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Transfer Learning for P300 Brain-Computer 
Interfaces by Joint Alignment of Feature Vectors 

 
Fatih Altindis, Antara Banerjee, Ronald Phlypo, Bulent Yilmaz and Marco Congedo 

Abstract— This paper presents a new transfer learning 
method named group learning, that jointly aligns multiple 
domains (many-to-many) and an extension named fast 
alignment that aligns any further domain to previously 
aligned group of domains (many-to-one). The proposed 
group alignment algorithm (GALIA) is evaluated on brain-
computer interface (BCI) data and optimal hyper-parameter 
values of the algorithm are studied for classification 
performance and computational cost. Six publicly available 
P300 databases comprising 333 sessions from 177 subjects 
are used. As compared to the conventional subject-specific 
train/test pipeline, both group learning and fast alignment 
significantly improve the classification accuracy except for 
the database with clinical subjects (average improvement: 
2.12±1.88%). GALIA utilizes cyclic approximate joint 
diagonalization (AJD) to find a set of linear transformations, 
one for each domain, jointly aligning the feature vectors of 
all domains. Group learning achieves a many-to-many 
transfer learning without compromising the classification 
performance on non-clinical BCI data. Fast alignment further 
extends the group learning for any unseen domains, allowing 
a many-to-one transfer learning with the same properties. 
The former method creates a single machine learning model 
using data from previous subjects and/or sessions, whereas 
the latter exploits the trained model for an unseen domain 
requiring no further training of the classifier. 
 

Index Terms— Brain-computer interface (BCI), transfer 
learning, domain adaptation, Riemannian geometry, 
electroencephalography (EEG).  
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I. INTRODUCTION 
BRAIN-Computer Interface (BCI) is a system capable 
of predicting or classifying cognitive states and 
intentions of the user through the analysis of 
neurophysiological signals. BCI systems based on 

electroencephalography (EEG) have a wide range of applications 
thanks to the fact that EEG is completely non-invasive, features 
high temporal resolution, suits mobile usage and requires 
inexpensive equipment [1], [2]. Over the past 30 years EEG-
based BCIs, which are the concern of the present article, have 
been showcased in a number of disparate proof-of-concepts, 
including wheelchair and prosthetic control, moving a cursor on 
a screen, spellers, gaming and artistic expression [3]–[5]. Still, 
current systems are far from being production-ready for a number 
of reasons, among which the most fundamental are probably the 
difficulty in reaching a ‘plug & play’ mode of operation and the 
insufficient accuracy currently achieved on single-trial decoding.  

Traditionally, BCI operates in two phases: in the training 
phase a machine learning model (MLM) is calibrated in a 
supervised manner (with labeled EEG data), while in the test 
phase, i.e., the actual use, the BCI must classify EEG data to 
infer the classes they belong to (unsupervised mode of 
operation).  Generally, BCIs require a calibration session before 
every use, because EEG data is highly variable, thus a pre-
trained MLM struggles in the subsequent sessions of the same 
user, let alone in other subjects. 

The necessity of frequent calibrations is a cumbersome ritual 
for potential users, causing a waste of time and energy [6]. This 
is particularly blocking for the clinical population, whose 
cognitive resources are limited [6]. In view of this situation, the 
research community is currently focusing on so-called transfer 
learning methods, which aim at MLMs capable of overcoming 
the cross-session and cross-subject dependency [7]–[14], [16]–
[21], [23]–[30]. In this field of research, the domain we ought 
to use for learning is referred to as the source and the domain 
we want to apply the learning to as the target. If the transfer is 
operated without using any label from the target domain, it is 
called unsupervised. If some labels are used, it is called semi-
supervised. In this article we address the latter scenario. 
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Two transfer learning approaches can be found in the 
literature: rule adaptation and domain adaptation [7]. Rule 
adaptation tries to reduce the calibration time for the new tasks 
by adapting classification rule. This is particularly useful when 
the available data is scarce or the labeling is insufficient. The 
current trend following this approach consists in fine-tuning, for 
the target data at hand, deep neural networks (DNN) pre-trained 
on source domains [8]–[10]. The main limitations are the 
computational cost and the fact that DNNs act as black boxes, 
thus it is in general hard to understand what they actually learn 
[11]. Although recent studies on interpretable neural networks 
have started to unveil this ambiguity, the research on neural 
networks is still in an early phase [12], [13]. Besides, training a 
DNN model requires a very large amount of data, a requirement 
that is still difficult to meet with EEG [14]. 

The other approach, domain adaptation, tries to ‘shift’ the 
source and target domain toward a homogeneous space so as to 
minimize the discrepancy between the two. In the literature we 
find this approach operating either from one source domain to 
one target domain (one-to-one), or from several source domains 
to one target domain (many-to-one) (Fig. 1). Early attempts 
have adapted the well-known common spatial pattern (CSP) 
filter [15], [16]. For one-to-one transfer learning, penalty terms 
have been introduced to regularize the CSP objective function 
[17], [18]. One-to-one transfer learning in regularized CSP 
(RCSP) can be expanded to the many-to-one setting by either 
taking a weighted average of multiple source data to form a 
composite spatial covariance matrix or by aggregating RCSP 
coefficients from each source iteratively [19], [20]. In [21] the 
authors whitened the arithmetic average of the covariance 
matrices estimated on the EEG trials of each subject. This 
amounts to a Euclidean recentering of the covariance matrices 
around the identity matrix. 

A peculiar line of research has arisen thanks to the utilization 
of Riemannian geometry [22]. The first attempt has recentered 
the covariance matrices estimated on the EEG trials of each 
subject using parallel-transport on the Riemannian manifold of 
symmetric positive-definite (SPD) matrices [23]. The method, 
intrinsically one-to-one, can be easily coupled with spatial 
filtering [24]. In a subsequent attempt, a stretching and a 
rotation steps have been added to the recentering step, yielding 
a more precise one-to-one transfer learning method named 
Riemannian Procrustes Analysis (RPA) [25]. The stretching 
step equalizes the Riemannian dispersion of the observed 
source and target points (i.e., covariance matrices) around the 
identity, which after recentering is the barycenter of both 
domains. Like recentering, the stretching steps is unsupervised. 
The rotation step, which instead is semi-supervised, tries to 
align as much as possible the intra-class barycenters of the two 
domains. In [26], recentering on the manifold is followed by 
lifting onto the tangent space of the SPD manifold. The tangent 
vectors are then stretched and rotated as in the RPA, effectively 
aligning the tangent vectors of the source and target domain. 
This method, named tangent space alignment (TSA), also boils 
down to a one-to-one Procrustes procedure. However, as it acts 
on the tangent space of the SPD manifold, it is computationally 
simpler and faster.  

A more recent trend in the domain adaptation literature is the 
many-to-one strategies. In [27], a one-to-one domain adaptation 

on the Riemannian manifold is followed by training one 
classifier for each of several source domains. Then, a voting 
algorithm is employed to combine the prediction of each 
classifier for the classification of target data. The authors in [28] 
proposed to first select source domains (e.g., subjects) based on 
their one-to-one transfer learning classification performance. 
Then, the distribution of the tangent space features of selected 
sources are aligned using the maximum mean discrepancy 
criterion to train a single classifier. Inspired from the composite 
CSP, in [29] a regularization term is introduced to estimate 
weighted Riemannian means for each class using multiple 
source domains. The transfer learning methods described so far 
are in general very much source-dependent, that is to say, a 
careful selection of the source domain(s) is required in order to 
avoid negative learning [20], [24], [27]–[29].  

Generalizing the Procrustes cost function of TSA [26], we 
have recently ended up taking a route rather different from all 
previous domain adaptation attempts: in [30], all available 
domains are first jointly aligned in the tangent space of the 
Riemannian SPD manifold, a group MLM is then estimated and 
finally this model is applied without further tuning to test all 
(aligned) domains. This way, we have effectively achieved a 
many-to-many transfer learning method, which we have named 
group learning (Fig. 1). To the best of our knowledge the group 
learning strategy in [30] is the first one jointly aligning many 
domains to train a single classifier for all data. In the present 
article we refine and push further this idea. We show here how 
to align any further (target) domain to the group MLM without 
retraining or tuning the classifier at all (fast alignment). 
Accordingly, numerous databases can be used to build a 
massive group MLM that can be applied as it is in a semi-
supervised fashion on any target data. This effectively allows a 
“many-to-one” transfer learning strategy, which is what is 
useful in practice. We show that group MLMs are little sensitive 
to the inclusion of low-scoring subjects, i.e., that the method is 
not source-dependent. We also show that choosing optimal 
hyper-parameters for the algorithm is not cumbersome. As 
compared to the formulation in [30], we also improve the 
convergence rate of the gradient descent optimization 
introducing a smart initialization. 

We test the proposed method on six P300 databases including 
333 sessions recoded on 177 subjects. We demonstrate cross-
subject and cross-session group transfer learning. In contrast to 
the state-of-the-art subject-specific learning, the proposed 
group transfer learning significantly improves the accuracy 
(2.12±1.88% average improvement) in five out of the six BCI 

 
Fig. 1.  Schematic representation of different transfer learning strategies 
for domain adaptation. Circles represents domains, in general, data of a 
particular subject or a particular session. The goal is shifting the source 
and target domains in a homogeneous space.  From left to right: the 
one-to-one, many-to-one and many-to-many strategy. See text for 
details.  
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databases that we considered (the non-clinical ones), that is, it 
features positive learning for non-clinical data. The runtime of 
GALIA on a regular PC we have observed is below 10 s for an 
8-subject database and up to 1000 s for a 126-subject database. 
The complete Julia computer programming code to replicate 
our analysis is available in a GitHub repository [31].  

The reminder of the paper is organized as it follows: The 
Materials and Methods section summarizes useful elements of 
Riemannian geometry. Then it describes the proposed group 
learning algorithm, the fast alignment method, the processing 
pipeline and the BCI databases we have used. The Results 
section reports the accuracy of the proposed group learning 
algorithm under different hyper-parameters settings as 
compared to subject-specific train-test accuracy. The 
Discussion section considers advantages and limitations of this 
study. It also points to several possible directions for future 
research on group learning. 

II. METHODS AND MATERIALS 
Hereby we present the group learning method for the case of 

BCIs based on event-related potentials (ERPs). However, the 
method is very general in that it may apply to any collection of 
feature vectors (not just BCI data).  

Throughout this paper we denote matrices by upper case bold 
letters (A), vectors by lower case bold letters (a), variables by 
lower case italic letters (a) and constants by upper case italic 
letters (A). Set of objects are denoted with curly brackets such 
as, nÎ{1,…,N}. The matrix operators (×)T, tr(×), (×)-1, (×)-1/2, log(), 
||×||F and ||×||2 denote the transpose, trace, inverse, inverse of the 
principal square root, matrix logarithm, Frobenius norm and 2-
norm of the argument, respectively. The matrix operators off(×) 
and uvec(×) nullify the diagonal elements and vectorize the 
upper triangle of the argument, respectively. The symbol  ° 
indicates the Hadamard product. The  identity matrix is 
denoted by IN. 

A. ERP-based BCI data 
In ERP-based BCIs a continuous stream of discrete sensory 

stimuli (symbols) is flashed in turn on a screen. The user is 
allowed to select symbols one-by-one by just focusing on them. 
In P300 spellers, the symbols are a subset of those found on a 
computer keyboard. The symbol the user focuses on for a given 
selection is named salient, whereas all other symbols are named 
non-salient. Upon flashing, the symbols evoke stereotypical 
electrical potential in the brain, lasting up to 1 second [32]. EEG 
records are segmented into 1-s epochs, named trials, starting at 
the exact moment of the flash. The aim of the BCI is to 
determine what stimulus is salient at a given time, that is, what 
symbol the user wish to select, using only the ERP responses of 
the user. Hence, given a sequence of acquired ERPs, a binary 
class problem (salient vs. non-salient) is posed. 

B. Preprocessing  
EEG signals are filtered by a second-order Butterworth filter 

(1-16 Hz) featuring linear phase response. Trials are extracted 
by segmenting EEG data into 1-s epochs. Those featuring 
excessive artefacts are excluded from the analysis by applying 
a data-driven amplitude-thresholding procedure. No further 
artefact rejection nor artefact correction procedure has been 

used so as to mimic the real-world usage of BCIs. 

C. Encoding ERP Trials 
In order to encode ERP trial we follow the well-established 

Riemannian approach [24], [26], [30], [33]–[35]. Let 
mÎ{1,…,M} be the index of M domains (i.e., subjects and/or 
sessions) and lÎ{1,…,Lm} be the index of Lm available ERP 
trials for the mth domain. Therefore, let XmlÎℝNm x Tm be the EEG 
data of a trial, with Nm and Tm the number of channels and the 
number of time samples for the mth domain, respectively. First, 
for each domain a prototype trial (mean) for salient ERP trials 
is estimated by using the weighted least-square estimation of 
the salient ERP detailed in [32]. We retain the first D=Nm/2 
principal components, denoted as YmÎℝD x Tm, of the prototype 
trial of each domain. Then, the so-called super-trials [35] are 
created as X′ml = [ XTml YTm]T. 

Next, the covariance matrices of all trials are estimated using 
the linear Ledoit and Wolf shrinkage estimator [36]. The form 
of the covariance matrices of super-trials reads   

 , (1) 

from which we see that the second diagonal block, YmYTm, is 
the same for all trials of the given domain and therefore does 
not hold relevant discriminant information. 

Following [23], [34], all regularized covariance matrices for 
a given domain, denoted Cml, are recentered around the identity 
using parallel transport and lifted onto the tangent space therein 
[33], such as  

 , (2) 

where Gm is the Riemannian mean of the set {Cm1,…,CmL}, 
estimated using the gradient descent algorithm GM-GD given 
in [37]. 

D. Feature Vectors and Surrogate Feature Vectors  
In order to obtain feature vectors, the symmetric matrices Sml 

are vectorized such as 
 ,  
where H is a matrix holding 1 on the diagonal elements and Ö2 
elsewhere. The normalization enforced by H ensures that the 2-
norm of feature vectors v′ml is equal to the Frobenius norm of 
Sml [33], that is, they are such that ||v′ml||2 = ||Sml||F. 

In order to equalize the norm of the tangent vectors across 
domains, all tangent vectors are normalized so as to have unit 
mean norm for each domain, that is 

 . 

Furthermore, since the YmYTm block in (1) do not hold any 
discriminant information, its elements are removed from vml, 
after the vectorization of Sml. Hence, the number of elements of 
vectors vml is Em=(Nm²+Nm+2DNm)/2. Notice that while it is not 
clear whether the removed elements pertain only to the YmYTm 
block after non-linear transformation (2), our tests indicate that 
keeping these elements does not improve the classification 
performance. 

As for the group learning method, we propose to align these 
feature vectors, whereas the alignment operation itself is 

N N´

T T
T ml ml ml m

ml ml T T
m ml m m

é ù
¢ ¢ = ê ú

ë û

X X X Y
X X

Y X Y Y

( )1 1
2 2logml m ml m

- -
=S G C G

( )ml mluvec¢ =v S H!

1

1
2

1

m

m

L

ml ml mlL
l

-

=

æ ö
¢ ¢= ç ÷
è ø
åv v v



4 
 
 
estimated on surrogate feature vectors. These are obtained for 
each domain separately by bootstrapping average estimations 
of vml for each class separately, and then normalize them so as 
to have a global unitary mean norm within each domain. In this 
work, such bootstraps are obtained for each class by averaging 
A vectors vml randomly drawn (with replacement) from the 
same class. Em bootstraps are stacked horizontally to form 
matrices TmkÎℝEm x Em, for each domain mÎ{1,…,M} and each 
classes kÎ{1,…,K}, separately. Surrogate feature vectors are 
used to ensure that the number of vectors is the same within the 
same class for all domains. Since we are drawing the same 
number of bootstraps for all classes, in this work the dimension 
of the Tmk matrices is equal across classes, but this is not a 
requirement of the group learning algorithm. Notice also that 
bootstrapping is not a hardcore necessity to form surrogate 
feature vectors Tmk; other methods to generate them from 
feature vectors vml may be used. 

The bootstraps are then whitened by finding M matrices 
{W1,…,WM} such that  

 ,  

where P is the pre-whitening dimension, chosen to be equal for 
all domains. Finally, we compute pre-whitened cross outer 
products 

 . 

E. Group Learning 
The general idea to achieve group learning is to find M linear 

transformation {U1,…,UM} such that all full-rank matrices 
UTiRijkUj are as diagonal as possible under appropriate 
constraints on {U1,…,UM}. For M=2 with a single class (K=1) 
and under the constraint of orthogonality, U1 and U2 are given 
in deterministic form as the matrices holding in columns the left 
and right singular vectors of R12. This is known as maximum 
covariance analysis (MCA) [38], the normalized version of 
which is the better-known canonical correlation analysis. The 
MCA is the essence of the Tangent Space Alignment (TSA) 
method [26]. Thus, our proposition can be understood as a 
generalization of TSA to M>2 subjects. 

Group learning can indeed be seen as a generalization of 
MCA to the much more general (and useful) case (M>2, K>1), 
which is the case of concern here. Another way to see it is as a 
special case of the joint blind source separation problem, which 
allows us to readily exploit the extensive treatment this problem 
has received by the signal processing community (e.g., [39]–
[42]). In particular, in this work we adopt the cyclic 
approximate joint diagonalization (AJD) gradient descend 
optimization scheme proposed in [41]. Once found the Um 
matrices, the alignment matrices Bm are obtained as Bm=WmUm 
for all mÎ{1,…,M}. Then, the feature vectors of each domain, 
regardless of their class, are aligned by means of the 
transformation 

 . (3) 

F. Optimization Scheme 
As it is typical in AJD algorithms, the estimation of 

alignment matrices Bm is factorized in two stages: a pre-
whitening stage (Section II-D) and an optimization stage. The 

optimization problem is formulated as 

  (4) 

with appropriate constraints on the Um matrices. 
Following [41], a possible strategy for solving (4) is to 

cyclically solve it for each matrix Um (each domain), holding 
the others fixed, until convergence. The cost function to be 
solved for each domain separately reads then  

 , (5) 

where for convenience we have posed Qijk=UT
iRijkUj and 

U\{i}={Um | m=1,…,M, m¹i}. The off-diagonal elements of the 
Qijk matrices are given by 

 , (6) 

where the total and diagonal parts are 
  and  

 , (7) 

respectively. In (7) and everywhere hereafter, ui(p) and uj(p) are 
the pth column vector of Ui and Uj, respectively. We constraint 
the norm of the column vectors of Ui, such that 

 , (8) 

where matrices Mi(p) are defined as 
 . (9) 

In the AJD literature, constraint (9) is known as the intrinsic 
constraints [43].  

As shown in [38], [41], the solution for the ui(p) vectors of 
each matrix Ui is the principal generalized eigenvector of matrix 
Mi(p) in the metric of Mi. We do not find such eigenvectors 
explicitly, rather, we limit ourselves to a single power iteration 
per update step, followed by a normalization enforcing the 
constraint. This yields the simple updating rule: 

 

  

As a computation shortcut, in the update rule we do not need 
to compute the inverse of Mi; instead we proceed equivalently 
by computing its Cholesky decomposition and solving two 
triangular system of equations. Notice that the updating rule is 
applied cyclically on all Um matrices.  

Following [42], we initialize each matrix Um by  

   

in order to hasten convergence. We name this smart 
initialization. Upon convergence of all matrices Um we 
normalize all their columns such as 

 

and we obtain the M alignment matrices as Bm=WmUm.  
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The pseudo-code is given in Algorithm 1. We name this 
alignment algorithm GALIA (Group Alignment Algorithm). 
For further details on the optimization scheme, cost function 
and initialization procedure, the reader is referred to [38]-[41]. 
Notice that the bootstrapping size (A) and the pre-whitening 
dimension (P) are the only hyper-parameters of the algorithm. 
An efficient implementation of GALIA is provided in a GitHub 
repository [31]. 

G. Fast Alignment of New Domains 
Suppose we have aligned the data of M subjects (and/or 

sessions), which is possibly very large, and trained a complex 
classifier on them. Then suppose that we want to apply this 
mighty classifier to a new subject (or new session) that was not 
available when we constructed the model. As we have stated 
the group learning problem, the M+1 domains must be re-
aligned altogether, running again the group alignment 
algorithm. Fortunately, this is not strictly necessary, as we can 
align the new subject (or session) to the existing model in a 
much faster way. The problem can be posed this way: given M 
pre-computed alignment matrices Um, we want to find a matrix 
Ux for the new domain so as to maximize the cross outer-
product between the new (pre-whitened) domain and all (pre-

whitened) existing domains. That is to say, we force the new 
domain to adapt itself to the group, while the group is left 
untouched. The optimization problem is formulated then as 

 . (10)  

The functional in (10) has the exact same form of the one in 
(5). As we have seen, the solution for each of the P columns of 
Ux is given by the principal generalized eigenvector of matrix 
Mx(p)=∑ (Rxmum(p)um(p)T RxmT )m  in the metric of Mx=∑ Mx(p)p . 

In contrast to Algorithm 1, where (5) is one of M nested cost 
functions, here we only need to solve (10), therefore here we 
explicitly compute the P generalized eigenvalues. Thus, once 
we pre-whiten the surrogated feature vectors of the new domain 
we find Ux by a deterministic solution and we can construct 
matrix Bx. We then align the feature vectors of the new domain 
using the same projection (3) namely, 

  
and apply to them the pre-computed machine learning model as 
it is. Note that group learning operates by cyclically optimizing 
the functional in (5). In each of these functionals matrix Ui is 
optimized given all the others. It is easy to see that as the 
number of domains goes to infinity, the influence of a single 
domain vanishes. This implies that the fast alignment is 
asymptotically equivalent to group learning. In practice, this 
means that group learning models trained on large databases 
can be expected to yield excellent results on any unseen target 
data. 

H. Description of Data 
We tested the proposed algorithm on six P300 databases 

including 333 sessions recorded from 177 subjects. The main 
characteristics of the databases are given in Table I. For details 
on the databases and for the experimental procedure, the reader 
is referred to [44]–[49]. All six databases are publicly available 
on the MOABB framework [50]. 

I. Pipelines 
 Each recorded session defines a separate domain, in which 

we have divided the available tangent vectors vml into train-test 
splits with random shuffling. The sizes of the training splits are 
arranged such that they feature the same percentage of trials 
(starting from 20% up to 90%, with 10% increment) of all 
available trials from each class for the given domain. The 
remaining trials are retained as test splits. This allows to test the 
classification performance of the group learning algorithm for 
different amounts of available training data. The splitting 
procedure is repeated five times; the reported accuracies are the 
average of those five folds.  
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Algorithm 1 GALIA (Group ALIgnment Algorithm) 
 Input:  
           subspace dimension  
 Output:  
 Begin: 

1  

2 for all i=1 to M do 
3   

4 end for 

5 
Initialize all matrices Um: 

 

6 repeat  
7  for all m=1 to M do 

8    

9   (Cholesky decomposition) 

10   for all p=1 to P do 

11    solve  and  

12    update  

13   end for 
14  end for 
15 until convergence of all Um matrices. 

16 
Normalize all columns of matrices Um: 
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TABLE I 
MAIN CHARACTERISTICS OF THE BCI DATABASES USED IN THIS STUDY 

Databases Subjects 
(Sessions) 

Num. of 
Channels 

Channel 
Type 

Sampling 
Rate 

bi2013a 22(1) 16 Ag/AgCl 128 Hz 
bi2014a 64(1) 16 Gold  512 Hz 
bi2014b 31(3) 31 Ag/AgCl 512 Hz 
bi2015a 42(3) 31 Ag/AgCl 512 Hz 

BNCI2014008   8(1) 8 Ag/AgCl 256 Hz 
BNCI2015003 10(2) 8 Ag/AgCl 256 Hz 
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All computations were carried out using the Julia 
programming language (release v1.7.3) on a computer equipped 
with Windows 10 OS, an Intel i9-10900K @3.7GHz CPU and 
64 GB of RAM. For classification, the linear support vector 
machine (LinearSVC) of the scikit-learn (version 1.2.2) Python 
library was exported to Julia. 

Since the classes are unbalanced, balanced accuracy is 
employed as a performance index. Apart from the class weights 
parameter which is set to balanced, the default values are used 
for the parameters of the LinearSVC classifier.  

Importantly, the train-test splits are always identical in the 
comparisons of pipelines. For the group learning and fast 
alignment, only one classifier is trained using data from all 
sessions of all subjects, whereas in the subject-specific case M 
classifiers are trained, each one using only the training data of 
the subject/session under test. Exactly the same training data is 
used for training the subject-specific classifiers, to align the 
group learning model and to train the group learning/fast 
alignment model, yielding a fair comparison of the three 
methods. The step-by-step summary of group learning and 
subject-specific train-test (subject-wise learning) pipelines are 
shown in Fig. 2. Fast alignment is detailed in Section II-G. 

III. RESULTS 
In order to compare the decoding performances of the group 

learning, fast alignment and subject-wise learning pipelines, we 
consider subject-by-subject classification accuracies.  

A. Hyper-parameters and Computational Cost 
Our first analysis addresses the choice of the best pre-

whitening dimension (P) and bootstrapping size (A). We have 
tested the group learning pipeline with six different pre-
whitening dimension values P Î {4, 8, 16, 24, 32, 48} for the 
whitening matrices Wm. As for the bootstrapping size (A) of the 
surrogate features, we tested four different values A Î {1, 2, 10, 
25}. When A=1, surrogate features are created with randomly 
sampled (with replacement) feature vectors directly. For A>1, 
the surrogate features are estimated by taking the mean of A 
randomly selected feature vectors. A grid search for the hyper-
parameters of GALIA are thereby created.  

In Fig. 3, the average classification changes of all split sizes 
obtained with the group learning pipeline is shown. Line plots 

for each A value are shown along ascendingly ordered pre-
whitening dimensions for all bootstrapping sizes and for each 
database separately. It can be seen that for the smaller 
bootstrapping size (A=1 or A=2) the group learning yields lower 
classification performance, suggesting that choosing a higher 
bootstrap size better retains distinctive features of the classes. 
Also, the classification performance of the group learning 
becomes less sensitive to pre-whitening dimension as the 
bootstrapping size increases. Given a sufficient value of A, the 
average classification change is nearly flat across all pre-
whitening dimensions and for all databases.  

As we have described in Section II-F, the dimensions of the 
Um matrices are defined by pre-whitening dimension. 
Consequently, the computational cost of GALIA (Algorithm 1) 
depends on the choice of P. Fig. 4 shows the computational cost 
of GALIA in terms of runtime for each value of P. We should 
note that the computational costs shown in Fig. 4 depends not 
only on P, but also on the number of subjects (M) composing 
the group. Therefore, the nominal runtime of GALIA is higher 
for larger databases such as bi2015a and bi2014b. Nevertheless, 
the cost of doubling the pre-whitening dimension is nearly 10 
times in terms of the runtime of the algorithm, regardless the 
group size. In absolute terms, the runtime is modest in our Julia 
implementation as it is comprised in between 10 and 1000 
seconds for P=16, depending on the group size.  

As illustrated in this section, the classification performance 
of group learning does not require separate fine tuning of hyper-

 
Fig. 2.  Pipeline steps of subject-wise train-test learning and group 
learning summarized as a flowchart. Notice that not only that group 
learning pipeline has a few extra steps before cross-validation the 
classifier, but also it uses single classifier for all domains. 

 
Fig. 3. Each plot shows how much in percentage the average 
classification accuracy changes when using the group learning model 
(with the given hyper-parameters) as compared to the subject-wise 
train-test model for each database. The horizontal dotted black line 
indicates no change (0%). 
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parameters A and P for each database we have used. Instead, a 
suboptimal hyper-parameter configuration with low 
computational cost and generalizing well across all databases 
regardless of their recording sensor type, number of sensors and 
number of subjects can be used for all. Consequently, in this 
study we set the bootstrapping size to A=25 and pre-whitening 
dimension to P=16 as the hyper-parameters of GALIA.  

B. Comparison of Group Learning vs Subject-Wise 
Learning 

In Fig. 5, group learning versus subject-wise learning 
classification accuracies of each subject are presented. The train 
and test splits have equal numerosity in each class (50%, 50%). 
It can be seen that for the vast majority of subjects group 
learning yields higher classification accuracy as compared to 
subject-wise learning. If we take a closer look at bi2014b 
database, only one third of the subjects display subject-wise 
classification accuracy that is equal or higher than 60%. 
Nevertheless, group learning improves the classification 
accuracy of the two thirds of the subjects by 1–5%, yielding 
1.4% improvement on average. Conversely, in BNCI2015003, 
bi2013a, bi2014a and bi2015a databases, subject-wise 
classification accuracies are higher than 60% for the vast 
majority of subjects. On average, classification performances of 
these databases are improved by 2.7%, 4.2%, 2.81% and 2.93% 
respectively, as shown in Table II.  Wilcoxon signed-rank tests 
(Table III) reveal that group learning significantly improves the 
classification performance of all databases except 
BNCI2014008 (p<0.001) in almost all cases. This is a clear 
evidence of positive learning achieved by GALIA, especially 
for those databases (BNCI2015003, bi2013a, bi2014a, 
bi2015a) displaying high subject-specific accuracy.  

In addition to the subject-by-subject comparison, we present 
the average classification accuracy of both pipelines with 
respect to increasing training data size in Fig 6. It can be seen 
that in all databases the average classification accuracy of group 
learning matches -if not surpasses- the average classification 
accuracy of subject-wise learning, regardless the train-test split 
size. As the training data increases, group learning yields 
significantly higher classification accuracy than subject-wise 
learning for all databases except for the BNCI2014008 
database.  
 

  
Fig. 4. Average runtime (s) to run the group alignment algorithm versus 
P. The average runtime axis (y-axis) is displayed on a logarithmic scale. 
The total number of subjects/sessions of each database reported in 
parenthesis. 

TABLE II 
AVERAGE CLASSIFICATION ACCURACIES OF EACH DATABASE 

Databases SW Learning 
(%) 

Group 
Learning 

(%) 

Fast 
Alignment 

(%) 
bi2013a 76.10±0.30 80.30±0.30 80.34±0.30 
bi2014a 68.48±0.11 71.29±0.13 71.28±0.13 
 bi2014b 60.31±0.38 61.69±0.43 61.74±0.47 
bi2015a 67.81±0.14 70.74±0.15 70.59±0.22 

BNCI2014008 75.93±0.60 74.66±0.66 74.22±0.66 
BNCI2015003 67.64±0.61 70.34±0.71 69.03±0.69 

Classification accuracies averaged over all train-test split sizes for each 
database and corresponding standard errors. 
 

  
Fig. 5. Scatter plots comparing individual-subject accuracies of group 
learning versus subject-wise learning pipelines for each database.  

TABLE III 
WILCOXON SIGNED-RANK TEST P-VALUES COMPARING THE AVERAGE 
ACCURACY OF GROUP LEARNING (GL) AND SUBJECT-WISE LEARNING 

(SW). SIGNIFICANT RESULTS AFTER CORRECTION BY THE BONFERRONI 
METHOD (GL>SW) AT THE 𝛼=0.05 LEVEL ARE PRINTED IN BOLD. 

Databases 
Training Split Size 

20 30 40 50 60 70 80 90 

bi2013a <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
bi2014a <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
bi2014b 0.946 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.046 
bi2015a <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

BNCI2014008 0.008 0.770 0.844 0.926 0.992 1.000 1.000 0.973 
BNCI2015003 0.004 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.285 
 



8 
 
 

C. Robustness to Negative Learning of GALIA  
In the above analysis, none of the subjects are excluded from 

group learning. However, most previous Riemannian transfer 
learning methods were shown to be sensitive to the choice of 
the source domains [25]. In order to verify whether GALIA also 
displays such behavior, we exclude subjects that have less than 
60% subject-wise learning classification accuracy. Next, the 
group learning pipeline is run with exactly the same parameters 
on the remaining subjects. In Fig. 7, we compare the average 
classification accuracies of group learning for each database 
using all retained subjects before and after excluding low-
scoring subjects. Considering that the BNCI2014008 database 
has no subjects scoring below 60% and that the bi2013a 
database has only one subject scoring barely lower than 60%, 
these two databases are excluded from this analysis. As for the 
remaining databases, the average classification accuracy does 
not display significant differences according to the Wilcoxon 
signed-rank test (p-value not shown). This analysis stresses the 
robustness of GALIA against the inclusion in the group model 
of low-scoring subjects, and suggests that it does not require 
pre-selection of subjects to be included in the group learning in 
order to avoid negative learning. This is a distinctive advantage 
over previous attempts, similar to what has been noticed in [26].  

D. Fast Alignment  
To reiterate briefly, GALIA applies to a set of 

subjects/sessions, which are treated simultaneously as source 
and target domains. If the size of the group changes, all of the 
alignment matrices need to be recalculated again. Considering 
the long-run aim of the group learning (that is to create an MLM 
that can be applied on virtually any unseen data), it is 
undesirable to start over the estimation of alignment matrices 
every time a new target subject has to be treated when we need 
to apply the model on an unseen subject. 

Here we present a leave-one-out (LOO) analysis in which an 
unseen subject is aligned to the set of subjects without re-
running GALIA from scratch. In each turn, one subject/session 
is relegated from the group whereas the remaining 
subjects/sessions are used to train GALIA. The relegated 
subject/session is adapted to the group with fast alignment using 
its training data as described in Section II-G. Then, the classifier 
trained on the group is used to classify the data of the newly 
aligned subject. Notice that in this analysis the classifier has 
never seen any of the trials of the target data, effectively 
achieving a many-to-one domain adaptation mode of operation. 
In Fig. 8, subject-by-subject comparisons of fast alignment, 
group learning and subject-wise learning are shown when 50% 
training split size is used. It can be seen that fast alignment of a 
new subject yields approximately the same classification 
performance as compared to the situation where the subject is 
included in the group model. We repeat this analysis for all 
training split sizes and compute p-values using the Wilcoxon 
signed-rank test (Table IV). For all tests the null hypothesis 
cannot be rejected, suggesting that the average classification 
accuracy achieved by fast alignment is equivalent to the one 
achieved by the group learning pipeline, even with a small 
amount of training trials. 

 
 

  
Fig. 7. Scatter plots comparing individual-subject accuracies of subjects 
for group learning models trained with and without low-scoring subjects.  

  
Fig. 6. Average classification accuracy of group learning and subject-
wise learning across all training split sizes for all databases. The 
horizontal dotted black line indicates chance level (50%). 
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IV. DISCUSSION 
In this paper, we have expanded the many-to-many transfer 

learning method in [30] by introducing a smart initialization 
method to hasten the convergence rate of the group alignment 
algorithm (GALIA) and by showing how to choose optimal 
hyper-parameters of GALIA generalizing well across databases. 
We have also introduced the fast alignment method (many-to-
one) to align a new (unseen) domain with the formerly aligned 
group of domains without re-running GALIA and re-training or 
updating the classifier. Finally, we have extensively tested the 
group alignment and fast alignment method on six publicly 
available P300 databases comprising 333 sessions from 177 

subjects. 
Granting that the conventional subject-specific train-test 

pipeline is the golden standard for the purpose of classification, 
we showed that the group learning method outperformed the 
golden standard on all databases except BNCI2014008. The 
peculiarity of this database is that it is the only one in which the 
recordings were taken from clinical patients (Amyotrophic lateral 
sclerosis). Since GALIA seeks linear transformation of the 
feature vectors to align the data, the negative learning observed 
in this database may be explained by the fact that a linear 
transformation does not suffice to align these clinical data. 
Further studies are needed in order to test this hypothesis and to 
find a solution.  

In order to ascertain whether the inter-domain aligment 
achieved by GALIA is the essential ingridient in order to 
achieve the results we report, we have performed an ablation 
study on the bi2013a and bi2015a databases. This is achieved 
replacing the matrices Um, the core of our alignment method, 
with the identity matrix and performed the cross-validation 
exactly is the same way otherwise. This procedure effectively 
disables the alignment, keeping equal all other aspects of the 
test and amount to a “naïve” group learning consisting in just 
pooling the data of all subjects in order to train a group 
classifier. The ablation of GALIA reduced the classification 
accuracy averaged over all train-test split sizes to below 60 % 
for both databases, well below the accuracy achieved by either 
group learning or subject-wise learning (compare these scores 
to Table II). We conclude in favor of the essentiality of our 
alignment procedure in our pipelines. 

As compared to the previous Riemannian domain adaptation 
methods acting in either the manifold or in the tangent space [21], 
[23]–[28], group learning stands out for being the first many-to-
many domain adaptation method. Favorably, there is no need to 
search for the optimal source domains in order to prevent 
negative learning unlike [23], [24], [27], [28], since the group 
learning is shown here to be robust against inclusion of low-
performing subjects. Unlike the conventional one-to-one domain 
adaptation or its cascaded many-to-one versions that usually 
employ voting strategies (majority or weighted) on multiple 
classifiers each being trained with a different source domain [23], 
[24], [26]–[28], in group learning a single classifier is trained and 
tested with the aligned data of all domains. Hence, the data of 
many domains are truly forged in together for training a single 
classifier.  

Remarkably, the classification performance of our fast 
alignment method is comparable to the one achieved by group 
learning, that is, the classifier works as well without seeing the 
target data at all. Nonetheless, labeled trials are needed in order 
to align the target data. A promising line of research consists in 
making the fast alignment method fully unsupervised.  

As seen in Table V, the alignment matrix of a new domain can 
be computed in at most three seconds on a regular desktop PC. 
For any practical purpose this implies that many-to-one domain 
adaptation can be performed online.  

Our results suggest that a single MLM can be trained with the 
massive amount of data that belongs to the group of aligned 
domains thanks to the fast alignment method. Once trained, the 
MLM can serve for the classification of any new domain simply 
by aligning its feature vectors with the feature vectors of the 

  
Fig. 8. Subject-by-subject classification accuracies of subject-wise 
learning, group learning and fast alignment for all databases. Subjects 
are sorted based on their subject-wise learning accuracies. The 
horizontal dotted black line indicates chance level (50%). 

TABLE IV 
WILCOXON SIGNED-RANK TEST P-VALUES COMPARING THE AVERAGE 

ACCURACY OF GROUP LEARNING (GL) AND FAST ALIGNMENT (FA). 
SIGNIFICANT RESULTS AFTER CORRECTION BY THE BONFERRONI METHOD 

(GL>FA) AT THE 𝛼=0.05 LEVEL ARE PRINTED IN BOLD. 

Databases 
Training Split Size 

20 30 40 50 60 70 80 90 

bi2013a 0.194 0.960 0.947 0.555 0.358 0.524 0.228 0.564 
bi2014a 0.504 0.336 0.421 0.372 0.613 0.130 0.376 0.160 
bi2014b 0.915 0.869 0.978 0.975 0.355 0.198 0.424 0.757 
bi2015a 0.989 0.927 1.000 0.553 0.319 0.697 0.705 0.775 

BNCI2014008 0.422 0.191 0.004 0.055 0.680 0.098 0.020 0.074 
BNCI2015003 0.806 0.215 0.507 0.715 0.378 0.595 0.273 0.778 
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MLM, without any further training of the classifier. This may be 
used as a pre-processing step in deep neural network (DNN) 
methods such as [51] to tackle domain adaptation on massive 
amounts of data, which is what a DNN needs. An even more 
intriguing possibility would be to design a specific DNN layer 
to perform group data alignment along the lines of GALIA. 

This study has several limitations: we did not apply group 
learning for cross-database domain adaptation due to the 
incongruence among databases caused by sensor types and 
numbers. An adaptation of the dimensionality transcending 
method proposed in [52] is currently under study in order to align 
incongruent EEG data. This would allow the creation of 
universal MLM based on GALIA fast alignment, that is, pre-
trained classifiers that can be used on any target domain data, 
regardless the number and position of electrodes. Besides, the 
possible non-linearity of the data will be considered for 
enhancing the alignment of the domains. Finally, we have tested 
group learning and fast alignment only on P300 BCI data; future 
studies are needed to test our proposition on other BCI 
paradigms, such as motor-imagery and SSVEP.  
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