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TORIC SHEAVES AND FLIPS

ANDREW CLARKE, ACHIM NAPAME, AND CARL TIPLER

Abstract. Any toric flip naturally induces an equivalence between the asso-
ciated categories of equivariant reflexive sheaves, and we investigate how slope
stability behaves through this functor. On one hand, for a fixed toric sheaf,
and natural polarisations that make the exceptional loci small, we provide a
simple numerical criterion that characterizes when slope stability is preserved
through the flip. On the other hand, for a given flip, we introduce full sub-
categories of logarithmic toric sheaves and characterize when polystability is
preserved for all toric sheaves in those subcategories at once.

1. Introduction

Introduced by Mumford [18] and generalized by Takemoto [25], slope stability
of vector bundles, and more generally of torsion-free coherent sheaves, can be used
as a device to produce moduli spaces. While slope stability is not a GIT notion in
higher dimension, it behaves well with respect to tensor products and restrictions,
and has a differential geometric interpretation in gauge theory through the Hitchin–
Kobayashi correspondence (see e.g. [16] and references therein). In particular,
stable bundles, and more generally stable reflexive sheaves ([1]), are of particular
interest in gauge theory and mathematical physics (see e.g. [15] for a survey on
stable sheaves on toric varieties addressed to the mathematical physics community).

Despite its usefulness, checking stability in practice remains a difficult problem.
Our goal is to add to the list of known methods to produce stable sheaves via trans-
formations of the underlying polarised manifold. In the equivariant context of toric
geometry, the behaviour of slope stability through descent under GIT quotients was
studied in [4], while the problem of pulling back stable sheaves on fibrations was
considered in [20] (note though that stability is not necessary to produce moduli
spaces of equivariant toric bundles, cf [21]). In this paper, we study how slope sta-
bility is affected through a toric flip between polarised (simplicial) toric varieties.
Those transformations are of particular interest for several reasons. From the com-
plex geometry point of view, they form building blocks for the toric Minimal Model
Program (see [6, Ch. 15] and references therein), and together with fibrations and
blow-ups addressed in [20], our results complete the study of slope stability through
any type of extremal contraction arising in toric MMP. From the mathematical

Andrew Clarke, Instituto de Matemática, Universidade Federal do Rio de Janeiro,
Av. Athos da Silveira Ramos 149, Rio de Janeiro, RJ, 21941-909, Brazil
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2 A. CLARKE, A. NAPAME, AND C. TIPLER

physics perspective, toric flips can be seen as singular transitions between toric
varieties. Those transitions are of particular importance given the construction of
Calabi–Yau hypersurfaces in toric Gorenstein Fano varieties ([2]) and the connec-
tions between various Calabi–Yau vacua through conifold transitions ([3, 23]). Our
results then provide a toy model in the study of stable sheaves through singular
transitions between toric varieties (see [5] for a differential geometric approach to
stability of the tangent bundle through conifold transitions).

Consider a toric flip (see Section 2 for the precise definitions):

X X ′

X0

φ′

ψ

φ

between two simplicial toric varieties X and X ′. There is a Q-Cartier divisor
D+ ⊂ X naturally attached to the flip, such that −D+ is φ-ample and restricts to
the anticanonical divisor of the φ-contracted fibers (see Section 2.2). By abuse of
notation, we will still denote D+ the divisor ψ∗(D+) ⊂ X ′. Then, for some ample
Cartier divisor L0 on X0, there exists ε0 > 0 such that the divisors

L−ε := φ∗L0 − εD+ ⊂ X

and
Lε := (φ′)∗L0 + εD+ ⊂ X ′

define ample Q-Cartier divisors for ε ∈ (0, ε0). Then, our first result (Theorem 4.4)
relates slope stability of toric sheaves on (X0, L0), (X,L−ε) and (X ′, Lε) :

Theorem 1.1. Let E be a torus equivariant reflexive sheaf on X. Then, up to
shrinking ε0, we have for all ε ∈ (0, ε0) :

(i) If φ∗E is L0-stable, then E (resp. ψ∗E) is L−ε-stable on X (resp. Lε-stable
on X ′).

(ii) If φ∗E is L0-unstable, then E (resp. ψ∗E) is L−ε-unstable on X (resp.
Lε-unstable on X ′).

(iii) If φ∗E is L0-semistable, let E be the finite set of equivariant and saturated
reflexive subsheaves F ⊆ φ∗E appearing in a Jordan–Hölder filtration of
φ∗E. If for every F ∈ E,

(1.1)
c1(E) ·D+ · (φ∗L0)

n−2

rank(E)
<
c1((φ

∗F)∨∨) ·D+ · (φ∗L0)
n−2

rank(F)

then E is L−ε-stable on X.

The statements (i) and (ii) also follow from the openness of stability [11, The-
orem 3.3]. Indeed, if φ∗E is L0-stable (resp. L0-unstable), then by the projection
formula, E is stable (resp. unstable) with respect to the nef and big divisor φ∗L0.

A similar statement as (iii) holds for ψ∗E with the reverse inequalities in (1.1)
(see Theorem 4.4). The intersection number that appears in (1.1) is the first order
term in the ε-expansion of the L−ε-slope. As Theorem 1.1 shows, if φ∗E is strictly
semistable, this term will never allow for both E and ψ∗E to be stable at the same
time, for the considered polarisations. As E is finite, the numerical criterion in (iii)
can be used in practice to produce examples of toric sheaves that go from being
unstable to stable through a toric flip (see Section 4.3).
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Remark 1.2. Theorem 1.1 actually holds uniformly for flat families of toric sheaves
with fixed characteristic function (see the discussion at the end of Section 4.2).

While our first result focuses on specific flat families of sheaves for a given flip, our
second result describes toric flips that preserve slope polystability for all equivariant
reflexive sheaves at once, in some adapted full subcategories. Denote by RefT (X)
the category of torus equivariant reflexive sheaves on X . For any given torus invari-
ant divisor D ⊂ X , we introduce in Section 3.3 a full subcategory RefT (X,D) of
logarithmic toric sheaves. Our terminology is inspired by the fact that the logarith-
mic tangent sheaf TX(− logD) belongs to Obj(RefT (X,D)). SettingD′ = ψ∗D, the
birational transformation ψ : X 99K X ′ induces an equivalence of categories (still

denoted ψ∗) between RefT (X,D) and RefT (X ′, D′). We will say that the functor
ψ∗ preserves polystability for a pair of ample classes (α, α′) ∈ Pic(X)Q ×Pic(X ′)Q
if for any E ∈ Obj(RefT (X,D)), E is polystable on (X,α) if and only if ψ∗E is
polystable on (X ′, α′). Then, our result is as follows (see Theorem 5.1) :

Theorem 1.3. Let Σ be the fan of X, and let D be the torus invariant divisor

D :=
∑

ρ∈∆

Dρ ⊂ X,

for ∆ ⊂ Σ(1). Then, the following assertions are equivalent, for a pair of ample
classes (α, α′) ∈ Pic(X)Q × Pic(X ′)Q.

(i) The functor ψ∗ : RefT (X,D) → RefT (X ′, D) preserves polystability for
(α, α′).

(iii) There is c ∈ Q>0 such that for all ρ /∈ ∆,

degαDρ = c degα′ D′
ρ.

In the above statement, Dρ stands for the torus invariant divisor associated
to a ray ρ ∈ Σ(1), and degα stands for the degree of a divisor on (X,α). We
should point out that condition (iii) becomes very restrictive when ∆ is small, while

RefT (X,D) becomes smaller for larger ∆’s. Nevertheless, Theorem 1.3 provides a
simple numerical criterion for pairs of classes on X and X ′ to preserve polystability
of specific toric sheaves through the toric flip.

Remark 1.4. Our approach to prove Theorem 1.1 and Theorem 1.3 uses Kly-
achko’s description of toric sheaves and Kool’s formula for the slope of such objects
(cf [14] and [17]). It would be interesting to see how the recent work by Devey [8]
on stable toric sheaves can be used to approach those results.

Acknowledgments. The authors would like to thank the anonymous referees for
their helpful advice. The authors are partially supported by the grant BRIDGES
ANR–FAPESP ANR-21-CE40-0017. AN and CT also benefited from the grant
MARGE ANR-21-CE40-0011. AC is also partially supported by the grant Projeto
CAPES - PrInt UFRJ 88887.311615/2018-00. AN is also supported by the FAPESP
post-doctoral grant number 2023/06502-0.

Notations and conventions. All varieties we will consider will be normal toric
varieties over the complex numbers. For such a variety X , we denote by T its torus,
N its lattice of one parameter subgroups, M its lattice of characters. For K a field
of characteristic zero, and a latticeW , we denoteWK :=W ⊗ZK. The fan of X will
be denoted ΣX , or simply Σ when the situation is clear enough, and we will also use
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the notation XΣ for the variety associated to the fan Σ. For a given cone σ ∈ Σ, we
let Uσ = Specm(C[σ∨ ∩M ]) the affine chart in X , O(σ) ⊂ X the orbit associated
to σ by the orbit-cone correspondence, and V (σ) the closure in X of O(σ). Finally,
for a fan Σ and a subset S ⊂ NR, we denote by ΣS = {σ ∈ Σ | σ ⊂ S}.

2. Background on toric flips

2.1. Toric flips. We recall in this section the basics on toric flips (and refer the
reader to [6, Section 3.3] for the definition of toric morphisms and their fan descrip-
tion). While our presentation differs slightly from [6, Chapter 15], we will keep
most of the notations from this book, and the properties that we list here can be
recovered from [6, Lemma 15.3.7, Lemma 15.3.11 and Theorem 15.3.13]. Let N be
a rank n lattice, with n ≥ 3.

Definition 2.1. A full dimensional strictly convex cone σ0 ⊂ NR will be called a
flipping cone if there exist primitive elements {ν1, . . . , νn+1} ⊂ N such that

(1) The cone σ0 is spanned by the νi’s :

σ0 = Cone(ν1, . . . , νn+1),

(2) there exists (b1, . . . , bn+1) ∈ Zn+1 such that

n+1
∑

i=0

biνi = 0,

(3) the sets J− = {i | bi < 0} and J+ = {i | bi > 0} both contain at least 2
elements.

For a given flipping cone σ0 ⊂ NR as in Definition 2.1, we will denote

J0 = {i | bi = 0}.

We also introduce the notation, for any J ⊂ {1, . . . , n+ 1},

σJ = Cone(νi | i ∈ J)

together with the fans

Σ− = {σJ | J+ * J}

and

Σ+ = {σJ | J− * J}.

Identifying σ0 with the fan of its faces, we see that Σ− and Σ+ provide refinements of
σ0. Those refinements induce toric morphisms φ± : XΣ±

→ Uσ0
, whose properties

are listed below (see [6, Lemma 15.3.11.(c)]) :

Lemma 2.2. The morphisms φ± : XΣ±
→ Uσ0

are surjective and birational. Their
exceptional loci are given by V (σJ±

) ⊂ XΣ±
and satisfy φ±(V (σJ±

)) = V (σJ−∪J+
)

and dimV (σJ±
) = n− |J±|, while dim V (σJ−∪J+

) = |J0|.

We now introduce the notion of toric flips that we will use in this paper. If W
is a subset of the support of a fan Σ, we define the restriction Σ|W by

Σ|W = {σ ∈ Σ : σ ⊂W}.
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Definition 2.3. Let X and X ′ be two n-dimensional simplicial toric varieties with
fans Σ and Σ′ and common lattice of one-parameter subgroups N . We will say that
they are related by a toric flip if there exists a normal toric variety X0 with fan Σ0

containing a flipping cone σ0 ∈ Σ0 such that

Σ|σ0
= Σ+, Σ

′
|σ0

= Σ− and Σ|NR\σ0
= Σ′

|NR\σ0
= (Σ0)|NR\σ0

.

In this situation, the refinements Σ and Σ′ of Σ0 induce toric morphisms φ : X → X0

and φ′ : X ′ → X0, the latter being called the flip of the former.

In Definition 2.3, the fans Σ± are those associated to the flipping cone σ0 as
described above. Note that the definition, together with Lemma 2.2, implies that
X and X ′ are birational and isomorphic in codimension 2, and that Σ0\(σJ−∪J+

) is
simplicial. The situation of Definition 2.3 can be better summarized in the following
commutative diagram :

X X ′

V (σJ+
) X0 V (σJ−

)

V (σJ+∪J−
)

φ′

ψ

ι+
φ

φ−

ι−

φ+ ι0

The maps φ and φ′ are the toric morphisms induced by the refinements Σ and Σ′

of Σ0, while the maps ι+, ι− and ι0 denote inclusions. Finally,

ψ = (φ′)−1 ◦ φ : X 99K X ′

is the birational morphism that is an isomorphism away from V (σJ±
). From now

on, we fix X and X ′ two simplicial toric varieties related by a toric flip ψ, and
retain the notation from the previous diagram.

2.2. The exceptional loci and relatively ample divisors. We will be inter-
ested in stability later on, whose definition requires that the varieties be polarised.
We hence turn to the description of the fibers of φ±, and describe some φ-ample
(and φ′-ample) divisors. For a cone σ ⊂ NR, we denote Nσ ⊂ N the sublattice

Nσ = Span(σ) ∩N,

and the quotient map

πσ : N → N(σ) := N/Nσ.

Recall that from the orbit-cone correspondence (see [6, Section 3.2, Proposition
3.2.7]), the toric variety V (σ) can be obtained as the toric variety associated to the
fan of cones in (N/Nσ)R :

Star(σ) = {πσ(τ) | σ � τ}.

In particular, the lattices of one parameter subgroups of V (σJ−
) and V (σJ−∪J+

)
are respectively N/NσJ−

and N/NσJ−∪J+
. One can show that the projection map

N/NσJ−
→ N/NσJ−∪J+
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is compatible with the fans Star(σJ−
) and Star(σJ−∪J+

) and induces the toric mor-
phism

φ− : V (σJ−
) → V (σJ−∪J+

).

The lattices fit naturally in the sequence

0 → NσJ−∪J+
/NσJ−

→ N/NσJ−
→ N/NσJ−∪J+

→ 0.

As we are interested in the fibers of φ−, we introduce the quotient lattice

NR := NσJ−∪J+
/NσJ−

,

and denote the projection NσJ−∪J+
→ NR, and its R-linear extension, by u 7→ u.

We finally introduce the fan

ΣR := {σJ | J ( J+},

and the associated toric variety XR.

Remark 2.4. We keep the notation XR to be consistent with [6], where the R
stands for an extremal ray being responsible for the flip in the context of toric MMP.

For the following, see [6, Lemma 15.4.2 and Proposition 15.4.5.(c)].

Proposition 2.5. The fibers of φ− are isomorphic to the Q-Fano toric variety XR.
Moreover, XR has dimension |J+| − 1 and Picard rank one.

From the above, we deduce that the anticanonical divisor of XR

−KR =
∑

ρ∈ΣR(1)

Dρ

is Q-Cartier and ample. Note that by construction it can be written

−KR =
∑

i∈J+

D
R+·νi

=
∑

i∈J+

Dρi

where we set
ρi = R+ · νi,

and Dρ stands for the torus-invariant divisor associated to the ray ρ. An easy
exercise, using the orbit-cone correspondence, together with [6, Proposition 15.5.1],
shows that

Proposition 2.6. The Q-Cartier torus invariant divisor

(2.1) −DJ+
:= −

∑

i∈J+

Dρi ∈ Div(X)

is φ-ample, while the Q-Cartier invariant divisor

(2.2) D′
J+

:= ψ∗(DJ+
) =

∑

i∈J+

D′
ρi ∈ Div(X ′)

is φ′-ample.

Remark 2.7. In the above proposition, we use a superscript to D′ to indicate
that the torus invariant divisor D′ is taken as the orbit closure of some ray in X ′.
As ψ : X 99K X ′ is an isomorphism in codimension 2, it induces an isomorphism
ψ∗ between the groups of torus invariant Q-Cartier divisors on X and X ′, which
can be written on basis elements Dρ 7→ D′

ρ for any ρ ∈ Σ(1) = Σ′(1). Then, to
ease notation later on, we will omit the superscript to D′

ρ, the context being clear
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enough whether Dρ is considered as a divisor on X or X ′. We will also simply
denote DJ+

and D′
J+

by

D+ =
∑

i∈J+

Dρi ,

so that the conclusion of Proposition 2.6 is that −D+ is φ-ample on X and D+ is
φ′-ample on X ′.

Finally, we note that we could have considered the divisor

D− =
∑

i∈J−

Dρi ,

which is φ-ample (while −D− is φ′-ample). However, the wall relation
∑

i∈J−

biνi +
∑

i∈J+

biνi = 0

from Definition 2.1 implies that from the intersection theory point of view, comput-
ing slopes with D+ or D− will produce the same results regarding stability notions
(see e.g. [6, Section 6.4, Proposition 6.4.4]).

3. The flip functor

3.1. Equivariant sheaves and Klyachko’s equivalence. We now turn to the
description of the flip functor, which requires first introducing the categories of
torus equivariant reflexive sheaves. For a given toric variety X with fan Σ, a torus
equivariant reflexive sheaf is a reflexive sheaf E on X together with an isomorphism

ϕ : α∗E → π∗
2E

satisfying certain cocyle conditions, where α : T ×X → X and π2 : T × X → X
stand for the torus action and the projection on X respectively (see for example
[22, Section 5]).

Definition 3.1. A toric sheaf is a torus equivariant reflexive sheaf.

Klyachko has shown (see [14] for locally free sheaves and [22] in general) that
any toric sheaf is uniquely described by a family of filtrations, denoted

(E,Eρ(i))ρ∈Σ(1),i∈Z.

Here, E stands for a finite dimensional complex vector space of dimension rank(E),
and for each ray ρ ∈ Σ(1), (Eρ(i))i∈Z is a bounded increasing filtration of E (we
will use increasing filtrations as in [22], rather than decreasing ones as in [14]).
Then, the equivariant reflexive sheaf E is recovered from the formula, for σ ∈ Σ :

Γ(Uσ, E) :=
⊕

m∈M

⋂

ρ∈σ(1)

Eρ(〈m,uρ〉)⊗ χm

where uρ ∈ N is the primitive generator of ρ, 〈·, ·〉 the duality pairing and χm the
weight m character function.

Remark 3.2. If (E,Eρ(i)) and (F, F ρ(i)) denote respectively the families of in-
creasing and decreasing filtrations of a toric sheaf E , then there are related by the
formula

F ρ(i) = Eρ(−i).

In our study of stability, nothing changes in the choice of increasing or decreasing
filtrations.
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A morphism between two families of filtrations

b : (E1, E
ρ
1 (i))ρ∈Σ(1),i∈Z → (E2, E

ρ
2 (i))ρ∈Σ(1),i∈Z

is a linear map b : E1 → E2 that satisfies

b(Eρ1 (i)) ⊂ Eρ2 (i)

for any ρ ∈ Σ(1) and i ∈ Z. Any such morphism corresponds uniquely to a
morphism between the associated reflexive sheaves, and a fundamental result of
Klyachko and Perling ([14, 22]) asserts that the categories of families of filtrations
and of toric sheaves are equivalent. For our purposes, it seems more natural to
slightly restrict the definition of morphisms. We will consider morphisms between
toric sheaves Ei to be equivariant morphisms of coherent sheaves β : E1 → E2
that satisfy that Im(β) is a saturated reflexive subsheaf of E2. Those morphisms
correspond through Klyachko’s equivalence to linear maps b : E1 → E2 such that

b(Eρ1 (i)) = b(E1) ∩ E
ρ
2 (i)

for any (ρ, i), as can be seen via [20, Lemma 2.15] for example. We denote by

RefT (X) on one hand and by Filt(X) on the other, the categories of toric sheaves
and of families of filtrations, endowed with those classes of morphisms. We will
denote by

Kl : Filt(X) → RefT (X)

Klyachko’s functor as described above. Then, Klyachko and Perling’s work readily
implies the following :

Theorem 3.3 ([14, 22]). The functor Kl is an equivalence of categories.

Remark 3.4. A nice feature of the categories Filt(X) and RefT (X) is that they
are abelian. This is no longer true when we consider all morphisms of reflexive
sheaves, as for example the quotient of OP1 by the subsheaf OP1(1) is torsion, and
hence not reflexive.

3.2. Flip functor. Assume now that φ′ : X ′ → X0 is the flip of φ : X → X0 as in
the previous section. As φ and φ′ are isomorphisms in codimension 2, we have

Σ(1) = Σ0(1) = Σ′(1).

We deduce that there are equivariant injections i (resp. i0 and i
′) of the T -invariant

Zariski open set

U :=
⋃

τ∈Σ(0)∪Σ(1)

Uτ

into X (resp. X0 and X ′). Then, from [12, Proposition 1.6], we deduce that for any

toric sheaf E ∈ Obj(RefT (X)) (resp. F ∈ Obj(RefT (X0)) and G ∈ Obj(RefT (X ′))),
we have

i∗(E|U ) ≃ E

(resp. (i0)∗(F|U ) ≃ F and i′∗(G|U ) ≃ G). As reflexive sheaves are normal, meaning
their sections extend over codimenion-2 Zariski-closed subsets, we have :

Proposition 3.5. The pushforward i∗ (resp. i′∗ and (i0)∗) induces an equivalence
of categories

i∗ : RefT (U) → RefT (X)
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(resp. RefT (U) ≃ RefT (X0) and RefT (U) ≃ RefT (X ′)). Hence, we have equiva-
lences

RefT (X) ≃ RefT (X0) ≃ RefT (X ′).

It is straightforward to check that the equivalence

RefT (X) ≃ RefT (X0)

is induced by the pushforward φ∗ while the equivalence

RefT (X ′) ≃ RefT (X0)

is induced by φ′∗. Moreover, the categories of families of filtrations on U , X , X ′ and
X0 are readily the same, and the above equivalence of categories simply correspond
to the self-equivalence of Filt(X) induced by the identity on objects and morphisms.

Definition 3.6. We define the flip functor

ψ∗ : RefT (X) → RefT (X ′)

to be the composition of functors induced by (φ′∗)
−1 and φ∗.

We conclude this section by noting that the flip functor sends the tangent sheaf
TX of X to the tangent sheaf TX′ of X ′:

Lemma 3.7. We have

φ∗TX = TX0
= φ′∗TX′ .

Proof. It follows from the facts that X , X0 and X ′ are normal, and their tangent
sheaves reflexive. Hence, the sheaves are determined by their restriction to the
complement of the exceptional loci of φ and φ′ which have codimension greater or
equal to 2 (see [12, Proposition 1.6]). �

3.3. The logarithmic subcategories. In Section 5, we will be interested in spe-
cific subcategories of RefT (X) and RefT (X ′). For any ∆ ⊂ Σ(1), we introduce the
torus invariant divisor

D∆ :=
∑

ρ∈∆

Dρ

and the full subcategory RefT (X,D∆) of RefT (X) whose objects are the toric
sheaves on X whose associated families of filtrations (E,Eρ(i))ρ∈Σ(1),i∈Z satisfy for
all ρ ∈ ∆, there is aρ ∈ Z such that:

(3.1) Eρ(i) =

{

0 if i < aρ
E if i ≥ aρ.

Remark 3.8. From [19, Theorem 1.1], the logarithmic tangent sheaf TX(− logD∆)

belongs to Obj(RefT (X,D∆)), which justifies our choice of terminology.

It is then straightforward to see that the flip functor ψ∗ induces an equivalence
between RefT (X,D∆) and RefT (X ′, D′

∆), where we use D′
∆ to denote

∑

ρ∈∆D
′
ρ.

Note also that ψ∗ sends TX(− logD∆) to TX′(− logD′
∆).
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4. Flips and stability for a given sheaf

4.1. Slope stability of toric sheaves. Let (X,L) be a polarised complex variety.
Recall that a reflexive sheaf E on (X,L) is said to be slope stable (resp. slope
semistable), or simply stable (resp. semistable) for short, if for any coherent and
saturated subsheaf F ⊂ E of strictly smaller rank, one has

µL(F) < µL(E),

(resp. µL(F) ≤ µL(E)), where for any coherent torsion-free sheaf F , the slope
µL(F) is defined by

µL(F) =
c1(F) · Ln−1

rank(F)
∈ Q.

A polystable sheaf is a direct sum of stable ones with the same slope. A sheaf will
be called unstable if it is not semistable.

Remark 4.1. When referring to a specific polarisation L used to define stability
notions, we will use the terminology L-stable (resp. L-unstable, L-semistable, etc).

A remarkable fact, proved by Kool ([17, Proposition 4.13]), is that if we assume
X and E to be toric, to check stability for E , it is enough to compare slopes with
equivariant and saturated reflexive subsheaves, that is sub objects of E in RefT (X)
(note that this was proved in the smooth case by Kool, but it was noted in [4] that
the proof extends in the normal case). If (E,Eρ(•))ρ∈Σ(1) stands for the family of
filtrations of E , any saturated equivariant reflexive subsheaf of E is associated to a
family of filtrations of the form (F, F ∩ Eρ(i))ρ∈Σ(1),i∈Z for some vector subspace
F ( E (see [20, Lemma 2.15]). Moreover, Klyachko’s formula for the slope of a
toric sheaf ([4, Corollary 2.18]) is

(4.1) µL(E) = −
1

rank(E)

∑

ρ∈Σ(1)

ιρ(E) degL(Dρ),

where degL(Dρ) is the degree with respect to L, and

ιρ(E) :=
∑

i∈Z

i (dim(Eρ(i))− dim(Eρ(i− 1))) .

To sum up, we have

Proposition 4.2. The toric sheaf associated to (E,Eρ(i))ρ∈Σ(1),i∈Z is stable if and
only if for any subspace F ( E, we have

1

dim(F )

∑

ρ∈Σ(1)

ιρ(F ) degL(Dρ) >
1

dim(E)

∑

ρ∈Σ(1)

ιρ(E) degL(Dρ),

where
ιρ(F ) :=

∑

i∈Z

i (dim(F ∩ Eρ(i))− dim(F ∩Eρ(i− 1))) .

The similar statement holds for semistability by replacing the strict inequality by a
weak inequality.

Remark 4.3. As observed in Section 3.2, for a given flip as in Section 2.1, the
families of filtrations for E ∈ Obj(RefT (X)), ψ∗E and φ∗E are the same. We thus
have the equalities ιρ(E) = ιρ(φ∗E) = ιρ(ψ∗E). Then, to compare slopes on X , X0

and X ′, only the terms coming from the degrees of the invariant divisors Dρ’s will
vary according to the polarisations on each variety.
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4.2. Main result and its proof. Consider now φ : X → X0 and its toric flip
φ′ : X ′ → X0 as defined in Section 2. From Proposition 2.6 (recall also Remark
2.7), for any ample Cartier divisor L0 on X0, there exists ε0 > 0 such that the
divisors

L−ε := φ∗L0 − εD+

on X and

Lε := (φ′)∗L0 + εD+

on X ′ define ample Q-Cartier divisors for ε ∈ (0, ε0). We will then be interested in
the behaviour of stability for toric sheaves related by the flip functor on (X,L−ε)
and (X ′, Lε), for 0 < ε < ε0. Note that a necessary condition for stability of an

element E ∈ Obj(RefT (X)) under those polarisations is L0-semistability of φ∗E .
Conversely, if the sheaf φ∗E is L0-semistable, it then admits a Jordan-Hölder

filtration

0 = E1 ⊆ E2 ⊆ . . . ⊆ Eℓ = φ∗E

by slope semistable coherent and saturated subsheaves with stable quotients of the
same slope as φ∗E (see e.g. [13]). We denote by

Gr(φ∗E) :=

ℓ−1
⊕

i=1

Ei+1/Ei

the graded object of φ∗E and by E the finite set of equivariant and saturated
reflexive subsheaves F ⊆ φ∗E arising in a Jordan-Hölder filtration of φ∗E . Note
that by Proposition 3.5, for any F ∈ E, (φ∗F)∨∨ (resp. ((φ′)∗F)∨∨) is saturated
in E (resp. in ψ∗E).

Theorem 4.4. Let E be a toric sheaf on X. Then, up to shrinking ε0, we have for
all ε ∈ (0, ε0) :

(i) If φ∗E is L0-stable, then E (resp. ψ∗E) is L−ε-stable on X (resp. Lε-stable
on X ′).

(ii) If φ∗E is L0-unstable, then E (resp. ψ∗E) is L−ε-unstable on X (resp.
Lε-unstable on X ′).

(iii) If φ∗E is L0-semistable, and if for every F ∈ E,

c1(E) ·D+ · (φ∗L0)
n−2

rank(E)
<
c1((φ

∗F)∨∨) ·D+ · (φ∗L0)
n−2

rank(F)

then E (resp. ψ∗E) is L−ε-stable on X (resp. Lε-unstable on X ′).
(iv) If φ∗E is L0-semistable, and if for every F ∈ E,

c1(E) ·D+ · (φ∗L0)
n−2

rank(E)
>
c1((φ

∗F)∨∨) ·D+ · (φ∗L0)
n−2

rank(F)

then E (resp. ψ∗E) is L−ε-unstable on X (resp. Lε-stable on X ′).

Remark 4.5. Note that, given the semistability of φ∗E , the numerical criterion in
points (iii) and (iv) only requires testing a finite number of inequalities, as E is
finite. This makes this criterion useful in practice.

Before proving this theorem, we first recall some facts on intersection products
in toric varieties that will be used. Let {u1, . . . , uk} be a set of primitive elements
of N such that σ = Cone(u1, . . . , uk) is simplicial. We define mult(σ) as the index
of the sublattice Zu1+ . . .+Zuk in Nσ = Span(σ)∩N . If Σ is simplicial, according



12 A. CLARKE, A. NAPAME, AND C. TIPLER

to [10, Section 5.1], one can consider intersections of cycles or cycle classes with
rational coefficients. The Chow group

A•(X)Q =

n
⊕

p=0

Ap(X)⊗Q =

n
⊕

p=0

An−p(X)⊗Q

has the structure of a graded Q-algebra and by [6, Lemma 12.5.2], if ρ1, . . . , ρd ∈
Σ(1) are distinct, then in A•(X)Q, we have

(4.2) [Dρ1 ] · [Dρ2 ] · · · [Dρd ] =







1

mult(σ)
[V (σ)] if σ = ρ1 + . . .+ ρd ∈ Σ

0 otherwise.
.

If χm is the weight m character function on XΣ, then by [6, Proposition 4.1.2 and
(12.5.4)], the divisor of χm is given by

(4.3) div(χm) =
∑

ρ∈Σ(1)

〈m,uρ〉Dρ

and div(χm) ∼lin 0 in A1(XΣ).

Proof of Theorem 4.4. We first prove that for any ρ ∈ Σ(1),

(4.4) φ∗(Dρ ·D+) = φ′∗(D
′
ρ ·D

′
+).

We use the notation of Section 2.1 for the toric flip, and set

∆ = {Cone(νi) : i ∈ J+}.

Recall from Definition 2.1 that J+ and J− have at least two elements. It then
follows from the definition of Σ± that for any ρ ∈ σ0(1) \ ∆, and any j ∈ J+,
ρ + Cone(νj) is a two-dimensional cone of Σ0, Σ+ and Σ−. Therefore, we deduce
that in the Chow ring A•(X0)Q,

φ∗(Dρ ·Dρj ) = Dρ ·Dρj and φ′∗(D
′
ρ ·D

′
ρj ) = Dρ ·Dρj .

If ρ ∈ Σ(1) \ σ0(1), then for any j ∈ J+,

ρ+Cone(νj) /∈ {τ : τ � σ0}.

As by Definition 2.3,

Σ|NR\σ0
= Σ′

|NR\σ0
= (Σ0)|NR\σ0

,

we deduce that:

• either ρ+Cone(νj) ∈ Σ0 \ {τ : τ � σ0}, and then in A•(X0)Q, we have

φ∗(Dρ ·Dρj ) = Dρ ·Dρj = φ′∗(D
′
ρ ·D

′
ρj );

• or ρ+Cone(νj) /∈ Σ0 \ {τ : τ � σ0}, in which case Dρ ·Dρj = 0 in A•(X)Q
and D′

ρ ·D
′
ρj = 0 in A•(X ′)Q.

This proves that for any ρ ∈ Σ(1) \∆ and any j ∈ J+,

φ∗(Dρ ·Dρj ) = φ′∗(D
′
ρ ·D

′
ρj )

and then by linearity and the definition of D+:

φ∗(Dρ ·D+) = φ′∗(D
′
ρ ·D

′
+).

We now assume that ρ ∈ ∆. By Lemma 2.2, one has dimV (σJ+
) = n − |J+|;

therefore σJ+
is a simplicial cone and then {νj : j ∈ J+} forms part of a Q-basis
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of N ⊗Z Q. Let {ν∗j : j ∈ J+} be a part of a Q-basis of M ⊗Z Q such that for any
i, j ∈ J+,

〈ν∗j , νi〉 =

{

0 if i 6= j
1 if i = j

.

For any j ∈ J+, there is aj ∈ N∗ such that ajν
∗
j ∈M . By using (4.3) withm = ajν

∗
j ,

we get

ajDρj ∼lin −
∑

ρ∈Σ(1)\∆

〈ajν
∗
j , uρ〉Dρ.

on X and X ′. By the first cases, we deduce that for any j ∈ J+,

φ∗(Dρj ·D+) = −φ∗





∑

ρ∈Σ(1)\∆

〈ν∗j , uρ〉Dρ ·D+





= −φ′∗





∑

ρ∈Σ(1)\∆

〈ν∗j , uρ〉D
′
ρ ·D

′
+





= φ′∗(D
′
ρj ·D

′
+).

This concludes the proof of (4.4).
We can now compute the slopes. By the Projection formula [9, Proposition 2.3],

for any ρ ∈ Σ(1), one has

Dρ · (φ
∗L0)

n−1 = degL0
(Dρ),

D′
ρ · ((φ

′)∗L0)
n−1 = degL0

(Dρ) and

Dρ ·D+ · (φ∗L0)
n−2 = D′

ρ ·D
′
+ · ((φ′)∗L0)

n−2.

As we have

(L−ε)
n−1 = (φ∗L0)

n−1 − (n− 1)εD+ · (φ∗L0)
n−2 +O(ε2) and

(Lε)
n−1 = ((φ′)∗L0)

n−1 + (n− 1)εD+ · ((φ′)∗L0)
n−2 +O(ε2),

we deduce that: for any coherent sheaf E on X ,

µL−ε
(E) = µL0

(φ∗E)−
c1(E) ·D+ · (φ∗L0)

n−2

rank(E)
(n− 1)ε+O(ε2)

and

µLε
(ψ∗E) = µL0

(φ∗E) +
c1(E) ·D+ · (φ∗L0)

n−2

rank(E)
(n− 1)ε+O(ε2).

Assume now E ∈ Obj(RefT (X)) is given by the family of filtrations (E,Eρ(j)). By
Proposition 4.2, to check the stability of E , it is enough to compare the slope of E
with the slope of any equivariant reflexive sheaf F given by the family of filtrations
(F, F ∩ Eρ(j)) for F ( E a subspace. As the set of vector subspaces F ⊂ E on
which it is necessary to test slopes is actually finite (see [20, Lemma 2.17]), we
deduce from the above ε-expansions for the slopes that there is ε0 > 0 such that
for all ε ∈ (0, ε0):

• if φ∗E is L0-stable, then E (resp. ψ∗E) is L−ε-stable on X (resp. Lε-stable
on X ′);

• and if φ∗E is L0-unstable, then E (resp. ψ∗E) is L−ε-unstable on X (resp.
Lε-unstable on X ′).
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We now consider the case where φ∗E is L0-semistable. We first observe, as in
the (un)stable case, that there is ε1 > 0, such that for all ε ∈ (0, ε1) and for all

F ∈ Obj(RefT (X0)) with F ( φ∗E such that µL0
(F) < µL0

(φ∗E) one has

µL−ε
((φ∗F)∨∨) < µL−ε

(E) and µLε
(((φ′)∗F)∨∨) < µLε

(ψ∗E).

If F ( φ∗E is a sub object such that µL0
(F) = µL0

(φ∗E), then there is a Jordan-
Hölder filtration

0 = E1 ⊆ . . . ⊆ El = φ∗E

with l ≥ 1 such that F = Ei for some i ∈ {1, . . . , l} (see [13, Section 1.6]) and we
deduce that F ∈ E. Therefore, from the expansions of the slopes, to get the points
(iii) and (iv) of the theorem, it suffices to compare

c1(E) ·D+ · (φ∗L0)
n−2

rank(E)
and

c1((φ
∗F)∨∨) ·D+ · (φ∗L0)

n−2

rank(F)

for any F ∈ E. By uniqueness of the reflexive hull of the graded object of a Jordan–
Hölder filtration ([13, Theorem 1.6.7]), E is finite, and the result follows. �

Remark 4.6. In the proof, we have shown that for any ρ ∈ Σ(1),

Dρ ·D+ · (φ∗L0)
n−2 = D′

ρ ·D
′
+ · ((φ′)∗L0)

n−2.

In Equation (4.5), the coefficient of ε2 in the ε-expansion of degL−ε
(Dρ) corresponds

to Dρ · (D+)
2. By (4.5) and (4.6) we note that there exists ρ ∈ Σ(1) such that

Dρ · (D+)
2 6= D′

ρ · (D
′
+)

2.

Therefore, if ℓ ≥ 2, for any ρ ∈ Σ(1), we do not necessarily have the equality

Dρ · (D+)
ℓ · (φ∗L0)

n−1−ℓ = D′
ρ · (D

′
+)
ℓ · ((φ′)∗L0)

n−1−ℓ.

The arguments used to prove Theorem 4.4 are very close to those used in [20]. One
should be careful though that the results from [20] do not directly imply Theorem
4.4, as X0 is not Q-factorial.

Remark 4.7. While the case when φ∗E is semistable on X0 is not fully covered
by Theorem 4.4, items (iii) and (iv), one can easily adapt the numerical criterion
of [20, Theorem 1.3] to take into account higher order terms in the ε-expansions of
the L−ε and Lε slopes, and obtain a full description of the stability behaviour of E
in terms of that of φ∗E , for the considered polarisations.

Actually, Theorem 4.4 holds for some specific flat families of toric sheaves. We
recall that the characteristic function χ of an equivariant reflexive sheaf F with
family of filtrations (F, {F ρ(j)}) is the function

χ(F) : M −→ Z♯Σ(n)

m 7−→
(

dim
(

⋂

ρ∈σ(1) F
ρ(〈m,uρ〉)

))

σ∈Σ(n)

.

Let S be a scheme of finite type over C and E = (Es)s∈S be an S-family of equi-
variant reflexive sheaves over X (see [20, Section 3.5] for more details). We denote
by (Es, E

ρ
s (i)) the family of filtrations of Es. There is a collection of increasing

filtrations of reflexive sheaves

(F , {Fρ
m : m ∈M}ρ∈Σ(1))
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such that for any s ∈ S and all m ∈M ,

Es = F(s) and Eρs (〈m,uρ〉) = Fρ
m(s)

where F(s) and Fρ
m(s) are respectively the fibers of F and Fρ

m at s.

Lemma 4.8. Let X be a toric variety given by a simplicial fan Σ and let E =
(Es)s∈S be an S-family of equivariant reflexive sheaves over X such that:

(1) E is locally free over X × S, or
(2) the map s 7→ χ(Es) is constant.

Then, for all ρ ∈ Σ(1) and j ∈ Z, the map s 7→ dim(Eρs (j)) is constant.

Proof. If E is locally free over X × S, by [21, Proposition 3.13] (Klyachko’s com-
patibility condition for S-families of locally free sheaves), for any σ ∈ Σ(n), there
is a multiset Aσ ⊆M of size rank(E) such that for any m ∈M , Fρ

m is a locally free
sheaf of rank

|{α ∈ Aσ : 〈α, uρ〉 ≤ 〈m,uρ〉}| .

As for any s ∈ S and m ∈M , dim(Fρ
m(s)) = rank(Fρ

m), we deduce that the map

s 7−→ dim(Eρs (〈m,uρ〉))

is constant.
We now assume that the map s 7→ χ(Es) is constant. For any ρ ∈ Σ(1), we

denote by iρ the smallest integer such that for any j ≥ iρ and any s ∈ S,

Eρs (j) = Es.

Let σ ∈ Σ(n). The set {uρ : ρ ∈ σ(1)} is a Q-basis of N ⊗Z Q; we denote by
{u∗ρ : ρ ∈ σ(1)} its dual basis. For any ρ′ ∈ σ(1), there is m′ ∈ M , such that
〈m′, uρ′〉 = j. Let m ∈M be given by

m = m′ +
∑

ρ∈σ(1)\{ρ′}

aρu
∗
ρ

where for any ρ ∈ σ(1) \ {ρ′}, aρ ∈ Z satisfies aρu
∗
ρ ∈ M and aρ + 〈m′, uρ〉 ≥ iρ.

By construction of m, one has
⋂

ρ∈σ(1)

Eρs (〈m,uρ〉) = Eρ
′

s (j).

As s 7→ χ(Es) is constant, we deduce that the map s 7→ dim(Eρ
′

s (j)) is constant for
any ρ′ ∈ σ(1) and any j ∈ Z. �

If E is an S-family of equivariant reflexive sheaves on X which satisfies the
conditions of Lemma 4.8, then by [20, Lemma 3.12], for any ample Q-Cartier divisor
L on X , the set

{µL(Gs) : s ∈ S, Gs is an equivariant and saturated reflexive subsheaf of Es}

is finite. Therefore, in that case, the ε0 in Theorem 4.4 can be taken uniformly for
(Es)s∈S .
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•u2

•
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•u4
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(a) Fan of Σ
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•u1

•u2
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•u4

•
u0

(b) Fan of Σ0
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•u1

•u2

•
u3

•u4

•
u0

(c) Fan of Σ
′

Figure 1. Fans of varieties given in Section 4.3

4.3. An example. We illustrate in this section Theorem 4.4 by providing an ex-
ample of a tangent sheaf that goes from unstable to stable through a flip.

We denote by (e1, e2, e3) the standard basis of Z3. Let

u1 = e1, u2 = e1 + e2 − e3, u3 = e2, u4 = e3, u0 = −(e1 + e2 + e3)

and Σ0 be a fan in R3 given by

Σ0 = {Cone(u1, u2, u3, u4)} ∪
4
⋃

i=1

{Cone(A) : A ⊆ {u0, ui, ui+1}}

where u5 = u1. We denote by σ0 the flipping cone Cone(u1, u2, u3, u4); we have

u2 + u4 − u1 − u3 = 0.

Let
Σ = (Σ0 \ {σ0}) ∪ Σ+ and Σ′ = (Σ0 \ {σ0}) ∪ Σ−

where

Σ+ = {Cone(uj : j ∈ J) : J ⊂ {1, . . . , 4} and {1, 3} * J} and

Σ− = {Cone(uj : j ∈ J) : J ⊂ {1, . . . , 4} and {2, 4} * J}.

We denote by Di the torus invariant divisor associated to the ray Cone(ui). By
using (4.3) with m ∈ {e1, e2, e3}, we get the following linear equivalences of divisors
on X0, X and X ′:

D1 ∼lin D3 ∼lin D0 −D2 and D4 ∼lin D0 +D2.

By [6, Theorem 4.2.8.(d)], the divisor D0 generates the set of invariant Cartier
divisors of X0. As Σ (resp. Σ′) is simplicial, by [6, Proposition 4.2.7] any invariant
divisor of X (resp. X ′) is Q-Cartier.

Lemma 4.9 (Intersections of divisors).

(1) On X and X ′, we have:

D1 ·D
2
0 =

1

2
D2 ·D

2
0 =

1

4
D4 ·D

2
0 = 1 D0 ·D

2
0 =

3

4

D1 · (D0 ·D2) =
1

2
D4 · (D0 ·D2) = 0 D2 · (D0 ·D2) = −

1

4
.
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Zu0 + Zu1 + Zu2 Zu0 + Zu2 + Zu3 Zu0 + Zu3 + Zu4 Zu0 + Zu4 + Zu1
2 2 1 1

Zu2 + Zu4 + Zu1 Zu2 + Zu4 + Zu3 Zu1 + Zu3 + Zu2 Zu1 + Zu3 + Zu4
1 1 1 1

Table 1. Sublattices and their index in Z3

(2) On X, we have

D1 ·D
2
2 =

1

2
D4 ·D

2
2 = −1 D0 ·D

2
2 =

−1

4
D2 ·D

2
2 =

−3

4
.

(3) On X ′, we have

D1 ·D
2
2 =

−1

2
D4 ·D

2
2 = 0 D0 ·D

2
2 =

−1

4
D2 ·D

2
2 =

1

4
.

Proof. The lemma follows from Formula (4.2) and Table 1. We show the first point
to illustrate the computations, the other intersection numbers follow in the same
way.

D1 ·D
2
0 = D1 ·D0 · (D2 +D3) = D1 ·D0 ·D2 +D1 ·D0 ·D3 =

1

2

D2 ·D
2
0 =

1

2
D2 ·D0 · (D3 +D4) =

1

4

D4 ·D
2
0 = D4 ·D0 · (D2 +D3) = 1

D0 ·D
2
0 =

1

2
(D3 +D4) ·D

2
0 =

1

4
+

1

2
=

3

4
.

�

We assume that E = TX . By [7, Corollary 2.2.17], the family of filtrations of the
tangent sheaf TX of X is given by:

Eρ(j) =







0 if j < −1
Span(uρ) if j = −1
N ⊗Z C if j > −1

.

In this case, the inequalities of Proposition 4.2 become

1

dim(F )

∑

uρ∈F

degL(Dρ)
(≤)
<

1

n

∑

ρ∈Σ(1)

degL(Dρ).

Therefore, to study the stability of E , it suffices to consider the vector spaces F
given by

F = Span(uρ : ρ ∈ Γ)

with Γ ⊆ Σ(1).
Let L0 = D0 be an ample Cartier divisor on X0. We have

µL(φ∗E) = 1 =
1

dim(F1)

∑

uρ∈F1

degL(Dρ) =
1

dim(F2)

∑

uρ∈F2

degL(Dρ)
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where F1 = Span(u4) and F2 = Span(u0, u2, u4). As for any vector subspace F ( E
such that F /∈ {F1, F2}, one has

1

dim(F )

∑

uρ∈F

degL(Dρ) < 1,

we deduce that φ∗E is semistable. We denote respectively by F and F ′ the subsheaf
of φ∗E given by the families of filtrations (F1, F1 ∩E

ρ(i)) and (F2, F2 ∩E
ρ(i)). We

have

0 ⊆ F ⊆ F ′ ⊆ E .

Let

D+ = D2 +D4.

We have

D+ ∼lin D0 + 2D2.

So

L−ε = φ∗L0 − εD+ ∼lin (1− ε)D0 − 2εD2 = (1− ε)

(

D0 −
2ε

1− ε
D2

)

and

Lε = (φ′)∗L0 + εD+ ∼lin (1 + ε)D0 + 2εD2 = (1 + ε)

(

D0 +
2ε

1 + ε
D2

)

.

According to (iii) and (iv) of Theorem 4.4, to check stability of E with respect to
L−ε, it suffices to compare µL−ε

(E) with µL−ε
(φ∗F) and µL−ε

(φ∗F ′). By Lemma
4.9, on X we have

(4.5)
degL−ε

(D1) =
1

2
− 3ε+

9

2
ε2 degL−ε

(D2) =
1

4
+

1

2
ε−

15

4
ε2

degL−ε
(D4) = 1− 2ε− 3ε2 degL−ε

(D0) =
3

4
−

5

2
ε+

3

4
ε2;

and on X ′ we have

(4.6)
degLε

(D1) =
1

2
+ 3ε+

1

2
ε2 degLε

(D2) =
1

4
−

1

2
ε+

1

4
ε2

degLε
(D4) = 1 + 2ε+ ε2 degLε

(D0) =
3

4
+

5

2
ε+

3

4
ε2.

By Formulas (4.5), we get

µL−ε
(E) = 1−

10

3
ε+ ε2 and µL−ε

(F) = µL−ε
(F ′) = 1− 2ε− 3ε2.

On the other hand, by Formulas (4.6), we have

µLε
(ψ∗E) = 1 +

10

3
ε+ ε2 and µLε

((φ′)∗F) = µLε
((φ′)∗F ′) = 1 + 2ε+ ε2.

Hence, there is ε0 such that for any ε ∈ (0, ε0) ∩Q:

• the tangent sheaf TX is unstable with respect to L−ε;
• the tangent sheaf TX′ is stable with respect to Lε.

This example clearly shows point (iv) of Theorem 4.4.
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5. Flips and stability for logarithmic subcategories

Consider a toric flip

X X ′

X0

φ′

ψ

φ

as in Section 2. Fix ∆ ⊂ Σ(1), and introduce the divisor

D :=
∑

ρ∈∆

Dρ

seen as a divisor onX ,X ′ andX0. We consider the equivalent categoriesRefT (X,D)

and RefT (X ′, D) as in Section 3.3. We will say that

ψ∗ : RefT (X,D) → RefT (X ′, D)

preserves polystability for the pair of polarisations (α, α′) ∈ Pic(X)Q × Pic(X ′)Q if

for any E ∈ Obj(RefT (X,D)), E is α-polystable if and only if ψ∗E is α′-polystable.

Theorem 5.1. The following assertions are equivalent, for a pair of ample classes
(α, α′) ∈ Pic(X)Q × Pic(X ′)Q.

(i) The functor ψ∗ : RefT (X,D) → RefT (X ′, D) preserves polystability for
(α, α′).

(ii) There is c ∈ Q>0 such that for all ρ /∈ ∆, degαDρ = c degα′ D′
ρ.

We stated Theorem 5.1 for flips, but the proof that follows works for any small
birational equivariant map between two normal toric varieties (that is a birational
and equivariant map that is an isomorphism away from codimension 2 subsets).
We thank the anonymous referee for pointing this out.

Proof. Recall the formula

µα(E) = −
1

rank(E)

∑

ρ∈Σ(1)

ιρ(E) degα(Dρ)

for the slope, with

ιρ(E) :=
∑

i∈Z

i (dim(Eρ(i))− dim(Eρ(i − 1)))

where (E,Eρ(•))ρ∈Σ(1) stands for the family of filtrations associated to E . Then,

by definition of the logarithmic category RefT (X,D) (see Equation (3.1)), for any

E ∈ Obj(RefT (X,D)), and any ρ ∈ ∆, we have

ιρ(E) = aρ dim(E),

so the slope reads

µα(E) = −
1

rank(E)

∑

ρ/∈∆

ιρ(E) degα(Dρ)−
∑

ρ∈∆

aρ degα(Dρ).

Note also that by construction, for any ρ,

ιρ(E) = ιρ(ψ∗E).
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Then, (ii) ⇒ (i) is straightforward. To prove (i) ⇒ (ii), we argue as in [4, proof
of Proposition 4.8], and consider for any pair (ρ1, ρ2) ∈ (Σ(1) \∆)2 the polystable
toric sheaf

E = OX(d degα(Dρ2)Dρ1)⊕OX(d degα(Dρ1)Dρ2),

where d is the common denominator of degα(Dρ2) and degα(Dρ1). Its image by ψ∗

is
ψ∗E = OX′(d degα(Dρ2 )D

′
ρ1)⊕OX′(d degα(Dρ1)D

′
ρ2).

As E ∈ Obj(RefT (X,D)) (see e.g. [7, Example 2.2.13] for the family of filtrations
of rank one toric sheaves), if ψ preserves polystability, we must have

degα(Dρ2) degα′(D′
ρ1) = degα(Dρ1) degα′(D′

ρ2).

The result follows. �

Remark 5.2. The reason for considering logarithmic subcategories is the following.
If one considers the case ∆ = ∅, i.e the full RefT (X), then for no choice of (α, α′)
polystability is preserved. Indeed, by (ii) of Theorem 5.1, for any ρ ∈ Σ(1), one
must have

degαDρ = c degα′ D′
ρ.

Up to scale, we can assume c = 1. But then, a result due to Minkowski ([24, p.455]),
translated into the toric setting in [4, Proposition 5.3 and Corollary 5.4], implies
that the polytope associated to (X,α) equals the polytope associated to (X ′, α′),
which is absurd, as X and X ′ are not isomorphic.

Remark 5.3. Let L0 be an ample Cartier divisor on X0 and let ε > 0 be such that
the divisors L−ε = φ∗L0 − εD+ on X and Lε = (φ′)∗L0 + εD+ on X ′ define Q-

ample Cartier divisors. If ψ∗ : RefT (X,D) → RefT (X ′, D) preserves polystability
for (L−ε, Lε) then according to (ii) of Theorem 5.1, for any ρ /∈ ∆, we have

degL−ε
(Dρ) = degLε

(Dρ).

because the constant term in the ε-expansions of degL−ε
(Dρ) and degL−ε

(Dρ) are
equal. Therefore,

∆ ⊆
{

ρ ∈ Σ(1) : Dρ ·D+ · (φ∗L0)
n−2 6= 0

}

.
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