consider v,, = 27" and let Q, be the set given by Proposition 6.6 for
the values v, so that pu(9,) > 1 — (¢/100)2=". Consider Q = nQ,, and
Po = P1 n Q which also verifies the previous properties (and p(Pp) > 1 —¢).
Moreover, we know that given v > 0 we know that if x, f¥(z) € Q then
equation (6.2) is verified for every rational function % of degree at most d;
with ¢ depending only on f, £, u; and ¢ depending only on f, ¢, v, e, u.

We fix some v € (0,1) from now on. In the following, we say that a
constant C' is uniform if C' > 0 and it depends only on f, and the sets
given above. We will use ¢ to denote a generic uniform constant which may
vary from line to line.

We fix an arbitrary 2’ € Py.

The Hélder condition in (i) ensures that there exist uniform constants
c1, 2,71, 72,70 > 0 such that for y' = ®3,(s) € W2 (2/) n Py, we may write

(6.5) 1 Wihe(y') = {(t, Q). P(t')) = t' € (—ro,r0)},

where Q and P are smooth functions (with uniformly bounded derivatives
of any given order) such that for ¢ € (—rg, ro)

(6.6) cals| < |P(t)] + Q)] < ers.

By making ro smaller if necessary, for any ¢ € (—rg,79), we denote 2’ =
@;,(t), and we have a well-defined ¢’ as the unique constant depending on
t and y such that (¢, P(t')) belongs to T30, (W(2))) where m 3 is the
projection from R? to its 1st and 3rd coordinates. By the Hélder condition,
we deduce that |[t/| < C|t|® for some 73 > 0 depending only on f and pu.
We may write
(6.7)
1t Wine(2)) = {(t+altyu+ e (t, ), Ty (u™ + & (w),u) = uwe (=ro,r0)}.
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Now assume that ¢ is chosen as that z’ € P;. Then there is a uniform
constant c3 > 0 such that |a(t)| < c3, |e.(u)| < c3u? and |6, (u)] < czu+2.
Notice that we may deduce from the above bound that

(6.8) It —t'] < es| P(t)| + c3| P(¢)? < 2¢3|P(¢)).
Lemma 6.7. There is a uniform constant ¢4 > 0 such that we have
(6.9)d(W? (=), Wi (y)) = eal P(t) ' T3 (t) = Q)] — ' P(#)] 2.
Proof. Since {1,} is a family of ¢-good unstable coordinates, we can see
that the tangent spaces of the curves 1,'(W7 .(2')) and +,' (W} (y/)) are
both disjoint from a closed cone {(vi,v2,v3) : |v1] + |v3| < c|va|} for some
constant ¢ > 0 independent of all choices of 2’ € Py, 1/, 2’ € Py given above.
Thus, by matching the 1st and 3rd coordinates of the expressions in (6.5)
and (6.7), we have
dWP (), Wi(y)) = olP) ' To(t) + e (P(H) — Q).

By (6.7) and the choices of t,t', we deduce that
P TTE () + e (P(t) — Q)] = cal PE) L) — Q)| — ei P(H)| 2
for some uniform constant ¢4 > 0. This concludes the proof. U

We first consider the case where |P(')| < ¢2|s[72/2. In this case, by (6.6),
we have
(6.10) Q)] > ca|s[7?/2.
Then by Lemma 6.7 and by reducing the size of rq if necessary, we have
(6.11)RHS of (6.9) = cg|Q(t")] — i P HITE (1) — e M| P(t)|+?

> cacals|/2 — cey(eas2/2)
> cyeols|? /4.

Now it remains to consider the case where |P(t')| = ¢o|s[72/2. Then we
have

(6.12) cols|?/2 < |P(t/)| < cpls|™.
We let di be large depending only on f, u and ¢. Fix some s € (—rg,70).
Denote r, = |s|“* where

27v92(20 + 3)
6.13 Cy = ———.
(6.13) v3(dy + 1)

Now we fix an arbitrary ¢ € (—rs,7rs) such that 2/ € P;. Then we have
|t'| < 2rs, and

(6.14)  RHS of (6.9) = cg P())[“H! ]53573521-1 — g [Pt

Tor(t) =

Since 3’ € Py, there exists a uniform constant c¢; > 0 so that Taylor’s
expansion gives Q(7) = Q(7) + ¢(r) and P*T(1) = P(r) + p(r) such
that |¢(7)],|p(7)| < es|7|®*L, and P,Q are polynomials of degree < dj.

By Cy > ,QYz?CgfiB and by reducing rq if necessary, we deduce |P(t')| =
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|P(t)[*1/2 > 0 by (6.12) and [|t'| < CrJ®. Enlarging cs if necessary, the

function B5(t') := | Pg,(tl - ggm satisfies that
6 15 / 2 |t,|dl—"_1|8|’y1

. t < YN
( ) ’85( ) €165 ‘p2(£+1)(t/)‘

Denote R(t) = % e Rat®. We have R(0) = 0. By (6.9) and our choice
of Q, P, we get
dW7 ("), Wi (y') = eal P THTL (8) = R — e P2 = e 1P| B5(8).
Then by (6.15) and by reducing ¢4 if necessary, the distance d(W3(2"), Wi (y'))
is bounded from below by
ca P(E)[ T (8) = R(E)] — e H(|P@)[ DB s
+P()?)
(6.16) > ea P()|"THT5(8) — R(E)| — eey | P2,
The last inequality above follows from (6.12), (6.13) and |¢/| < CrJ®.

Recall that v > 0 is small constant that we have fixed at the beginning
of the proof. We have the following.

Claim 6.8. There exist constants Vy,mg > 0, di = O(¢) and ap,Cy > 0
such that the following is true. Given any m > myg, denote by 1™ =
(—()\(1";2)*1,()\(@)*1). Then, if ' € Q is such that f™(2') € Q, and s €

1,z
(—ro,70) is such that

—1 3., 95
(617) O%S) € [_‘/O, _Vbj| )

log A\ m, 5 3
and y' = ®3,(s) € Py, there is a subset Uy of Wllm( ) = ®L(I™) such
that pt,(Uy) > (1 —v)ul, (I/Vl1 "(2")), and for any 2’ = ®@,(t) € U, we have

(6.18) d(Wl?’(z’), Wll (v')) > Coe .

Proof. Given some s € (—rg, o) with ®3,(s) € Q we can define the functions
P and Q as in equation (6.5). We will find constants Vj, mg and d; depending
only on f,pu, ¢ and constants ag, Cy so that if f™(2’) € Q for some m > myg
and s verifies bounds in equation (6.17) with y' = ®3,(s) € Py, then we
verify (6.18). Note that the functions P and Q are well defined as longs as
1y’ € P1 so the rest of the constructions can be made.

We will ﬁX Vo > l and d; > 10\/07;172 (¢+1). Note that this will ensure
that Cy < =~ from our choice of C.

We will con81der Cp sufficiently small and «g, mg sufficiently large verify-
ing some conditions that will be explicit in the proof. For a given m > my
and s verifying condition (6.17) and ®!,(s) € Py, we consider U, to be the
set of points on which (6.18) holds.

We will divide the set 7(™) = T (>m) ul (<m) where
o ' IU™ if |P(t)| > ca|s72/2 (cf. equation (6.12)) and,
o /e I if [P(t))| < ea|s|2/2.
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Note that if we have |P(#')| < cas[72/2 (ie. t' € I(<m)), then by (6.9) and
(6.11), we have

d(WP ('), Wi (y)) = cacals2 /4.

We can then deduce (6.18) with appropriate Cy , ag and mg for all ¢/ € T (<m).

Thus, if Cy is sufficiently small and «aq sufficiently large and m sufficiently
large, we have that I (<m) can be considered fully contained in Us.

We will now deal with I(>m) and show that for an appropriate choice of
Cy, ag, if m is large we get that Us n I(>m) covers I(>m) except for a subset
whose measure is at most vjil,(10™).

There exists 0 > 0 so that for every subset 7 < I™) with gl,(T) >
(1 —v/2)aL, (1) it verifies that T is (d1, o, v/2)-spread in 1(™).

By Proposition 5.1 (see Remark 5.2) there exists C' := C(dy,0,v/2) > 1
such that if R € Rat™ and D = sup, ;e |R(t)| then |R/(7)| < CD)\?Z}
and |R(7)| > D/C for every 7 € I'™\ U I; where I; € I;, 0 < i < 3d, are
open subintervals of 7™ such that fo, e ,fgd are mutually disjoint, whose
union is of jil-measure at most 5 Al (1 (m)). We can without loss of generality

assume that t’ € I(>m) since we already know that [ (<m) c Us for well chosen
values of the constants.

We choose the intervals so that there are I; € I; with I containing the
k|I;|-neighborhood of I;, where k > 0 depends only on u, f and Q, but is
independent of i, x and m.

Let the rational function R be constructed as before so that (6.16) holds.
Consider D = sup;e(_q1) |[R(t)| and D = sup;e(_1 ) |TE, (1))

Assume first that D > CD + 1. Then, it follows that choosing ¢ €
10"\ | J I; we have that |R(t') — T%,(t)| > 1 and therefore by equation (6.16)
we have that:

W), Wi () = FIPE)*! > Coemom,

Where Cy « C4Cg+1 and o and mg are large enough so that |5|“/2 (e+1) >
e~ ™ if m > myg. So in this case it holds that U contains I(m)\Ui I.

We can therefore assume from now on that D < CD + 1.

By Proposition 6.6 and our choice of ¢, there exist 6 = §(f, ¢, ) > 0 and
a subset U/ < I™ such that (as long as my is sufficiently large) Al (Ul >
(1 —v/10)ul, (1)) and if t € (®1,)~1(U”), then

1T, (t) — R(t)| > ce™o™.

We claim that U, contains U’ ~ (I0™)\ | J I;) for well chosen values of Cp,
o and sufficiently large m.

By (6.8), (6.12) and the way we chose the intervals I; € I; by letting |s|
be smaller than some uniform constant, for any ¢t € Uy we have that ¢ and ¢/
belong to the same component of I (m)\ (U, Ii, and consequently we have

(6.19) [R(t) — R(t)| < CDX|t —t'| < cA) | P(t)]
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for some uniform constant ¢g > 0 (note that here we used that D is uniformly
bounded).

Putting together (6.16) and (6.19), we get that if ¢ ¢ J then there is a
constant 7(t) and a uniform constant ¢; > 0 such that

(6.:20)  d(WP (=), Wi (y') = eal P(t)|" 1T (1) — R(2)] — Br(t)
where
Br(t)] < e H(IP@)R(E) — R()| + [P(£)?)
< e APt
By (6.12), we have
[P > g s and |P(H)] < erls|™

By (6.20) we deduce that for any ' € U’ ~ (I0")\ | J I;), we have

! / D (4! —om ‘B (t)|
dWP (), Wi(y) = al P (CG ’ W)

> oy P()[H! (cef‘sm - Cﬂﬂﬂp(fﬂ)
(6.21) > asls ) (ese™ g AT

for some uniform constant cg > 0.
We fix a large constant mg > 0 such that for every m > myg, and every

5] < (A™) =305, we have
2
A s < Bemom,
Then for every s satisfying (6.17), we have

2
AWPE), W) = De ) o,
which gives (6.18) for Cy < % and «g so that e*‘sm()\g@)%v‘)”(“l)w >

—oom
e~ o,

Notice that, by the hypothesis that |t| < rs, we need to ensure that
5C
Cylog|s| = —T*Volog A > —log A > log |¢],

l,x 1,z

which is ensured by our choice of Vy and d;. R
This shows that U contains U, n (I)\ | JI;) for well chosen values of

Cy, ag, mg and thus completes the proof.
O

Note that Claim 6.8 has put us under the conditions of Lemma A.1 from
which we can deduce that QNI is verified for f. Indeed, let V{, ag, be given
by Claim 6.8. Then by slightly reducing the size of Py if necessary, and
by letting integer kg = mg be sufficiently large depending only on f, u, we
may assume that for any = € Py and any k > kg, we have k= ! log Alg,f*k(m) €

_ k
(%Xg, %Xg) and k 1log)\§7m) € (%Xla %Xl)- We set V = —x1Vy/x3 and
2

a = «p. Then for any integers ki, ks = kg such that Z—f e (5V, %V) we
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choose S, = W* () A Py. Then for each y = ®3(s) € S, we have (6.17)
for m = k1. We set U, = ®L(U;) where U is given by Claim 6.8. Then we
can see that the conditions of Lemma A.1 is satisfied.

7. COMPATIBILITY OF GOOD CHARTS OR QNI: PROOF OF THEOREM 2.25

Throughout this section, we let u be a partially hyperbolic measure of
f, which admits L-good stable charts {1, }zeps and L-good unstable charts
{a! }renr for some large integer L, which will be determined later depending
on f,u and /.

To facilitate the proof, we introduce the following notation. We denote by
Ty the hyperplane {(t1,t2,t3) : t2 = 0}. Given a function ¢ : (—1,1)? — R,
we denote by 74 : R* — R? the diffeomorphism 74(x,y, 2) = (z,y+¢(z, 2), 2).
We define Ty = 74(Tp).

Given z € M. We define

Se=ut | | W@
te(—1,1)

In the following, we say that Sy, and T} (for some function ¢) are tangent
to order L on a subset U = W3 (z) if there exists C' > 0 depending on f, j1, x
and U such that for any ¢ with ®3(t) € U we have

(7.1) 7510 (Wine(R2(2))) = {(5, O(Cls|"),t + O(Cs)) : s € (=1, 1)}

Similarly, we define

Sha =) U wh@k) |,

te(—1,1)

and say that S5, and T}, are tangent to order L on a subset U’ < W ()
if there exists C' > 0 depending on f, p, z and U’ such that for any ¢ with
®L(t) e U’ we have

(7.2) 75 (1) (Wige(@2(2)) = {(t + O(Cs),0(Cls|"), s) : s € (-1, 1)}

Given a pu-typical z, the smooth surface (+,)~! 02,(Tp) contains a graph
of a function v, : (—74,7,)? — R for some 7, € (0,1). Notice that 1, is only
defined for x in a p-full measure set. We also denote

I, = {(a,b) e N* : a + b < 20 and 070%4¢,(0,0) # 0}.

By definition, d%1,(0,0) = 054,(0,0) = 0 for every integer k > 0, and
consequently we have

(7.3) ({(0,4) :0<i<20} U{(i,0):0<i<2}) "I, = J.
We have the following.

Lemma 7.1. Given x € M such that 1, is defined. If I, = & then we have
Ip(z) = &, and (2.13) holds at .

Proof. Assume that x € M satisfies that I, = ¢J. We can deduce (2.13)
from Taylor’s expansion.
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Assume to the contrary that Iy, # . Then by Lemma 2.15, there
exists C, > 0 such that for every ¢ > 0 there exist t1,t3 with |¢t1], [t3] < e
satisfying

AW (D) (1)), W (D3(t3))) < Cpe® ™
and

d(f (W7 (@r(t1)), (W1 (L (t3)))) = €/Cs.

We obtain a contradiction by letting ¢ be sufficiently small. Consequently,
we deduce that Iy, = . O

The main result of this section is the following.

Proposition 7.2. Given an integer £ > 0, there exists L = L(u, f,£) > 0
such that the following is true. Assume that there is a set Py < M with
w(Po) > 0 such that for any x € Py we have I, # &. Then p has QNI.

Proof. By Lemma 7.1, the set of x such that I, # J is f-invariant. Then
by ergodicity we may assume without loss of generality that pu(Py) = 1.

By Pesin’s theory, there is a constant > 0, depending only on f, u, such
that for any e > 0, there is a compact set P. = M with u(P.) =1 — e such

that E' and E3 are uniformly d-Holder continuous on P..
2
By (7.3), there are numbers 7;?%[ >V > ;1305’51 and K > 1 such that for

any V' € (ZTXIP’V(SZ, %V(S_Q), for any x € Py, the set {a + bV’ : (a,b) € I}

admits a unique minimum K(V';z) < K. By the choices of V and K,
we may assume that there exists a measurable positive function x — ¢,

log |ss|
log |s1]

such that for every = € Py, for any si,s3 € (—cg,c,)\{0} with

(ZTXfV(SZ, %V&‘z), we have

(7.4) [P (s1,53)] > colsa|™.

We fix a small constant € > 0.
Let C1 > 1 be a large constant to be determined in due course. By Lusin’s

theorem and by enlarging C] if necessary, we may take a compact subset
By < Py with

(7.5) 1(Bo) > 1—¢/2,

satisfying the following properties:

(i) we have
(7.6) ey e > Cr Y, 2 € By;

(i) the smooth norms of the charts 1, and ¢/, are bounded by C; when-
ever x € By;
(iii) for any n € Z, for any i € {1,3} and any x € By we have

(7.7) crlenxi=9) < | D, el < Cpexite),

(iv) E' and E? are uniformly é-Holder continuous on By, with d-Holder
norms bounded by Cf.
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By Proposition B.1, there is a compact subset B < By with
(7.8) u(B)>1—e¢,

such that the following holds: for every v > 0, there exist mg > 0 such that
for every x € B and every m > my there exist a subset Us™ < By Wll’m(x)
such that

(7.9) pp(U™) > (1= )y (W™ (),

and Sé,x, Ty are tangent to order L on U%’m; and a subset UE”” c By n
Wf”m(az) such that

(7.10) HE(UR™) > (L= ) (WP (),

and Sy 4, Tp are tangent to order L on Uz, Moreover, by Lemma 2.15, we
may assume that the implicit constants for above tangencies are uniformly

bounded.

Let us denote
(7.11) S1a = (1) 7" 01u(S1,0)-

Then S7 , and («,)"" 01,(Ty) = Ty, are tangent to order L on U™ By
enlarging (' if necessary, we may assume that
(v) (7.1) holds for C' = Cy whenever z € B, U = Uy™ and ¢ = t,; and
(7.2) holds for C' = Cy whenever z € B, U' = Uy and ¢ = 0.

We may assume without loss of generality that U;?’m, resp. UL ™ is disjoint
from W™ (), resp. Wi (z), for some r = r(f, p,v,€) > 0.

Now take an arbitrary = € B and two large integers k1, ko > mg such that
fF(x), f~*2(x) € B and

(7.12) Z—i e (gv, SV).
Let us now suppose that t,t3 € (—C ', C71)\{0} satisfy that
(7.13) ®3(t3) € Uy := UPF> = W2 (a);
and
(7.14) oL(t)) e Ul = UM « WlF ().
By (7.9) and (7.10), we have
- AT O

P (WM (@) B (WP (2))

Thus, by (7.12) and by enlarging kq, k2 if necessary, we may assume that for
any t1,ts satisfying (7.13) and (7.14), the following also holds:

log |t — —
og [ts] _ 3X3V’ 5X3
log |t1] 5x1 3x1

Recall that 713 : (—1,1)3 — (—1,1)? denotes the projection to the first
and the third coordinates. Consider the curves 73 = (2},) (W (®L(t1)))

(7.16) V).
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and v = (2,) "1 (W (®2(t3))). Their projections 71 3(v3) and 71 3(v1) have
a unique intersection (s, s3). In other words, there exist r1,r3 € R such that

(7.17) (81,7’1,83) € Si,x, (81,7“3,83) € Sé,x
We denote
(7.18) 1= Pu(s1,83).

By definition, we have (s1,7], s3) € Ty,. By the tangency between SLm and

(1)t 01, (Tp) = Ty, on U3; and the tangency between S5, and Ty on Ul
we have

(7.19) Iri =i < CilsilF,  |rs] < Culssl™.
Moreover, by the 6-Holder continuity of E' and E3 on By, we have
(7.20) Cl_l‘tl‘l/é < ‘81| + ‘7“1| < Cl‘tl‘é, ‘83| < Cl‘tg‘é.
Let us first assume that |ry| = (2C1)~¢1|%%. Then by (7.20), the second
inequality in (7.19) and a similar argument as in Lemma 6.7, we deduce that
AW (@5 (0)), Wi (93(t3)) = C 1 — 73]
= 071‘7“1| — Cil|7°3|
> Co7lertn|Ye — 200t

V

By (7.16), and by assuming that

—4x1
L
- X302V
we have
1 .,
(7.21) AW (@4(t1)), Wi (®2(t3))) > ;¢ Lot M.

Now we assume that |r1| < (2C1)~!|t1]"/9. In this case we have that
[s1] > (2C1) a2
Then, together with (7.20) and (7.16), we deduce that
1 — —4
og |3 _ (CX3yg2, TRy 52y
IOg |81| 4X1 X1

In particular, we have |s3| < |s1|. By our choice of V', by (7.4), (7.18), and
by enlarging C} if necessary, we have

(7.23) Irt] > C7 Y s |K > e O Kt |59,
Thus we have

d(W7 (D (t1)), Wi (93(t3)))

(7.22)

Cry — 3

CHr| = CHry = ra| = C Mg
CTHOT N0 |K0 — ey (s + Issl")
Ccler K| K0 — 20y || 2.

A2 YA ARV}

By assuming that
(7.24) L>25°K,
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we have that for any = € B, for any sufficiently large ki, ko satisfying (7.12),
for any t,t3 satisfying (7.13), (7.14) and (7.16), we have

1
(7.25) AW (@5(t0), Wi (@} (ts))) > 5C 1O |0,
By Lemma A.1, we see that f has the QNI property. O

Proof of Theorem 2.25. 1t suffices to combine Lemma 7.1 and Proposition

7.2. U

8. CONTINUOUS AND UNIFORM VERSIONS FOR PARTIALLY HYPERBOLIC
DIFFEOMORPHISMS

In this section we explain how to adapt the results in the previous sec-
tions to the case where the measure is supported in a (uniformly) partially
hyperbolic set.

Let f : M — M be a smooth diffeomorphism and A € M a compact
f-invariant subset. Assume that there is a continuous splitting of TAy M =
E'@FE°@E’ = E' ® E? ® E? and consider the functions i,z defined in
equation (2.15) which are continuous on A and verify (for an appropriate
metric) that [AL] > [A2| > |A3] as well as [AL| > 1> |\3].

We wish to show:

Theorem 8.1. Let f: M — M be a smooth diffeomorphism of a closed 3
manifold M and A < M a compact f-invariant partially hyperbolic subset.
Then, for every u with full support on A there is the following dichotomy:
e Fither u has QNI (cf. Definition 2.8), or,
o for every { = 1, the set A is jointly integrable up to order ¢ (cf.
Definition 1.1).

Note that the second condition is independent of the measure, and forces
every measure with full support on A to not verify QNI. Also, while not
obvious from the definition of the QNI property, our result implies that
having this property for all invariant measures with full support on some
partially hyperbolic subset with good continuation properties (e.g. the whole
manifold) is an open property in the smooth topology.

8.1. Proof of Theorem 8.1. As for the measurable case, the proof has
three stages'?:

e First show that if QNI is not verified, then there are ¢-good stable
and unstable charts for all £. In this case, we will need to check that,
since the normal form coordinates vary continuously on the point,
these ¢-good charts will turn out to be continuous. The proof mimics
what is done in §6.

e Then, show that if QNI is not verified, then, the approximations of
the stable and unstable Hopf brushes are at the same up to order /.
This proof mimics the one done in §7 and indeed, in this case, no
continuity is needed.

12Note that whenever possible, we will use the results from previous sections, particu-
larly §6 and §7. We note that in those sections, the fact that templates where measurable
functions included an extra difficulty that here we could do without if we wanted to show
the results here directly. We leave those simplifications to the interested reader.
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e Finally, show that this compatibility of charts implies that there
is a continuous family of surfaces that approximates well the Hopf
brushes up to order /.

Let us give the main arguments and see how to adapt what has already
been done:

Lemma 8.2. Let p be a measure of full support on A and assume that A
does not admit £-good uniform unstable charts for some £ = 1. Then, i has
QNI

Proof. First, let k < £ be the largest £ > 1 such that A admits k-good uni-
form unstable charts. We claim that if the templates ‘J"; are not polynomial,
then p has QNI.

To see this, note first that we can apply Proposition 6.4 since the tem-
plates cannot verify option (i) in Proposition 4.2 as continuity of the tem-
plates (cf. Remark 3.19) would imply that they are polynomial everywhere
and that would allow to construct (k+1)-good uniform unstable charts using
Proposition 3.21.

Now, the rest of the proof of Proposition 6.1 works verbatim. U

The rest of the proof of Theorem 8.1 follows using results that we previ-
ously discussed. Note first that what we have so far allows us to construct
continuous families of smooth surfaces §; and 8% that approximate the Hopf
brushes H3 and H} to arbitrary good order. These surfaces are constructed
by mapping the set {(x,y,z) : y = 0} by the compatible ¢-good charts as
considered in §7. So, if we show that these surfaces are mutually tangent to
high order we would be done. Note that the surfaces are constructed using
the templates, so, they coincide with the ones constructed in §7, and thus,
the proof in §7 shows that if they are not tangent to high order almost ev-
erywhere, then, the measure has QNI. Since the measure is full support and
the surfaces vary continuously, this concludes (note that this requires the

uniform f-good charts to vary continuously, which is the content of Remark
3.19).

APPENDIX A. DISCUSSION ON THE NOTION OF QNI

In this appendix we provide some alternative ways to understand the QNI
property and prove Proposition 2.9.

Proof of Proposition 2.9. Assume p has the QNI property for f as stated in
Definition 2.8. We wish to show that it also verifies the property for f—1.
For this, consider @ > 0, ¢ > 0 and v > 0 and we will consider the set P
given by the fact that u has the QNI property and some value of C' = C(v, ¢)
(which may differ from the one given for u) and kg as given for p.

To get the result, it is enough to show that there is a function p(r) such
that p(v) — 0 as v — 0 so that if k > kg and z, f*(x), f%(z) € P there is a
subset U, ¢ Wllk(x) with p!(U,) > (1—p(u))M;(W11k(x)) with the property
that given z € U, thereis S, Wl?”k(a:) with p3(S.) > (1,/)(,/))#3(”/1?’7/“(:6))
so that if y € S. then

(A1) dWi(y), Wi(z)) > Ce .
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Consider the set of pairs (y, z) € W; F(2) % W, *(2) which verify equation
(A.2). It follows from the fact that p verifies QNI that this set has measure
13

Sy X
pz (Wi (@)
and thus, by Fubini’s theorem it follows that considering p(v) =

larger than (1 — v)? with respect to the probability measure

by
W @)
24/v the result follows. U

The following characterization of QNI is the one we establish to prove our
main results.

Lemma A.1. Assume that i is a partially hyperbolic measure for a smooth
diffeomorphism f satisfying the following property.
e there exist V > 2, a > 0 and,
o for every e > 0, there exists a subset Py = M of measure pu(Py) >
1—c¢
and,
o for everyv > 0, there exist ky = ky(v,€), and a constant C = C(v,¢)
so that such that:

if k1, ko = ks with ﬁ—i € (3V,3V) and z, f¥1(2), f772(z) € Py, then
e there is a subset S, Wf’kQ (z) with p2(Sz) > (1 — y)ui(Wﬁ’kQ (x))
with the following property:
o For all y € Sy there exists U, < Wllkl(x) with pt(U,) > (1 —
V)M}C(Wll’kl (x)) so that if z € Uy, then
(A.2) dW3(2), Wi(y)) > Ce k1,
Then p has the QNI property (cf. Definition 2.8).
Note that the condition on ki, ks says that equation (A.2) (up to possibly

changing ) is the same as asking that d(W (y), W3(z)) > Ce~amin{kikz}
or other variations.

Proof. We fix some ¢ € (0,1). We set

1+ 2V 1+ 3V
A3 = 3 by = 2_ € (ap,1).
(A3 =gy =gt )
We can without loss of generality suppose that Py satisfies that
., € by—ao
A4 P 1— — .
(A4) p(Po) > 1= min( 555, 1)

We define in the following way the set P in Definition 2.8. Given a con-
stant N > 0, we let P = P(e, N) be the set of points = € Py such that for
every k > N,

1 ] oo
(A5) ZHO<j<k—1:f/(a)ePo}| > 1—min(, Ozboao)’
1 ] o
A8) Lk << 11 o) e > 1 - ming S, Bo00)
Using Birkhoff’s theorem we may assume by letting N be sufficiently large
that

(A7) W(P)>1—e.
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We now show that the statement in Definiton 2.8 is satisfied for this P.

Fix some v € (0,1). We let k, = ky(g,v) be given by the hypothesis of
the lemma.

Let us take some z € P and an integer k > kg such that f*(z) € P and
f*x)eP.

We denote k' = (%2—2_0[70)]6. By the definition of P, we have

by —
Haok << bok': fl(a) e Po}| > (1—= 90 pok! — agk —1 > 0.
0
Consequently, there exists some j € {agk + 1,--- ,bok’} such that 2/ :=
f(x) € Po.
Denote ks = k + j and ky = k — j. Then we have
2
A1) e Py, fR2(2) € Py and % ¢ 3V, gV).
1

By the hypothesis of the lemma, there exists a subset S’ € W13 k2 (x")
with p3,(8) > (1 — V)ui,(Wl‘?”kQ (2')) such that for any y € S’ there exists
U, I/Vll’k1 () with pl,(U)) > (1 — V)pi,(Wll’kl (z')) such that if »z € Uy,
then
(A.8) dWi(y), Wi(z)) > Ce o,

We define S, = f~7(9’) and for each y € S,, define U, = f_j(U}j(y)). Notice

that 42, = (f7)«p and pl, = (f7).pl. Then it is clear that the statement
in Definition 2.8 holds for x by letting « be larger. (]

We end this appendix by commenting the difference between our definition
of QNT and that in [Ka].

The only difference between the definitions is the choice of the notion of
local stable/unstable manifolds. We have chosen to work with W{(z) (with
i € {1,3}) to be the unstable/stable manifold of lenght 1 with respect to the
normal form coordinates. Note that the Riemannian length of these man-
ifolds is not continously variating as the normal form coordinates are just
measurable, but they vary continuously in sets of arbitrarily large measure.
To choose the scales, we have chosen to use Wll’k(x) = f~R(WL(f*(x))) and
Wl?’k(x) = fFW3(f~*(x)). In [Ka] he first introduces a (sufficiently small)
measurable partition B of the lamination with a Markov property and defines
WL (z) = Wl(z) nB(z). Then, he takes VVlick(x) to be fF(WL (f*(2)) (a
symmetric partition allows to define local stable manifolds). The definition
of QNI in [Ka] it is then identical to Definition 2.8 where the sets W, (z)
and ngk(x) are replaced by VVlick(x) and Wk ().

As it is usual, to see the equivalence, one égocnsiders large measure sets of
points where the ‘boundary’of the leaves W! (z) and W} (z) is far’ from
the center point x. In those sets, and for iterates which return to those sets
there is an easy way to relate the sets VV;OIS(.%') and Wfk(x) and thus one

can go from one definition to the other without difficulty.

APPENDIX B. SOME MEASURABLE CONSIDERATIONS

Here we state an abstract result about measurable dynamics.
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Proposition B.1. Let p be a partially hyperbolic measure for a diffeomor-
phism f of a 3-dimensional closed manifold M. Assume that cq,...,c are
measurable functions with respect to . Then, for every e > 0 and compact
set Q < M with 1(Q) > 1—¢/2 there exists compact subsets P < Py < Py < Q
and C, ky > 0 such that u(P) > 1 — e and such that:

(i) all functions c1, ..., ¢ are uniformly continuous on Py,
(ii) for every v > 0, there exists an integer mg > 1 such that for every
m > my, for every x € Py and for both i € {1,3} we have that

Ha(Pr AW (2)) 2 (1= v)p (W)™ (2)).

Proof. Ttem (i) is a standard application of Lusin’s theorem. Without loss
of generality, let us assume that p(P;) > 1 — 2¢/3.

To see item (ii), we define for any integers g, m > 2 a subset of P; by the
formula

Qg = {z € Py b (Pr o W™ (2)) = (1 — ¢~ k(W)™ (), Vi € {1,3},m/

Fix an arbitrary integer ¢ > 2. We have lim,, o (P1\Qgm) = 0. We

choose some my = 2 such that 1(P1\Qgum,) < £/(100¢?). Then we take

Po = ng=29,m,- It is clear that p(Pg) > 1 — 3¢/4, and satisfies item (ii).
U

APPENDIX C. SOME STATEMENTS ABOUT COCYCLES

Here we give some proofs of some results which are probably well-known
but not available in the literature. The reason is that not many references
deal with cocycles which are only smooth along unstable manifolds. We
state a particular case since it is the one we will use, but of course it holds
in more generality. We use the notation and definitions from §3. Note that
this can be seen as just a generalization of the fact that Pesin unstable
manifolds are smooth. Note that the following result is implicit in [Rue,

Remark 5.2(b)].

Proposition C.1. Let f : M — M be a C* smooth diffeomorphism pre-
serving an ergodic partially hyperbolic measure p. Let € — M be a (mea-
surable) two-dimensional vector bundle over (M, p) and let A : € — & be
a vector bundle automorphism which is smooth along unstable manifolds.
Assume that the Lyapunov exponents of A with respect to i are o > 3, cor-
responding to Oseledets subspaces E, and Eg respectively. Then there exists
a family of smooth trivializations 8o = {Sg 5 = (507%5&@)}161\4 such that for

[-a.e. x,
0 _ (aa(t) 72(t)
AS (x,t) = < 0 ,Bx(t)>

where oy, By, 1y ¢ (—1,1) — R are smooth functions. Moreover, for u-a.e.
x, we have that £ ;(0) € Eq(x).

Let us recall that the fact that A is smooth along unstable manifolds
implicitly requires the bundle € to be defined and be smooth along unstable
manifolds (see Remark 3.1). This means that for p-almost every x € M, the
bundle € is defined over Wi (z) and admits a smooth trivialization 8§ making
A3(z,-) smooth as a function from (—1,1) to GL(2,R).
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Remark C.2. Under the assumption that: (1) f is a partially hyperbolic
diffeomorphism on a 3-dimensional closed manifold M; (2) € — M is a
Hoélder continuous, two-dimensional vector bundle over M that is smooth
along unstable manifolds of f; and (3) A : &€ — &€ is a Holder continuous,
vector bundle automorphism which is smooth along unstable manifolds of
f, we can require 8g in Proposition C.1 to consist of sections with uniformly
bounded smooth norms. Moreover, all the statements in Proposition C.1
hold for every x € M, and «, 3;, 7, are smooth functions with uniformly
bounded smooth norms. These facts follow immediately from the proof
below.

Proof. By hypothesis, there is a family of trivializations 8 = {8, = (¢4, &5) baens

such that for p almost every x € M, §x,§j : (—1,1) — & are smooth maps
so that &,(t),&5(t) € €g1(y) are linearly independent. Moreover, we may
assume without loss of generality that for p-a.e. x € M, £,(0) € Eo(x) and

& (0) € s ().

The restriction of the bundle map A on 8|W11(x)? seen under the basis
(&2, &) and (gf($)7§j"_(x))’ is given by the matrix

_ |Gz (t) 7e(t)
ﬁ“”‘[%w @m]

Here functions ay, 74, Bz, ¢, are smooth. Moreover, we have ¢,(0) = 0 by
our choices of £,(0) and & (0).

Let us define another family of trivializations § = {Sw = (éx, &) Yaenr by
setting

éa: = Mgz + pri_

where p, is a smooth function on (—1,1) satisfying p,(0) = 0; and 7, is a
non-vanishing smooth function on (—1,1) satisfying 7,(0) = 1. Then the
restriction of the bundle map A on &[yi(,), seen under the basis (€z,60)

and ({Af(m),ff(m)), is given by the matrix

S.%' o nf(m)()‘l,xt)il 0 S T 773:(75) 0 . @x(t)
A, ) = [_nf(x)()‘l,a:t)1pf(az)()‘1,xt) 1] Az ?) [Pa:(f) 1} B [@?x(t)
where

(C.1)
4ot = 1o (0. (8) + po(DBa() — (07,0 10)) rat) (e (eta(8) + poB)re ().

We will choose 7, and p, such that for p-a.e. x we have the equations

(C.2) N2(t)qe(t) + pe()B2(t) = az(0)pf@)(Aiat),
(C.3) Nz (t)az(t) + pa(t)rz(t) = @z (0)n5@)(Arat)-

If we denote A\, (z) = (A p-1(2) A1, f=m(z)) ", we can solve the equa-
tion (C.2) by setting

o n—1

n—1
) = YT T -1 T T B ) A @0t p=n 2y (0) (M= () @p=n(a)) AL (2)E).
=1 j=1
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Notice that the above sum converges since a > 3, and
n—1 n—1
lim n~* Z log ap—j(;)(0) = o and nli_r)rolon_l Zl log B4-i(4)(0) = B.
]:

n— o0 .
Jj=1

Then we can solve the equation (C.3) by setting

o n—1 n—1
1e(t) = DT i) O] T g0y A @00 p=n0) (0) (D= @y p=n () AL (2)F).
n=1 j=1 j=1

Thus the equations (C.2) and (C.3) are simultaneously solvable. We see
that As(x, -) is of form 8 : . This concludes the proof. O
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