An Empirical Study of Challenges in Converting Deep Learning Models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

An Empirical Study of Challenges in Converting Deep Learning Models

Dates et versions

hal-04255092 , version 1 (23-10-2023)

Identifiants

Citer

Moses Openja, Amin Nikanjam, Ahmed Haj Yahmed, Foutse Khomh, Zhen Ming Jack Jiang. An Empirical Study of Challenges in Converting Deep Learning Models. 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME), Oct 2022, Limassol, Cyprus. pp.13-23, ⟨10.1109/ICSME55016.2022.00010⟩. ⟨hal-04255092⟩
51 Consultations
0 Téléchargements

Altmetric

Partager

More