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We investigated the high energy spin excitations in electron-doped Las_;Ce;CuO4 (LCCO), a
cuprate superconductor, by resonant inelastic x-ray scattering (RIXS) measurements. Efforts were
paid to disentangle the paramagnon signal from non-spin-flip spectral weight mixing in the RIXS
spectrum at Q| = (0.6m,0) and (0.9, 0) along the (1 0) direction. Our results show that, for doping
level z from 0.07 to 0.185, the variation of the paramagnon excitation energy is marginal. We discuss
the implication of our results in connection with the evolution of the electron correlation strength

in this system.

The superconducting cuprate families are known for
their rich phase diagram. The strong electron-electron
correlation, as initially noted by Anderson [1], is believed
to be the key ingredient leading to the high tempera-
ture superconducting phase. On the other hand, due to
the lack of proper experimental evaluation of the elec-
tron correlation strength, it remains a major difficulty in
understanding the mechanism of the high temperature
superconductivity in these doped cuprates across their
phase diagram [2-6]. Resonant inelastic X-ray scattering
(RIXS) measurement, a technique which can probe the
elementary excitations in a large energy range [7, 8], is
expected to be a promising solution. Particularly, the ex-
citations at higher energies near the zone boundary are
dominated by local electron-correlation effects.

Recent progress in RIXS measurements on the cuprate
families indeed provide rich information about these cor-
related electron systems, including magnons [9-23], plas-
mons [24-26], phonons coupling strongly to the electrons
[27-31], etc. In the meantime, the RIXS measurements
also bring new puzzles. It is found that the spin excita-
tion persists to high doping level in hole-doped cuprates
[10, 11, 13, 14, 18, 22, 32, 33]. Then a surprising observa-
tion of significant hardening of the magnetic excitations is
reported in the electron-doped cuprates [19-21], marked
by about 50% increase (~150 meV) of the magnetic exci-
tation energy at the zone boundary by doping from 0.04
to 0.147 [20].

The strength of exchange interaction is considered to
be critical for high temperature superconducting 7.[34].
Thus clarifying the nature of magnetism is a key step
in understanding unconventional superconductivity in
electron doped cuprates. The observation of mag-
netic hardening upon doping is quite counter-intuitive,
and challenges current understanding of the electron-

doped cuprates. Naively, a magnetic softening would
be expected in a diluted spin system [35-37]. With
the enhanced screening from doped itinerant electrons,
the magnetic exchange interaction, born from electron-
correlation in the electron-doped cuprates, is generally
expected to be weakened. Such expectation seems to be
consistent with the falling edge of the superconducting
dome upon heavier doping. If the magentic exchange
becomes stronger instead, the suppression of supercon-
ductivity in the over doped region would be yet harder
to comprehend.

The unusual hardening in the electron-doped cuprates
was first explained in terms of the so-called three-site
exchange mechanism within a “local-static” picture [38].
Further, it is suggested that the hardening is a natural
outcome from a ¢t — J type description [39]. Both expla-
nations root in very strong electron correlation on the
electron-doped side deep into the phase diagram upon
doping. This is quite surprising, and revives the discus-
sion on insulator to strange metal cross-over. For ex-
ample, Weber et al. suggested that the electron-doped
cuprates should be considered as weakly correlated Slater
insulators [40].

The above puzzle calls for further investigation of the
spin excitation in the electron-doped cuprates. It must
be noted that the RIXS signal contains excitations of
different origins, which could overlap in the spectrum.
In particular, it is known that higher order spin excita-
tions always accompany the so-called paramagnon exci-
tations in the RIXS data [33, 41-44]. Thus the RIXS
data interpretation procedures taken in the above men-
tioned reports [19-21] might be over-simplified. For a
more proper understanding of the RIXS observation, de-
coupling of the signals from different origins is required.
As we demonstrate in this report, a cross-examination of
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FIG. 1: (a) Experimental geometry. o and  are the incident and out-going angles relative to the CuO plane. (b)
Example RIXS spectra at Q| = (0.97,0), z = 0.07. The blue arrow indicates the turning point of the spectrum with
7 incidence. (c)-(d) RIXS spectra taken at Q) = (0.97,0) with incident 7 and o polarization. Dotted lines are

guides to the eye.

the RIXS signals from alternation of the incident X-ray
polarization for selected Q) points in the reciprocal space
can serve this purpose.

In the present work, we investigated the high en-
ergy magnetic excitations in the electron doped cuprate
Las_,Ce,CuO4 (LCCO) as function of doping. Special
effort is paid to the RIXS signal decoupling and interpre-
tation. By cross-examining the signals from both ¢ and 7
incident X-ray channels at particular scattering geome-
try, the paramagnon signal is well separated out from
multimagnon contributions. Results from such analy-
sis show that the spectral weight peak shift in the raw
RIXS data is mainly due to the multimagnon contribu-
tion. The single spin-flip excitation shows marginal vari-
ation upon doping, similar to the hole-doped cuprates
[10, 11, 13, 18, 22, 32, 33].

The RIXS measurements were carried out at beamline
ID32 of European Synchrotron Radiation Facility [45],
and at the 121 beamline at Diamond Light Source, United
Kingdom [46]. The incoming beam energy was tuned to
the Cu L3 edge resonance with an energy resolution of
42 meV (Full Width at Half Maximum).

Given the highly two-dimensional nature of the spin
excitations in the cuprate families [47], the momentum
transfer perpendicular to the CuQOy plane is ignored
in our measurements. At selected Q) points, namely

(0.6w,0) and (0.97,0) along the [1 0] direction, RIXS
data were taken with the incident X-ray polarization
both parallel (7) and perpendicular (o) to the scattering
plane (see Fig. 1(a)). The sample used is a high quality
doping-concentration-gradient (combi) film [25, 48, 49],
which allows a doping dependent survey from z = 0.07
to z = 0.185. All data were recorded at about 18 K.

Our main focus is to utilize the incident X-ray polar-
ization and scattering geometry dependence of the RIXS
scattering cross-section to reliably single out the para-
magon signal. These dependencies were discussed by
Ament et al. [50] and many others [9, 15, 16, 51]. The
geometry to discuss is reproduced in Fig. 1(a). The most
favorable geometry for spin-flip signal is to keep the X-
ray exit angle § low with 7 incident polarization [52].
Such geometry was employed by many experiments on
the cuprates [10, 11, 16, 17, 19-22]. If the incident X-ray
polarization is switched to ¢ while keeping the grazing-
out setup, the signal from non-spin-flip channel domi-
nates. The discrimination of the spin-flip and non-spin-
flip contributions directly depends on the /5 angle [52].
Thus in our experiments for all data collected, we kept 3
angle as low as 5 degrees.

RIXS spectra collected with the above setup are shown
in Fig. 1(b)-1(d). The reliability of our approach is
well demonstrated by the data shown in Fig. 1(b). At



Q) = (0.97,0) for z = 0.07, RIXS signals from o inci-
dence (red) and 7 incidence (blue) are drastically differ-
ent in the energy range of a few hundreds of meV. As
discussed, the o channel is dominated by non-spin-flip
multimagnon contribution, and its spectral weight cen-
ter is at relatively higher energy as expected. For the 7w
incidence, a prominent peak appears at ~300 meV, which
is assigned to the paramagnon excitation. We emphasize
that this peak is riding on significant multimagnon sig-
nals. A curvature turning point at ~450 meV (arrow)
is visible, which coincides with the peak of the multi-
magnon signal peak in the o channel. Although the non-
spin-flip excitation is suppressed in the 7 channel, it still
contributes a significant mixing [15, 17, 23].

Shown in Fig. 1(c)-1(d) is the doping dependent evo-
lution of the RIXS spectra collected in 7 and o channels
respectively. By examining only the profile peak posi-
tion, the spectra shown in Fig. 1(c) in the = channel
(paramagnon signal enhanced) do show a trend of shift-
ing towards higher energy upon heavier doping. While if
examining the signal in the ¢ channel where the non-spin-
flip contribution dominates, the shifting is even larger.
As explained above, the spin-flip signal in the 7 chan-
nel is riding on significant non-spin-flip spectral weight,
the assignment of the peak shifting to paramagon is not
straightforward.

To decouple such mixing and properly single out the
paramagon signal, we take the following o-m channel
cross-fitting approach. Both ¢ and 7w channels contain
spin-flip and non-spin-flip contributions, which are noted
as Sgr and Syf respectively. Their mixing ratios are noted
as Ry and Ry¢. Thus the spin-related excitation signals
in both channels in hundreds of meV range can be sym-
bolically written as,

M™ = R - Syt + RY - Sut (1)

Where M ™7 indicate the spin-related component includ-
ing paramagnon and multimagnon. As a result, Sg can
be decoupled from,

R R
G — —LR%) - S =M™ — M7 2

Although the parameters R77. are unknown, b =

RT./R?. can be treated as a fitting parameter. With
M? and M™ obtained from experimental data, the spec-
tral contribution from paramagnon excitation, namely
Sst, can be singled out with a ratio [52]. To pa-
rameterize the paramagnon spectral contribution Sy, a
damped harmonic oscillator model [11] is used as usual
[17, 18, 22, 32, 53],

1 4A,Tqw, /wg + I‘g

flw) = o
1 —efh (wQ—wg—Fg)z—l-(Qqu)?

where the propagating frequency w, and damping rate I
are the real and imaginary part of the damped oscillator
pole [52]. Accordingly, the peak maximum wmax, Which
is usually larger than w, , can be also extracted .
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FIG. 2: Results from cross-fitting approach. (a)-(c):
Q) = [0.97,0];(d)-(f) Q) = [0.6m,0]. The overall
spectra are decomposed into elastic peak, paramagnon
A, multimagnon B, phonon C, and a small linear
background D. Dots are the experimental data points.

Following the above approach, the fitting results to
the experimental data for Q;=(0.67,0) and (0.97,0) at
selected doping levels are shown in Fig. 2. The B com-
ponent is the line shape of M7 scaled by fitting param-
eter b, and the A component is the paramagnon as a
damped oscillator. Other contributions include elastic
peak centered at zero, a small phonon peak C and a
linear background D. More details can be found in the
supplementary [52].

From the cross-fitting results, we can examine the evo-
lution of the high energy paramagnons on a solid ba-
sis. Shown in Fig. 3(a)-3(f) are the extracted real part
of the propagating frequency w,, damping rate I'; and
peak energy wpax. The most important observation is
that w, shows marginal variation as function of doping.
As to the damping rate I'y, it increases in a linear fash-
ion with doping. This is consistent with the expectation
that scattering rate of the magnetic excitations increases
upon heavier doping. At low doping, I'; is significantly
smaller than w,. Thus the paramagnon excitation peak
is better defined, as shown in Fig. 1(b). At high doping z
= 0.185, the damping rate is more than doubled, and the



paramagon peak is significantly broadened to merge to-
gether with the multimagnon signals. The increasing of
the damping rate also drives the peak maximum towards
higher energy moderately, as shown in Fig. 3(c) and 3(f).
At the near zone boundary point [0.97,0], the shift of
Wmax 18 about 40 meV in our studied doping range.

For the purpose of comparison, we also fitted the data
in 7 channel directly with two Gaussian peaks to account
for the overall spectral contribution in hundreds of meV
range [52]. The results are shown in Fig. 3(g)-3(h). This
simplified treatment leads to a “hardening” of the exci-
tation by ~ 100 meV from z = 0.07 to 0.185 at both
Q) points, similar to earlier reports [19-21]. From our
above analysis, we now see that about half of this “hard-
ening” is from multimagnon signal mixing, and the other
half is from increased scattering rate of the magnetic ex-
citations upon heavier doping. As to the key parame-
ter, namely the propagating frequency wy, its variation
upon doping is marginal. To further support our results,
it is interesting to check earlier neutron studies on the
electron doped cuprates [54-56]. There the extracted lo-
cal spin susceptibility is much weaker than that of the
hole-doped counterpart. Although the dispersion cannot
be well resolved due to weak inelastic neutron scattering
signal, their observed broadening of the peak width upon
heavier doping suggests a weak softening of the magnetic
excitations. These evidences imply that a strongly lo-
calized spin picture might be at failure in describing the
spin dynamics in the electron doped cuprates.

It is worth noting that, even with Gaussian peak fitting
to the m-channel only, the extracted paramagnon peak
“hardening” at the zone boundary shown in Fig. 3(g)
and 3(h) is about 50% less than reported earlier [20].
This difference clearly emphasizes the significance of the
geometry dependent non-spin-flip signal mixing in dis-
torting the RIXS spectrum shape, since our 7 channel
data was taken at incident angle 8 = 5°, different from
before. Our cross-channel fitting results lead to a less
than 50 meV shifting in paramagnon peak maximum po-
sition, and almost non-observable variation in the har-
monic model propagating frequency w,. This is in con-
trast to the theoretical analysis invoking the three-site
exchange mechanism [38, 57, 58] or doping assisted hop-
ping enhancement in ¢ — J model [39, 59, 60]. We believe
that these mechanisms are at play, except that the evolu-
tion of the electron-correlation strength in this electron-
doped cuprate family is overlooked in the calculations.
In this regard, the RIXS measurements on the evolution
of spin excitations upon doping in the cuprates should
be more informative than previously considered. Once
the high energy paramagnon excitation is properly ex-
tracted, it should provide strong guidance in evaluating
the evolution of electron-correlation for future theoretical
studies.

We note that the most rigorous way to decouple spin-
flip and non-spin-flip signals is to perform a full X-ray

polarization analysis, including incident X-ray polariza-
tion control as what we did, and scattered RIXS sig-
nal polarization analysis to single out the spin-flip com-
ponents. This treatment has been demonstrated by
[16, 17, 51]. Since such approach is extremely experi-
mentally demanding, it is difficult to be applied to phase
diagram survey.

In summary, we investigate the doping evolution of
spin excitation by Cu Ls edge RIXS measurement on
the electron-doped cuprate LCCO. Special geometry and
polarization conditions are selected to properly sepa-
rate the paramagnon signal from multimagnon spectral
weight mixing. From the decoupled paramagnon sig-
nal, we find that the hardening of paramagnon compo-
nent is insignificant when doping changes from x=0.07
to x=0.185, inconsistent with predictions from three-site
exchange mechanism with a “local-static” picture [38], or
from ¢ — J type picture [39]. Such discrepancy is likely
due to improper implementation of the evolution of the
electron-correlation in this cuprate family.
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