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THE REVERSE MATHEMATICS OF

CARLSON’S THEOREM FOR LOCATED WORDS

TRISTAN BOMPARD, LU LIU, AND LUDOVIC PATEY

Abstract. In this article, we give two proofs of Carlson’s theorem for located words in ACA+
0 .

The first proof is purely combinatorial, in the style of Towsner’s proof of Hindman’s theorem.
The second uses topological dynamics to show that an iterated version of Hindman’s theorem
for bounded sums implies Carlson’s theorem for located words.

1. Introduction

We study the metamathematics of a partition theorem for words due to Carlson [3] from the
viewpoint of reverse mathematics. Also our motivation is foundational, the metamathematical
study of theorems in combinatorics usually consists in seeking for combinatorially simpler proofs
of existing theorems. This is in particular the case of this article, where we give two new
proofs of Carlson’s theorem: a direct purely combinatorial one in the style of Towsner [25], and
another from the Finite Union theorem using the tools of topological dynamics. This article
might therefore be of interest to both combinatoricians who can ignore the metamathematical
considerations, and logicians who wonder about the optimal axioms to prove Carlson’s theorem.

1.1. Reverse mathematics

This is a foundational program started in 1974 by Harvey Friedman, whose goal is to study
the optimal axioms for proving ordinary theorems. It uses the framework of subsystems of
second-order arithmetics, with a base theory, RCA0, capturing computable mathematics. The
early study of reverse mathematics has shown the emergence of four systems of axioms, namely,
WKL0, ACA0, ATR0 and Π1

1-CA0, listed in increasing order in terms of logical strength, such that
most theorems are either provable in RCA0 (hence computably true), or equivalent modulo RCA0

to one of these four systems. This observation is known as the Big Five phenomenon. See
Simpson [23] for a reference book on the early reverse mathematics.

The study of combinatorial theorems, especially coming from Ramsey’s theory, has relativized
the Big Five phenomenon. Ramsey’s theorem for pairs is the most famous example of theorem
which fails this observation in a strong sense: its logical strength is strictly in between RCA0

and ACA0 (see Specker [24], Jockusch [17] and Seetapun and Slaman [22]), and incomparable
with WKL0 (see Jockusch [17] and Liu [20]). Combinatorial theorems are notoriously hard
to study in reverse mathematics, and often require to find new elementary proofs of existing
theorems. This is in particular the case of Hindman’s theorem, whose logical strength is still an
active study of research. See Hirschfeldt [16] or Dzhafarov and Mummert [8] for an introduction
to the reverse mathematics of combinatorial theorems.

1.2. Hindman’s theorem

Hindman’s theorem [13] is a partition theorem about the integers. Given a set X ⊆ N, we
let FS(X) be the set of non-empty finite sums of distinct elements from X, that is,

FS(X) = {ΣF : F ⊆ X ∧ 0 < |F | < ∞}
A finite coloring of a set X is a function of the form X → C, where C is a finite set,

identified as a set of colors. Given a finite coloring f : X → C, we say that a subset Y ⊆ X is
f -homogeneous if every element in Y is given the same color by f .

Theorem 1.1 (Hindman). For every finite coloring f : N → C, there is an infinite set Y ⊆ N
such that FS(Y ) is f -homogeneous.
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We shall refer to the previous theorem as Hindman’s theorem (HT). There exist multiple
proofs of Hindman’s theorem. The original proof from Hindman [13], a short proof from Baum-
gartner [1], an ultrafilter proof from Galvin and Glazer (see Hindman and Strauss [15]), a proof
using topological dynamics by Furstenberg and Weiss [10], and a simple proof by Towsner [25].
The two first proofs were analyzed in reverse mathematics by Blass, Hirst, and Simpson [2].
They showed that the original proof from Hindman holds in ACA+

0 , while Baumgartner’s proof
can be formalized in the much stronger system Π1

2-TI0. The analysis of the proofs from Galvin
and Glazer and from Furstenberg and Weiss are more tricky, since they use third-order objects
: ultrafilters in the former case, and Ellis enveloping semigroups in the latter case. Montal-
ban and Shore [21] studied the ultrafilter proof using the tools of conservativity, and proved
that the existence of an idempotent ultrafilter is a conservative extension of ACA0 augmented
with an iterated version of Hindman’s theorem. Kreuzer [19] studied the existence of idem-
potent ultrafilters from the viewpoint of higher-order reverse mathematics, and proved that
iterated Hindman’s theorem is equivalent to the Auslander-Ellis theorem in topological dynam-
ics. Lastly, the proof from Towsner holds in ACA+

0 . The exact reverse mathematical strength
of Hindman’s theorem remains one of the biggest open questions in reverse mathematics.

Hindman’s theorem is a typical example where the quest for optimal axioms motivates the
search for new elementary proofs of existing theorems. This motivated for example the purely
combinatorial proof by Towsner [25], which isarguably elementary as it is obtain by combin-
ing and iterating only very simple constructions. On the other hand, reverse mathematics is
sensitive to the operation of iterating constructions. Iterations are very elementary from a
mathematical perspective, but this yields sometimes computationally complex objects which
then require strong existence axioms.

Hindman’s theorem is equivalent to a partition theorem about finite sets, known as the Finite
Union theorem. Let Pf (N) be the set of all non-empty finite subsets of N. A subset X ⊆ Pf (N)
is a block sequence if for every E,F ∈ X, either maxE < minF , or maxF < minE. Given a
set X ⊆ Pf (N), we write FU(X) for the set of all non-empty finite unions of elements from X,
that is,

FU(X) = {∪F : F ⊆ X ∧ 0 < |F | < ∞}

Theorem 1.2 (Finite Union). For every finite coloring f : Pf (N) → C, there is an infinite
block sequence Y ⊆ Pf (N) such that FU(Y ) is f -homogeneous.

The Finite Union theorem (FUT) is known to be equivalent to Hindman’s theorem over RCA0,
through the one-to-one correspondence which to n ∈ N associates the finite set F ∈ Pf (N) such
that

∑
i∈F 2i = n. The Finite Union theorem is more convenient than Hindman’s theorem from

many viewpoints, as the set FU(Y ) is closed under finite unions, while the set FS(Y ) is not
closed under finite sums.

1.3. Carlson’s theorem for words

Carlson’s theorem for words [3] is a unifying theorem generalizing both Hindman’s theorem
and the Hales-Jewett theorem. It comes from a long line of partition theorems about variable
words, among which the Hales-Jewett theorem [12], the Graham-Rothschild theorem [11] and
the Carlson-Simpson lemma [4].

Definition 1.3. A variable word over an alphabet A is a finite sequence w over A∪{⋆}, where
⋆ is a variable which occurs at least once in w. Given a variable word w and a letter a ∈ A, we
write w[a] for the string of length |w| where all the occurrences of ⋆ are replaced by a.

We write W(A) and V(A) for the sets of all words and variable words over A, respectively.
The most basic – and arguably the most important – theorem about variable words is the Hales-
Jewett theorem. It plays the same role on the semigroup of words as the pigeonhole principle
does in the semigroup of integers.

Theorem 1.4 (Hales-Jewett). Fix a finite alphabet A. For every finite coloring f : W(A) → C,
there is a variable word w such that {w[a] : a ∈ A} is f -homogeneous.
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The Hales-Jewett theorem was generalized to arbitrary finite dimensions by Graham and
Rothschild, and to infinite dimensions by Carlson and Simpson. Carlson’s theorem for words
generalizes both the Carlson-Simpson lemma and Hindman’s theorem as follows.

Definition 1.5. Given a finite or infinite sequence of variable words (wn)n<ℓ with ℓ ∈ N∪{N},
a word u ∈ W(A ∪ {⋆}) is extracted1 from (wn)n<ℓ if there exists a finite sequence of indices
j0 < · · · < jn−1 and a finite sequence of letters a0, . . . , an−1 ∈ A ∪ {⋆} such that

u = wj0 [a0]wj1 [a1] . . . wjn−1 [an−1]

We write ⟨(wn)n<ℓ⟩A and ⟨(wn)n<ℓ⟩A⋆ for the set of all words and variable words extracted from
(wn)n<ℓ, respectively.

Theorem 1.6 (Carlson for words). For every finite coloring f : W(A) → C, there is an infinite
sequence (wn)n∈N of variable words such that ⟨(wn)n∈N⟩A is f -homogeneous.

Carlson’s theorem for words implies Hindman’s theorem by considering colorings which de-
pend only on the length of the words. Indeed, for every f : N → C, letting g : W(A) → C be de-
fined by g(u) = f(|u|), then for any infinite g-homogeneous sequence of variable words (wn)n∈N,
letting Y = {|wn| = n ∈ N}, the set FS(Y ) is f -homogeneous.

Remark 1.7. Carlson [3] actually proved a stronger theorem about finite colorings of variable
words : For every finite coloring f : V(A) → C, there is an infinite sequence (wn)n∈N of variable
words such that ⟨(wn)n∈N⟩A⋆ is f -homogeneous. This statement, that we shall refer as Carlson’s
theorem for variable words, implies its version for words. The only known proofs of Carlson’s
theorem for variable words involve ultrafilters [3] or the Ellis envelopping semigroup [9].

While Carlson’s theorem for variable words is only known to admit an ultrafilter proof and
a topological dynamical proof, Karagiannis [18] gave a Baumgartner-style proof of Carlson’s
theorem for words. Despite their combinatorial simplicity, Baumgartner-style proofs involve
strong set existence axioms from a metamethematical viewpoint. In this article, we give an
alternative proof of Carlson’s theorem for words in the style of Towsner [25], which yields the
same known upper bound as Hindman’s theorem, namely, ACA+

0 .
Carlson’s theorem for words admits a formulation in terms of located words, which plays the

same role as the Finite Union theorem for Hindman’s theorem.

Definition 1.8. Fix a finite alphabet.

(1) A located word over A is a function from a finite nonempty subset of N into A. Let FINA

be the collection of all located words over A.
(2) A located variable word over A is a finite partial function from N into A∪{⋆}, that takes

the value ⋆ at least once. Let FINA⋆ be the collection of all located variable words.

Note that we have FINA∪{⋆} = FINA ⊔FINA⋆. Given a located variable word p ∈ FINA⋆ and
a letter a ∈ A, we write p[a] for the located words with dom(p[a]) = dom p and p[a](x) = a if
x = ⋆, and p[a](x) = p(x) otherwise. We also let p[⋆] = p. We equip the collections FINA and
FINA⋆ with a partial ordering defined as

p < q if max dom p < min dom q

Definition 1.9. A block sequence is a totally ordered setX ⊆ FINA⋆. Given a block sequenceX,
we let

(1) [X]A = {p0[a0] ∪ · · · ∪ pk[ak] ∈ FINA : p0, . . . , pk ∈ FINA⋆, a0, . . . , ak ∈ A}
(2) [X]A⋆ = {p0[a0] ∪ · · · ∪ pk[ak] ∈ FINA⋆ : p0, . . . , pk ∈ FINA⋆, a0, . . . , ak ∈ A ∪ {⋆}}

In other words, [X]A⋆ = [X]A∪{⋆} ∩ FINA⋆.

Theorem 1.10 (Carlson for located words). For every finite coloring f : FINA → C, there is
an infinite block sequence X ⊆ FINA⋆ such that [X]A is f -homogeneous.

1The terminology comes from [7].
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Carlson’s theorem for located words implies its version for words by collapsing the domain of
the partial functions to obtain an initial segment of N. This implication will be formally proven
in Proposition 2.15. Like the Finite Union theorem, Carlson’s theorem for located words is
more convenient to manipulate since [X]A is closed under finite unions.

1.4. Organization of the paper

In Section 2, we discuss various versions of Carlson’s theorem for words and justify the use of
located words by the ability to iterate the theorem. In Section 3, we give a Towsner-style proof
of Carlson’s theorem for located words. This proof can be formalized in ACA+

0 . In Section 4, we
develop some basics of topological dynamics for located words, as a preparation for Section 5.
In Section 5 we state two versions of the Auslander-Ellis theorem for located words, and use
them to give an alternative proof of Carlson’s theorem for located words. We also prove that
AET for located words follows from an iterated version of the Finite Union theorem. Since the
latter theorem holds in ACA+

0 , this yields a second proof of Carlson’s theorem for located words
in ACA+

0 . Lasst, in Section 6, we state a few remaining open questions.

2. Versions of Carlson’s theorem for words

One desirable feature of a partition theorem is the ability to iterate it, to obtain a simultaneous
solution to multiple instances. This can be achieve whenever the combinatorial space represent-
ing the solution is isomorphic to the original space. We then obtain a stronger statement, saying
that any partition of a specific combinatorial space admits a combinatorial subspace within one
of the parts. In this section, we study the corresponding strengthenings for the Hindman’s
theorem, Carlson’s theorem for words, and justify why the Finite Union theorem and Carlson’s
theorem for located words is more convenient in terms of iterations. In what follows, we consider
only partial semigroups where the product is defined only on distinct elements.

2.1. Strong Finite Union theorem and Hindman’s theorem

In this section, we shall see that both the Finite Union theorem and Hindman’s theorem
are equivalent to their strong version over RCA0. However, there exists a natural semigroup
isomorphism between the Finite Union theorem, its strong version and the strong version of
Hindman’s theorem, while the equivalence with Hindman’s theorem requires some extra work.

The Finite Union theorem admits a natural iterable version thanks to the closure property
of its combinatorial space.

Theorem 2.1 (Strong Finite Union). For every infinite block sequence X ⊆ Pf (N) and every
finite coloring f : FU(X) → C, there is an infinite block sequence Y ⊆ FU(X) such that FU(Y )
is f -homogeneous.

The strong Finite Union theorem is an immediate consequence of the Finite Union theorem
since for every infinite block sequence X = {F0 < F1 < . . . } ⊆ Pf (N), there is a natural
isomorphism ι from (Pf (N),∪) to (FU(X),∪) defined by ι(E) =

⋃
n∈E Fn.

Lemma 2.2 (RCA0). The Finite Union theorem implies its strong version.

Proof. Given X = {F0 < F1 < . . . } and f : FU(X) → C, let g : Pf (N) → C be defined by
g(E) = f(ι(E)). By the Finite Union theorem, there is an infinite block sequence Z ⊆ Pf (N)
such that FU(Z) is g-homogeneous. Let Y = {ι(E) : E ∈ Z}. The set Y ⊆ FU(X) is an infinite
block sequence and FU(Y ) = {ι(E) : E ∈ FU(Z)}, so FU(Y ) is f -homogeneous. □

It follows that the Finite Union theorem is equivalent to its strong version over RCA0. The
strong version of Hindman’s theorem requires more work, as given an infinite set X ⊆ N and
an infinite set Y ⊆ FS(X), FS(Y ) is not necessarily a subset of FS(X).

Theorem 2.3 (Strong Hindman). For every infinite set X ⊆ N and every finite coloring f :
FS(X) → C, there is an infinite set Y such that FS(Y ) ⊆ FS(X) and FS(Y ) is f -homogeneous.

Unlike the Finite Union theorem, there is no natural isomorphism from (N,+) to (FS(X),+),
unless it satisfies some extra conditions.
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Definition 2.4 (Carlucci et al. [5]). Given n = 2n0 + · · · + 2nℓ−1 with n0 < · · · < nℓ−1, we
let λ(n) = n0, µ(n) = nℓ−1. An infinite set A = {a0 < a1 < . . . } is 2-apart if for every n,
µ(an) < λ(an+1).

The notion of 2-apartness for sets of integers is equivalent to the notion of block sequence
for sets of finite sets. Suppose X ⊆ N is infinite and 2-apart. Then there is an isomorphism
ι from (N,+) to (FS(X),+) defined by ι(

∑
i∈E 2i) =

∑
i∈E ai, where X = {a0 < a1 < . . . }.

The notion of 2-apartness is not preserved by subsets of finite sums in general: there exist sets
X,Y ⊆ N such that X is 2-apart, FS(Y ) ⊆ FS(X) but Y is not 2-apart. The following stronger
relation preserves 2-apartness.

Definition 2.5. Given two infinite sets X,Y ⊆ N, we write Y ≤FS X if there is an infinite
block sequence H ⊆ Pf (X) such that Y = {ΣF : F ∈ H}.

Note that if Y ≤FS X, then FS(Y ) ⊆ FS(X). Moreover, if X is 2-apart, then so is Y . The
following lemma was proven by Hindman [13] in his original paper.

Lemma 2.6 (Hindman, RCA0). For every infinite set X ⊆ N, there is an infinite 2-apart
set Y ≤FS X.

Proof. We first prove by induction over k ∈ N that for every infinite set X ⊆ N, there is
some n ∈ FS(X) such that λ(n) ≥ k. The case k = 0 is trivial by taking n = minX. Suppose
by induction hypothesis it holds for k, but not for k+1. Then for every finite set F ⊆ X, there
is some n ∈ FS(X ∖ F ) such that λ(n) = k. Let F0, F1 be two non-empty subsets of X such
that maxF0 < minF1 and λ(

∑
Fi) = k. Then λ(

∑
F0 ∪F1) > k, contradicting our hypothesis.

This proves our claim.
Using the claim, we construct an infinite sequence F0, F1, . . . of finite non-empty subsets

of X such that maxFn < minFn+1 and λ(
∑

Fn+1) > λ(
∑

Fn). First, F0 = {minX}. Assume
F0, . . . , Fn are defined. By our claim, since X ∖ {0, 1, . . . ,maxFn} is infinite, there is a finite
set Fn+1 ⊆ X ∖ {0, 1, . . . ,maxFn} such that λ(

∑
Fn+1) > λ(

∑
Fn). By construction, the set

Y = {
∑

Fn : n ∈ N} is 2-apart and B ≤FS A. □

We are now ready to prove strong Hindman’s theorem from Hindman’s theorem.

Lemma 2.7 (RCA0). Hindman’s theorem implies its strong version.

Proof. Given X and f : FS(X) → C, by Lemma 2.6 there is an infinite 2-apart set X0 ≤FS X.
Let ι be the canonical isomorphism from (N,+) to (FS(X0),+). Let g : FS(N) → C be
defined by g(n) = f(ι(n)). By Hindman’s theorem, there is an infinite set Z ⊆ N such that
FS(Z) is g-homogeneous. Let Y = {ι(n) : n ∈ Z}. The set Y satisfies FS(Y ) ⊆ FS(X), and
FS(Y ) = {ι(n) : n ∈ FS(Z)}, so FS(Y ) is f -homogeneous. □

Thanks to the equivalence between Hindman’s theorem and the Finite Union theorem, we
have the following equivalence.

Proposition 2.8 (Folklore). The following statements are equivalent over RCA0:

(1) Hindman’s theorem
(2) Strong Hindman’s theorem
(3) Finite Union theorem
(4) Strong Finite Union theorem

Proof. We have already proven the equivalences (1) ↔ (2) and (3) ↔ (4). The proof of (3) → (1)
is immediate, using the isomorphism ι from (Pf (N),∪) to (N,+) defined by ι(E) =

∑
i∈E 2i.

Last, (2) → (3) is immediate, using the isomorphism ι from (FS(X),+) to (Pf (N),∪) defined
by ι(

∑
i∈E 2i) = E. □

Remark 2.9. The previous considerations show that there exists are direct correspondance be-
tween the Finite Union theorem, its strong version, and the strong version of Hindman’s theo-
rem. On the other hand, the proof of any of these theorems from Hindman’s theorem requires
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a preliminary lemma, namely, Lemma 2.6. In particular, the Finite Union theorem is natu-
rally equivalent to its strong version, while the equivalence between Hindman’s theorem and its
strong version is arguably less natural.

2.2. Strong Carlson’s theorem for located words and words

Carlson’s theorem for located words and for words both admit a strong version. As before,
Carlson’s theorem for located words is naturally equivalent to its strong version and to the
strong version of Carlson’s theorem for words. However, it remains open whether Carlson’s
theorem for words implies its strong version over RCA0.

Theorem 2.10 (Strong Carlson for located words). Let X ⊆ FINA⋆ be an infinite block sequence
and let f : [X]A⋆ → C be a coloring. There is an infinite block sequence Y ⊆ [X]A⋆ such that
[Y ]A⋆ is f -homogeneous.

The proof of strong Carlson’s theorem for located words from its weak version follows from
the isomorphism ι from (FINA∪{⋆},∪) to ([X]A∪{⋆},∪) defined by dom ι(q) =

⊔
n∈dom q dom pn

and for m ∈ dom q and n ∈ dom pn, ι(q)(n) = pn(q(m)), where X = {p0 < p1 < . . . } is an
infinite block sequence.

Lemma 2.11 (RCA0). Carlson’s theorem for located words implies its strong version.

Proof. Given X = {p0 < p1 < . . . } and f : [X]A → C, let g : FINA → C be defined by g(p) =
f(ι(p)). By Carlson’s theorem for located words, there is an infinite block sequence Z ⊆ FINA⋆

such that [Z]A is g-homogeneous. Let Y = {ι(p) : p ∈ Z}. The set Y ⊆ [X]A⋆ is an infinite
block sequence and [Y ]A = {ι(p) : p ∈ [Z]A}, so [Y ]A is f -homogeneous. □

Theorem 2.12 (Strong Carlson for words). Let (wn)n∈N be an infinite sequence of variable
words over A and let f : ⟨(wn)n∈N⟩A → C be a finite coloring. There is an infinite sequence of
variable words (un)n∈N such that ⟨(un)n∈N⟩A ⊆ ⟨(wn)n∈N⟩A and ⟨(un)n∈N⟩A is f -homogeneous.

Strong Carlson’s theorem for words follows from Carlson’s theorem for located words, using
the surjective morphism ι from (FINA∪{⋆},∪) to (⟨(wn)n∈N⟩A∪{⋆}, ·) defined by collapsing the
domains as follows: ι(p) = wn0 [p(n0)] · · ·wnk−1

[p(nk−1)] where dom p = {n0 < · · · < nk−1}.

Lemma 2.13 (RCA0). Carlson’s theorem for located words implies strong Carlson’s theorem for
words.

Proof. Fix (wn)n∈N and f . Let g : FINA → C be defined by g(p) = f(ι(p)). By Carlson’s
theorem for located words, there is an infinite block sequence X = {p0 < p1 < . . . } ⊆ FINA⋆

such that [X]A is g-homogeneous. Let (un)n∈N be defined by un = ι(pn). Then ⟨(un)n∈N⟩A =
{ι(p) : p ∈ [X]A}, hence ⟨(un)n∈N⟩A is f -homogeneous. □

As for Hindman’s theorem, the strong version of Carlson’s theorem for words implies Carlson’s
theorem for located words in a natural way. Indeed, let (wn)n∈N be the sequence of variable
words over A defined by wn = ⋆ · · · ⋆ with |wn| = 2n. Any element in ⟨(wn)n∈N⟩A∪{⋆} can
be uniquely written in the form wn0 [a0] · · ·wnk−1

[ak−1], where n0 < · · · < nk−1 ∈ N and
a0, . . . , ak−1 ∈ A ∪ {⋆}. Thus, there is a natural isomorphism ι from (⟨(wn)n∈N⟩A∪{⋆}, ·) to
(FINA∪{⋆},∪) defined by ι(wn0 [a0] · · ·wnk−1

[ak−1]) = p such that dom(p) = {n0 < · · · < nk−1}
and p(ni) = ai.

Lemma 2.14 (RCA0). Strong Carlson’s theorem for words implies Carlson’s theorem for located
words.

Proof. Let (wn)n∈N be the sequence of variable words over A defined as above and let ι be the
corresponding isomorphism. Given a finite coloring f : FINA → C, let g : ⟨(wn)n∈N⟩A → C
be defined by g(w) = f(ι(w)). By strong Carlson’s theorem for words, there is an infinite
sequence of variable words (un)n∈N such that ⟨(un)n∈N⟩A ⊆ ⟨(wn)n∈N⟩A and ⟨(un)n∈N⟩A is g-
homogeneous. Let Y = {ι(un) : n ∈ N}. Then Y is an infinite block sequence and [Y ]A =
{ι(w) : w ∈ ⟨(un)n∈N⟩A}, hence [Y ]A is f -homogeneous. □
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Put altogether, we obtain the following equivalences over RCA0.

Proposition 2.15. The following statements are equivalent over RCA0:

(1) Carlson’s theorem for located words
(2) Strong Carlson’s theorem for located words
(3) Strong Carlson’s theorem for words

Proof. We have proven (1) → (3), (1) → (2) and (3) → (1). Last, (2) → (1) since strong
Carlson’s theorem for located words is a generalization of Carlson’s theorem for words. □

As mentioned at the start of the section, we leave the following question open.

Question 2.16. Does CT for words imply CT for located words over RCA0?

3. Towsner-style proof of Carlson’s theorem for located words

As mentioned in the introduction, Hindman’s theorem admits multiple proofs: an ultrafilter
one from Galvin and Glazer (see Hindman and Strauss [15]), a simple one from Baumgartner [1]
and a proof by Towsner [25]. The latter one yields the best known upper bound in terms of
reverse mathematics of Hindman’s theorem.

Carlson’s theorem for words original proof involves ultrafilters, and Karagiannis [18] later
gave a Baumgartner-style proof of it. In this section, we give a Towsner-style proof of Carlson’s
theorem for located words. Its reverse mathematical analysis shows that Carlson’s theorem for
located words holds in ACA+

0 . We shall refine this analysis in Section 5 by showing that Carlson’s
theorem for located words follows from an iterated version of the Finite Union theorem, which
is also known to hold in ACA+

0 .
We will be using the following theorem as a blackbox.

Theorem 3.1 (Hales-Jewett, RCA0). Let A be a finite alphabet and f : FINA → C be a finite
coloring. Then there is a located variable word p ∈ FINA⋆ such that [p]A is f -homogeneous.

The previous theorem does not require BΣ0
2 since it admits a finite combinatorial version

which requires less induction.

Definition 3.2. Let X ⊆ FINA⋆ be an infinite block sequence and let f : [X]A → C be a
coloring. A block sequence Y ⊆ [X]A⋆ is

(1) weakly f -thin for color i ∈ C if for every p ∈ [Y ]A⋆, there is some a ∈ A such that
f(p[a]) ̸= i

(2) f -thin for color i ∈ C if for every p ∈ [Y ]A, f(p) ̸= i.

Lemma 3.3 (RCA0). Let X ⊆ FINA⋆ be an infinite block sequence and let f : [X]A → C be
a coloring such that X is weakly f -thin for some color i ∈ C. Then there is an infinite block
sequence Y ⊆ [X]A⋆ which is f -thin for color i.

Proof. We build a sequence of located variable words q0 < q1 < . . . by induction. For every
infinite block sequence X, let ιX : FINA∪{⋆} → [X]A∪{⋆} be the canonical isomorphism.

Let g : FINA → C be defined by g(p) = f(ιX(p)). By the Hales-Jewett theorem (The-
orem 3.1), there is a located variable word p over A such that [p]A is g-homogeneous. Let
q0 = ιX(p) Then [q0]A is f -homogeneous. Since q0 ∈ X, then there is some a ∈ A such that
f(q0[x]) ̸= i, hence {q0} is f -thin for color i.

Assume q0 < · · · < qn−1 are located variable words over A such that F = {q0, . . . , qn−1} is

f -thin for color i. Let g : FINA → C |[F ]A|+1 be defined by

g(p) = ⟨f(q ∪ ιX−F (p)) : q ∈ [F ]A ∪ {∅}⟩
By the Hales-Jewett theorem (Theorem 3.1), there is a located variable word p over A such
that [p]A is g-homogeneous. Let qn = ιX−F (p). Fix some q ∈ [F ]A ∪ {∅}. Then [q ∪ qn]A is
f -homogeneous. Since q ∪ qn ∈ X, then there is some a ∈ A such that f(q ∪ qn[a]) ̸= i, thus
[q ∪ qn]A is f -thin for color i. Since it is the case for every q ∈ [F ]A ∪ {∅}, then F ∪ {qn} is
f -thin for color i. □
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The following definitions are direct adaptations of Towsner’s notions of half matches and full
matches to variable words (see [25]).

Definition 3.4. Let X ⊆ FINA⋆ be an infinite block sequence and let f : [X]A → C be a
coloring. Let F ⊆ [X]A⋆ be a finite set and Y ⊆ [X − F ]A⋆ be an infinite block sequence. We
say that

(1) F half-matches Y for color i ∈ C if for every q ∈ [Y ]A such that f(q) = i, there is
some p ∈ F such that for every a ∈ A, f(p[a] ∪ q) = i.

(2) F half-matches Y if it half-matches Y for every color i ∈ C
(3) F full-matches Y if for every q ∈ [Y ]A, there is some p ∈ F such that for every a ∈ A,

f(p[a]) = f(p[a] ∪ q) = f(q).

Lemma 3.5 (RCA0). Let X ⊆ FINA⋆ be an infinite block sequence, let f : [X]A → C be a
coloring, and i ∈ C be a color. There is a finite set F ⊆ [X]A⋆ and an infinite block sequence
Y ⊆ [X − F ]A⋆ such that F half-matches Y for color i.

Proof. Suppose first that for every finite block sequence F ⊆ [X]A⋆, there is a located variable
word q ∈ [X − F ]A⋆ and some a ∈ A such that for every p ∈ [F ]A⋆, there is some b ∈ A such
that f(p[b]∪ q[a]) ̸= i. Then build an infinite block sequence {p0 < p1 < . . . } ⊆ [X]A⋆ such that
for every n, there is some an ∈ A such that for every p ∈ [p0, . . . , pn−1]A⋆, there is some b ∈ A
such that f(p[b∪]pn[an]) ̸= i. Let Y = {q0 < q1 < . . . } be the block sequence defined by
qn = p2n ∪ p2n+1[a2n+1]. Note that Y ⊆ [X]A⋆.

We claim that Y is weakly f -thin for color i. Let p ∈ [Y ]A⋆. Then p =
⋃

n∈dom q qn[q(n)] for

some located variable word q ∈ FINA⋆. Let m = maxdom q. We have qm[q(m)] = p2m[q(m)] ∪
p2m+1[a2m+1]. Let r =

⋃
n∈dom q∖{m} qn[q(n)]. Then p = r ∪ p2m[q(m)] ∪ p2m+1[a2m+1], with

r ∈ [p0, . . . , p2m−1]A⋆, so by definition of {p0 < p1 < . . . }, there is some b ∈ A such that
f(r[b]∪p2m[q(m)]∪p2m+1[a2m+1]) ̸= i. In other words, there is some b ∈ A such that f(p[b]) ̸= i.
Hence Y is weakly f -thin for color i. By Lemma 3.3, there is an infinite block sequence Z ⊆ [Y ]A⋆

which is f -thin for color i. In particular, minZ half-matches Z − {minZ} for color i.
Suppose now that there is a finite block sequence F ⊆ [X]A⋆ such that for every located

variable word q ∈ [X−F ]A⋆ and every a ∈ A, there is some p ∈ [F ]A⋆ such that for every b ∈ A,
f(p[b] ∪ q[a]) = i. Then by assumption, F half-matches X − F for color i. □

Lemma 3.6 (RCA0 + IΣ0
2). Let X ⊆ FINA⋆ be an infinite block sequence and let f : [X]A → C

be a coloring. There is a finite set F ⊆ [X]A⋆ and an infinite block sequence Y ⊆ [X − F ]A⋆

such that F half-matches Y .

Proof. Let C = {i0, i1, . . . , i|C|−1}. We build a finite sequence of pairs

(F0, Y0), . . . , (F|C|, Y|C|)

inductively as follows: Initially, F0 = ∅ and Y0 = X. Assuming Fs and Ys have been defined, by
Lemma 3.5 there is a finite set Fs+1 ⊆ [Xs]A⋆ and an infinite block sequence Ys+1 ⊆ [Xs−Fs+1]A⋆

such that Fs+1 half-matches Ys+1 for color is. Let F =
⋃

s≤|C| Fs and Y = Y|C|.

We claim that F half-matches Y . Let q ∈ [Y ]A. Let s be such that f(q) = is. Then since
Fs+1 half-matches Ys+1 for color is and q ∈ [Ys+1]A, there is some p ∈ Fs+1 ⊆ F such that for
every a ∈ A, f(p[a] ∪ q) = is = f(q). □

Lemma 3.7 (ACA0). Let X ⊆ FINA⋆ be an infinite block sequence and let f : [X]A → C be a
coloring. One of the following holds:

(1) There is an infinite block sequence Y ⊆ [X]A⋆ which is f -thin for some color i ∈ C.
(2) There is a finite set F ⊆ [X]A⋆ and an infinite block sequence Y ⊆ [X − F ]A⋆ such that

F full-matches Y .

Proof. Construct an infinite sequence of finite sets of located variable words F1, F2, . . . , an
infinite sequence of infinite block sequences Y0, Y1, . . . and an infinite sequence of colorings
f0, f1, . . . as follows.
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Initially, Y0 = X and f0 = f . Suppose Ys and fs have been defined. By Lemma 3.6, there is a
finite set Fs+1 ⊆ [Ys]A⋆ and an infinite block sequence Ys+1 ⊆ [Ys−Fs+1]A⋆ such that Fs+1 half-
matches Ys+1 for the coloring fs. Let fs+1 be defined on [Xs+1]A by letting fs+1(q) = ⟨p, fs(q)⟩,
where p ∈ Fs+1 is such that for every a ∈ A, fs(p[a] ∪ q) = fs(q).

Suppose first that there is some s such that for every q ∈ [Ys+1]A, there is some p1 ∈
F1, . . . , ps ∈ Fs and p ∈ [p1, . . . , ps]A⋆ such that for every a ∈ A, f(p[a]) = f(p[a] ∪ q) = f(q).
Then, letting

F =
⋃

p1∈F1,...,ps∈Fs

[p1, . . . , p1]A⋆

the set F full-matches Ys+1 and we are done.
Suppose now that for every s ∈ N, there is some qs ∈ [Ys+1]A such that for every p1 ∈

F1, . . . , ps ∈ Fs and p ∈ [p1, . . . , ps]A⋆, there is some a ∈ A such that if f(p[a]∪ qs) = f(qs), then
f(p[a]) ̸= f(qs). By the pigeonhole principle, there is a color i ∈ C and an infinite sequence of
integers s0 < s1 < . . . such that for every r ∈ N, f(qsr) = i. By choice of the colorings f0, f1, . . .
and the definitions of half-matches, for each such r, we can find a sequence p1 ∈ F1, . . . , psr ∈ Fsr

such that for every p ∈ [p1, . . . , psr ]A⋆ and every a ∈ A, f(p[a]∪ qsr) = f(qsr) = i. Then, by our
supposition, for every p ∈ [p1, . . . , psr ]A⋆, there is some a ∈ A such that f(p[a]) ̸= i.

By weak König’s lemma (which holds in ACA0), there is an infinite block sequence Y ⊆ [X]A⋆

which is weakly f -thin for color i. By Lemma 3.3, there is an infinite block sequence Z ⊆ [Y ]A⋆

which is f -thin for color i. □

Lemma 3.8 (ACA0). Let X ⊆ FINA⋆ be an infinite block sequence and let f : [X]A → C be a
coloring. There is a finite set F ⊆ [X]A⋆ and an infinite block sequence Y ⊆ [X − F ]A⋆ such
that F full-matches Y .

Proof. By induction on |C|. Applying Lemma 3.7 with |C| = 1, the second case must hold and
we are done. Suppose now that |C| > 0 and that the property holds for |C| − 1. Applying
Lemma 3.7, either the second case holds, in which case we are done, or the first case holds, and
we apply the induction hypothesis. □

Theorem 3.9 (ACA+
0 ). Let X ⊆ FINA⋆ be an infinite block sequence and let (fn)n∈N be a

sequence of colorings [X]A → C, There is an infinite block sequence Y ⊆ [X]A⋆ such that for
every n, there is some finite set F ⊆ Y such that [Y − F ]A is fn-homogeneous.

Proof. As in Lemma 3.7, construct an infinite sequence of finite sets of located variable words
F1, F2, . . . , an infinite sequence of infinite block sequences Y0, Y1, . . . and an infinite sequence
of colorings g0, g1, . . . as follows.

Initially, Y0 = X and g0 = f0. Suppose Ys and gs have been defined. By Lemma 3.8, there
is a finite set Fs+1 ⊆ [Ys]A⋆ and an infinite block sequence Ys+1 ⊆ [Ys −Fs+1]A⋆ such that Fs+1

full-matches Y s+ 1 for the coloring gs. Let gs+1 be defined on [Xs+1]A by letting gs+1(q) =
⟨p, gs(q), fs+1(q)⟩, where p ∈ Fs+1 is such that for every a ∈ A, gs(p[a]) = gs(p[a] ∪ q) = gs(q).

For every s, there is a sequence p1 ∈ F1, . . . , ps ∈ Fs such that for each t ≤ s, [pt, . . . , ps]A is
ft-homogeneous. By weak König’s lemma, there is an infinite block sequence Y ⊆ [X]A⋆ such
that for every n, there is some finite set F ⊆ Y such that [Y − F ]A is fn-homogeneous. □

4. Topological dynamics in CFINA

Topological dynamics studies recurrence phenomena in the context of compact topological
spaces. Furstenberg and Weiss [10] have shown that it was a very powerful tool to study
combinatorial theorems. They gave in particular a proof of Hindman’s theorem based on the
Auslander-Ellis theorem, a theorem of topological dynamics informally stating that for every
finite coloring f : N → C, there exists another coloring g : N → C similar to f , but which enjoys
a strong recurrence property. The proof of the Auslander-Ellis theorem involved the notion of
Ellis’ enveloping semigroup, which is a third-order object related to the notion of ultrafilter.

Blass, Hirst and Simpson [2] studied the work of Furstenberg and Weiss in the context of
reverse mathematics, and got rid of the use of Ellis’ enveloping semigroup by using iterated
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Hindman’s theorem in the proof of the Auslander-Ellis theorem. Kreuzer [19] proved the equiv-
alence between iterated Hindman’s theorem, the Auslander-Ellis theorem and the existence of
an idempotent ultrafilter in higher-order reverse mathematics.

The original work of Furstenberg and Weiss [10] was on finite colorings of the semigroup
(N,+). Furstenberg and Katznelson [9] extended their work to the semigroup (W(A), ·) of
words over a finite alphabet A, and proved Carlson’s theorem for words and variable words
using topological dynamics, using Ellis’ enveloping semigroup.

In this section, we build on the work of Furstenberg and Katznelson and develop some basics
of topological dynamics for located words. The tools will be used in Section 5 to state and
prove multiple versions of the Auslander-Ellis theorem from the iterated Finite Union theorem.

Consider FINA as a partial semigroup with the ∪ operation, defined only whenever p < q.
Fix a finite set C of colors. CFINA is the space of all mappings from FINA to C. Given m ∈ N,
n ∈ N ∪ {∞}, we write FINA(m,n) for the set of all located words p ∈ FINA such that
m ≤ dom(p) < n. Given ℓ ∈ N and p ∈ FINA(ℓ,∞), let Sℓ

p(f) : FINA(0, ℓ) → C be defined by

Sℓ
p(f)(q) = f(q ∪ p). Whenever p = ∅, we simply write Sℓ(f) for Sℓ

∅(f). We say that a finite
coloring h : FINA(0, ℓ) → C is a factor of f : FINA → C if there is some p ∈ FINA such that
Sℓ
p(f) = h.

4.1. Recurrence

Informally, a coloring is recurrent if any initial segment of it occurs arbitrarily far. The
located words being non-linearly ordered, there exist multiple notions of recurrence for colorings
of located words.

Definition 4.1. A coloring f : FINA → C is

(1) weakly recurrent if for every ℓ ∈ N, there is some located word p ∈ FINA(ℓ,∞) such
that Sℓ

p(f) = Sℓ(f).
(2) recurrent if for every ℓ ∈ N, there is some located variable word p ∈ FINA⋆(ℓ,∞) such

that for each a ∈ A, Sℓ
p[a](f) = Sℓ(f).

(3) uniformly recurrent if for every ℓ ∈ N, there is some m > ℓ such that for every p ∈
FINA(m,∞), there is some q ∈ FINA(ℓ,m) for which Sℓ(f) = Sℓ

q∪p(f).

The terminology suggests that uniform recurrence is a stronger notion than recurrence, al-
though it is not obvious from the definitions. The following lemma shows that it is the case,
thanks to the Hales-Jewett theorem.

Lemma 4.2 (RCA0). If f is uniformly recurrent, then it is recurrent.

Proof. Fix ℓ ∈ N. Let m > ℓ be such that for every p ∈ FINA(m,∞), there is some q ∈
FINA(ℓ,m) for which Sℓ(f) = Sℓ

q·p(f).
Let πm : FINA → FINA(m,∞) be the canonical bijection. Let g : FINA → FINA(ℓ,m) be

defined for every p ∈ FINA(m,∞) by letting g(p) be the least q ∈ FINA(ℓ,m) (in any fixed order)
such that Sℓ

q∪πm(p)(f) = Sℓ(f). By the Hales-Jewett theorem (Theorem 3.1), there is a located

variable word v ∈ FINA⋆ such that [v]A is g-homogeneous, for some color q ∈ FINA(ℓ,m).
Let w = q ∪ πm(v). In particular, for every a ∈ A, g(v[a]) = q, so Sℓ

w[a](f) = Sℓ
q∪πm(v[a])(f) =

Sℓ(f). □

The following lemma shows that recurrent colorings are simple instances of Carlson’s theorem
for located words, in that they admit solutions computable in the instances.

Lemma 4.3 (RCA0). For every recurrent coloring f : FINA → C, there is an infinite block
sequence X ⊆ FINA⋆ such that [X]A is f -homogeneous for color f(∅).
Proof. We build a sequence p0 < p1 < . . . of located variable words inductively. Since f is
recurrent, there is some located variable word p0 ∈ FINA⋆ such that for each a ∈ A, S0

p0[a]
(f) =

S0(f). In particular, f(p0[a]) = f(∅) for every a ∈ A.
Assume p0 < · · · < pn are located variable words such that [p0, . . . , pn]A is f -homogeneous

for color f(∅). Let ℓ = 1maxdom pn. Since f is recurrent, there is some located variable
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word pn+1 ∈ FINA⋆(ℓ, ∅) such that for each a ∈ A, Sℓ
pn+1[a]

(f) = Sℓ(f). Let p ∈ [p0, . . . , pn]A ∪
{∅}. Note that max dom p < ℓ and that f(p) = f(∅). Then for every a ∈ A,

f(p ∪ pn+1[a]) = Spn+1[a](f)(p) = g(p) = f(∅)
Thus, [p0, . . . , pn, pn+1]A is f -homogeneous for color f(∅). □

4.2. Minimal subshifts

In general, a dynamical system induces a notion of subshift, which is a class of colorings
closed under application of the homeomorphism. In the case of colorings of located words, the
situation is slightly more complex because of the partiality of the semigroup. We can however
define some notion of subshift, and recover the standard properties saying that any minimal
subshift contains only uniformly recurrent colorings.

Definition 4.4. A non-empty closed class C ⊆ CFINA is a subshift if for every f ∈ C, every ℓ ∈ N
and p ∈ FINA(ℓ,∞), there is some g ∈ C such that Sℓ(g) = Sℓ

p(f).

A subshift C ⊆ CFINA is minimal if there is no subshift D ⊊ C.
Lemma 4.5 (WKL0). If C ⊆ CFINA is a minimal subshift and f ∈ C, then f is uniformly
recurrent.

Proof. Suppose f is not uniformly recurrent. Then there is some ℓ ∈ N such that for every
bound m > ℓ, there is some located word p ∈ FINA(m,∞) such that for every q ∈ FINA(ℓ,m),
Sℓ
q∪p(f) ̸= Sℓ(f). Let D be the Π0

1 class of all g ∈ C which does not contain Sℓ(f) as a factor.
Note that D is a subshift. As f ̸∈ D, we have that D ⊊ C. By minimality assumption, then
D = ∅. By WKL, there is a bound m > ℓ such that for every g ∈ C, there is some q ∈ FINA(ℓ,m)
such that Sℓ

q(g) = Sℓ(f).
Fix some p ∈ FINA(m,∞). By definition of a subshift, there is some g ∈ C such that

Sm(g) = Sm
p (f). In particuler, for every q ∈ FINA(ℓ,m), Sℓ

q(g) = Sℓ
q∪p(f). Since g ∈ C, there is

some q ∈ FINA(ℓ,m) such that Sℓ
q(g) = Sℓ(f). But Sℓ

q(g) = Sℓ
q∪p(f), so Sℓ

q∪p(f) = Sℓ(f). This
contradicts our initial choice of ℓ. □

From a purely mathematical viewpoint, the existence of minimal subshifts follow from Zorn’s
lemma. Day [6] however proved that their existence follow from ACA0 in the context of colorings
of N. The proof of the existence of minimal subshifts in our case follows exactly the same
argument.

Lemma 4.6 (ACA0, Day [6]). Every subshift contains a minimal subshift.

Proof. Let C ⊆ CFINA be a subshift. Fix an enumeration of all finite colorings h0, h1, . . . of the
form FINA(0, ℓ) → C for some ℓ ∈ N. Define a sequence C0 ⊇ C1 ⊇ . . . of subshifts as follows:
C0 = C. Given Ci, let D be the class of f ∈ Ci which does not contain hi as a factor. If D ≠ ∅,
then Ci+1 = D, otherwise Ci+1 = Ci. Then

⋂
i Ci is a minimal subshift. □

4.3. Orbit closures

The notion of orbit closure of a coloring is central in topological dynamics. There is no clear
definition of orbit in the case of colorings of located words, but the notion of orbit closure can
be directly defined.

Definition 4.7. The orbit closure of f ∈ CFINA is the collection Orb(f) of all g ∈ CFINA

such that for every ℓ ∈ N, and every q ∈ FINA(ℓ,∞), there is some p ∈ FINA(ℓ,∞) such that
Sℓ
q(g) = Sℓ

p(f).

In particular, Orb(f) is a Π0
1(f

′) class and is the class of path of the following tree:

Tf =
⋃
m

{
h ∈ CFINA(0,m) :

∀ℓ < m∀q ∈ FINA(ℓ,m)
∃p ∈ FINA(ℓ,∞) Sℓ

p(f) = Sℓ
q(h)

}
Given a finite coloring h : FINA(0, ℓ) → C, we write [h] for the class of all f ∈ CFINA such that
Sℓ(f) = h.
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Lemma 4.8 (RCA0). For every f , Orb(f) is a subshift.

Proof. Orb(f) is clearly closed as Orb(f) = [Tf ].

Fix some g ∈ Orb(f), ℓ ∈ N and p ∈ FINA(ℓ,∞). Let us show that there is some h ∈ Orb(f)
such that Sℓ(h) = Sℓ

p(g). Let h be defined by h(q) = g(q∪p) for q ∈ FINA(0, ℓ), and h(q) = g(q)

otherwise. By definition, Sℓ(h) = Sℓ
p(g). We claim that h ∈ Orb(f). Fix some ℓ1 ∈ N,

some q ∈ FINA(ℓ1,∞). If q ∈ FINA(0, ℓ), then Sℓ1
q (h) = Sℓ1

q∪p(g). Since g ∈ Orb(f), there

is some p1 ∈ FINA(ℓ1,∞) such that Sℓ1
q∪p(g) = Sℓ1

p1(f). In particular Sℓ1
q (h) = Sℓ1

p1(f). If

q ̸∈ FINA(0, ℓ), then Sℓ1
q (h) = Sℓ1

q (g). Again, since g ∈ Orb(f), there is some p1 ∈ FINA(ℓ1,∞)

such that Sℓ1
q (g) = Sℓ1

p1(f). In both cases, Sℓ1
q (h) = Sℓ1

p1(f) for some p1 ∈ FINA(ℓ1,∞). □

Lemma 4.9 (ACA0, Kreuzer [19]). If f is uniformly recurrent, then Orb(f) is minimal.

Proof. Suppose that Orb(f) is not minimal. Then there is some g ∈ Orb(f) such that Orb(g) ⊊
Orb(f). In particular, f ̸∈ Orb(g), so there some ℓ ∈ N such that Orb(g) ∩ [Sℓ(f)] = ∅.

Since f is uniformly recurrent, there is a bound m > ℓ such that for every p ∈ FINA(m,∞),

there is some q ∈ FINA(ℓ,m) such that Sℓ
q∪p(f) = Sℓ(f). Since g ∈ Orb(f), there is some p ∈

FINA(m,∞) such that Sm(g) = Sm
p (f). In particular, for every q ∈ FINA(ℓ,m), Sℓ

q(g) =

Sℓ
q∪p(f). Let q ∈ FINA(ℓ,m) be such that Sℓ

q∪p(f) = Sℓ(f). Then Sℓ
q(g) = Sℓ

q∪p(f) = Sℓ(f).

But by definition of a subshift, there is some h ∈ Orb(Y ) such that Sℓ(h) = Sℓ
q(g), contradicting

the fact that Orb(g) ∩ [Sℓ(f)] = ∅. □

Lemma 4.10 (ACA0, Day [6]). If Orb(f) is minimal, then f is uniformly recurrent.

Proof. Orb(f) is a minimal subshift containing f . By Lemma 4.5, f is uniformly recurrent. □

Lemma 4.11 (ACA0). For every f ∈ CFINA, there is a coloring g ∈ Orb(f) such that Orb(g)
is minimal.

Proof. By Lemma 4.6, Orb(f) contains a minimal subshiftD ⊆ Orb(f). Let g ∈ D. In particular,

Orb(g) ⊆ D is a subshift. By minimality of D, Orb(g) = D. □

5. Auslander-Ellis theorem for CFINA

We have see that recurrent colorings are simple instances of Carlson’s theorem for located
words. Although colorings are not recurrent in general, the Auslander-Ellis theorem says that
every coloring is close to a recurrent coloring. Here again, due to the non-linearity of the
ordering of words, there exists multiple notions of proximality.

Definition 5.1. Fix two colorings f, g : FINA → C.

(1) f and g are weakly proximal if for every ℓ ∈ N, there is a located word p ∈ FINA(ℓ,∞)
such that Sℓ

p(g) = Sℓ
p(f).

(2) f and g are proximal if for every ℓ ∈ N, there is a located variable word p ∈ FINA⋆(ℓ,∞)
such that for each a ∈ A, Sℓ

p[a](g) = Sℓ
p[a](f).

(3) g is strongly proximal to f if for every ℓ ∈ N, there is a located variable word p ∈
FINA⋆(ℓ,∞) such that for each a ∈ A, Sℓ(g) = Sℓ

p[a](g) = Sℓ
p[a](f).

Note that if f is recurrent, then it is strongly proximal to itself. There exists multiple
candidate statements for adapting the Auslander-Ellis theorem to CFINA since there exists
three notions of proximality. Two of them are of interest:

Theorem 5.2 (Auslander-Ellis for CFINA). For every coloring f : FINA → C, there is a
uniformly recurrent coloring g : FINA → C weakly proximal to f .

Theorem 5.3 (Weak Auslander-Ellis for CFINA). For every coloring f : FINA → C, there is a
coloring g : FINA → C strongly proximal to f .
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In what follows, letHJ(k, ℓ) be an integer large enough so that for every h : FINA(HJ(k, ℓ)) →
ℓ, there is a located variable word p ∈ FINA⋆(HJ(k, ℓ)) such that [p]A is h-homogeneous. The
following lemma shows that the Auslander-Ellis theorem for CFINA implies its weak version.

Lemma 5.4 (RCA0). If g is uniformly recurrent and weakly proximal to f , then it is strongly
proximal to f .

Proof. Fix ℓ ∈ N. Since g is uniformly recurrent, there is some m > ℓ be such that for
every p ∈ FINA(m,∞), there is some q ∈ FINA(ℓ,m) such that Sℓ

q∪p(g) = Sℓ(g). Let N =
HJ(k, |FINA(ℓ,m)|). Since g is weakly proximal to f , there is some p ∈ FINA(m+N,∞) such
that Sm+N

p (g) = Sm+N
p (g). Let h : FINA(m,m + N) → FINA(ℓ,m) be defined by h(v) = q

such that Sℓ
q∪v∪p(g) = Sℓ(g). By the finite Hales-Jewett theorem, there is a located variable

word u ∈ FINA(m,m + N) and some q ∈ FINA(ℓ,m) such that for every a ∈ A, h(u[a]) = q.
In other words, for every a ∈ A, Sℓ

q∪u[a]∪p(g) = Sℓ(g). Note that Sℓ
q∪u[a]∪p(g) = Sℓ

q∪u[a]∪p(f).

Thus, letting w = q ∪ u[i] ∪ p, for every a ∈ A, Sℓ(g) = Sℓ
w[a](g) = Sℓ

w[a](f). □

Corollary 5.5 (RCA0). The Auslander-Ellis theorem for CFINA implies its weak version.

Proof. Immediate by Lemma 5.4. □

5.1. Proof of Carlson’s theorem for located words

The same way Furstenberg and Weiss [10] proved that the original Auslander-Ellis theorem
implies Hindman’s theorem, we will prove that the weak version of the Auslander-Ellis theorem
for CFINA implies Carlson’s theorem for located words.

Lemma 5.6 (RCA0). Suppose f, g : FINA → C are colorings such that g is strongly proximal
to f . Then there is an infinite block sequence X ⊆ FINA⋆ such that [X]A is both f -homogeneous
and g-homogeneous for color g(∅).

Proof. We build a sequence p0 < p1 < . . . of located variable words inductively.
Since g is strongly proximal to f , there is some located variable word p0 ∈ FINA⋆ such that

for each a ∈ A, S0
p0[a]

(f) = S0
p0[a]

(g) = S0(g). In particular, f(p0[a]) = g(p0[a]) = g(∅) for

every a ∈ A.
Assume p0 < · · · < pn are located variable words such that [p0, . . . , pn]A is both f -homogeneous

and g-homogeneous for color g(∅). Let ℓ = 1maxdom pn. Since g is strongly proximal to f ,
there is some located variable word pn+1 ∈ FINA⋆(ℓ, ∅) such that for each a ∈ A,

Sℓ
pn+1[a]

(f) = Sℓ
pn+1[a]

(g) = Sℓ(g)

Let p ∈ [p0, . . . , pn]A∪{∅}. Note that max dom p < ℓ and that g(p) = g(∅). Then for every a ∈ A,

f(p ∪ pn+1[a]) = Spn+1[a](f)(p) = g(p) = g(∅)

g(p ∪ pn+1[a]) = Spn+1[a](g)(p) = g(p) = g(∅)
Thus, [p0, . . . , pn, pn+1]A is both f -homogeneous and g-homogeneous for color g(∅). □

Corollary 5.7 (RCA0). The weak Auslander-Ellis theorem for CFINA implies Carlson’s theorem
for located words.

Proof. Immediate by Lemma 5.6. □

5.2. Proof of the Auslander-Ellis theorem for CFINA

The purpose of this section is to prove the Auslander-Ellis theorem for CFINA from an iterated
version of the Finite Union theorem. Together with the previous section, we will obtain a proof
of Carlson’s theorem for located words from the iterated Finite Union theorem. The proof
follows the structure of Section 5 of Blass, Hirst and Simpson [2].

We can actually refine our statement about the Finite Union theorem and consider only
bounded unions. Given some r ∈ N, let

FU≤r(X) = {∪F : F ⊆ X ∧ 0 < |F | ≤ n}
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Theorem 5.8 (Iterated Finite Union (bounded version)). Let X ⊆ Pf (N) be an infinite block
sequence. For every sequence (fn)n∈N of colorings FU(X) → C, there is an infinite block
sequence Y ⊆ FU(X) such that for every n, there is some finite set F ⊆ Y such that FU≤r(Y −
F ) is fn-homogeneous.

We will write IFUT≤r as a shorthand for the iterated Finite Union theorem for unions of at
most r elements. We need a notion of weak block sequence playing the same role as the notion
of block sequence, but for located words instead of located variable words.

Definition 5.9. A weak block sequence is a totally ordered set X ⊆ FINA. Given a weak block
sequence X and some r ∈ N, we let

[X]≤r
A = {p0 ∪ · · · ∪ pk−1 ∈ FINA : k ≤ r ∧ p0, . . . , pk−1 ∈ FINA}

The following notion is an adaptation of the IP-limit to combinatorial spaces of located words.

Definition 5.10. Given f, g : FINA → C and an infinite weak block sequence X ⊆ FINA,
we write FU≤2 - limX(f) = g if for every ℓ ∈ N, there is a finite set F ⊆ X such that for

every p ∈ [X − F ]≤2
A , Sℓ

p(f) = Sℓ(g).

Lemma 5.11 (RCA0). If g = FU≤2 - limX(f) for an infinite weak block sequence X ⊆ FINA

then g is weakly proximal to f .

Proof. Suppose g = FU≤2 - limX(f). Given ℓ ∈ N, let F0 ⊆ X be such that for every p ∈
[X − F0]

≤2
A , Sℓ

p(f) = Sℓ(g). Fix p ∈ X − F0 and let m = 1 + max p. Let F1 ⊆ X be such that

for every q ∈ [X − F1]
≤2
A , Sm

q (f) = Sm(g). Fix q ∈ X − F1. In particular, Sℓ
p∪q(f) = Sℓ

p(g).

Since p, p ∪ q ∈ [X − F0]
≤2
A , then Sℓ

p(f) = Sℓ(g) and Sℓ
p∪q(f) = Sℓ(g). It follows that

Sℓ
p(f) = Sℓ(g) = Sℓ

p∪q(f) = Sℓ
p(g)

In other words, g is weakly proximal to f . □

Lemma 5.12 (RCA0+ IFUT≤2). For every coloring f : FINA → C and every infinite weak block
sequence X ⊆ FINA, there is an infinite weak block sequence Y ⊆ [X]A such that FU≤2 - limY (f)
exists.

Proof. Let B = {dom p : p ∈ X}. There exists a canonical bijection π : FU(B) → [X]A.
For every ℓ ∈ N and finite coloring h : FINA(0, ℓ) → C, let Ch = {F ∈ FU(B) : Sℓ

π(F )(f) = h}.
Thus ⟨Ch : h ∈

⋃
ℓC

FINA(0,ℓ)⟩ is a countable sequence of 2-colorings of FU(B). By IFUT≤2, there
is an infinite set D ⊆ FU(B) such that for every h : FINA(0, ℓ) → C, there is a finite set Gh ⊆ D

such that FU≤2(D−Gh) is homogeneous for Ch. Moreover, the sequence ⟨Gh : h ∈
⋃

ℓC
FINA(0,ℓ)⟩

exists by ACA0, which follows from RCA0 + IFUT≤2.
We claim that for every ℓ ∈ N, there is at most one h : FINA(0, ℓ) → C such that FU≤2(D−

Gh) ⊆ Ch. Indeed, if there is are h0, h1 : FINA(0, ℓ) → C such that FU≤2(D − Ghi
) ⊆ Chi

for
each i < 2, then pick some F ∈ D− (GF ∪GH). Then F ∈ Ch0 ∩Ch1F , so by definition of Chi

,
Sℓ
π(F )(f) = hi, so h0 = h1.

For every ℓ ∈ N, let hℓ : FINA(0, ℓ) → C witness the claim. Note that hℓ ⊆ hℓ+1. The

sequence ⟨hℓ : ℓ ∈ N⟩ can obtained computably from the sequence ⟨Gh : h ∈
⋃

ℓC
FINA(0,ℓ)⟩.

Let g : FINA → C be such that Sℓ(g) = hℓ for every ℓ ∈ N. Let Y = {π(F ) : F ∈ D}. Note
that Y ⊆ [X]A is a weak block sequence. By construction, FU≤2 - limY (f) = g. □

Lemma 5.13 (RCA0 + IFUT≤2). For every coloring f : FINA → C and every g ∈ Orb(f),

there is a coloring h ∈ Orb(g) such that h = FU≤2 - limX(f) for some infinite weak block
sequence X ⊆ FINA.

Proof. Fix f and g. Assume f ̸= g, otherwise the result follows from Lemma 5.12 directly.
For every ℓ ∈ N, let Vℓ = CFINA(0,ℓ), and let V =

⋃
ℓ Vℓ. Let T ⊆ V be a code for the subshift

Orb(g) such that T has no leaves. For each ℓ ∈ N, let Tℓ = T ∩ Vℓ. Let Uℓ be the open class
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induced by the leaves of Tℓ. Last, for every p ∈ FINA(ℓ,∞), let Wℓ,p = {h ∈ CFINA : Sℓ
p(h) ∈

Tℓ}. Note that for all ℓ ∈ N and p ∈ FINA(ℓ,∞), Orb(g) ⊆ Wℓ,p and Wℓ,p is open.
Define the weak block sequence p0 < p1 < . . . inductively as follows. Let p0 ∈ FINA be

arbitrary. Given pℓ defined, with mℓ = 1 + maxdom pℓ, since
⋂

p∈FINA(0,mℓ)
Wℓ,p is an open

cover of Orb(g), there is some bound b ∈ N such that Ub ⊆
⋂

p∈FINA(0,mℓ)
Wℓ,p. By definition

of Tb, since g ∈ Orb(g), there is some h ∈ Tb be such that Sb(g) = h. In particular, [h] ⊆ Ub.

Since g ∈ Orb(f), then there is some located word pℓ+1 ∈ FINA(b,∞) such that Sb
pℓ+1

(f) = h.
Moreover, since f ̸= g, the located word pℓ+1 can be taken to be non-empty. In particular,
[Sb

pℓ+1
(f)] ⊆ Ub ⊆

⋂
p∈FINA(0,mℓ)

Wℓ,p. Thus for each ℓ ∈ N, Sℓ
p(f) ∈ Tℓ for all sufficiently

large p ∈ [p0, p1, . . . ]A.
By Lemma 5.12, there is an infinite weak block sequence X ⊆ [p0, p1, . . . ]A such that h =

FU≤2 - limX(f) exists. Then h ∈
⋂

ℓ Uℓ = Orb(Y ). □

We are now ready to prove the Auslander-Ellis theorem for CFINA from the iterated Finite
Union theorem.

Proof of Theorem 5.2 over RCA0 + IFUT≤2. Let f : FINA → C be a coloring. By Lemma 4.6,
let g ∈ Orb(f) be such that Orb(g) is minimal. By Lemma 5.13, there is a coloring h ∈ Orb(g)
and an infinite weak sequence X ⊆ FINA such that h = FU≤2 - limX(f). By Lemma 5.11, h is

weakly proximal to f . Moreover, Orb(h) = Orb(h) by minimality, hence h is uniformly recurrent
by Lemma 4.5. □

This gives us in particular a proof of Carlson’s theorem from the iterated Finite Union
theorem for unions of at most 2 elements.

Proof of Theorem 1.10 over RCA0 + IFUT≤2. Let f : FINA → C be a coloring. By Theorem 5.2,
there is a coloring g which is uniformly recurrent, and weakly proximal to f . By Lemma 5.4, g
is strongly proximal to f . By Lemma 5.6, there is an infinite block sequence X ⊆ FINA⋆ such
that [X]A is f -homogeneous. □

Corollary 5.14. RCA0 ⊢ IFUT≤2 → FUT

Proof. Immediate, since RCA0 + IFUT≤2 proves Carlson’s theorem for located words (Theo-
rem 1.10), which itself implies the Finite Union theorem. □

It is a major open question is combinatorics whether Hindman’s theorem for bounded sums
implies Hindman’s theorem (see Hindman, Leader and Strauss [14, Question 12]). Corollary 5.14
can be seen as a partial negative answer.

6. Open questions

There are many remaining open questions in the reverse mathematics of Ramsey’s theory.
We mention a few of them. The first one, maybe the most important, is the following.

Question 6.1. Does (iterated) Hindman’s theorem hold in ACA0?

We have seen that the iterated Finite Union theorem implies Carlson’s theorem for located
words. However, the proof does not seem to be adaptable to replace IFUT with its non-iterated
version.

Question 6.2. Does Hindman’s theorem imply Carlson’s theorem for (located) words?

Last, as mentioned in the introduction, Carlson proved a stronger statement about variable
words, which has no known elementary proof.

Question 6.3. What are the reverse mathematics of Carlson’s theorem for variable (located)
words?
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