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Abstract

The large-eddy simulation of wall-bounded turbulent flows at high Reynolds numbers is
made more efficient by the use of wall models that predict the wall shear stress, allowing
coarser cell sizes at the wall. In this paper, a data-driven approach for the modeling of the wall
shear stress is examined using filtered high-fidelity numerical data from two fully developed
turbulent channel flows and two turbulent flows with separated regions: a three-dimensional
diffuser and a backward-facing step. The model is a multilayer perceptron based on the flow
information in the vicinity, given by the distance to the wall and the velocity components
at a given number of grid points above the wall. The model is Mach number equivariant at
the quasi-incompressible limit, Galilean invariant, statistically rotational invariant and can
extrapolate to flow conditions unseen in the training dataset. The relevance of the machine-
learning procedure is verified a priori using the filtered numerical data and a posteriori by
performing wall-modeled large-eddy simulations implementing the model. The results show
that the model is able to leverage the local spatial information to discriminate developed wall
turbulence and separated regions in a flow configurations not included in the training dataset.

1 Introduction

The direct simulation of wall-bounded turbulent flows becomes increasingly intractable as the
Reynolds number of the flow increases. Indeed, the size of the near-wall turbulent structures be-
comes increasingly small compared to the boundary-layer thickness, which demands an increasingly
fine computational grid [87, 17]. The computational requirements may be reduced significantly by
simulating only the larger scales of the fluid motion. As part of this approach, known as large-eddy
simulation (LES), the large-scale motions are typically defined using a low-pass filter of the order
of the computational grid [53]. However, the analysis of complex engineering flows at practical
Reynolds number requires grid size and thus filter size so large, that none of the turbulent structures
in the viscous sublayer would be resolved by the large-eddy simulation. In this context, the no-slip
boundary condition may no longer be used at the walls. It is instead replaced by a wall model
accounting for the effect of the non-resolved part of the boundary layer [13, 74, 48]. Numerical
simulations implementing such wall models are referred to as wall-modeled large-eddy simulations
(WMLES). Most commonly, the wall model provides a condition on the wall shear stress. A non-
zero Dirichlet boundary condition for the velocity can also be provided, either because the filtered
velocity does not tend to zero at the wall with the selected filter [10, 2], or because the boundary
of the computational domain is at a finite distance from the wall [3, 43, 67]. In any case, the
wall solution may be computed assuming the shape and scaling of the velocity profile [21, 84, 75],
for instance using a statistical equilibrium assumption to enforce the law of the wall instanta-
neously. Hybrid LES/Reynolds-averaged Navier–Stokes (RANS) strategies can also be used [73].
This includes both zonal methods and seamless methods [5, 20, 93]. Detached-eddy simulation
[90] and related approaches can also be included in that category, including delayed detached-eddy
simulation [91], improved delayed detached-eddy simulation [86, 36, 55] or zonal detached-eddy
simulation [22]. Hybrid LES/RANS methods are cost effective since they can provide an overall
quite satisfactory prediction of turbulence dynamics (e.g. separation point, non-equilibrium turbu-
lence...) with a coarser mesh than would be used in a wall-resolved large-eddy simulation [80, 94]
An alternative to the resolution of the full RANS equation is to solve the thin-boundary-layer
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equations (TBLE) on an embedded grid, as first proposed by Balaras et al. [4]. In addition, the
resolution of vertically integrated RANS boundary layer equations has been proposed as a less
expensive hybrid method capable of handling some non-equilibrium effects [18, 42, 100, 14].

There are still challenges associated with the application of current wall models to complex
turbulent flows, involving phenomena such as shock-boundary layer interaction, laminar-turbulent
transition and flow detachment [6, 7, 30, 27, 31]. In particular, flow separation has long proved
difficult to handle by wall-modeled LES since, as the equilibrium assumption gets violated, it is
difficult to assume a shape for the velocity profile in algebraic wall stress models. Data-driven
approaches have recently emerged as a promising novel approach to wall modeling which could in
principle handle non-equilibrium flow phenomena, including flow separation, for scenarios where
high-fidelity data is available and sufficient. Indeed, the capability of data-driven approaches to
produce models beyond the capability of models based on human expertise and manual feature
engineering has been demonstrated for various complex tasks, such as image classification, speech
recognition or natural language processing [51]. The development of a wall model capable of
handling the immense variety of possible flow behavior might, similarly, involve a high degree of
complexity that could be learned by a machine-learning (ML) algorithm provided with a sufficient
number of high-fidelity experimental or numerical data. Machine-learning methods have been
applied to the modeling of turbulence in a number of contexts [28, 12], including LES modeling
[82, 33, 95, 63, 64, 104, 99, 69] and RANS modeling [56, 57, 96, 98]. In particular, the development
of wall models using machine-learning techniques, to the author’s knowledge, has been assessed
in a turbulent channel flow [102, 65], a spanwise rotating channel [38] the turbulent flow over
periodic hills [105], a boundary layer with shocks [8], a wing-fuselage juncture flow [58, 59] and
supersonic turbulent flows [103]. In each case, a different arbitrarily engineered set of input features
is used, typically involving the scaling of the flow variables and the preliminary computation of
the wall-normal distance logarithm and velocity or pressure derivatives.

This paper investigates the modeling of the wall shear stress for turbulent flows with sepa-
ration using a machine-learning approach. The procedure is validated a priori, by filtering the
instantaneous three-dimensional fields of high-fidelity numerical simulations, and a posteriori, by
performing simulations implementing the models. The machine-learning model is a feed-forward
artificial neural network trained using a database composed of two channel flow simulations and
the simulation of the flow in a three-dimensional diffuser, involving mean separated regions. The
model assumes a locally structured and uniform grid and uses the velocity components at one or
several grid points above the wall as input, scaled to ensure the Mach number equivariance of
the model at the quasi-incompressible limit but with minimal feature engineering. The training
procedure ensures in addition that the model is statistically invariant to reflections or rotations
of the coordinate system. The number of input grid points is varied to assess the relevance of an
increasing amount of spatial information on the ability of the model to discriminate attached and
detached flow regions, that is to make a different prediction in the two regions. Care is taken to
ensure that this discrimination is achieved while maintaining at least parity performance with the
law of the wall for fully developed wall turbulence. The resulting model is implemented in a flow
solver and assessed a posteriori for the wall-modeled large-eddy simulation of a channel flow and of
the flow over a backward-facing step, demonstrating the generalization performance of the model.
The results are compared to corresponding large-eddy simulations using an algebraic wall stress
model.

The training dataset is described in section 2, as well as the procedures used to filter and prepare
the data for the machine-learning models. The architecture of the artificial neural networks is given
in section 3. The a priori and a posteriori results are discussed and analyzed in section 4.
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(a) Turbulent channel flow (TCF1
or TCF2)

(b) Three-dimensional diffuser (3DD), top view

(c) Three-dimensional diffuser (3DD), side view

(d) Backward-facing step (BFS)

Figure 1: Geometry of the four simulations in the database. The blue areas are separated in the
mean. The training data are extracted along the thick black lines along the walls.

2 Data preparation and filtering

2.1 Dataset

To learn about the wall behavior of fluids, we need a model that can discriminate the immense
variety of possible flow behavior. The complexity of the task means that there is currently no
dataset available to specify the problem. For the data-driven modeling to be useful in a wide
array of configurations and applicable in various flow solvers, it is crucial to demonstrate that they
can learn from heterogeneous databases, aggregating simulations performed by different teams and
using different solvers and numerical methods. Producing such database would require a large
human effort. As a first step, this study uses a database of instantaneous three-dimensional time-
dependent data which aggregates four numerical simulations performed by various research groups.
The training was restricted on pragmatic grounds to quasi-incompressible flows without variations
of fluid properties. This simplifies the task of the model by excluding from the analysis some
of the complexity that may be found in real flows, such as the effect of compressibility [34] or
the complex interaction between turbulence and temperature [72, 25, 26]. Our main focus is the
development of a wall model that accurately treats flow separation. The database includes both
turbulent boundary layers and separated regions. The fourth simulation, which corresponds to the
flow over a backward-facing step, is excluded from the training dataset for testing purposes and to
allow a realistic assessment of the reliability and generalization performance of the model.

• First, the database includes the direct numerical simulation (DNS) of a fully-developed chan-
nel flow at a friction Reynolds number Reτ = 180, performed at Imperial College London
[1] and hereafter denoted TCF1. The geometry is periodic in the streamwise and spanwise
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direction. The domain size is 8πhc × 2hc × 4πhc, where hc is the half-height of the channel.
The mesh includes 62× 19× 60 hexahedral elements with fifth-order polynomial (effectively
372×114×360 solution points). The numerical schemes are based on the flux reconstruction
method of Huynh [41] in the high-order code PyFR [97]. Although this numerical solver
is compressible, the compressibility effects are negligible since the Mach number based on
centerline velocity Ma = 0.1 of the simulation is low. The height of the first point off the
wall is ∆y+ = 0.25 in wall units, that is using the classical scaling (+) based on the wall
shear stress τ , the density ρ and the kinematic viscosity ν, namely ∆y+ = ∆y

√
τ/ρ/ν.

• Second, the database includes the direct numerical simulation of a fully-developed channel
flow at a friction Reynolds number Reτ = 950, performed at the Polytechnic University of
Madrid [61, 23, 60] and hereafter denoted TCF2. In that case, the domain size is 2πhc×2hc×
πhc and the mesh includes 512× 385× 512 grid points. The simulation has been performed
using a hybrid Fourier-Chebyshev spectral method. The height of the first point off the wall
is ∆y+ = 0.03.

• Third, the database includes the high-fidelity wall-resolved simulation of the flow separating
in a three-dimensional diffuser corresponding to the geometry “Diffuser 1” of Cherry et al.
[16], performed at Barcelona Supercomputing Center [29] and hereafter denoted 3DD. The
geometry is composed of three main parts: the development of a duct flow from x/hd = −65
to x/hd = 5, where hd is the height of the inflow duct; a lateral and vertical expansion up
to x/hd = 20, from a width Lz = 3.33hd to Lz = 4hd and from a height of Ly = hd to
Ly = 4hd respectively; and, finally, a vertical contraction from Ly = hd to Ly = 4hd from
x/hd = 32.54 to x/hd = 42.5 (figures 1b and 1c). The Reynolds number based on the inlet
channel height is Reh = Uinlethd/ν = 10000. The mesh includes 3139×199×399 grid points.
The simulation uses the low-dissipation finite element scheme of Lehmkuhl et al. [52]. The
height of the first point off the wall in wall units is 0.5 on the top, bottom and side walls of
the inlet channel.

• Fourth, the database includes the high-fidelity wall-resolved simulation of the flow over a
backward-facing step [78, 79], performed at CERFACS and hereafter denoted BFS. The
Reynolds number based on the inflow bulk velocity and step height hs is Reh = 5100. The
inlet is located 10 hs before the step and the outlet 10 hs after the step. The geometry
is periodic in the spanwise direction and the spanwise length of the domain is 2 hs. The
simulation has been performed using a cell-vertex finite-element method [83] with second-
order accurate convection and diffusion schemes [49].

The data for the machine learning process is extracted along the top and bottom walls of the
turbulent channels (figure 1a), the top, bottom and side walls of the expanding and contracting
regions of the three-dimensional diffuser (figures 1b and 1c) and the front and bottom walls of the
backward-facing step (figure 1d). The channel flow simulations (TCF1 and TCF2) provides refer-
ence data for canonical fully developed wall turbulence. The three-dimensional diffuser simulation
has a more complex physics that includes flow features such as separation and sidewall effects. The
backward-facing step simulation also includes a region of strong separation. It is a relevant test
case since all flow phenomena present in the BFS case may be found in the training simulations
(TCF1, TCF2 and 3DD). While the physical phenomena involved are similar, the BFS case is not
specifically related to the 3DD case, and there is, to the best of our knowledge, nothing special
about the 3DD case that would make it particularly representative of other separated flows. We
can thus to some extent consider the test performance on the BFS case as representative of the
performance of the model in other similar flows, bearing in mind that this is a gross approximation
and that given the limited size of the training database creating a truly general wall model is not
realistic.

2.2 Data preparation

The instantaneous three-dimensional flow fields are preprocessed to accommodate the machine
learning process. This study adheres to the classical LES formalism of Leonard [53] in which
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Figure 2: Preparation of the data for the machine-learning algorithm.

large-eddy simulations aim to simulate the evolution of filtered physical fields. The instantaneous
numerical data are thus filtered and subsampled onto a grid with WMLES resolution. The filter,
denoted · , is a low-pass filter intended to remove the small scales of turbulence that cannot be
captured by the computational grid. The filter used to train the machine-learning wall model
should be in agreement with the filter underlying the LES governing equations in a posteriori
tests. While generally no filter is explicitly employed a posteriori in a large-eddy simulation, this
could mean if applicable that the characteristic length ∆̂ associated with the filter size in the
subgrid-scale model formulation should be consistent with the size of the filter used to train the
machine-learning model. In practice, ∆̂ is almost always taken to be the mesh size and the size of
the filter used to train the model should therefore corresponds to the LES mesh size.

The preparation of the data for the machine-learning algorithm is represented in figure 2.
Around a selected target grid point at the wall, we first locally consider a regular WMLES grid
embedded to the wall and without relationship to the fine mesh of the simulation. This WMLES
grid is devised to have a cell size in the two tangential directions ∆+

1 = ∆+
2 = 33 in wall units

in the channel flows, at the top, bottom and side walls of the inlet channel of the diffuser and
for the boundary layer before the edge of the backward-facing step. In the wall-normal direction,
the cell size in wall units is randomly sampled in the range ∆+

y =25 – 75. This range determines
the range of mesh resolution that the machine-learning model can operate on, and thus indirectly
the maximal Reynolds number that can be addressed a posteriori at moderate computational
cost. The presently used range of ∆+

y =25 – 75 is suitable for instance in turbomachinery-flow
simulations [24, 54, 70]. The two tangential axes of the WMLES grid are randomly generated, and
thus not necessarily aligned with those of the corresponding highly-resolved simulation.

The fine-mesh data are filtered and interpolated onto this virtual WMLES grid. This is per-
formed using a three-dimensional Gaussian filter centered at each simulation node with a width
equal to the WMLES mesh size, the filter width being defined, following Leonard [53], as

√
6 times

the standard deviation of the Gaussian kernel. The filtered wall shear stress is thus computed
with a two-dimensional Gaussian filter along the wall. The whole process is repeated for various
timesteps and for each selected target wall grid point independently. This associates for each se-
lected wall grid point a filtered wall shear stress and a 3× 3× 3 grid of input variables. The task
of the machine-learning model will be to predict from the input variables the filtered wall shear
stress.

2.3 Scaling

The selection of the input features is a critical issue in machine learning. In particular, it is
useful to scale the input features in order to build with limited data a model than can generalize
to flows with different length scales, different velocity scales or different fluid properties. The
preparation of the input data with physically based scaling may be seen as a way to encode a
prior to the machine-learning model, that is an initial assumption regarding the underlying data
distribution that is enforced or promoted before using any training data. In that view, the training
process is a mechanism that updates this prior using the observed training data, and the resulting
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trained model is the “posterior”.

In order to ease comparison with literature, table 1 compares the input feature selection of the
existing studies from the literature that are known to the authors. The table does not include the
study of Bhaskaran et al. [8] or Moriya et al. [65] since these works did not use any input scaling.
Zangeneh [103] use that same input feature selection as Lozano-Durán and Bae [58]. The scaling
used in the present study differs from these scalings in the following ways:

• Yang et al. [102], Huang et al. [38] and Lozano-Durán and Bae [58] use scalings that require
knowledge of the friction velocity uτ =

√
τ/ρ, which is directly related to the target τ of

the model. Although uτ could be computed in an a posteriori setting, for instance using the
shear stress at previous timestep, as in [58], we decided to only use input features that are
known instantaneously in the present scaling.

• Yang et al. [102], followed by Zhou et al. [105], engineered the input features to ease the
training process and generalization in equilibrium flows, e.g. by including the logarithm
of the wall distance. Since we intend to build a model than can also operate in various
flow configurations, including non-equilibrium configurations, we decided to make minimal
assumptions regarding the nature of the function that should be learned by the model.

• Yang et al. [102] and Lozano-Durán and Bae [58] feed spatial information to the model
indirectly, through the spatial derivatives at a single grid point. We decided to not explicitly
feed any derivatives to the model but instead provide the input features on several grid points,
leaving at the discretion of the model to internally compute the derivatives it deems fit.

• Yang et al. [102], Huang et al. [38], Lozano-Durán and Bae [58] and Zhou et al. [105] use
scalings that involve flow-specific scales, such as a far-field velocity or a geometric length.
Defining this type of scale in various different complex geometries can be a complicated
matter. We decided to use purely local input features and only involve local quantities to
define the scaling, which makes it trivial to apply the model in any flow configuration.

To define the present scaling, the incompressibility assumption is used to encode our prior
knowledge on the Mach number dependence of the flow into the model. We are specifically con-
cerned with the dependence of the flow on the Mach number of the “real” quasi-incompressible
target flow to model or simulate. Indeed, if the incompressible Navier–Stokes equations are as-
sumed, the Mach number as seen by the flow model is strictly zero since the speed of sound is
infinite. The Mach number of the “real” target flow is not involved in the incompressible Navier–
Stokes equations and plays no role in the flow physics if the flow variables are properly scaled.
Therefore, the incompressible Navier–Stokes equations can be described as being equivariant un-
der a change of Mach number, as the physics of quasi-incompressible flows is invariant under a
change of Mach number when appropriately scaled. The Mach number equivariance of the model
prediction is enforced by scaling each input flow variable ϕ as ϕ̂ in a predefined pre-processing step
of the model, while the predicted wall shear stress is unscaled in a predefined post-processing step.
As discussed above, we only use the information directly available to the wall model, namely the
fluid density ρ, the dynamic viscosity µ and the local height of the first off-the-wall point h0 in
the WMLES grid to define the scaling. This yields the following variable transformations: ρ̂ = 1,
µ̂ = 1, ĥ0 = 1, û = (ρh0/µ)u, τ̂ = ρ(h0/µ)

2τ . Note that equivalently, the scaled velocity can be
expressed as û = u+h+

0 and the scaled wall shear stress as τ̂ = (h+
0 )

2, where u+ = u
√
ρ/τ is the

velocity in wall units and h+
0 = h0

√
ρτ/µ the first-point height in wall units. The scaling achieves

three objectives. First, it guarantees the Mach number equivariance of the model without requiring
data augmentation. Indeed, the input of the model û = (ρh0/µ)u tends to a constant as the Mach
number of the flow tends to zero, at constant Reynolds number and mesh resolution [71]. Second,
it equalizes the scale of the wall shear stress in each simulation, facilitating the use of a loss that
does not bias the regression towards one particular simulation. Third, it reduces the number of
variables to consider, as with such scaling the height of the first off-the-wall point is always equal
to one and can be ignored from the model inputs. The scaling may be seen a transformation, or
a change of the flow scales, that modifies the Mach number of the flow but does not change its
Reynolds number. Thus, the scaling does not lead to a loss of physically important information in
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Table 1: Input feature selection in present work and various studies from the literature. The third
column reports the number of input grid points of the model (#IGP) and, if spatial derivatives are
included in the model, the effective number of grid points required to compute the model and each
input spatial derivative, assuming a centered scheme. For clarity, the notations have been adapted:
y is the wall-normal height, ui is the i-th component of velocity, Sij = (∂iuj + ∂jui)/2 the rate
of deformation tensor, Ωij = (∂jui − ∂iuj)/2 the rate of rotation tensor, R is the aspect ratio of
the first cell, Lh is the channel half-height and LH is the hill height, ℓ+Ω is a nondimensionalized
rotation-induced length scale, y0 = (ν/uτ ) exp(−κB) is a viscous length scale, with κ ≈ 0.4 the von
Kármán constant and B ≈ 5, y∗ = ν/

√
u2
v + u2

p is a combined length scale, with uv =
√
∥νut/y∥

and up = [(ν/ρ)∂xp]
(1/3). The velocity and length scales of [58] are U1 = U2 = uτ , U3 = up,

L1 = Lh, L2 = U2/∥∇u∥ and L3 = ν/U3. In [59], γ12 is the angle between u1 and u2, a1 is the
magnitude of the acceleration at the first control volume, γ̇1 is the time derivative of the angle of
u1 in the wall-parallel direction, k1 and km1 are the turbulent kinetic energy and mean kinetic
energy, respectively at the first control volume and relative to the wall.

Study Input features #IGP (effective value, if different)

Yang et al. [102] ∥ut
+∥/h+

0 , log(h0/y0)/u
+
t ,R, (h0/Lh)∂zp

+ 1 (3, spanwise aligned)
Huang et al. [38] y+, y+/ℓ+Ω 1
L.-D. and Bae [58] ui/u∞, ui/Uk, SijLk/Uk, ΩijLk/Uk,UkLk/ν, . . . 1 (7, stellated arrangement)
L.-D. and Bae [59] u1y1/ν, u2y2/ν, γ12, a1y

3
1/ν

2, γ̇1y2
1/ν, k1/km1 2

Zhou et al. [105] log(y/y∗), ui/h0, (h0/LH)∂kp 1 – 6, vertically (3 – 18)
Present study (ρh0/µ)ui 1 – 27, cubic arrangement

the limit of isothermal quasi-incompressible flows. In more practical terms, this implies that the
model can operate for flows with different scales of length, velocity or fluid properties.

3 Network architecture

The wall shear stress is determined using a feed-forward artificial neural network as represented
in figure 3. The neural network architecture is devised to make by contruction the following physical
assumptions: The field of velocity in the vicinity of the target wall node is a relevant feature to
predict the wall shear stress; The wall shear stress should not be modified if the system undergoes a
Galilean transformation; The wall shear stress prediction should be equivariant under orthogonal
transformations, that is rotations and reflections. In accordance with the input-feature scaling
used, the flow is assumed to be isothermal and quasi-incompressible, which implies that the model
prediction should be equivariant under a change of Mach number as described in section 2.3. In
addition, there are some physical assumptions that are encoded in the selection of the training
database, as physical phenomena not included in the training database are implicitly assumed to
not be occurring. This implies with the present training database, following section 2.1, that the
model will assume a flow with negligible temperature variations and without compressibility effects
such as shocks.

The neural network is a multilayer perceptron with nh hidden layers, each composed of nu

neural units. The output of any neural i in the hidden layer ℓ is given by

z
(i)
ℓ = σ

∑
j

w
(i,j)
ℓ z

(j)
(ℓ−1) + b

(i)
ℓ

 , (1)

where the weights w
(i,j)
ℓ and biases bℓ are the learned parameters of the network and with σ a

predetermined activation function. In this work, the selected activation function is an exponential
linear unit [19],

σ(x) =

{
x if x ≥ 0

a(ex − 1) otherwise
(2)
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Figure 3: Graphical representation of a multilayer perceptron with three inputs and one output.

The use of a rectified linear unit or a hyperbolic tangent lead to similar results. The output layer
is a linear combination of the values of last hidden layer nh,

zo =
∑
j

w(j)
o z

(j)
(nh)

+ bo. (3)

The weights of the network are initialized using a Glorot-uniform distribution [35] and trained
using the Adam optimizer [46] with a base learning rate of 0.001. The loss function is defined
as the mean absolute error (MAE) between the predicted wall shear stress and the reference wall
shear stress obtained from the filtering of the three-dimensional instantaneous data.

The output of the model is the scaled wall shear stress τ̂ , with τ the norm of the shear stress
vector

τ = Σ · en − (en ·Σ · en)en, (4)

where Σ = µ
(
∇u+ (∇u)T − (2/3)(∇ · u)Id

)
is the viscous stress tensor and en a unit wall-normal

vector. The inputs of the model are the scaled components of the velocity vector û, given to the
machine-learning model in a Cartesian coordinate system embedded to the wall. Namely, u is the
relative velocity of the flow with respect to the wall velocity uwall. The wall-normal velocity is
denoted un and the components of the tangential velocity ut = u − unen are denoted ut1 and
ut2. In order to assess the influence of an increasing amount of spatial information on the model
performance, we consider several cases for the model input, as reported in table 2: using only the
velocity at the first point off the wall (S1, S2), as in a classical algebraic wall stress model, using
the velocity at three grid points at various distance to the wall (L2), using the velocity components
from the nine points in a plane parallel to the wall (P2), and, finally, using the velocity at all
the 27 points of the “box” above the wall (B2). It is not necessary to include the cell size in the
wall-normal direction as an input feature, since it is constant and equal to ĥ0 = 1 for each sample.
The model is Galilean invariant since the inputs are constructed using relative velocities. This is
not sufficient however to ensure the invariance of the wall model to orthogonal transformations,
namely rotations or reflections. Therefore, the dataset is augmented by arbitrary rotations around
the wall-normal direction and reflections of the axes to ensure that the predictions are statistically
invariant to reflections or rotations of the coordinate system. Note that it is also possible, instead of
data augmentation, to use the velocity vector at the first point off the wall to define the tangential
axes of the coordinate system [102]. The dataset is decomposed into a training dataset and testing
dataset using 70% of the samples associated with lower timesteps for training and the samples
associated with later timesteps for testing. The number of hidden layers, the number of units per
hidden layer and the mini-batch size are determined using a Bayesian optimization process [88]
that evaluates 120 hyperparameter combinations for each dataset and model type investigated. The
final model is the model associated with the hyperparameters that lead to the lower validation loss.
For reference, the resulting number of hidden layers, number of units and total number of weights
are reported for each case in table 3. The results of the hyperparameter optimization should be
interpreted with care as the Bayesian process does not take into account sources of uncertainty.
The number of hyperparameters should in particular be interpreted with care, since the Bayesian
optimization process does not take into account the complexity of the model. The number of
hyperparameters of the various models is thus not indicative of the underlying complexity of the
problem.
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Table 2: List of input type investigated for the neural networks.

Name Input variables Number of inputs

S1 ût1, ût2 2× 1

S2 ût1, ût2, ûn 3× 1

L2 ût1, ût2, ûn 3× 3

P2 ût1, ût2, ûn 3× 9

B2 ût1, ût2, ûn 3× 27

Table 3: Number of hidden layers nh and number of units nu of the multilayer perceptrons trained
on the datasets TCF1 and TCF2 (TCF-), the datasets TCF1, TCF2 and 3DD (TCF3DD-) and
the datasets TCF1, TCF2 and BFS (TCFBFS-), with various input types as per table 2.

Model nh nu Number of weights

TCF-B2 10 24 7393
TCF-P2 3 26 2159
TCF-L2 5 18 1567
TCF-S2 7 12 997
TCF-S1 11 40 16561

TCF3DD-B2 11 36 16309
TCF3DD-P2 7 64 26817
TCF3DD-L2 8 56 22961
TCF3DD-S2 7 36 8173
TCF3DD-S1 3 512 527361

TCFBFS-B2 5 36 8317
TCFBFS-P2 6 28 4873
TCFBFS-L2 12 36 15049
TCFBFS-S2 3 72 10873
TCFBFS-S1 7 26 4317

4 Results

4.1 A priori tests

This section describes the training and testing of the machine-learning models a priori, that
is based solely on the filtered numerical data. Section 4.2 presents a posteriori results, that is by
performing simulations implementing the models.

4.1.1 Channel flows

As a first step, the approach is assessed for fully developed wall turbulence by training a model
using only the channel flow data (TCF1 and TCF2). The target data is represented in figure 4a
in a u+(y+) graph, using the local filtered wall shear stress to compute the wall-unit scaling (+).
The scatter plots in the figure aggregates instantaneous data in the channels at various locations,
various timesteps and for various WMLES mesh resolutions. For reference, the instantaneous data
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TCF1 TCF2

(a)
Ref.

(b)
Model

Figure 4: A priori validation: Norm of the scaled tangential velocity ut
+ as a function of the scaled

distance to the wall y+ in the turbulent channel flows TCF1 and TCF2, using the local target wall
shear stress (a) or the prediction of the TCF-B2 model to compute the wall unit scaling (+). The
red line is Reichardt’s law, given by equation (5).

are compared to the analytical profile of Reichardt [81],

u+(y+) =
1

κ
log(1 + κy+) + 7.8

[
1− exp

(
−y+

11

)
− y+

11
exp

(
−y+

3

)]
, (5)

with log the natural logarithm and κ the von Kármán constant. The typical value κ = 0.41 is
used, although recent works suggest that the actual value of the von Kármán constant might be
κ = 0.387 [62, 32, 76]. For the two channel flow simulations, the data points follow the law of the
wall in the mean but there is a large variance that corresponds to the Reynolds fluctuations of the
filtered velocity. A neural-network model of type B2 (as per the classification of table 2) is trained
and denoted TCF-B2 hereafter. The predictions of the neural network are reported in figure 4b.
Results for models S1, S2, L2 and P2 of table 2 are not shown here for sake of clarity, but provided
in appendix A. The model successfully captures the behavior of the law of the wall, but the variance
around the mean is clearly underestimated. The lower variance of the tangential velocity using the
TCF-B2 is a natural consequence of the loss function used to train the model. In the presence of
uncertainty, the loss function favours a prediction close to the mean value because it is less likely to
deviate significantly from the true value whereas extreme values, in the sense of values that deviate
significantly from the mean, will incur a large penalty if the prediction is inaccurate. Note that this
effect remains significant although the loss function used in the present study is the mean absolute
error (MAE), which penalises extreme values less than the more common mean squared error
(MSE). The scatter plot given in figure 5 shows that the linear correlation between the model output
and the target wall shear stress is poor, and can result in a large misprediction for a particular data
point. Indeed, the coefficient of correlation between the model output τm and the target wall shear

stress τt, defined as ρc = (⟨τmτt⟩ − ⟨τm⟩ ⟨τt⟩)/(
√

⟨τ2t ⟩ − ⟨τt⟩2
√

⟨τt⟩ − ⟨τt⟩2), is in the range 0.3 –
0.4 which indicates a low correlation. Besides, the coefficient of determination between the model
output τm and the target wall shear stress τt, defined as R2 = 1−

〈
(τm − τt)

2
〉
/
〈
(τt − ⟨τt⟩)2

〉
with

⟨·⟩ the arithmetic average, is below 0.2 in the two datasets. This shows that the model only captures
a small portion of the variance of the fluctuating wall shear stress in the two channels. Such result
does not necessarily indicate the poor training performance of the model. Indeed, there is in the
context of LES wall modelling an irreducible variance as a large amount of information has been
explicitly withdrawn from the model by the filtering and coarse-discretisation processes during the
data-preparation step. In addition, it is more critical in the case of a fully developed channel flow
to predict accurately the mean value of the wall shear stress and its large-scale variations than the
small-scale fluctuations. The machine-learning model follows the mean velocity profile in the mean,
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Figure 5: A priori validation: Scatter plot between the target wall shear stress and the prediction
of a model based on Reichardt’s law (R.L., a) and the TCF-B2 model (b) in the turbulent channel
flows TCF1 and TCF2. The red line is the identity. The coefficient of determination R2 and the
coefficient of correlation ρc between the model and the reference wall shear stress are also reported.

and has a residual variance in the same order of magnitude as the residual variance induced by the
use of a law-of-the-wall model, which is for many purposes sufficiently accurate for wall-modeled
large-eddy simulation of channel flows. This suggests that a comparable performance could be
achieved in a posteriori tests. This will be demonstrated in section 4.2.2.

4.1.2 Separated flows

To assess the ability of a neural network to predict the wall shear stress in separated regions,
a neural network is trained on the three datasets TCF1, TCF2 and 3DD, the three-dimensional
diffuser simulation (3DD) providing a complex physics that involves internal corner flows and three
dimensional separation. The channel flow data are also included since the model should be able
to handle both attached and detached flow regions. The simulation of the backward-facing step
(BFS) is kept apart for testing purpose, as this allows us to assess the generalization performance
of the model in a simulation distinct from the training simulations. The neural network, hereafter
referred to as TCF3DD-B2 is of type B2 according to the classification of table 2. The results are
presented in the figures 6b and 7b. In the figures, the analytical profile of Reichardt (5) is also given,
not as a reference but as an indication of what a model with insufficient capacity would predict.
On the channel flow datasets, the model performs similarly to the model TCF-B2 described in
section 4.1.1, in which only data from turbulent channel flows were considered for learning. On
the separated flows 3DD and BFS, the data points associated with separated regions are for the
most part scattered below Reichardt’s law in the u+(y+) graph with both the model-predicted wall
shear stress (figure 6b) and the reference wall shear stress (figure 6a). However, there is based on
the reference data a non-negligible amount of points falling above Reichardt’s law, a behavior not
captured by the machine-learning model. Overall, the relationship between the model output and
the target shear stress follows the identity line in the mean (figure 7b), whereas a model based on
the law of the wall expectedly deviates from this slope (figure 7a). Coefficients of determination
(R2) of 0.59 and 0.45 are obtained in the 3DD and BFS datasets respectively, which is in both cases
markedly larger than with a law-of-the-wall based model. The comparison of the R2 coefficient
across simulations should be made with care. In particular, the variance of the wall shear stress
is related to mean spatial variations of the wall shear stress in the 3DD and BFS datasets, since
these flows are spatially inhomogeneous, but not in the plane channels. Similarly, the coefficient
of correlation ρc may only be interpreted in relation to a given dataset since it depends not only
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Ref.
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ût, ûn
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Figure 6: A priori validation: Norm of the scaled tangential velocity ut
+ as a function of the scaled

distance to the wall y+ in the datasets TCF1, TCF2, 3DD and BFS, using the local target wall
shear stress (a) or the prediction of machine-learning models trained on the datasets TCF1, TCF2
and 3DD with various input types (b)–(f) to compute the wall unit scaling (+). The red line is
Reichardt’s law, given by equation (5).
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Figure 7: A priori validation: Scatter plot between the target wall shear stress and the prediction
of a model based on Reichardt’s law (R.L., a) and machine-learning models trained on the datasets
TCF1, TCF2 and 3DD with various input types (b)–(f) in the datasets TCF1, TCF2, 3DD and
BFS. The red line is the identity. The coefficient of determination R2 and the coefficient of
correlation ρc between the model and the reference wall shear stress is also reported.
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Figure 8: A priori validation: Norm of the scaled tangential velocity ût as a function of the
scaled wall-normal velocity ûn in the channel flows (TCF1 & TCF2) and the backward-facing step
simulation (BFS). The profile implied by the use of the algebraic law of the wall of Reichardt [81]
is given for reference.

on the intrinsic performance of the model but also on the underlying distribution of the data. For
instance, the fact that the value of ρc associated with Reichardt’s law is larger in the 3DD and
BFS simulations than in the TCF1 and TCF2 simulations does not imply that the model performs
better in these two datasets, the opposite being in fact true. The fact that the model provides
sound predictions in the BFS dataset, despite this simulation not being included in the training
dataset, is encouraging for the prospect of machine-learning wall modelling as it is indicative of the
fact there are similarities between the fields of two different separated flows. This is corroborated
by appendix B, which shows that, similarly, a model trained on the dataset TCF1, TCF2 and BFS
generalizes well to the 3DD dataset. This suggests that a relatively limited number of simulations
could be sufficient to produce a model that can operate in large number of flows, provided that
the physical phenomena involved are similar. This should encourage the progressive development
of larger databases to specify more diversely the near-wall behavior of fluids.

4.1.3 Effect of increasing spatial information

The model TCF3DD-B2 described in section 4.1.2 makes different predictions in the two channel
flows and in the two separated flows 3DD and BFS, since the model predictions are close to the
law of the wall in the two channel flows but deviates from the law of the wall in the 3DD and BFS
simulations. This shows that the model is able, at least to some extent, to discriminate between
separated and non-separated flow regions. In order to investigate the local spatial information that
is required for an accurate discrimination, we compare the predictions of machine-learning models
trained with a various amount of input information, following table 2. To begin with, the input
type S1 is definitely insufficient for discrimination as a model of type S1 can, assuming the model
is rotationally invariant, only use the norm of tangential velocity at the first off-the-wall grid point
for its prediction. In practice, the model of type S1 is very similar to the classical algebraic wall
stress model (figure 6f). The model of type S2, which may in addition use the wall-normal velocity
at the first point off the wall, can already discriminate to a large extent the separated regions of
our datasets from the channel flow cases (figure 6e). Nevertheless, the predictions in the cases
3DD and BFS remains clearly biased towards the law of the wall (figure 6e). Adding more spatial
information, either by using several grid point heights (case L2, figure 6d) or several grid points
in the tangential directions (case P2, figure 6c), allows the model to more accurately discriminate
the separated regions and adjust its prediction. However, the results suggest that the performance
of models of type P2 and L2 is only slightly lower than that of the full model TCF3DD-B2 in our
dataset. The examination of the scatter plots and determination coefficients in figure 7 suggests
that the models based on a single grid points (S1 and S2) have a poor generalization performance
(test score on the BFS dataset) compared to more complex models.

Additional insights may be gained by inspecting more closely the function learned by the S2
model, as made possible by the low-dimensionality of this particular model. Figure 8 shows that the
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Figure 9: A priori validation: Three-dimensional representation of the relationship between the
scaled wall shear stress τ̂ , the norm of the scaled tangential velocity ût and the scaled wall-normal
velocity ûn in the channel flows (TCF1 & TCF2) and the backward-facing step simulation (BFS)
using the local target wall shear stress (a) or the prediction of machine-learning models trained on
the datasets TCF1, TCF2 and 3DD with input type B2 (b) or S2 (c). The profile implied by the
use of the algebraic law of the wall of Reichardt [81] is given for reference.

channel flows and the separated region of the BFS case occupies different regions in the “effective”
input space of the model, which since the model is statistically invariant to rotation is given by
the wall-normal velocity and the norm of the tangential velocity at the first off-the-wall point.
Namely, the separated regions are typically associated with a lower scaled tangential velocity ût

and a larger scaled wall-normal velocity ûn in absolute value. Figure 9 compares the behavior of
the models in the separated and channel-flow regions. In the channel-flow regions, the S2 model
is chiefly dependent on the tangential velocity (figure 9c), as the classical use of the law of the
wall would suggest, whereas in the separated region the model mostly depends on the wall-normal
velocity and largely ignores variations in tangential velocity. The target wall shear stress, however,
is not fully described by these two input features (figure 9a). Thus, the S2 model only provides
a rough approximation of the behavior of the target scaled wall shear stress and a large residual
variance remains. The models using more spatial information, such as the TCF3DD-B2 model
(figure 9b), lead to a more accurate approximation of the target wall shear stress behavior.

Figure 10 compares the spatially averaged wall shear stress predicted by all models investigated.
Excluding the model of type S1, which reproduces the law of the wall, the machine-learning models
reproduce the overall behavior of the wall-shear-stress profile in both the backward-facing step and
the three-dimensional diffuser. While the model S2 provides a clear improvement compared to the
use of Reichardt’s law, it consistently underpredicts the average wall shear stress, in particular on
the side walls of the three-dimensional diffuser (figures 10e and 10d) and the bottom wall of the
backward-facing step (figure 10a), except in the near vicinity of the step (x/hs = 0). The models
L2, P2 and B2 lead to similar average wall-shear-stress predictions. In the three-dimensional
diffuser simulation, the average wall shear stress is satisfactory on the top and bottom walls after
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(a) Backward-facing step

(b) Bottom wall of the three-dimensional diffuser (c) Top wall of the three-dimensional diffuser

(d) Left wall of the three-dimensional diffuser (e) Right wall of the three-dimensional diffuser

Figure 10: A priori validation: Average prediction of a model based on Reichardt’s law and of
machine-learning models trained on the datasets TCF1, TCF2 and 3DD with various input types.
The averaging is performed in time and along the spanwise direction for the BFS case and the
bottom and top walls of the 3DD case, and performed in time and along the vertical direction for
the left and right walls of the 3DD case.
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x/hd = 7 (figures 10c and 10b). Directly after the onset of the expanding region (x/hd = 5), there
is a discrepancy between the model predictions and the reference filtered values which suggests that
the models are not able to reproduce the physics associated with the abrupt change of geometry.
The models also slightly underestimate the wall shear stress on the side walls (figures 10e and 10d),
especially after the expanding region (x/hd = 20). In the backward-facing step simulation (figure
10a), the average wall-shear stress is overestimated near the step and far downstream, whereas it
is underestimated in the intermediate region (x/hs ≈ 4). In view of these a priori results, the
simpler model formulations P2 and L2 are thus sufficient for the discrimination of the separated
regions in our datasets.

4.2 A posteriori tests

The machine-learning wall models are assessed a posteriori by implementing the models de-
scribed in section 4.1 in the compressible, unstructured and massively parallel flow solver AVBP
[83]. Two configurations are studied a posteriori : a turbulent channel flow and the flow over a
backward-facing step. The LES formalism is similar in both cases and described below.

4.2.1 Governing equations

In our numerical setup, the fluid (air) is modeled as a continuous medium which follows the
compressible Navier–Stokes equations. The fluid is supposed Newtonian and obeys the ideal gas
equation of state. Stokes’ hypothesis and Fourier’s law are assumed to compute the viscous stress
tensor and the conductive heat flux respectively. The governing equations of the large-eddy simu-
lations may be expressed as:

∂tρ+ ∂j(ρUj) = 0, (6)
∂t(ρUi) + ∂j(ρUjUi) = −∂iP + ∂jΣij , (7)

∂t(ρE) + ∂j(ρUjH) = −∂jQj + ∂j(ΣijUi), (8)

with ρ the filtered density, t the time, U the Favre-filtered velocity, x the Cartesian coordinate, P
the filtered pressure, Q the conductive heat flux, E the total energy per unit mass and H = E+P/ρ
the total enthalpy per unit mass. All flow variables implicitly corresponds to filtered fields in
accordance with the large-eddy simulation formalism. Temperature is related to internal energy
e = E− 1

2UiUi using the tabulated data of Stull and Prophet [92]. Σ is a tensor combining viscous
stresses and subgrid-scale stresses, modeled according to an eddy-viscosity assumption,

Σij = (µ+ µsgs)

(
∂Ui

∂xj
+

∂Uj

∂xi
− 2

3

∂Uk

∂xk
δij

)
, (9)

where δij denotes the Kronecker delta.

4.2.2 Channel flow

The relevance of the data-driven wall modeling approach is first assessed for channel flows at
friction Reynolds numbers Reτ = 395, Reτ = 950 and Reτ = 2000. This includes both Reynolds
numbers that are within and beyond the Reynolds numbers found in the training dataset (180
and 950). The simulations are performed by discretizing the governing equations (6)–(8) using a
cell-vertex finite-element method and an explicit time stepping scheme. The second-order scheme
of Lax and Wendroff [49] is used for convection, while diffusion is discretized with a second-order
accurate centered scheme. The subgrid-scale viscosity is computed using the Sigma subgrid-scale
model [68]. At Reτ = 395, the domain size is 5.4πhc × 2hc × 2.7πhc, where hc is the half-height of
the channel. At Reτ = 950 and Reτ = 2000, the domain size is 4πhc × 2hc × 2πhc. The WMLES
meshes are regular and uniform. Two mesh refinement are defined. With the mesh refinement A,
the cell size is ∆+ = 33 in wall units and the mesh contains 201×23×101 grid points at Reτ = 395,
359× 55× 180 grid points at Reτ = 950 and 755× 114× 378 grid points at Reτ = 2000. With the
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mesh refinement B, the cell size is ∆+ = 33 in wall units and the mesh contains 103× 12× 52 grid
points at Reτ = 395 and 183× 28× 92 grid points at Reτ = 950. With both the mesh refinements
A and B, the cell size is consistent with the assumption of the training procedure regarding the
cell sizes, namely a first off-the-wall point below y+ = 75.

The simulations are performed using the neural network TCF3DD-B2, trained on the datasets
TCF1, TCF2, 3DD with the input type B2 and the neural network TCF3DD-L2, trained on the
datasets TCF1, TCF2, 3DD with the input type L2. The results are compared in figure 11 to
the corresponding simulations with a classical algebraic wall stress model. With the algebraic wall
stress model, the logarithmic layer is shifted either upward or downward compared to the reference
profile. This mismatch is well documented in the literature and is expected with this type of model
[9]. At Reτ = 395 and Reτ = 950, the simulations with the machine-learning models improves upon
these results. In particular, the simulation with the TCF3DD-B2 predicts the mean velocity profile
accurately throughout the logarithmic layer. This improvement is possible because the machine
learning model uses several grid points in the model prediction, while the mismatch is related to
an unphysical correlation between the first off-the-wall point and the wall shear stress [101]. Note
that using an algebraic wall stress model, the logarithmic-layer mismatch can following Kawai and
Larsson [45] be prevented by using a farther imposition point for the input velocity, typically three
cells within the large-eddy-simulation grid [48, 11]. The present “law-of-the-wall model” should
thus be considered as a baseline of a commonly used algebraic wall model that does not attempt
to correct for this mismatch. At Reτ = 2000, the velocity profiles obtained using the algebraic
wall stress model and the TCF3DD-B2 model are however almost identical. The comparison of the
standard deviation of streamwise velocity (figure 11) confirms that the predictions of the algebraic
wall stress model and the machine-learning model are similar. Since this friction Reynolds number
is not within the range of friction Reynolds number seen during training, the results characterise
the ability of the machine-learning models to extrapolate in terms of Reynolds number. Owing
to the universality of the mean velocity profile in a plane channel, the models are able to operate
to some extent for unseen Reynolds number. However, the topology of the instantaneous velocity
fields may be different, as reflected by the emergence of an outer peak in the streamwise velocity
spectra at high Reynolds numbers [39, 40]. This induces the model to make a prediction close to
the mean velocity profile and therefore to the “law-of-the-wall model” at Reτ = 2000.

Figure 12 shows the results, using the coarser mesh refinement B, of large-eddy simulations with
the model TCF3DD-B2 at Reτ = 395 and Reτ = 950. As with the finer mesh, the machine-learning
model TCF3DD-B2 is able at those two friction Reynolds numbers to prevent the logarithmic-
layer mismatch and produce a mean velocity profile that is close to the reference. To give a more
quantitative measure of the accuracy of the wall-modeled large-eddy simulations, the mean wall
shear stress of the wall-modeled large-eddy simulations are reported in table 4. The machine-
learning models provide a clear improvement compared to the algebraic shear stress model at
Reτ = 395 and Reτ = 950 and matches the performance of the algebraic wall stress model at
Reτ = 2000. Overall, the results show that the machine-learning strategy is capable of learning a
model that generalizes to a Reynolds number not included in the training dataset, provided that
it remains within the range of Reynolds number seen during training. The simulation of a channel
flow at a Reynolds number greater than seen during training may also be carried out, but lead to a
degraded performance because the velocity-field topology is Reynolds number dependent. Hence,
machine-learning models should ideally be developed on a range of Reynolds number consistent
with the target application.

4.2.3 Backward-facing step

In this section, the relevance of the machine-learning wall model is assessed a posteriori for
the simulation of a backward-facing step. The results are compared to a reference high-fidelity
simulation that reproduces the backward-facing step configuration of Le et al. [50]. Namely, the
Reynolds number based on the inflow bulk velocity and step height hs is Reh = 5100 and the
expansion ratio ER = (Ly + hs)/Ly, where Ly is the inlet channel height, is equal to 1.2. At
the inlet, located 20 hs before the step, the mean velocity profile of Spalart [89] imposed with the
characteristic boundary condition of Poinsot and Lele [77]. In addition, isotropic fluctuations are
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(a) Reτ = 395

(b) Reτ = 950

(c) Reτ = 2000

Figure 11: A posteriori validation: Mean streamwise velocity (left) and standard deviation of
streamwise velocity (right) in large-eddy simulations of a channel flow at the friction Reynolds
numbers Reτ = 395, Reτ = 950 and Reτ = 2000 with the mesh refinement A using an algebraic
wall stress model, the TCF3DD-B2 machine-learning model and the TCF3DD-L2 machine-learning
model. The unfiltered direct numerical simulation profiles of Moser et al. [66] and Hoyas and
Jiménez [37] are given for comparison. Note that the unfiltered direct numerical simulation profiles
of Moser et al. [66] or Hoyas and Jiménez [37] do not provide a target reference for the standard
deviation of streamwise velocity in figure 11b, since a large part of the turbulence kinetic energy
is contained within subgrid scales in the WMLES.
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(a) Reτ = 395

(b) Reτ = 950

Figure 12: A posteriori validation: Mean streamwise velocity (left) and standard deviation of
streamwise velocity (right) in large-eddy simulations of a channel flow at the friction Reynolds
numbers Reτ = 395, Reτ = 950 and Reτ = 2000 with the mesh refinement B using an algebraic
wall stress model and the TCF3DD-B2 machine-learning model. The unfiltered direct numerical
simulation profiles of Moser et al. [66] and Hoyas and Jiménez [37] are given for comparison.

injected using the approach of Kraichnan [47], following the turbulence kinetic energy profile of
Spalart [89] in the mean. A constant pressure of 1 bar is imposed at the outlet, located 20 hs after
the step. A symmetric boundary condition is applied at the upper boundary of the computational
domain, which imposes a zero shear stress and a zero wall-normal velocity. The geometry is periodic
in the spanwise direction and the spanwise length of the domain is 4 hs. The mesh contains 114.3
million grid points in total and the height of the first point off the wall is ∆y+ = 0.4 for the
boundary layer before the edge of the step. In the wall-modeled large-eddy simulation, the inlet
is located 10 hs before the step and the mean streamwise velocity and turbulence kinetic energy
profile of the wall-resolved simulation are imposed. The WMLES mesh has been refined near the
interface between the inlet boundary layer and the separated region to ensure a proper prediction
of the shear layer, while maintaining a coarse mesh resolution near the walls. A close-up view of
the mesh around the refined region is given in figure 13. The mesh contains 0.9 million grid points
in total. The cell size on the boundary layer before the edge of the step is ∆x+ = ∆z+ = 33 in the
streamwise and spanwise directions, and ∆y+ = 35 in the wall-normal direction. The numerical
method is identical to that of section 4.2.2 and the same subgrid-scale model is used.

The simulation is performed using a classical algebraic wall stress model, the TCF3DD-B2
neural network model and the TCF3DD-L2 neural network model. The mean streamwise velocity
of each case is compared in figure 14. With both the machine-learning model and the algebraic wall
stress model, the maximum backflow region is located farther from the step than in the reference
wall-resolved numerical simulation (figure 14). The machine-learning model slightly improves the
shape of the mean velocity profile at the onset of the mean backflow region (x/hs = 0 – 2)
compared to the algebraic wall stress model. This is confirmed by the streamlines of mean velocity,
given in figure 15. There is no secondary recirculation region using the algebraic law-of-the-
wall model, but there is small secondary recirculation region with the TCF3DD-B2 model and
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Table 4: Mean nondimensionalized wall shear stress τ/(ρu2
c) = (uτ/uc)

2, where uc is the centerline
velocity, in large-eddy simulations of a channel flow at the friction Reynolds numbers Reτ = 395,
Reτ = 950 and Reτ = 2000 with an algebraic wall stress model and a machine-learning wall model.

Reτ = 395 Reτ = 950 Reτ = 2000

Reference:
{Moser et al. [66] 0.00247 — —

Hoyas and Jiménez [37] — 0.00199 0.00169
Law-of-the-wall model, mesh refinement A 0.00306 (+24%) 0.00229 (+15%) 0.00182 (+8%)
TCF3DD-L2 model, mesh refinement A 0.00282 (+14%) 0.00218 (+9%) N/D
TCF3DD-B2 model, mesh refinement A 0.00253 (+2%) 0.00207 (+4%) 0.00180 (+7%)
Law-of-the-wall model, mesh refinement B 0.00299 (+21%) 0.00249 (+25%) N/D
TCF3DD-B2 model, mesh refinement B 0.00260 (+5%) 0.00222 (+11%) N/D

Figure 13: Cross-section of the mesh around the refined region in the x-y plane.

the TCF3DD-L2 model. Both the amplitude and size of this secondary recirculation region are
greatly underestimated compared to the reference simulation however. In the boundary layer
upstream of the step, the TCF3DD-L2 machine-learning model provide a prediction that is close
to that of our algebraic law-of-the-wall model, whereas the TCF3DD-B2 machine-learning model
provide a prediction that is farther from the reference (figure 16). This difference does not affect
significantly the analysis downstream of the step. Indeed, the effect of the shear stress model on the
mean velocity profiles downstream of the step is overall small, as the mean velocity predominantly
results from the shear layer induced by the step. Figure 17 shows that there is no clear difference
in the mean velocity profiles between the TCF3DD-L2 model, the TCF3DD-B2 model and the
algebraic wall stress model. Figure 18 compares the predictions of the machine-learning model
in a u+(y+) graph for a particular timestep of the WMLES simulations of the channel flow and
the backward-facing step. The model predictions are close to the law of the wall in the channel
flow simulation, while in the backward-facing step simulation the model predictions are scattered
below Reichardt’s law in a manner that is qualitatively in accordance with the a priori results of
figure 6. This demonstrates the ability of the model to leverage the local spatial information to
discriminate attached wall turbulence and separated regions in an a posteriori setting.

The profile of mean wall shear stress along the wall is compared in figure 19. The mean wall
shear stress is computed by averaging the instantaneous shear stress norm in time and in the
spanwise direction. The magnitude of the shear stress downstream of the step up to x/hs = 2 is
well predicted in the two wall-modeled large-eddy simulations. Farther from the step, the wall shear
stress is significantly underestimated with the algebraic wall stress model compared to the reference
simulation, while the simulations with the machine-learning models leads to a larger wall shear
stress. Although the discrepancy is greatly reduced with both the TCF3DD-B2 and TCF3DD-L2
models, the peak wall shear stress remains underestimated and the wall shear stress increase at
x/hs = 2 is less sharp than in the reference simulation. The profile of the mean streamwise wall
shear stress (figure 20) confirms the underestimation for the peak of the mean streamwise wall
shear stress. The present wall-modelled large-edddy simulations are compared to the numerical
results of Chen et al. [15] and Shi et al. [85] in figure 20, which use alternative wall-modelling
approaches suitable for non-equilibrium conditions. The results are not directly comparable since
the mesh and the numerical method varies between the different studies. In particular, Shi et al.
[85] used a mesh that is more than twice a refined as ours. The simulations of Chen et al. [15]
compare favorably to ours for the prediction of the peak of the mean streamwise wall shear stress,
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(a)

(b)

(c)

(d)

Figure 14: A posteriori validation: Mean streamwise velocity in the flow over a backward-facing
step as predicted by the reference wall-resolved simulation (a), a large-eddy simulations with an
algebraic wall stress model (b), the machine-learning model TCF3DD-B2 (c) and the machine-
learning model TCF3DD-L2 (d). The contour lines denote the level sets -4, -2, 0, 4, 8, 12 and
16 m/s. Values within the first WMLES cell are not provided since the wall-modeled large-eddy
simulations do not provide a physical velocity at the wall.

(a)

(b)

(c)

(d)

Figure 15: A posteriori validation: Streamlines of mean velocity in the flow over a backward-facing
step as predicted by the reference wall-resolved simulation (a), a large-eddy simulations with an
algebraic wall stress model (b), the machine-learning model TCF3DD-B2 (c) and the machine-
learning model TCF3DD-L2 (d).



Data-driven wall modeling for turbulent separated flows 23

Figure 16: A posteriori validation: Mean streamwise velocity upstream of the step (x/hs = −1) in
the backward-facing step simulation in the reference simulation and the wall-modelled large-eddy
simulations.

Figure 17: A posteriori validation: Profile of mean streamwise velocity in the flow over a backward-
facing step at the location x/hs = 1, 3, 5, 7, 9, scaled by the freestream velocity u0, as predicted by
large-eddy simulations with an algebraic wall stress model, the machine-learning model TCF3DD-
B2 and the machine-learning model TCF3DD-L2. The horizontal solid line gives the height of the
first point off the wall.

but predicts a reattachment point further downstream than in the reference simulation. Conversly,
the streamwise location of the reattachment point is underestimated in both of our large-eddy
simulations. The difference in behaviour can be explained by the modelling paradigm. Indeed, in
the present study the machine-learning procedure only models the norm of the shear stress vector
while its orientation is, as in the algebraic wall stress model, given by the tangential velocity at
the first point above the wall. This limitation may be observed in figure 21, which compares
the mean streamwise velocity at the height of the first WMLES cell and the wall shear stress in
the the reference simulation and the wall-modelled large-eddy simulation with the TCF3DD-L2
model. There is offset in the order of hs between the locations where the wall shear stress and the
tangential velocity at the first point above the wall reach zero in the reference simulation, which
may not be reproduced in the wall-modelled large-eddy simulation with the present approach. The
development of machine-learning wall models that consider the prediction of the wall shear stress
vector is necessary to remedy this inherent limitation of the present paradigm. To give a more
quantitative measure of the accuracy of the wall-modeled large-eddy simulations, the mean squared
error between the shear stress of the wall-modeled large-eddy simulations and the reference wall-
resolved simulation is given in table 5. The machine-learning models provides a clear improvement
compared to the algebraic shear stress model relying on RANS assumptions and intended for a
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In the a posteriori simulation Reference a priori results

(a)
Channel

flow

(b)
Backward-

facing
step

Figure 18: A posteriori validation: Norm of the scaled tangential velocity ut
+ as a function of the

scaled distance to the wall y+ according to the prediction of the TCF3DD-B2 machine-learning
model for a particular timestep of the a posteriori simulations of the channel flow at Reτ = 395 (top
left) and of the backward-facing step (bottom left). For reference, the corresponding prediction
based on the reference a priori database are also given for the channel flows at Reτ = 180 and 950
(top right) and the backward-facing step (bottom right). The red line is Reichardt’s law, given by
equation (5).

Table 5: Integral measure of the disagreement between the reference wall shear stress in the flow
over a backward-facing step and the wall shear stress predicted by large-eddy simulations with an
algebraic wall stress model, the TCF3DD-B2 machine-learning wall model and the TCF3DD-L2
machine-learning wall model.

Simulation
∫ 14hs
0 (τ−τref )2dx∫ 14hs
0 (τref )2dx

∫ 14hs
0 (τx−τref

x )2dx∫ 14hs
0 (τref

x )2dx

WMLES with law-of-the-wall model 0.223772 0.26975
WMLES with TCF3DD-B2 model 0.0378455 0.209642
WMLES with TCF3DD-L2 model 0.0200867 0.214579

fully turbulent flat plate without pressure gradient for the prediction of the wall shear stress in the
backward-facing step case in a WMLES framework. With regard to the comparison between the
TCF3DD-B2 model and the TCF3DD-L2 model, there is no clear superiority of one over the other
overall. Indeed, the TCF3DD-L2 model provides more accurate predictions than the TCF3DD-B2
model in the in the backward-facing step case, whereas the TCF3DD-B2 model provides more
accurate predictions than the TCF3DD-L2 model in the channel flows.
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Figure 19: A posteriori validation: Mean wall shear stress profile in the flow over a backward-facing
step as predicted by large-eddy simulations with an algebraic wall stress model, the TCF3DD-B2
machine-learning model and the TCF3DD-L2 machine-learning model.

Figure 20: A posteriori validation: Mean streamwise component of the wall shear stress vector
in the flow over a backward-facing step as predicted by large-eddy simulations with an algebraic
wall stress model, the TCF3DD-B2 machine-learning model and the TCF3DD-L2 machine-learning
model. The experimental results of Jovic and Driver [44] and the direct numerical simulation results
of Le et al. [50] are also given for reference, as well as the wall-modelled large-eddy simulations of
Chen et al. [15] and Shi et al. [85].

Figure 21: A posteriori validation: Mean streamwise velocity at the height of the first WMLES cell
and mean streamwise wall shear stress in the reference simulation and the wall-modelled large-eddy
simulation with the TCF3DD-L2 model.
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5 Conclusion

The wall modeling approach developed in this paper uses a database of instantaneous three-
dimensional flow snapshots to learn the relationship between the wall shear stress and the velocity
components at one or several grid points above the wall. The procedure is data-driven and learns
the velocity profile purely from the training data with minimal feature engineering, only encoding
the incompressibility assumption and accordingly the Mach number equivariance of the flow at
the quasi-incompressible limit. The relevance of the modeling approach has been demonstrated
for turbulent separated flows by training feed-forward artificial neural networks with the filtered
and subsampled data from four high-fidelity numerical simulations. The resulting model lever-
ages the three velocity components at several spatial locations to discriminate between regions of
fully developed wall turbulence and detached flow regions. The model generalizes well to a flow
configuration not included in the training dataset. The improvements compared to an algebraic
wall stress model based on statistical equilibrium assumption are demonstrated a posteriori for
the wall-modeled large-eddy simulation of a channel flow and of the flow over a backward-facing
step. These results suggest that data-driven wall models can be relevant and shed light on the
importance of the availability of public direct numerical simulation datasets.
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A Additional a priori results for channel flows

Section 4.1 performed an a priori validation of the machine-learning procedure for a turbulent
channel flow using a model of type B2 (table 2). This section presents the corresponding results
for models of type S1, S2, L2 and P2 (figures 22 and 23).

B Additional a priori results for separated flows

Section 4.1 demonstrated the generalization capability of the machine-learning procedure by
evaluating the performance in the backward-facing step dataset (BFS) of a model trained on the
datasets TCF1, TCF2 and 3DD. This section performs the opposite analysis, that is evaluating
the generalization performance by training a model on the datasets TCF1, TCF2 and BFS and
testing the model on the three-dimensional diffuser dataset (3DD). The results are similar overall
(figures 24 and 25).
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Figure 22: A priori validation: Norm of the scaled tangential velocity ut
+ as a function of the

scaled distance to the wall y+ in the turbulent channel flows TCF1 and TCF2, using the local
target wall shear stress (a) or the prediction of machine-learning models trained on the turbulent
channel flows TCF1 and TCF2 with various input types (b)–(f) to compute the wall unit scaling
(+). The red line is Reichardt’s law, given by equation (5).
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Figure 23: A priori validation: Scatter plot between the target wall shear stress and the prediction
of a model based on Reichardt’s law (R.L., a) and machine-learning models trained on the turbulent
channel flows TCF1 and TCF2 with various input types (b)–(f). The red line is the identity. The
coefficient of determination R2 and the coefficient of correlation ρc between the model and the
reference wall shear stress are also reported.
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TCF1 TCF2 3DD BFS
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Figure 24: A priori validation: Norm of the scaled tangential velocity ut
+ as a function of the

scaled distance to the wall y+ in the datasets TCF1, TCF2, 3DD and BFS, using the local target
wall shear stress (a) or the prediction of machine-learning models trained on the datasets TCF1,
TCF2 and BFS with various input types (b)–(f) to compute the wall unit scaling (+). The red
line is Reichardt’s law, given by equation (5).
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ût, ûn
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Figure 25: A priori validation: Scatter plot between the target wall shear stress and the prediction
of a model based on Reichardt’s law (R.L., a) and machine-learning models trained on the datasets
TCF1, TCF2 and BFS with various input types (b)–(f) in the datasets TCF1, TCF2, 3DD and
BFS. The red line is the identity. The coefficient of determination R2 and the coefficient of
correlation ρc between the model and the reference wall shear stress is also reported.
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